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ABSTRACT

Recent literature on the phenomenon of sustained growth has emphasized the
role of increasing returns to scale technologies. We suggest in this paper a
microeconomic foundation for the existence of increasing returns technologies.
Production is assumed to require a combination of capital and labor in a
standard, constant returns to scale technology. However, this technology is
affected multiplicatively by a productivity factor. This factor is assumed to
be a result of a research and development process. The R&D process is modeled
as a search problem. Firms face a known fixed distribution of productivity
factors from which they can sample. Sampling is costly in terms of capital,
and therefore firms, which possess a certain amount of capital, have to
decide when to stop sampling, hire labor in a competitive labor market, and
invest the remainder of their capital in the CRS technology multiplied by the
productivity factor they have uncovered. The paper analyzes the search problem
faced by the firms, and shows that under certain assumptions about the
probability  distribution function which governs the behavior of the
productivity factor, output is likely to display increasing returns to scale
with respect to capital (in a probabilistic sense). This result is embedded in
a Diamond-like growth model. It is argued that the model can possess sustained
growth paths with interesting stochstaic features. In particular, growth rates
of the poorer economies are likely be lower than those of the richer
gconomies, but less variable. This result seems to be corroborated in the
ata.




1. INTRODUCTION

This work describes an environment in which optimizing behavior implies that
incentives to capital accumulation do not diminish as the capital stock grows,
thus allowing for sustained growth in output per worker asymptotically. The
main idea is that improvements in production technologies, broadly
interpreted, occur as random outcomes of search process over potential
"untried" technologies, where the search investment is financed from savings.
Countries with higher output per worker can - and under the optimal search
strategy will choose to -  invest more in search, thus enjoying higher
expected profits, which in turn will allow them to further increase their
investment in search. What is novel about our approach is that we demonstrate
how this process can generate sustained growth even though new output is
produced via neo-classical constant returns to scale functions of capital and
labor, and the distribution of technologies searched over is time invariant,

so that better technologies become harder to discover.

Recent literature on growth, for instance, Lucas (1988), Romer (1986), Rebelo
(1987), and Jones and Manuelli (1988), has been successful in modeling
sustained growth endogenously, by relying on some notion of increasing returns
to scale, or on some lower bound on capital productivity, thus avoiding the
diminishing returns to the factor of production that can be
accumulated.'Little emphasis is put on the micro foundation for such a

technology, although its micro underpinning might be crucial for designing

1See Sala-i-Martin (1990) for a comprehensive review of this literature.



policies aimed at promoting growth. A different mechanism for generating
endogenous growth is provided by explicit models of financial intermediation,
which exploit increasing returns in information processing, or from
economizing on monitoring costs of funded investment projects, (Greenwood and
Jovanovic (1990), Williamson (1987)). Yet, in all the aforementioned works the
underlying production technology is taken as given, while relatively few works
recognize the importance of the costs and the structure of returns to the
process of finding these technologies, (Aghion and Howitt (1990), and
Jovanovic and Rob (1990) being notable exceptions). We suggest that production
technologies, broadly interpreted, have to be discovered, that the discovery
process is random, and that there is a fixed cost element involved in
searching for better technologies. These features will be shown to imply, for
certain environments, a random growth process which can display increasing,
maintained or decreasing conditional first moments of growth rates, depending
on the beginning of period capital stock. The model is based on a costly
search process over potential technologies with unknown productivity rates.
For sufficiently high per capita beginning of period capital stock, optimal
search generates output process exhibiting increasing returns to "gross”
capital, while exhibiting constant or decreasing returns to "productive”
capital. Search costs account for the difference between ‘"gross" and

"productive" capitals.

Our approach to modeling growth through search for better technologies differs
from some recent works on the same subject. In particular, we assume that
within a period, each firm is precluded from observing the search results of
its rivals. It simply operates as a price taker with respect to its factors of

production, doing the best it can in searching for a production technology.



Thus, the only advantage in finding a "good" technology is the economic value
of that technology itself, without any additional monopoly rents. This, to be
contrasted with Aghion and Howitt (1990), where in the context of R&D races,
the finder of the best technology enjoys monopoly rights, until a better
technology is found. Moreover, we further reduce the incentive to invest in
R&D by assuming a time-invariant probability distribution of levels of
technologies, as opposed to Aghion and Howitt (1990), or Jovanovic and Rob
(1990), where increments to the technologies have time-invariant
distributions. Thus, in our environments it becomes monotonically harder over
time to find a better technology, and yet we show that incentives to invest in
search can be large enough to induce ever increasing investment, which

generates sustained growth per capita.

