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1 INTRODUCTION

Let (Yi’xi)’ 1=1,..,n be an i.i.d. sample such that YeR’ and Xe Rd, with joint density

f(-,-) and regression

(1.1) r<x>=E(Y|X=x>=LV%(%€#X = %%

provided E|Y | < », where f(x) = | f(y,x)dy is the marginal X—density.
The Nadaraya (1964) and Watson (1964) type kernel estimator of r(x) is given by

g,()
(1.2) T (x) = m = rn(xl,...,xd)

n

where

g,(x) = —d zyK(T) f(x) = %I ZK(—H——)
n

=

(1.3)

h= hn is a sequence of positive real numbers which tends to 0 as n - « and k(-) is a Borel
measurable function (called kernel). Throughout this paper we will treat 0/0 in (1.2) as 0. For
detailed references on the nonparametric kernel regression see Collomb (1981), Hardle (1988)
and Ullah (1988).

The conditional mean in (1.1) gives a formulation for the regression model as
(1.4) Y=rx)+u= r(xl,...,xd) +u
where, by construction, the disturbance term u is such that E(u|x) = 0; x and u are
independent.

We are interested in estimating r(p )(x), the p—th partial derivative of r(x) with respect
to, say the, j—th regressor xj, j=1,.4d. Forp=1, r(l)(x) is the response or regression
coefficient of Y with respect to changes in the regression Xje For example if r(x) is linear the
estimation of r(I)(x) is equivalent to estimating the regression coefficient. The estimation of
higher order derivatives are also of interest in economics and other applied sciences. For

example one may be interested in studying the curvature properties (concavity or convexity) of

r(x).



The proposed estimation of r(p)(x) is

' P
s Pe=dp e%o(—l)”(*;) r (c+ (p-20h)

(X}

where r n(x +(p—20h) =r n(xl,...,xj + (p—20h,....x d)‘ For p = 1, the estimator rl(ll)(x) and its
weak consistency (pointwise) has been studied in Rilstone and Ullah (1987). In this paper we
consider rr(lp)(x), p 2 1, and study its weak and strong consistencies (pointwise as well as
uniform) results.

We note here that Gasser and Muller (1984) and Georgiev (1984) have earlier studied
the estimation of p—th under partial derivations of r(x). However, their estimator is restricted
to model (1.4) with fixed "design" variables whose domain can be transformed into the o,
interval, and they have considered the Priestley and Chao (1972) type kernel regression
estimator. Also, our theoretical results do not follow from theirs.

The plan of the paper is as follows. In Section 2 we present our main results. Then in -

Section 3 we give proofs of our results in Section 2.

2, RESULTS

We study here the large sample properties of

P
@y Pw=¢p 20(—0‘(';) r (< + (p-20h),

where r.n(x + (p—20h) =r n(xl,...,xj + (p—20h,....x d) is given by (1.2) and (1.3). Throughout
we consider K in (1.3) belonging to the class of all Borel measurable bounded functions K(x)
such that

') [Kx)dx = 1 () J|Kx)|dx <

Qi) ||x)|%|K@)| - 0 as [jx]| - (iv) sup|K@x)| <=

®  KPx) exists. |

e

However, we note here that instead of (2.2) one can consider the kernels K as bounded density



with compact support whose p—th derivatives exist. We keep (2.2) for the sake of exposition
and uniformity in proving all our results.
The conditions we consider are

1. h-0asn-w

2. nhd+2p-+oog_s_n-»oo

3. (i) f(x)is continuous at x
(ii) g(x) is continuous at x

4.  The partial derivatives of f(x) at x exist up to the p + 1 order, with the p + 1—th
partial continuous at x.

5.  The partial derivatives of r(x) at x exist up to the p + 1 order, with the p + 1-th
partial continuous at x.
6. | yzf(y,x)dy exists and is continuous at x.

We now state our results on pointwise consistency. The proofs of the following

Theorems are in Section 3.

Theorem 1 (Weak Pointwise Consistency). If the conditions 1 to 5 hold, then r{P(x) —
rP)(x) in probability as n - = at every continuity point x of r®(x).

