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Abstract

Threshold models have been found useful in modelling nonlinearities in many fi-
nancial time series. In this framework, the financial variable of interest evolves accord-
ing to different dynamics, which is solely determined by the threshold regimes that
the observed indicator variable falls into. This paper generalizes the threshold models
to a class of stochastic threshold models, which allow for stochastic dependence of
the current economic state on the threshold regimes. In a stochastic threshold model,
different economic states are possible to occur within a certain threshold regime and
each state occurs with some probability depend on the threshold regime and other
recently observed information. Model identification and maximum likelihood esti-
mation are developed. An study on short-term interest rate is conducted. We find
that the short-term interest rate behaves asymmetrically in a rising versus a declin-
ing market. Declining market has significantly negative duration (in “return clock”)
dependence and rising market has insignificantly positive duration dependence. In
the comparison of generalized autoregressive conditional heteroskedasticity models.
threshold autoregressive models. generalized regime-switching models and stochastic
threshold models. we find that our stochastic threshold model fits the data best in

terms of alternative model selection criteria and in-sample forecasting. It also provides
the best out-of-sample forecasting.
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1. Introduction

There has been an increasing interest in studying nonlinearities of financial time
series in the literature. Many time series models have been used to capture dif-
ferent nonlinear features in financial data. Among them, threshold models (Tong,
1983) have drawn much attention in modelling financial dynamics. Threshold
models approximate the nonlinearity of financial time series in a piece-wise linear
fashion. They are often applied to the analysis of asymmetric patterns in financial
data, sudden bursts at irregular time epochs and time irreversibility. The thresh-
old autoregressive (TAR) models are originally illustrated in Tong (1983), while
the popularly used ones are the self-exciting threshold autoregressive (SETAR)
models proposed by Tong (1990). SETAR models apply autoregression in each
piece of regime and use some lagged dependent variable as a threshold variable.
While Tong'’s threshold model is used in modelling nonlinearities only in the con-
ditional mean of a time series, Gourieroux and Monfort (1992) develop a class
of dynamic models in which both the conditional mean and the conditional vari-
ance are endogenous stepwise functions. This is the so-called qualitative threshold
ARCH (QTARCH) models. which are capable of capturing nonlinear behaviors

in both the mean process and the variance of financial series. Applications of



TAR models include Kunst (1992) and Pfann, Schotman and Tschernig (1996) on
interest rate, Cao and Tsay (1992) and Li and Li (1996) on daily stock returns,
Lin and Yang (1998) on intraday stock returns and Siddiqui (1998) on exchange
rates.

However, the existing threshold models have their limitations. The most seri-
ous problem which hinders the use of those models in financial studies is that the
current state of the financial market is fully determined by a specific threshold,
or equivalently speaking, those threshold models are not able to distinguish the
current economic states from the threshold regimes determined by the indicator
variable, usually the lagged dependent variable in TAR models. We would argue
that although what we observe in past periods can provide useful information
to help describe the dynamics of the current period, it can never fully reflect
the state of today. In this paper. we establish a new class of threshold models,
which generalize the existing threshold autoregressive models by distinguishing
the threshold regimes and the economic states and by allowing for stochastic de-
pendence of current economic states on the threshold regimes of the indicator
variable. The proposed models are called the stochastic threshold autoregressive
(STAR) models. In the STAR models. economic states are treated differently from

the threshold regimes and different states are allowed within a certain threshold
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regime. Each state occurs with some probability determined by the threshold
regimes and other recently observed information. Meanwhile, the STAR model
keeps the threshold setting to capture discrete changes and asymmetric patterns
in financial series.

There are a few important features of our model. First, STAR models improve
the flexibility of TAR models by describing the dynamics of financial variables as
a double-probabilistic process'. Within each threshold regime, different states are
allowed to occur with some probability and these economic states can shift from
time to time according to a specified probability process. Second, when applied
into the study of volatility behavior, our model sits between the deterministic
and stochastic volatility models, which gives us a better approximation to the
stochastic process of volatility than the usual deterministic models. for example,
the generalized autoregressive conditional heteroskedasticity or GARCH models
(Bollerslev, 1986) and allows higher complexity of model specifications than the
stochastic volatility models. Lastly, the probabilities in our model are obtained
through the exploration of observed information. which yields a natural way to

investigate the impact of different information on the dynamics of interest rate,

I Many researchers in the literature have tried to improve the flexibility of TAR models by
increasing the number of threshold regimes and/or the number of threshold varibales. However.

any generalization along these directions remains assuming that observed information fully de-
termines the current state.



stock returns and other financial variables.

It is important to distinguish STAR. models from regime-switching (R-S) mod-
els (Hamilton, 1988) since both types of models allow for different states of a
financial market. Obviously, first of all, like the usual TAR models, STAR models
explicitly model market asymmetries, sudden changes and short-run fluctuations
in financial markets. Secondly, STAR models differ from the R-S models in the
nature of economic states and in the way of the determination of the states. In
the R-S models, the states are assumed to be dependent over time, characterized
by the state transition probabilities. The probabilities that the states occur at
each period depend on the whole history of the state px;obabilities. However, in
STAR models, the states are indeed “short-lived” . At every period, current state
is determined (with some probability), conditioned on all the observed informa-
tion up to that period: there is no directly specified transitions among the states
over time. The transitions from one state to another are indirectly carried through
the observed information process from current period to next period. This major
difference makes our specification of the STAR models fit into a lot of interesting

situations in financial markets. in which short-run fluctuations *are more impor-

2By “short-run fluctuations”. we mean the changes that do not have very persistent impact
on the subsequent financial markets.
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tant than the long-run structural changes. These include the situations when (1)
a financial series contains too much noise that makes it impossible to identify the
long-run states as defined in the R-S models (e.g. in high frequency data) and/or
(2) there is no long-run changes occurring in the period of study®.