The increasing returns to capital in this search-investment model create a
natural role for intermediation, interpreted simply as the process of pooling
individual savings to exploit these increasing returns. In a deeper analysis,
the equilibrium structure and extent of intermediation of this kind is
determined endogenously and jointly with the growth process itself, (as in
Greenwood and Jovanovic (1990)). Here, however, we simply impose a pooled
investment process, which amounts to exploiting in full the benefits from
conducting joint search. As in Boyd and Prescott (1986), pooled investment

will economize on project evaluation costs.

In addition to generating equilibrium growth process with (conditional)
increasing first moments, our search theoretic approach has several additional
attractive features. First, it allows us to examine the implications of

alternative government policies aimed at promoting growth, such as subsidies



to R&D. In previous analyses, such policies were modeled as exogenous shifts
in the productivity of R&D investment. Since our approach derives the optimal
search strategy as a function of the (fixed) sampling cost from a given
distribution of technologies, subsidies to that cost can be studied without

assuming any "implicit" change in the productivity of R&D.

Second, our search theoretic approach has testable implications which depend
on the assumed distribution of technologies. Given such a distribution, our
approach can use observable differences among searchers to estimate and test
implications to their objectives and production functions. For instance, we
can view different sectors in the economy as conducting search from the same
distribution but with different initial capital stocks, and wuse the

differential sectors growth rates to test the model.

Third, the resulting stochastic growth process has implications to relations
among higher moments of time series of growth processes which have not
received due attention before. For instance, Kormendi and Meguire (1985) found
that post World War II sample means of annual growth rates of real GNP in a
sample of 47 countries are positively and significantly correlated with the
variability of each country’s growth, (as measured by sample standard

deviations of annual growth rates in each country).

Finally, a search theoretic setup can explain apparent differences between

aggregate and firm specific data of output and R&D outlays. For instance,

*This is analogous to the examination of unemployment insurance in search
theoretic models of unemployment, for instance, Lippman and McCall (1976).

"
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Pakes and Schankerman (1984) found hardly any relationship between the growth
rates of individual firms and their intensity of R&D activity, while the
growth in sector output aggregates accounts for over 50% of the variance in

sector aggregates of R&D investment.

This paper outlines a model which can address some of the issues mentioned
above. In section 2, we analyze a one-period problem of sequentially searching
over investment opportunities, and characterize the optimal search strategy.
In section 3 we embed the sequential search process in an otherwise standard
overlapping generations growth model, a la Diamond (1965). The sense in which
the solution to the search problem can give rise to an aggregate production
technology that exhibits increasing returns to scale is illustrated in section
4. In particular, we provide in that section an example economy which will
have, for sufficiently high initial capital stock, a random equilibrium growth
path with increasing expected growth rates, conditioned on beginning of period
stock of capital. For sufficiently low initial capital, that same economy can
have an equilibrium with no search and negative growth. Further implications
of the model on the stochastic growth process are reviewed in the concluding

section.

2.  SEQUENTIAL SEARCH FOR INVESTMENT OPPORTUNITIES

2.1 A single period problem

Consider the following search problem. An investor has Q units of capital

good, (hereafter, investment capital), available for investment at the current



time. For a fixed price of o units of capital the investor can sample one
investment project at a time, from an infinitely large population of projects,
indexed by their (constant) productivity fatc, 0. The cumulative probability
distribution of the productivity rates is denoted by H : R'— [0 , 1], H(0) =
Ofor® <0, H® =1for 028, 0<0 < 0 < e’ This distribution is assumed
to be invariant under successive sampling, (i.e., sampling with replacement).
After each sampling the investor has the option of accepting or rejecting the
project just examined. Rejecting the project means sampling at least one more
time. Accepting means activating the project with all the remaining capital
and possibly additional factors of production which can be hired at that
point. Thus, the search is done "without recall" during the search process, so
that a project rejected cannot be adopted later on, (it will be shown below

how to modify the analysis to allow for recall within the search period).

A project with a particular © in which k units of capital and optimal levels
of other factors are utilized will generate a payoff to the searchér, denoted
¢(k,0), where @(-,-) increases monotonically in both arguments. The index ¢
will be interpreted in the next section as the utility from the profit
generated by operating the project © with k units of capital. It is assumed
that [ the only cost of search is the direct sampling cost, and in particular,
the search activity. does not take any time. A'I'he investor’s goal is to maximize
the expectations of the index ¢ by specifying an optimal stopping strategy for
the sequential search process. "Denote by © a stopping strategy, l’% mapping

histories of sampled projects and remaining capital into the binary space,

*Note that © can be infinity, a feature that will be critical for sustained
growth.