Theorem 2 (Strong Pointwise Consistency). Assume that conditions 1, and 3 to 6 hold, and in
addition |Y| < Cw.p.1, and forall T>0

7. exp(—tnh?*P) < w
n=1

then rr(]p )(x) - r(p) (x) w.p.1.

Note that nh%*P/log n - « implies 7.



Next we give results for uniform consistencies.

Theorem 3 (Uniform Weak Consistency). Let the characteristic function or K(x) be absolutely
integrable. If conditions 1 and 6 hold, and in addition

8. nh2*P e asnam

9.  The p-th order derivatives of r(x) is uniformly continuous.

sup |rl(1p)(x) -—r(p)(x)| +0as,n -,
xeB

B is the support set of rP)(x).

Theorem 4 (Uniform Strong Consistency) Let K(x) be a function of bounded variation,
| Y| <C<ewp.1. and conditions 1, 5 and 8 hold. Further if, for any 8 > 0

10. 3 exp(-dnh2d*P) <o
n=1

then, w.p.1

sup |rl(‘p)(x) - r(p)(x)l +0asn-w

xeB

Next we present the result on asymptotic normality. But before that we give the
following additional conditions.

t t

11 [xK@-mydx=m', 1<t<p

12. oﬁ'm(x) = E( |u|2"'11 |x) exists for some 1 > 0 and is continuous at x.

13. J |K(w)|2+ndu < « for some 1 > 0.

Further, we introduce the following notation:

e
23)  Ax) = —‘f’(r:; JKPx)dx.

1]

e



[\

Theorem 5 (Asymptotic Normality) Suppose that the conditions 2, 4, 11, 12 and 13 hold.
Further, if for any small € > 0

14. h o n (EH1/@+2p)

Then, asn -
@4 @H*2PPoy - ) ~ N, M.

3. PROOFS

Here we give the proofs of Theorems 1 to 5 in Section 2. For this we first note that

P = (%E)Pé:o(-ne(%) % + (p-20h)

converges to r(p )(x) as n - ». Thus for the asymptotic properties of rr(lp )(x) - r(p)(x), it

suffices for our purposes to discuss the differences
3.2) (%H)p(rn(xf) —-r(xé)}, Xp=Xp =X+ (p—20h

Such that x g7 Xasn e, rr(lp)(x) and rn(x f) are as defined in (1.5).
Next we state the following results which either follow from the well known results in

the literature or can be derived easily, see e.g., Parzen (1962).

Lemma 1 (Asymptotic Mean and Variance). Suppose the conditions 1 to 3 hold. Then, as
n-=o~

Ef, (x)) - £(x) | K(w+m)dw = f(x)
(3.3)

nth(fn(x P~ f0 K (wm)dw;

m = p — 2{. Further, if conditions 1, 2 and 5 hold then

Eg, (xp - g(x)[K(w+m)dw
(3.4)

nh?V(g_(x P » WO KA (w+m)dw



where w2(x) = [y2f(y,x)dy.

Lemma 2 (Approximate Bias) Suppose the conditions 4 and 11 hold. Then
(BS5) B x) —f(x)) = c hP 1Py

Further. if 5 and 11 hold, then
(.6 E(g(xp - gxp) » c PP

where co and C; are some constants.

Now we can prove our results.

Proof of Theorem 1 For any € > 0, we note from (3.2) (dropping (&)p for the simplicity) that

P
BN Plln(x) —xtx)| > el <Plg, (x) - gx PIELATXP)
hPe -1
+PLE XY ~fxp| > £ xatx ™
hPe
< Pllg,(x) —gxp| > LEetx) - )

P -
+P[ |fn(x£) —f(xp| > EZE (f(xf) - 5)(T(Xe)) 1]
+ 2P[|fn(x£) —f(xp)[ >3, forany§>0
< 55 (@) - 82 P (x) — g2
—2p 2
+ (r(xe)) h E(f (x P~ f(xe))
+2572B(E (x) - x ). :
Now using the result in lemma 2 and condition 2

38)  h2Pg(g a%p — 2 )% = h‘zP[V(gn(x A1 +072P (Bias ¢ AEN7 40 asn e,



Similarly, both h™2PE(f (x P — fx e))2 and E(f (x ) — f(x e))z 50 asn-w This establishes the

Theorem 1.