To illustrate the properties of the STAR models, we study the dynamics of
short-term interest rate within the proposed framework. The nominal short-term
interest rate plays a key role in the valuation of almost all securities, which has
made it one of the most frequently modeled variables in financial economics (Gray,
1996). Alternative GARCH models are often applied to capture the persistence
in the conditional variance of the change of short rates. One potential source
of misspecification of these GARCH models is that the structural forms of the
conditional means and variances are held fixed throughout the entire sample pe-
riod. In other words. these models are linear models and lack of power to capture
sudden jumps, market asymmetry, and other nonlinear properties observed in
the short rate. To relax the linearity inherent in these models and to exam-
ine the asymmetry in interest rates. TAR models have been applied by Kunst

(1992) and Pfann. Schotman and Tschernig (1996). \leanwhile, R-S models of

3As in the S-R models. by long-run or structural changes. we only mean the changes that
have a “long-lived” or persistent impact on the subsequent financial markets.



interest rates have been put forward by many researchers (Hamilton, 1988; Cai,
1994; Gray, 1996). The R-S models of short-term interest rates are motivated, in
part, by the OPEC oil crisis (1973-1975) and the Federal Reserve experiment of
1979 to 1982. Specifically, Gray (1996) develops the so-called generalized regime-
switching (GRS) model, which advances the regime-switching literature in many
directions. A GRS model takes into consideration within-regime mean reversion
and level effect on the conditional variance of the changes of short rates by in-
troducing the level of short rate directly into the GARCH specification. It allows
for state-dependence of all the GARCH parameters and time-varying transition
probabilities (see, for example, Diebold, Lee, and Weinbach, 1994). The transition
probabilities are assumed to depend on again the level of interest rates. In this
paper, we will pursue the study of short rate in a STAR framework. Two states
are proposed for the change of short rates characterized by both the mean parame-
ters and the conditional variance parameters. F ollowing Gray (1996), within-state
mean reversion and level effect on conditional variance are both taken into consid-
eration in our model. The state-occurring probabilities are allowed to be different
(asymmetric) when following a rising market (positive change of short rates) verses
a declining market (negative change of short rates) and are assumed to be depen-

dent on the one-direction cumulative change of short rates. The one-direction
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cumulative change of short rates measures the duration of a rising market or a
declining market in terms of “return clock” instead of “time clock”. Incorporating
this variable into the state occurring probabilities will provide alternative insights
on duration dependence, which has been studied by, among others, Durland and
McCurdy (1994) on U.S. GDP growth, and Maheu and McCurdy (1997) on stock
returns.

The rest of the paper is organized as follows. In section 2, we briefly review the
existing threshold models and propose our stochastic threshold model. Section 3
discusses estimation and identification problems of the stochastic threshold model.

In section 4, we demonstrate the properties of our model through a study on short-

term interest rate. Section 5 concludes.

2. Model Development

2.1. The Threshold Autoregressive Models

The TAR models are first proposed by Tong (1983). while the popularly used

ones are the SETAR models developed by Tong (1990). A simple SETAR process

takes the form of. for a time series y,,



ye = S + Y1 +ur  ify_; >0 | @)
Po2 + PraYe—1 + us if -1 <0

where the second subscripts of the parameters indicate the two types of dynam-
ics that y, may follow according to the threshold regimes determined by the
lagged value of . The two types of dynamics are characterized by (o1, P11)
and (@ga, #12), respectively and y,_, is the indicator variable or threshold vari-
able. Tong (1990) provides a detailed description about the properties of the
SETAR models. The features that SETAR models are able to capture include
time irreversibility, asymmetric limit cycle and jump phenomenon. The SETAR
models were mainly used, in the early stage, for the mean process and the variance
is usually assumed to be constant over time. Tong (1990) combines the SETAR
models with an ARCH specification and proposes the SETAR-ARCH models, in
which the conditional mean takes the SETAR process and the conditional variance

is allowed to have heteroskedasticity in an ARCH form.
While SETAR-ARCH models only capture certain nonlinearities in the con-
ditional mean of a time series. Gourieroux and Monfort (1992) develop a class of

threshold models in which both the conditional mean and the conditional variance

are stepwise functions. Their models are the so-called qualitative threshold ARCH

e



(QTARCH) models, which are capable of capturing asymmetric patterns in both

the conditional mean and the conditional variance. A simple QTARCH takes the

following form:

do1 + D11¥e-1 +un ify1>0
Y = , (2.2)