1

w»



{"accept" , "reject"}. Thenleach o induces a probability distribution over the
final values. of © and k that will determine that searcher’s payoff, denoted

Gcand Eo" The searcher seeks to find a stopping rule ¢ such that
E (p(Ec,Go) > E ¢k 0,,60,)
for every feasible stopping rule ¢’.

Since resources are limited, the search will be finite in the number of
observations sampled. Let V(k,8) be the value of the objective searching
N optimally, k units of capital remain for investment, and the available
productivity rate is ©. The function V(,) must then satisfy the following

functional equation:

2.1) Vk0) = Max { ¢k9) , E V(k-0,8) }, o<k
V(k,0) = ¢(k.0), 0<k<o,

where E is the expectations operator.

|
Note that if the searcher can always go back to any project sampled -earlier,

then equation (2.1) changes to:

22)  V(k8) = Max { o(k,0) , E Max(V(k-c.) , V(k-0,8)) } k2> o

Vk,9) = o(k,9), k <a.

Since ¢(k,) is monotonically increasing in ©, the optimal search strategy



*
takes the form of a reservation productivity rates. Let O (k) denote the
minimal productivity rate which is acceptable when the remaining investment

capital is k. Then, from (2.1), we have:

o(k,08), if 8 >8 (k)
(2.3) Vik,0) =

E V(k-0.,0),0therwise.

If 9*(k) > 0, then it must equate the two terms in the maximand of (2.1), in

which case we have:

24  ¢kd () =E Vo) =

0
= H0" (k-0 p(k-0,0" (k-00)) + j o (k-0,8) dH(B)
8" (k-a)

while  8'(k) =0 for k e (0,0).
Equation (2.4) is a recursive relation from which 6*(k) can be found for any k
> 0. Note also that the first equality in (2.4) allows us to state that if 0'*

denotes the optimal search strategy (without recall) from initial capital

stock of Q then

@5  EoR,850 = 9(Q8 (Q).

Finally, note that the analog of (2.4) for the case with recall can be found

from (2.2) in the same way, to yield the (non-recursive) equation in 9*(k):

10



Q4) V8 K) =
% %
o(k0" () = E Max { Vik-0,8" (k) , V(k-0,8) }
Y
* %k
= H(® (K)-o(k-0,0 (k) + j o(k-0,8)dH(®),
6" (k)

%*
where the last equality in (2.4°) follows from assuming that 0 () is

non-decreasing, to be proven below.
2.2 Properties of 0*(k)

Without additional assumptions on the index ¢@(,) it is difficult to

characterize the optimal search strategy. We assume, hereafter, that:

26  ¢kd) = fk)1g®), k20, 0e 0,6l

where f and g are non-negative, monotonically increasing, f is concave and
£(0)=0. These assumptions will be motivated in the context of a dynamic growth

model in the next section. With assumption (2.6), equation (2.4) becomes:

@7 g6 ®) = Max {f“‘—“’ E Max(g®" (k-0),g®) , g0 }
f(k)

For sufficiently large k relative to o, the RHS of (2.7) equals its first
argument, and this recursive relation can be examined to establish some

important properties of the function 9*(-). In particular, we have:

11



CLAIM 1: (i) 9*(k) increases monotonically in k for all k > 0;
i) 0°K) —> 0 ask —s o

Gii) g0 () - g0 (k-0) —> 0 as k —s oo,

Proof:

For sufficiently low k, at least k € (0,00), we have from (2.7) that 9*(k) = 0,
%

so that (i) holds weakly. Assume then that de*(k-a)/dk > 0, and that 0 (k) is

given implicitly by:

28 @ ®) = %E Max ( g@® (o)) , g®) )

Differentiating both sides of (2.8) w.r.t. k, we get

()

dk

. E Max (g(® (k-a),g®))

*
29 g® K- (K =
dk

%k
s L) [Hce"‘(k.a»g'(e*(k-a»i(k-a)].
f(k) dk

Since f(-) is a concave increasing function, f(k-a)/f(k) also increases in k.
*

It follows, since g'(-) > O by assumption, that ﬂ(k) > 0  whenever
dk

do”