Proof of Theorem 2 From lemma 2, Eg n(x f) —g(x f) -+0asn-~andEf n(x f) —f(x l) +0as

n -+, Thus we need only to show that

o Y
B9 TPlgy() ~Bg,ap| > %] <=7, = F-(itxy -9
n=

and
(3.10) n§1pl |f,(xp —Ef (xp| >B 1 <=, B = 'yn(r(x£))"1.
Now observe that
n
gn(xl) - Egn(xl‘) = rl—l .zlwin
1=

where

61w, =Lvxd b ey xd )
) in~ I?I iR i h
If IYil <C w.p.l. foralli. Then w;, are bounded by a constant times h_d. Hence using

Bennett's (1962) inequality.
1 0
(.12 Pllg,xp ~Eg,(xp| > 1) =Pllz Lw;y| > 1]

3n'y§ .
2 (3(5!2]' + cyn)r

<2 exp[-

where v, = 0(h) and 62 = V(w, ) = 0(h™9).

Thus using condition 7 we get
(3.13) zlp[l g,%p —Eg (x)| >7 ] <B }:1 exp(—nh9*P7) < o,
n= n=

Similarly, substituting Yi =1in w;, . the result in (3.10) is also true. Now, using the

Borel—Cantelli lemma along with (3.7) Theorem 2 follows.



Proof of Theorem 3 Let B denote the set where r(x) > 0. Thus to prove the uniform weak

consistency of r‘(lp)(x) it is enough to show that

(3.14)  Plsup|r,(x) —1(x)| >h%] 40 ash-e.
xeB

But as in the proof of Theorem 2

(G.15)  Plsup|r,(x) ~x(x| > h%] < Plsup|g,(x) — g(xp| > 7]
X€ X

+Plsup| £ (x) — £(x)| > B.]
X

where 7 = ehPu;5)/2 = O(hP) and B = 7"t = O(hPY; Mo = inf £(x) and t = sup r(x). By a
direct application of Parzen (1962) it is straightforward to show that, under condition (8) and

lemma 2, the right hand side of (3.5) tends to zero as n - « in probability. Hence the result in

Theorem 3 follows.

Proof of Theorem 4 As in the proof of theorem 2 we need to show here
. ® *

(3.16) nzZ.‘,lP[s)\ipl gn(x 8) -~ Egn(x t’)l >y )<«

and

G171 T Plswplf, (x) ~Ef (x| > Bl<ew
n= X

*
where Tn and B: are as in (3.15). But under condition 10, (3.16) and (3.17) follow from the

proof of theorem 1 in Nadaraya (1970). Hence the result in theorem 4.
Proof of Theorem 5 First, from (2.1) and (3.1) we write
(3.18) (nhd“zl’)i(rflp)(x) ~ 7Py = (;Ea Z(nhd)%(rn(x P —1(xp)

Egn(x f)

d
- g:ap(nh R, (x) - FT)

i

(»

»



[}

¢)

10

+Eg (xe) )
—I(X
EIn( Ej E)

E dJ %9
=)a (nh ) (r (xl) m+o(l)
where
319 a,= (D),
and we use the result in lemma 2 and condition 14.

Now, using lemmas 1 and 2 and f(x £,) = f(x) + OCh)

Eg,(x) [g,,oce) ACP Egn<xe>] f(x,)

320) 1 xp- Ef,Gp ~ [T&p) ™ T ET &) F(xp

has the same asymptotic distribution as that of
(2D gl (k) — Bg,(xp) — (,(x — EE (x ol
Thus the asymptotic distribution of (nhd+2P)2 (r{P)x) — £P)(x)) is the same as that of (using
(1.4))
(32) T, = (nhdy2 NdK; — EdK;) + (mhd)2 SuK;
= Tln + T2n’

where di = r(xi) —r(x) and

X - X
(323) K = @) EaZK( )
But 'I‘1 n” 0 as n - «, in probability. Further, noting that,
324 [P w)2dw = | <§z—1)”1<<w —(p—-20/2)%dw

and using Liapounov's central limit theorem along with the conditions 12 and 13 it follows that

T2n ~ N(0,A(x)) as n - =, where A(x) is as in (2.3). This establishes the result in (2.5).
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