Go2 + Dro¥e—1 + U2 ify—1 <0

where u,r = 2¢\/h(ax,), 2, ~ 1.4.d.N(0,1), for » = 1,2, and o, is the vector of
parameters in the conditional variance h; under regime r; the conditional variance

h: has a GARCH specification in a threshold setting,

e = hu(a) = an + o +oohyy  ify-; >0 | 23)

agz + a2ul_| + ash,_, if g1 <0
where a;r > 0, for i. r = 1.2, and as > 0. oy, is assumed to be constant for two
regimes to avoid non-invertability problem (Gourieroux and Monfort, 1992). In
the QTARCH model. the mean process and the variance are each characterized
by two sets of parameters. (@, 91,) and (@ge, 12) for the mean. and (agy, a1, 2)
and (a2, @12, :2) for the variance. Gourieroux and Monfort consider the statistical

properties of their QTARCH models and use them to investigate the conditional

variance of the daily relative change of the Paris stock index. Li and Li (1996)



define a double-threshold autoregressive ARCH (DTARCH) model, which shares
the same idea of the QTARCH models, namely that the conditional mean takes
a SETAR process and the conditional variance takes a SETAR-ARCH process.
They find evidence of asymmetry in the conditional variance in Hong Kong Hang
Seng index, using their DTARCH model.

A few other alternative threshold models have been proposed to increase
the flexibility of the original threshold models. Among them, smooth transition
threshold autoregressive models are proposed by Terasvirta (1990), in which the
variant parameters in the autoregression are specified as “smooth” functions of
the indicator variable rather than step functions of the indicator variable. How-
ever, threshold models are motivated to capture abrupt changes and asymmetric
patterns in time series. The use of the “smooth” function instead of the step

function will reduce the ability of threshold models in capturing discrete sudden

changes and asymmetries in financial time series.

2.2. The Stochastic Threshold Autoregressive Models

Threshold models deal with asymmetric patterns explicitly and are able to capture
sudden changes in financial time series. However. in the previous threshold mod-

els, the current economic states are treated equivalently as the observed threshold
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regimes. In other words, the current economic states are assumed to depend deter-
ministically on the observed threshold regimes of the indicator variable. We have
argued that such treatment is not appropriate in many cases. We propose in the
following a stochastic threshold model in which the economic states are treated
differently from the threshold regimes determined by the threshold variable. It al-
lows for stochastic dependence of current state on the observed threshold regimes
of the indicator variable and provides much more flexibility in terms of model
specification. Nevertheless, it retains the power of analyzing the market asymme-
try and provides a natural way to examine how observed information might affect
the dynamics of financial variables by allowing the information to influence the
determination of state-occurring probabilities.

Without loss of generality, we consider a simple STAR model with one lagged

dependent variable and two threshold regimes. For a time series y;, the model

takes the following form

ifye—1 > 0 (2.4)
Poy + O Ye-1 + Un with probability p(z,—)
b =
Pog + OroYi—1 + U2 with probability 1 — p(z,-1),

11



fyy < O (2.5)
y b0 +buYe-1+un  with probability 1 ~ g(z,_,)
. =
$o2 + br12yt-1 + 42 with probability g(z,_,)

where the second subscripts refer to two economic states under each threshold
regime, state 1 and state 2 (i = 1,2), which are characterized by two sets of para-
meters, (do;, $11) and (¢gy, é1,). The indicator (threshold) variable in this model
is Yt~1. There are two threshold regimes in this model, y;—; > 0 and y,_, < 0. It
is clear that in this setting, the current state of the max;ket is distinguished from
the threshold regime that is determined by last observation of the indicator vari-
able. The occurrences of state 1 and state 2 are both possible given the threshold
regime. The probabilities of the occurrences of state 1 and state 2 are governed by
two probability processes. p under regime y,-; > 0, and q under regime y,—; < 0
. We note that the probabilities are not trivially constant. instead they are time-
variant and depend on all the relevant information. Z¢~;. Introducing z,-;, a
vector of exogenous or predetermined variables. into the processes of probabilities
p and q allows us to examine how these variables. Z,—; will affect the realizations
of the state of the world. or the probabilities of being in any state under a certain

threshold regime. Therefore. the market asymmetry is represented by different

12



structural parameters determining p and gq. The market innovations, u;; and u,
are allowed to follow different processes in different states and might be correlated
across time, but are required to be independent across the states.

The STAR model generalizes Tong’s threshold models in a natural way by
distinguishing the threshold regimes from the economic states and allowing for
the stochastic dependence of the current state on the observed threshold regimes.
The economic states describe the important features of a financial market at each
time period. However, threshold regimes are only segments of a pre-determined
threshold variable. While keeping the properties of Tong’s threshold model, the
STAR model will be able to produce richer implications by allowing the states
to occur in a non-pre-determined way. As the traditional threshold models, the

STAR model can be easily adapted to have more than two number of regimes,

states, and more autoregressive orders.

2.3. A Simple Stochastic Threshold Autoregressive “GARCH” Model

In this subsection, we consider in detail a simple stochastic threshold model which
incorporates GARCH effects in the conditional variance (STGARCH). Some prob-
lems associated with the usual GARCH specification in a stochastic threshold

model will be avoided through the adoption of some recent results in the litera-
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ture.
(1) Specification for the conditional mean

To consider the possible asymmetric patterns in the mean process, we specify
the conditional mean in the form of a stochastic threshold autoregressive model,
or a STAR model. It takes the general form as in the equation (2.4) and (2.5),
a simple STAR(1,2) model. We denote the parameters in the conditional mean
equations as ¢;= (¢y; ¢;)', i =1,2.