—(k-a) = 0.

dk

To prove (ii), note that 9*(-) is strictly increasing in k for sufficiently

12



large k, and is bounded from above by -6—, since the RHS of (2.8) is bounded
from above by g(-(;). However, for any x < 6, Ee Max { x , 8 } > x, while

f(k-o)/f(k) converges to 1. Hence we cannot have Lim 9*(k) < 5
k—s00

Finally, to prove (iii), use (2.8) again to write
* *
(2.10) g0 (k) - g6 k-o) =

He-%) (& Max { 50" (o)) , 20 ) - 20" ()
f(k)

- 10 - T 50" (k-a.
f(k)

As k —> o and 0 (k-0) —> 8, the first term on the RHS of (2.10) goes to
zero, while the second term is positive. Since g(O*(k)) increases
monotonically in k, it must be that g(O*(k)) - g(e*(k-a)) converges to

zero.jj

Note that the fact that first o-differences of g(e*(k)) go to zero does not
necessarily imply that first o-differences of 9*(k) go to zero, unless g is a
convex increasing function. Hence, without further restrictions on g we cannot
establish in general a property like concavity of 9*(-). Nevertheless, in the

next section we examine example economies in which this is the case.

Finally, note that the properties of the threshold productivity levels, 6*(-),
for the case of searching with recall within the period, are identical with

those established for the case without recall. The functional equation which

13



defines the optimal strategy for this case, equation (2.2), can be shown to

*
yield the following equation in 0 :

f(k-o)
Q1) g®'6) = Max {—py- E Max( 50'00)e® ) ., 6®)}

One can establish the same properties listed in claim 1 for the solution to
(2.11) along much the same lines specified in the proof. While for any
particular k, the threshold productivities will differ in the two cases, it is
easy to establish that the one corresponding to the case with recall is always

higher, and that the difference between the two vanishes as k—soo.

3. SEARCH IN A DYNAMIC MODEL

Here we embed the one-period search-investment problem in an overlapping
generations model. Each period N identical two period lived agents appear.
Agents supply labor services (inelastically) when young, and allocate the wage
income received between first period consumption and savings, where the latter
are invested in a competitive firms given a known distribution of the rate of
return on saving. The capital income on savings provides the sole source of
second period consumption, and accordingly the amount saved is determined by
an expected utility maximization problem. Formally, we assume a time separable

utility function, so that an agent born at period t maximizes

(3.1) viey) + E u(c,,)

14



subject to

(3.2) 1t = Wt " S

3.3) Sy = Ri1Sen
Here v() and wu() are strictly concave, twice differentiable increasing

functions, E is the expectations operator, c.. is the consumption at period i

it
of the agent’s life, (i = 1,2), W, is the wage rate the agent obtains when
© young, s, 4 is the agent’s saving and Rt +1 is the random gross rate of return

the agent faces.

The firm attracts savings by issuing equities, or equivalently, by offering a
cumulative probability ~distribution of rates of return, R(). The firm
generates the distribution R(-) by searching for an acceptable production
technology and, when one is found, utilizing it with its remaining investment
capital. The firm’s profits are then distributed to share holders as returns
on their savings. Here, we assume that the firm can, at each period t, adopt

the technology that was employed at t-1, et-l’ at no (search) cost.

Specifically, denote the underlying technology of the firm by OF(k,), F(,)
strictly concave, twice differentiable and increasing and homogeneous of
degree one in both arguments. At the beginning of the period, the firm views
the wage rate it will ultimately have to pay its workers, when it will decide
on its optimal employment level, as a random variable, w, with an exogenously

known cdf W(-). The firm has a given initial amount of investment capital, Q,

15



and has to search for an acceptable productivity rate, 0, (which might be
Bt_l), so as to maximize the expected utility of its share owners. When an
acceptable project is found, the firm decides on optimal labor input,

* . . .
¢ (0,k,w), where k is the residual investment capital net of search costs and