(2) Specification for the conditional variance

To accommodate discrete changes, volatility clustering and asymmetric pat-
terns in the conditional variance, we employ the GARCH specification in a STAR
model. If we can observe the state of last period, then we have the usual way
to employ the GARCH specification. In this ideal case, we are able to compute
the true residual and the true variance of last period. denoted as u;_; and h;_,*

t—1

respectively. A stochastic threshold model with a GARCH specification is then,

fy >0 (2.6)
e a1 + anu;_,? + anhy_, with probability p(z.—;)
t —1

Qo2 + anauy_,? + anhy_, with probability 1 — p(z;-1),

‘From now on. we will use A to denote the true but unobserved variance and h; to denote
the expected value as defined by Gray in all STGARCH models. u; and u, are defined similarly.

14
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ifypy < O (2.7)
ao + anup_ 2+ aghyi_, with probability 1 — ¢(z;-)

ao2 + aiguf_ 2 +aghl_;  with probability g(z.—)

where uj; = zt\/;zm, zy ~ iid. N(0,1) and h} = hf(a;) = ap + oqaup_2 +
aght_;, a0 > 0, ay; 20, oy >0, and ay; + a3 < 1, for i = 1,2. However, in the
case of a stochastic threshold model for the conditional variance, the state at the
beginning of each time period is not observed and the usual GARCH specification
will cause the path-dependence problem in the following way. The conditional
variance at time t in the above specification, hf, depends on the state at time ¢
and the conditional variance at time ¢t — 1, h_,,which depends on the state at time
t—1 and the conditional variance at time ¢t —2, h]_,, and so on. Consequently, the
conditional variance at time ¢ depends on the entire sequence of states up to time
t. The likelihood function is constructed by integrating over all the possible paths.
We therefore face the similar path-dependence problem as in a switching-regime
GARCH model. Hamilton and Susmel (1994) point out that switching-regime
GARCH models are essentially intractable and impossible to estimate due to the

dependence of the conditional variance on the entire past history of the data in a

GARCH model.
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To deal with the path-dependence problem, we apply the generalized GARCH
specification proposed by Gray (1996), in which the conditional variance at current
period is assumed to be determined by the ezpected conditional residual of last
period and the expected conditional variance of last period, u;—, and h;_,, rather
than the unobserved true conditional residual and the unobserved true conditional

variance, u;_; and h;_,. Our specification for the conditional variance with a

STAR process is thus,

fy-r > 0
ao + anue—y? + aghe; with probability p(z,—,)
h = (2.8)

Qo2 + ongus—1® + azhe—;  with probability 1 — p(z,_,),

if Y1 < O
Qo1 + Qe + aghe_,y with probability 1 — g(z,-;)
h; = (2.9)
Qo2 + 0ol ® + aghy_, with probability q(z,_,),
where h{ is the true but unobserved conditional variance of return and he—y is

defined as the following. As shown by Gray (1996). conditional on the normality

within each state. i.c. assuming the conditional normality of u,; (for all ¢) under

16



each state i, the conditional variance at time ¢ — 1, h¢—y, is given by

fyo > 0 (2.10)
hew = E [yt2-1 Q2] = [Elye- |Qt—2]]2
= Pt-l((ﬂz-1,1)2 +hea) + (1- Pt-l)((#z-l.z)z + h‘(i)l
—(Pc—lﬂ-:—l,l +(1- Pt-1)ﬂt—1.2)2,
fyo < 0 (2.11)

he_y

Ely;_ 1|2} — [Elye-1|Qe—2]]?

(1- Q¢-1)((#:-1,1)2 +hey) + %—1((/»‘:-1.2)2 + hg?l)

-((1 - Qc-l)#:—m + qt-lﬂt—1.2)2’

where €2, is the information set at period ¢ — 1, Pe-1 = p(Te-2)s Q-1 = q(Te—2),
and p,_); = @p; + Oy;y—y, for i = 1,2. Now h,_, is not path-dependent and can

be used to construct h, and A, as the following:

N .
hei = i + oniuey® + aohyy, i = 1.2,

17



where u;_; is similarly defined as follows:

if ye—2

v
o

(2.12)

Ut—1 = Y1 —E[yt-1|9t-2]

Ye-1 = (Pe—1(dor + 11¥e—2) + (1 — pe—y ) (oz + Prote—2))

ify-2 < 0

U~y = yc-l"E[yt—1|Qt-2]

Ye-1 = (1 = @1)(bo1 + 11¥e—-2) + qe1(Po2 + bro¥e—2)).

After knowing h,, and h,;, equations (2.10, 2.11) are used to construct h,, which
will be used to replace the unobserved h; in the model. In this “GARCH” speci-
fication, we overcome the path-dependence by justifying the usual GARCH spec-
ification with the values of the conditional variance and the conditional mean
under the assumption of conditional normality in each state, while still capture
the nature of persistence in the conditional variance.

(3) Specification for the state probabilities

We use a logistic function for the probability specification (as in Diebold. Lee

18
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and Weinbach (1994)), that is,

P = p(Te1) = lj-x:i&g;;il) (2.13)
@ = qTe) = exp(ByTe-1)

1 + exp(ﬁqxt—l )

where ., is a vector of exogenous or pre-determined variables. p; is the prob-
ability of being in state 1 at time ¢, if y,—; > 0: g, is the probability of being in
state 2 at time ¢, if y,—, < 0. Specifically, the probabilities of the occurrence of
state 1 and state 2 can be different when y,-; > 0 and when y,_; < 0, which
are identified by the two sets of parameter vectors in the probabilities, B, and
B,- In other words, the impact of z,_, on the probabilities of being in any state
could be different under the regime of y,—; > 0 from under the regime of y,—, < 0.
Again. the specifications of p, and ¢, distinguish our model from the switching-
regime model in the sense that our probabilities are not state-dependent. instead
they are determined by some observed variables. In this way, our model considers
the importance of short-run information instead of long-run information which is

carried through the whole history in the switching-regime models.

19



3. Estimation and Identification

We assume conditional Gaussianity within each state and perform maximum like-

lihood estimation. The conditional likelihood function consists of two parts,

Lpn(6,8) (3.1)

= = Y- {pe(Inhey + (ua®/hey)) + (1 = pe)(In hep + (u2?/he))},

2n t=s+1

Lq,n(o, ﬁ)

Z {(l—qt)(ln hy + (Uuz/hu)) + Qz(ln he + (Uzzz/htz))},

=841

2n,

and the complete conditional likelihood function is

Ln(0.8) = Lpn(0.8) - I(ys-1 2 0) + Lgn(8.8) - I(ye—y < 0),

where 6 is the vector of parameters to be estimated. J (-) is an indicator function,
hyi and (i = 1.2) are obtained as the way defined in equation (2.10. 2.11) and
(2.12), and p; and q, are defined as in equation (2.13).

The usual assumptions for a threshold autoregressive GARCH process are

summarized as the following:

20



(1) The time series {y;} is stationary and ergodic.

(2) E[y?] < oo.

(3) All the parameters in the conditional variance are positive or non-negative,
az>0and ap; >0fori=1,2,and k=0,1.

(4) Let 0: = ( ¢, ¢, oy ay o )T, fori=1,2, then 8 # 6,.

Besides the above assumptions, we require one additional assumption in order
to make the STAR model fully identified.

(5) @, > 03, where the inequality is defined as 8, > 0, if 84 > 042, where
(0a1, 0a2) is the first pair of the element-by-element-different parameters in 6, and
6,. The last assumption is needed to identify the probability parameters, 3, over

states. In our specification of the logistic probability function, we find that

e(—v:) _ 1. exp(y2)
1 +exp(—~z) 1 +exp(yz) 1 +exp(vyz)’

for any v and z. Therefore. we cannot identify the model without the assumption

(5) since the log-likelihood value at (8, 8,) associated with B will be exactly the

same as the value at (8., 8,) associated with — 3.

21



4. Modelling Short-Term Interest Rates

4.1. Model Specification

A stylized fact of short-term interest rate is mean-reverting, which is commonly
modelled by letting next period’s change in the short rate depend linearly on the
current short rate level. A commonly used model of short rates with GARCH

variance is as follows.

dre = ¢y + dyy7e—y + Uy, (4.1)
ht = ag + Ofu'llz-l2 + agyhyy, (4-2)

where dr, is the change of short rates at time ¢, dry = r, — r,_y, ro_; is the
short rate at time ¢ — 1, and u, follows a normal distribution with mean zero and
conditional variance h,. To take into account the level effect on the conditional
variance, which is studied by Cox. Ingersoll. and Ross (1985) in a continuous
time setup, Gray (1996) suggests to add the level of short rate directly into the

GARCH specification. Then the conditional variance becomes

, 2 L A2
he = agy + o Ue—y” + ool + Qg Te—1. (4-3)

22

A

rij



In experimenting this model and the following models, ag, term always converges
to the boundary (aq, = 0), which is consistent with the finding reported by Gray

(1996). Therefore, in the following study, we will assume the GARCH process is

simply defined as

he = 0lnut-l"Z + anhe-1 + 01§17’t—1- (4’4)

To model the asymmetry and short-run fluctuations in short rate, a modified

STGARCH model will be adopted, which is as follows.

if d’l'c_l > 0 (45)
d @y + A Te—1 + uy with probability p(z,—,)
Te =
Qg2 + O1aTt— + U With probability 1 — p(z,—,),
ifdry, < 0 (4.6)
d o1 + O Te—1 + Un with probability 1 — q(z.-,)
Tt =

gy + O1aTe—y + U with probability q(z.-1),
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ifd‘l‘t_l 2 0

onu? + aghy—y +odyre—; with probability p(z;_;)
= 47)
ongtue-1? + aghe_y +0dme;  with probability 1 — p(z,_,),
if th...l < 0
h: ante—1? + aghy; +ad -y with probability 1 — q(.'z:t_?4

a1 ? + aghy g + adyrey with probability g(z,_,),

where hf, u;—, and h,_,are defined as in section 2.3. The state-occurring proba-

bility specification is that

exP(ﬂop + ﬁlpCth-l)

1 + exp(Bo, + Bypcdre—1)
exp(Bog + B14cdr:-1)

1 +exp(Boq + By4cdre—y)’

pe = pledr,) = (4.9)

Q@ = Q(Cth—1)=

where cdry_, is the one-direction cumulative change of short rates at period ¢t — 1

defined as follows.