——

w is the realized wage rate. It will then produce the profits
(k0| w) = OF(k, (O.k,w)) - we (Bk,w),

which, by the constant returns to scale assumption on F, is a linear function
of k. The return on the firm’s initial capital is then given by R =
n(k,elw)/Q. Note that% will be random at the beginning of the period, being a
function of both k and © -whose final realizations depend (stochastically) on
the firm’s strategy- and on w, which will be determined by the aggregate
demand for labor in the economy, thus potentially reflecting the search
results of all the- firms in the markeﬂ In choosing its own search strategy
and labor hiring, the firm treats its own initial investment capital Q as
given. prever, with only one firm, Q is given by Ns, where N denotes the
number of savers, and s is the per capita savings. Therefore, when the firm
chooses an optimal search strategy which maximizes the expected utility of a
representative saver, u(Rs), in effect it maximizes the expected utility from
the per-saver profit, n(k,elw)/N. We also have assumed that although there is
only one firm in the industry, it treats the probability distribution of the
ensuing wage rate as independent of its own search behavior, (see footnote 3

below).
Thus, the optimal search policy of a firm which has access to productivity 6,

(which might be et-l or a realization drawn during the current search), and

owns k units of capital must satisfy the following functional equation:

16
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34 V(k,0) = Max{E n(k,0,w)/N , E Max{ V(k-0.,),V(k-0.0) ]}4

In equilibrium, the realization of the wage rate w must satisfy
%
(3.5) 2 0kw) =N

where k and © are, respectively, the final investment capital and the
productivity level of the project that were accepted by the searching firm.
Thus, Ew, k and O will all be realizations of random variables, whose
distributions are interdependent: given the distribution on w, the search
strategy determines the joint distribution of k and 6, which, in tumn,

determines via (3.5) the distribution of w—’]

The intertemporal problem involves another (related) fixed point argument. The

“In formulating the firm’s optimal search strategy in (3.4) we have chosen to

ignore the impact of that strategy on the wage probability distribution. This

assumption is warranted in an environment with a large number of competing

firms, but may be questioned under our assumption of a single firm in the

market. Pursuing a fixed-number-of-firms version, with labor market clearing -
wage. rate, . will _generate an equilibrium growth path with essentially the same

dynamics and similar stochastic structure to the 1-firm casé. _The main -
difference being that with many firms conducting statistically independent
searches from the same ~distribution of productivity rates - the variance of

the ~resulting output, (and possibly of growth rates too), will be lower.

-However, this just begs the question of the evolution of the market structure

along the growth path, bringing into the picture additional considerations

_such as the desired diversification in agents portfolios. These issues are

left for future work. " T e

Alternatively, we could model the single firm at a point in time as facing a

regular upwards sloping labor supply curve. The firm will then take into
account the impact of its search strategy on the monopoly wage it will have

to pay, thus considerably complicating the characterization of the optimal

fl(:arch st{ategy without, as we see it, comparable gain in the implications of
e model.

17



distribution of the rate of return ﬁ(-) determines (in -general) the saving ‘of
the young, s. That amount, in turn, determines the initial amount of capital
the firm has, thus affecting its search strategy and hence, the distribution
of k and © (and of w). In equilibrium, the rate of rewrn distribution R(),
which is taken as given by the young, should match the one which is generated
by the firm’s behavior.HQ&vivever, as noted above, this fixed point is determined
jointly with the equiliﬁﬁii\m relationships governing the behavior of k, 6, and

w.

Finally, note that equations (3.4) and (2.2) agree with each other when
¢k,0) = E u[n(k,0,w)/N]. As assumed in the analysis of the search problem in
section 2, @(,) is strictly monotone, and is a concave function of k
whenever u(-) is a concave function, by the linearity of n(k,, | ). In the
next section we describe an environment in which ¢(,) can be further

decomposed in accordance with (2.6).

4. AN EXAMPLE

In this section we provide an example which considerably simplifies the fixed
point problems discussed above, and displays the sense in which costly
searching for a productive technology from a distribution with an unbounded
support can give rise to sustained growth. First we show that if the objective
function takes a multiplicative form of a particular type, the optimal
strategy is independent of the distribution of the wage rate, so that that
distribution can be calculated after the optimal search strategy has been

determined. Then we establish the fact that we can also sever the link between

18
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the distribution of the rate of return and the saving behavior, while.
maintaining the structure that unlinks the optimal search strategy from the
distribution of the wage rate. Finally we calculate som;, lower bounds on the
expécted rate of growth of the economy, and show that for a particular class
of probability distributions on productivity rates - the economy may have a

sustained growth path (in expectation).

Claim 2: Suppose that u[n(k,9|w)/N] can be written as a(N)h(w)&(k,0). Then,
if the random variable w is treated as though it is independent of the random
variables K and §, the optimal strategy which satisfies (3.4) depends only on

E(k,0), and is independent of the distribution of w.