Cdrt = Cdrt_l + drt, if drt : Cth_.l Z O: (4-10)

cdry, = dr, if dry - cdr—, < 0.
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cdry measures the one-direction cumulative positive changes or negative changes
of short rates and can be interpreted as the duration of a rising or a declining
market using a “return clock” rather than a “time clock”. Allowing cdr,—; to
enter the state-occurring probability process will enable us to study the duration
dependence in short rate. In the above model, under each threshold regime, there
are two states in the market, state 1 and state 2, which are characterized by two
sets of parameters 8, = (¢, ¢11, 211, @2, @31) and Bs = (Pg, P19, Q12, A2, 32). At
each time period ¢, state 1 occurs with probability p, when following a positive
change of short rate and it occurs with probability 1 — g, when following a negative

change of short rate; state 2 occurs with probabilities 1 — p, and q, respectively

under different threshold regimes.

4.2. Data Description

The data used in this study is the weekly annualized percentage yields on one-
month U.S. Treasure bill rates recorded on every Friday from May 1986 through
May 1996, which is extracted from the DataStreams provided by Ivey Business
School at the University of Western Ontario. The data set includes 525 observa-
tions. The first two observations will not be included in the estimation since we

need to construct the first order difference of the rates and the lagged difference of
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the rate is selected to be the threshold variable. Therefore, the sample size in our

study is 523. Summary statistics are presented in Table 1. Figure 1 and Figure 2

plot the short rates and the changes of short rates respectively.

4.3. Empirical Results

A number of specifications for the short rate are estimated and compared to our
STGARCH model. These include a constant-variance model. a GARCH model
defined by (4.1) and (4.2), a double threshold model (DTGARCH) as a special
case of STGARCH model with p(cdr,_,) = 1 and g(cdry-;) = 1, and a GRS model
of Gray (1996).

In the GRS model estimated, there are two possible states of the financial

market. With w,_,, h,_,, and h] defined in section 2.3, a GRS model takes the

following form.

®o1 + O Ty + Upy, if S, =1.

dry = (4.11)
G2 + D1aTe—1 + U2, if S, = 2:
Q|1U¢_[3+agh -1 + a3 Te-1. if S, =1.
hy = T ' (4.12)
al?“!—lg -+ aghg_l -+ a%zrt_l. if S¢ = 2.
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where the coefficient of h,_, is assumed to be constant over two states since it
is found difficult to identify the model with different coefficients of h¢—, over two
states and the benefit (according to alternative model selection criteria) from

this more general specification is marginal for the data we study. The transition

probabilities are time-varying and defined as

+ By,cdr,—
oS = 1181 = 1) = nledrin) = rmoB el ()
e,

+ By,cdre_
prOb(St = 2|St—1 = 2) = Qt(cdrt_l) = 1 :—x:);ﬂ)gzoq +121 C;T:)l)
q -

It is worth noting the following. First of all, p, and g, in the STGARCH model are
state occurring probabilities, which are solely determined by recently observed in-
formation including the one-direction cumulative change of short rates, cdr,_,,and
the sign of the change of short rates. dr,_,. However. in the GRS model. p: and g,
are state transition probabilities. which illustrate the probabilistic evolution path
of the unobserved states. The state occurring probabilities are determined by
the whole probabilistic history of the economic states. Therefore. the R-S model
might not perform well if the market fluctuations are dominated by short-run
fluctuations. in other words. there are very few changes which have long-lived

or highly persistent impact on the subsequent markets. Second. the above GRS
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model is different from the one in Gray (1996) in the way that Gray (1996) spec-
ifies the time-varying transition probability depending on the level of the short
rate r_;. We find his specification hard to be estimated for this data since the
impact of the level of the short rate on the volatility of the change of short rates

has been already captured by specifying a mean reverting and allowing the level

of short rate in the conditional variance equation.

The estimation results are presented in Table 2 for these four models and for
our STGARCH model. The first column of Table 2 reports maximum likelihood
estimates of the single-state constant-variance model. The conditional mean terms
are significantly different from zero and ¢,, is negative, showing reversion to the
mean. The implied long-run mean (—¢g,/¢y,) is 5.1968%. The second column
of Table 3 reports the results for the GARCH model with the level of short rate

in the conditional variance (a3;). Although the estimates in the mean terms are

quite different from that in the single-state constant-variance model, they are still .

significantly different from zero and with mean reverting. The persistence of the
volatility implied by the GARCH model is 0.8312 (a1 + a3), which is relatively
lower than reported in the literature of short rates. For example. Kees, Nissen,
Schotman. and Wolff (1994) report aj; + as = 1.10 for one-month T-bills, and

Hong (1988) reports a;+aa = 1.073 for excess returns on three-month T-bills over
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one-month T-bills. The reason is that our data does not cover the periods of OPEC
oil crisis and the Federal Reserve Experiment. As Lamoureux and Lastrapes
(1990) argue, the high persistence implied by the GARCH model might be mis-
specification of sudden changes and/or long-run shifts. Excluding the periods with
long-run shifts which have very persistent impact on the future market makes us
fortunately avoid the possible mis-specifications implied by GARCH models. In
this GARCH specification, the parameter a3, represents the impact of the level
of the short rate on the volatility, which is found statistically significant from the
estimation results.