Proof: The objective of the search is to maximize the expected utility of the

representative owner:

(4.1) E u[n(k,8,w)/N] = a(N)E { h(w)-£(k,8) } = a(N)E h(w)E §(k.0),

where the last equality follows from the independence assumption in the claim.
Let ¢(k,0) be given by a(N)E h(w)-£(k,0) and substitute this specification
of ¢(-,-) into (2.4’), to get:

42)  aNVE h@)Ek0 () = HEO ()-aNYE hW)-Ek-0,8 (K) +

0
+ J‘ a(N)E h(W)-E(k-0,8")-dH(®").
0" (k)

Since the factor a(N)-E h(w) cancels out, the function 9*(-) which solves

19



(4.2) for any k is independent of the distribution of w. m

Remark: Obviously, the result of Claim 2 holds also for the case in which

u[n(k,Olw)/N) is additively separable in N, w, and (k,0).
Suppose now that the production function is Cobb-Douglas, so that
43) F&o =AY Aso0 o0<y<l

Then we obtain that given a wage rate w and productivity 6, the profit

corresponding to optimal labor hiring is given by:
@4)  nk0lw) = Ayl I-DA

Suppose in addition that the utility function u() is CRRA, so that u(c)
=(1/8)cs, 0 < 1. Then u[rc(k,OIw)/N] clearly satisfies the conditions of the
claim, so that if the firm takes the distribution of w as given, its optimal
search strategy is independent of that distribution and of N. Hence the
equilibrium distribution of the wage rate is induced by the optimal search,

but does not affect it.

If, in addition, we assume that preferences are logarithmic in both periods,
the saving behavior is independent of the distribution of the rates of return,
(as long as agents have no independent source of second period income). Thus,
the beginning-of-next-period capital stock is unaffected by the search
strategy to be employed in that period, and depends only on the current wage

rate the young obtain. As the logarithmic utility function satisfies CRRA as

20



well as the additive separable version of Claim 2 - we have eliminated all the
intertemporal fixed point links between the search strategy and the wage and

rates of return distributions.

For the remainder of this section we assume that the production function is

Cobb-Douglas, and preferences are logarithmic. For this case, we obtain
@35 &Ko) = In(e' /).

We can now establish the relationship between the objective of the firm and
output. In particular, we show that what the firm is maximizing is related to
output in a way that places a lower bound on expected output in terms of the

threshold productivity associated with the optimal search strategy.

Consider a firm which starts the search at period t with Q units of capital,
and. has free (of search cost) access to 9t_1 at each point during the search.
The séquential search within the period, however, is done without recall. That
is, the firm- cannot go back to any previously sampled but rejected project, -
but can choose et-l at any point. Proceeding along the optimal search strategy

will generate a value function which satisfies:

4.6)  VkB) = Max{(p(k,e) , E Max{V(k-0.0, ) , V(k-a,ﬁ)}}

where k is the remaining investment capital and © is the largest of the most

recently sampled productivity and 9:-1-
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The optimal search strategy that attains the solution to (4.6), 0'*, can be
characterized again by a threshold productivity function, 6*(k,9t_1), such
.I that ‘the search continues as long as 9*(k,6t_1) > Max({ G,Gt_l }, and stops the
first time the last inequality is reversed. This version of the search
environment is a convex combination of the versions described in section 2: it
has some recall feature, captured by et—l being always a fall back option, but
it does not allow the firm to return to any project rejected during the
current search. Obviously, the ability to choose et-l at any point in time
will work like a shift factor, raising the entire 9* schedule above the
schedule associated with the no-recall search. Since the search strategy
corresponding to no-fecall is a feasible strategy, it follows from (2.5) that
the value of the search problem with recall across periods, starting with

capital stock of Q, and no prior productivity to fall back on, satisfies:

E &k B0 2 E(QO*Q),

where 6*(-) characterizes the optimal search strategy for the no-recall

case.For the log utility and Cobb Douglas production function, we get
&k = In (6,

so that when searching optimally, we have:

@7 B ERgubo = En @ PE 2 0 0" @M.

Actual output resulting from the optimal search, denoted 3;0*’ is given by:
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(4.8) Yok = go*‘Ec*y'N(l'Y)-

Therefore,

(4.9) E(¥gu) = E{Go*EG*YN(l-Y)] = N(l-y)'E((ao*l/Y’Eo*)Y] _
- NIVE {[eln(éé,{y-io*)]“f} S

) 'eEun(é(‘,iY-'Ec*)l]Y 5

5 NP, [In® Q1 "7~Q>]7 - Ng" QY
where the first inequality in (4.9) follows from Jensen Inequality, and the
second from (4.7). Thus we have established a lower bound on the expected
output (conditional on Q) in terms of Q and 9*(Q). It is evident from (4.9)
that in order for the Jlower bound on output, given beginning of period capital
stock Q, to be a convex function of Q, 9*(Q) has to increase at least as fast
as QI'Y. As we show next, the convexity of the lower bound on output in

beginning of period capital implies sustained growth in the dynamic model.

Consider_the dynamics of savings in the logarithmic utility case, where saving

_ /;gge;s?qo V,ng_t;‘idgg nd_on i;ggt\_ugg,;zegums.w_Speciﬁcally,. let aggregate saving Sei1
be given by

410) S, = By,
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where B is the saving rate, Y, is the realized output at period t, and (1-Y)
is the labor share of output. Letting beginning of period t+1 capital stock be

given by S and using (4.9), we get a lower bound on the expected

t+1°
conditional rate of growth:

o~

y -
@1y E (S ly) 2 0 Bany)@anyy NPy, -1
t

Next we show that for an appropriate choice of the pdf of 6, the expected
output can be bounded below by a convex function of Q, and hence (4.11) will
imply that the economy may grow at a sustained rate in expectation. Let the

cdf H(-) of 6 be the Pareto distribution given by:
4.12) H@®) =1 - e'*, 021, A>0,
implying E(0) = 1/A. Then, equation (2.4) becomes:

@13)  In(0 (k) = yin[(k-c)/k] + [1-6" (k-o)]tn[0" (k-00)] +

0
+ [1ne) 20" Mg,
8" (k-a)

We approximate the solution to (4.13) by the solution to the problem of search
with recall, in which 9*(k-oc) on the RHS is replaced by 9*(k), thus avoiding
the recursive nature of the problem. It can be shown that the approximation

improves as k increases. This implies:
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@14 (6" @1 00" )] = Yinlk-oyk] +

+ 10001 Min[e* G0 +1/),
and the solution of (4.14) for 0(k) satisfies:
@15 07001 = Min(l-o/k).

For sufficiently large values of k relative to o, we use the approximation

In(1-0/k) = -o/k, so that (4.15) implies
@16  0°() = o

Accordingly, we get from (4.11):

~

4.17)  E({ y;"t‘l ly, ) > A.N(I-Y).yt‘f'*(lfh)-l

where A is a constant which depends on a, B, Yy and A. Thus, a sufficient

condition for the economy to have a sustained growth path (in expectation) is

v+1/A > 1.

Notice, however, that the probability distribution under consideration in this
‘example has no more than the first A moments. Larger A implies the existence
of additional moments, a faster declining upper tail of the density function,
and a lower expected value for 6. Consequently, larger A must be matched by a

larger capital share of output, Y, to satisfy the aforementioned sufficient
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condition for sustained expected growth. For instance, when A=2, (so that both

E(6) and Var(0) exist), v has to exceed 0.5 to meet that sufficient condition.

The stochastic behavior of this economy may display several patterns. In
particular, the economy may have the property that it can reach an absorbing
state in which it "collapses", while other configurations of the parameters
imply that the economy can never collapse. Specifically, let 1’2 be the smallest
sustainable capital stock, assuming that each period at least one sample has

to be taken, at a cost o. Then, if such ﬁ exists, it is the smallest root of:
A A
(4.18) k+a-= (1-y)-B~9~F(k,N),

and kt > k implies kt +1 2 kt’ for all possible et. Next, consider the
highest stock of capital at which the optimal search strategy still implies

that any productivity rate is acceptable, k = Sup (k | o(k) = 6]).

Suppose first that 1’2 < k. Then, if the economy starts with any Q > k + «a, the
worst that can happen is that the search program depletes capital to k, which
will be utilized with 6. But even then, according to (4.18), next period
capital stock will again exceed k by at least a, so that the economy will
never have a capital stock below k+o, if it ever exceeds this level. And if

sufficiently high value of © is drawn, the economy may start growing.

On the other hand, if ﬁ > k, the economy may collapse. Even if the economy
starts with an amount of capital which exceeds 1’2, the search process may
deplete capital to a level kt which is below ﬁ, and draw a sufficiently low

value of 0 so that k < kt < IQ In this case, the economy may collapse

t+1
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totally, in the sense that there will not be enough capital for even one draw.
Clearly, if IQ does not exist, in that the sense that k + o 2 (1-Y)BOF(k,N) for
all k = 0, then the probability of collapse is always positive.