The DTGARCH model explicitly considers the market asymmetry by assum-
ing alternative dynamics following a rising market (positive change of short rates)
versus a declining market (negative change of short rates). The third column of
Table 2 presents the estimation results of the DTGARCH model. Clearly, market
asymmetry appears in both the mean and the conditional variance. Following
a rising market. the implied long-run mean —oy,/¢,, = 0.4192% of short rate is
lower than that following a declining market with —og,/¢,, = 6.4180%. The mean
reversion parameters in both markets are not statistically significant. which is due
to that the mean reversion effect can be migrated partially by assuming asymmet-

ric dynamics for different markets. The high change of short rates is associated
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with high persistence in volatility (0.9253 = a2 + @y > a1 + ag = 0.6041). And
we also observe that the estimate of ase is much greater than that of as;, this
observation together with the high persistence following a declining market sim-
ply indicates high volatility following a declining market. The great differences
between the parameter estimates following a rising market and the paré,meter
estimates following a declining market suggest that market asymmetry is an im-
portant issue when studying short rates. However. the first two models assume
linearity in the mean and variance, ignoring possible short-run jumps and long-run
shifts. The DTGARCH model deals with the nonlinearities by assuming nonsto-
chastic dependence of the current state of the market on the last period observed
information ( threshold regimes of the indicator variable), which certainly limits
its powér of describing market fluctuations appearing as transitions from one state
to another state. A better and more flexible model would allow for stochastic de-
pendence of the current state of the market on the previous observed information.
which motivates both the regime-switching model and the stochastic threshold
model in this paper. The most important difference between these two models is
that the stochastic threshold model uses the recently observed information to de-
termine the state occurring probabilities. while the regime-switching model takes

into account the information back to the very past by assuming state-dependence.
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Neverthless, given the similarities between these two models, the estimation re-
sults at the forth column for GRS and the fifth column for STGARCH have
similar patterns. State 1 is characterized by higher rate, higher mean reversion,
and higher volatility. Within each state, the GARCH process is stationary and
the implied persistence is much reduced with a;2+as < 0.5 in the GRS model and
@iz + a2 < 0.4 in the STGARCH model for state ¢ = 1,2. For the state-occurring
probabilities in the STGARCH model and the transition probabilities in the GRS
model, the estimates of §,, are positive in both models, which implies insignif-
icantly positive duration (in return clock) dependence, i.e. the longer in a high
volatile state, the more likely the market will stay in this state. However, the es-
timates of (), are negative in both models and very significant in the STGARCH
model. which implies significantly negative duration (in return clock) dependence,

i.e. the longer in a less volatile state. the more likely the market will switch to

the highly volatile state.

4.4. Model Selection

To make comparisons of the alternative models. we report in Table 3 various model
selection statistics including the maximal value of the log-likelihood function. the

Akaike Information Criterion (AIC) and the Schwarz criterion. Our model shows
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better fit than the aiternative models according to all the criteria. We rank the
five models not surprisingly in the order as in Table 3 from left to right. To have a
close look at the comparison results between the GRS model and the STGARCH
model, we plot out the ex ante and smoothed probabilities that the short rate
Process is in state 1 (the high-volatility state) at time ¢. The ex ante probability
is based on information available at time ¢ (Pr{S, = 1|{®;_;]) and the smoothed
probability is based on the entire sample (Pr(S; = 1|®7]). Certainly, the ex ante
probability is more important to measure the performance of the GRS model in
terms of forecasting. The state occurring probability of state 1 (ex ante probability
as specified) implied by the STGARCH model is also plotted. Compared with the
plot of absolute value of the change of short rates, we conclude that STGARCH
approach describes much better the dynamics of the changes of short rates in
terms of the probabilities of falling into different states.

We also make a comparison of the in-sample forecasting of the volatility of the
change of short rates. Since the conditional variance is an expectation of squared
innovations to the interest rate process. we measure the forecasting error by mean
squared error (MSE) and mean absolute error (MAE) bhetween actual volatility
(av, = uf where u, = dr, — E,_,[dr,]) and forecast volatility (fu, = Ee_y[ud)).

It is found that our STGARCH model provides better in-sample forecasting per-
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formance by both MSE and MAE measures. In general, we conclude that our

model yields the best fit in terms of various model selection criteria and in-sample

forecasting performance.

To avert fears of overparametrization of the STGARCH model, and to estab-
lish the economic significance of determining the state of the market by recently
observed information, we conduct a comparison of the out-of-sample forecasting
of alternative models. particularly the GRS model and the STGARCH model.
We have used the samples prior to January 1994 to implement the estimation
of alternative models and the samples after January 1994 are left for the study
of out-of-sample forecasting of the volatility. We measure the forecasting error
by OMSE, OMAE, TMSE, TMAE, and R2. OMSE and OMAE are the mean
squared errors and mean absolute errors, respectively, over the out-of-sample pe-
riod; TMSE and TMAE are the mean squared errors and mean absolute errors

over in-sample and out-of-sample period (the entire period); and R? is defined
(see Gray, 1996) as

RR=1-— Zf-_-x(avz — fu)?
Sz av}

(4.14)

which is calculated over the whole sample period and provides a direct measure of

the goodness of fit. The STGARCH model performs well over five measures. How-
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ever, the GRS model performs even worse than the DTGARCH model. We could
conciude that short-run information matters more in determining the dynamics
of short rate. This is not surprising typically when the data we study covers

the period without shifts that have highly persistent impact on the subsequent

markets.

5. Conclusion

This paper generalizes the threshold models into a class of stochastic thresh-
old models, in which economic states are distinguished from statistical threshold
regimes. This generalization addresses the major criticism of the existing thresh-
old models of not-knowing the current state and tries to uncover the state of the
world up to some probability.

We pursue the study of short term interest rates within the proposed frame-
work. The proposed STGARCH model outperforms the traditional threshold
model and the generalized regime-switching model in terms of both in-sample fit-
ting and out-of-sample forecasting. Asymmetric patterns appear in the volatility
of the changes of short rates in a way that highly volatile market follows a rising

market while less volatile market follows a declining market. The highly volatile
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market has a positive duration dependence, however, the less volatile market has
a negative duration dependence. Qur results point towards some promising direc-

tions for future research within the general framework proposed in the paper.
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Table 1: Summary Statistics relating to weekly first-differences in one month Treasury bill yields reported in

annulized percentage terms. The sample period is May 1986 to May 1996, a total of 523 observations. The data are
plotted in Fig.1.

Statistics Mean Variance Skewness Kurtosis Corr(dre, Te—y)
Estimate -0.0015  0.1637 0.1018 4.4288 -0.1256

Table 2: Estimation results (n=423). The numbers in the paranthese are the t-statistics.
parameters Constant ~ GARCH DTGARCH GRS STGARCH

mean ¢ 0.1637 0.0879 0.0083 0.3797 0.3665
1 (2.7423) (2.0353) (0.1468) (2.1174) (1.3376)
6, 00315 -0.0180 -0.0198 -0.0560 -0.0466
1 (2.0816) (-1.9885) (-1.6863) (-1.6786) (-0.9818)
é ) ) 0.1213 0.0179 0.0586
02 (2.0915) (0.3313) (1.3556)
8 i _ -0.0189 -0.0080 -0.0184
12 (-1.5963) (-0.7551)  (-2.1138)
) 0.4010
2 varance @ (39.341) - - - -
o i 0.1866 0.1295 0.1740 0.2805
(3.1018) (2.4216) (0.8390) (1.1361)
* any i 0.0699 0.0514 0.2318 0.2616
(4.7313) (2.6342) (9.4048) (5.7921)
o i 0.6446 0.4746 0.1585 0.0982
(5.6048) (5.8207) (3.0697) (1.1695)
a1 ) ) 0.4507 0.3349 0.1485
(3.1176) (3.5439) (1.6133)
o ) ) 0.1065 0.0000 0.0736
(11.158) (0.0000) (4.2764)
o ~7.3982 ~2.3580
probability B, ) : - (-0.9452)  (-3.1508)
3 ) ) ) 5.0187 0.6328
L (1.0098) (0.6053)
3 ) ) ) 0.7610 1.9659
Oq (2.1565) (2.7019)
3, ) ) ) -1.2576 -3.6627

(-1.5172) (-3.0441)
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Table 3: Summary statistics for various specifications

e s e———aersar e———

— Constant GARCH DTGARCH GRS STGARCH
# parameters 13 13
Log-likelihood -264.14 __ -198.47 -172.80 -152.27  -145.63
— AIC -267.14  -203.47 -181.80  -165.27  -158.63
~ Schwarz "-273.53  -214.12 -200.97  -192.96  -186.31
MSE 0.1644  0.1514 0.1455 0.1453 0.1331
MAE 0.2060  0.1899 0.1787 0.1859 0.1783

The second row reports L*, the maximum value achieved for the og of the
AIC is calculated as L* — k, k is the number of parameters.
Schwarz is calculated as L* — (k/2) - In(n).

We use two loss functions to measure the in-sample-forecasting: mean squared error (MSE) and mean absolute error

(MAE).

MSE =T"!

Z(ﬁ? - h?)2’

MAE =T-' S [@2 - A3,

Table 4: Out-of-sample forecasting

e e sre——————————————————

Constant GARCH DTGARCH GRS STGARCH
“OMSE 00370 0.0218 0.0256 0.0244  0.0217
OMAE 0.1716 0.1023 0.0943 0.1192 0.0903
“TMSE __ 0.1660 0.1527  0.1469 0.1457  0.1340
TMAE 0.2282  0.1999 0.1858 0.1986 _ 0.1818
RZ  0.1293 _ 0.2108 0.2295 0.2199  0.2398
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Figure 1: Short Rates, 1986—-1996
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Figure 2: Change of Short Rates, 1986-1996
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Figure 3: Absolute value of Change of Short Rates, 1986-1996

1.8 2.0

1.6

1.4

1.0

LN SN BN SRR NS RRLIRREN SN AN RN NN L ANDNY NNNNL A DENNLORNE DAL ENNY DAL AR LN DL R DAL D DR SERLAN DL A DL B DL B

1 1 J SN WU WS A LIS M 1

0.0 0.2 0.4 0.6 0.8

0] 25 50 75 125 175 225 7275 325 375 4257 475 525



1.0

0.0 0.1

Figure 4: Filter Probability of State 1 in GRS
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Figure 6: Probability of State 1 in STGARCH
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