Finally, we describe how the option of adopting the previous period utilized
technology without investing in search affects the resulting growth path.
Suppose that at some period t, a relatively high 6 is found and adopted, and
denote it by (-)0. It then follows that 90 2 9*(kt,6t_1). By virtue of the fall
back option, 0*(-,9t_1) 2 6*(-) for any et—l’ where 0*(-) is the threshold
productivity for the no-recall case. Using (4.16) we then have:
6, = k! Aoy
Likewise, for all subsequent periods t+s in which 90 is adopted without

1/A

search, 90 2k (ocy'/\)'llk, so that as long as no new search is undertaken

t+s
the capital stock evolves according to:

Kirse1 = B(l-'y)eokLsN(l"Y) 2 B(I'Y)N(I-Y)kﬁglm)’
It follows, that if 7y + (1/A) > 1, the capital stock will grow at a positive
rate bounded away from zero, and will eventually reach a sufficiently high
level, say K for which 6*(K,90) > 90. At that period search will resume. The
growth path, for such an economy, will have spells of no search, during which
a previously discovered technology is adopted by successive generations.
Eventually, search will resume, but only at a low level, so that the previous
technology might still be the one adopted, and the capital stock will continue
to grow at the previous rate. As search efforts will intensify, the likelihood
of a "break through" productivity will increase, and when one occurs, the

economy will enter the next spell of no search, which will be longer, but
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finite nonetheless. Notice that the condition that suffices for this pattern
of growth, ¥y + (1/A) > 1, is the same condition that implies sustained
asymptotic growth, depending only on the productivity of search, and the

capital elasticity of output

5. CONCLUSION

The framework developed in this paper was chosen not so much for its realistic
features, as for its interesting behavior concerning the returns to scale.
These returns emerge as a combination of the returns to sequential search for
investment opportunities, and a standard decreasing returns production
technology. It is instructive to examine the impact of relaxing some

assumptions that were used in our model.

In particular, it is obvious that higher degree of risk aversion will reduce
the selectivity of the optimal search, and hence, will make sustained growth
harder to obtain. The assumptions on the transferability of technological know
how over time also have important implications. QOur results demonstrate that
even in the case where each period firms start the search without the option
to fall back on previously discovered technologies - the growth process in per
capita terms may be sustained at positive rates. The specification "with
recall between periods" has the additional attractive feature in that it
allows for spells of "no search" following a particular "good" discovery by
any generation. It would also make the possibility of a negative growth spell,

and ultimate total collapse of the economy, less likely.
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On the other hand, by abstracting from the structure of investment
intermediation, we have also affected the stochastic growth path in a
particular way. Consider a competitive intermediation sector, a typical firm
in which conducts search for investment projects each period, financed by
savings which it manages to attract.Such multi firm sector might exist since
risk averse agents will take the opportunity to split their savings among
firms that offer identically distributed returns. However, splitting the
search between many investment firms will reduce the initial capital of each
firm, and will result in a dominated distribution of rates of return on
savings, (optimal search induces a rate of return distribution which is
ordered by first degree stochastic dominance according to the initial
capital). Accordingly, allowing for endogenously determined intermediation
structure will likely reduce the conditional first two moments of growth
rates, in addition to having implications on such things as the length and

severity of downturns along the growth path.

The simplicity of the model described in this work allows one to simulate the
growth path for variety of specifications, and calculate simulation moments of
growth rates, search cost shares of total output, probabilities of collapse,
duration and intensity of periods with negative growth, etc. These simulation
results will be used to confront observations like the positive (and
significant) correlation between mean growth rates over time and mean standard
deviations of growth rates exhibited by industrialized countries over long
periods, both before and after the two World Wars. Moreover, since we get that
sustained (expected) growth rates depend on the level of employment, in
addition to the level of capital stock, we may have another way to test the

model’s implications.
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Moreover, as we noted in the introduction, this search theoretic framework
accords well with Pakes and Schankerman (1984) observations on the differences
between individual firms data, and sector aggregates. If each firm within a
sector conducts independent search from its own sector-specific distribution
of technologies, and individual firm’s search outcomes are highly random, then
individual firms data would display low correlation between firm’s search
costs and output, both at levels and in growth rates. When aggregating over
firms in a given sector, however, individually random search outcomes would
wash out, leaving the positive effect of "better" sector distributions on

sector aggregate search investment.
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