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THE KANNAI, CLOSED—-CONVERGENCE, AND QUESTIONNAIRE
TOPOLOGIES ON SOME SPACES OF ECONOMIC PREFERENCES

JAMES REDEKOP

ABSTRACT
In this note we define and characterize two well-known topologies on spaces of
preferences, namely the Kannai and closed—convergence topologies. We show that on spaces
of economic preferences (e.g. continuous and monotonic preferences on Rf), both topologies
coincide and have a simple and appealing characterization. Namely, they agree with the

questionnaire topology, which takes as a base the set of questionnaire sets

n
Q((X 1 Yy 1)’- "9(xn9yn» = i21 [plxiﬁyi}

where p denotes strict preference.



1. Introduction

In economic theory one often wishes to prove that a statement is true of all x in some
set X, but because of some nonempty set of counterexample points X0 ¢ X for which the
statement is false, one must settle for proving that XO is small in some sense. One way to do
this is to propose a "natural" measure on X, say W, and then show that uXO = (0. More often,

however, one demonstrates that X, is small by proposing a "natural" topology on X for which

X0 is nowhere dense; that is, for which X — X, = X. This is the same as saying that the
complement of XO contains an open dense subset of X.

In this note we define and characterize two well-known topologies on spaces of
preferences, namely the Kannai and closed—convergence topologies. A further, simpler
characterization of these topologies is available when we restrict attention to spaces of
economic preferences on certain types of sets, including the positive orthants R_Ie_ of Euclidean
spaces. By economic we mean that preferences are continuous in some preassigned topology
on the set X of objects of preference, and that there is a natural partial order > on X
corresponding to "more than" with which preferences are consistent. Under suitable
hypotheses on > which are satisfied in the economic environments studied here, the Kannai
and closed—convergence topologies coincide and are equal to a third topology with a much

simpler characterization. This topology, dubbed the guestionnaire topology, is built up from

the collection of basic open sets
n A
Q((xlyl),---,(xn’yn)) = igl {plxipyi} (I)

where p denotes strict preference. The sets Q in (1) are called questionnaire sets. The
rationale for the name is that if we ask an agent the n questions "Which do you prefer, x; or
yi?" and the agent responds (truthfully) "xi" to each question, then by posing this questionnaire
we will have elicited precisely the information that the agent's preference lies in the set Q in



(1). It happens that with economic preferences of the type to be discussed here, answers of
"indifference” to any question of the above form will occur only negligibly often, in a sense to

be made precise shortly.

2. General Topology
Let X be any set; then a collection T of subsets of X is called a topology on X if
a)$petand Xe t,b)ifOl € 'candOZe tthenOl n02e r,andc)ifoae tforall xe A, an

index set, then v Oa € T. The elements 0 of a topology T on X are called open subsets of X,
aeA

and F ¢ X is closed if X—F is open.
Two standard ways to define a topology are as follows. First, let 2 be any collection
of subsets of X. Then there is a topology T g on X which contains % and is minimal with

respect to that property. In fact,

n
Tg= [az A0a| for each o € A, an index set, 0 o™ ingi for some B l""’Bne B

v{pX}, )
which is the set of all unions of finite intersections of elements of &, together with the sets ¢
and X. Second, we can let Z denote the set of integers, XZ the set of (countably) infinite
sequences of elements of X, and then let C be any subset of xZxX. A typical element of C
may be denoted ({x nln > 1}, x); and C has the interpretation that it defines a set of
"convergent sequences” and their "limits". Any such definition of convergence induces a

topology on X via

o= (0OcXlifxe Oand({xnlnz 1}, x) € C, then
X, € 0 for all sufficiently large n} 3)



If C = ¢ (no sequence converges to any point) then Tc= 2%, the discrete topology on X, while
ifC= XZ x X (every sequence converges to every point in X) then o= {$.X]), the trivial
topology on X. In general if C1 c C2 then Tc € 'tcl.

2

Now let X be a topological space with topology T fixed for the remainder of this
section; and let p be a preference on X — a complete, reflexive and transitive binary relation
on X. We will let p and p denote the symmetric and asymmetric factors of p — i.e.

indifference and strict preference. We say that p is continuous if for every x the sets

{z e Xz p x} {z € XlIxpz} 4
are open in T. One can show that p is continuous if and only if the set

S®) = {(x,y) € X x Xlxpy]} &)
is open in the product topology on X x X, denoted T x T, which takes as a base the collection

2 = (0, x0,10,,0, € T} ' (6)
Since 2 is closed under finite intersections, the product topology is just the set of unions of
elements of 2. Thus p is continuous if and only if S(p) is a union of sets of the form 0l X 02,
which is the same as saying that if xpy then 01;‘)02 for some open product Ol x 0, containing

the pair (x,y). (The notation APB means that xpy whenever x € A, y e B, and p € P. Also
ApB means A{p}B.)

3. The Kannai and Closed Convergence Topologies
Again, let a topology T on X be fixed for the remainder of this section, and let Pc(X)
denote the set of continuous preferences on X. Then the Kannai topology on Pc(X) is defined

in Kannai (1970) to be the minimal topology K if it exists, such that the set

S={(xypeXxXxP c(X)Ixﬁy] ¢))

i

»



is open in the product technology T X T X Ty on XxXxP c(X). Often one shows that a
collection of sets exists which is minimal with respect to a property by showing that at least
one collection has the property and that any intersection of collections with the property also
has the property; one then exhibits the minimal collection as the intersection of all collections
with the property. But the second step in this line of reasoning does not seem to be
elementary in the case of the Kannai topology, so the question of existence of ™® will be
answered here, as in Kannai (1970), by assuming some additional hypotheses on the topology
on X.

The topological space (X,t) is called normal if a) every singleton set {x} is closed and
b)if F, and F, are disjoint closed sets, then there are disjoint open sets 01 and 02 such that

F1 c 01 and F, ¢ Oa‘ A set E c X is called compact if for every family [Oala € A} of open

: n
setssuchthat Ec v 02 there are a finite number of o € A such that Ecu 0_ . In words,

acA 1 %

every open covering (Oala € A} has a finite subcovering {Oa'll <i<n}. The closure of a
i

set E c X, denoted E, is defined to be the minimal closed set containing E, or equivalently the
intersection of all the closed sets containing E. The topology 7 is called locally compact if
every x € X is contained in some open O such that 0 is compact.

Lemma 1 (Kannai) Let (X,T) be a normal, locally compact topological space. Then the

Kannai topology on PC(X) exists and takes as a base the collection

B = {B(Ol,Oz) ={pe Pc(x)lUIﬁUZ]IOi open, Gi compact} 8)

Proof (We include a proof here because Kannai's proof pertains to the case X = Rf only, and
is not self—contained. Moreover the hypotheses he states for the general case — local
compactness and countability of a base for T — do not seem to be sufficient).

We will show that the topology which takes B, as a base actually makes S in (7) open
in TXTX T, and then establish minimality by showing that if S is open in T x T X T for some

topology € on PC(X), then each element of .BK must be open in 1.



To prove the first part, we assume that xpy and show that there are Ox and 0y open,

with Ox and 0y compact, such thatx e 0.,y € Oy’ and prUy; for then we will have

(xy.p) € 0, x 0 x BO,0) S )

which shows that S is a union of the open product terms in (9) and hence open in T X T X %
If xpy then UxﬁUy for some open U, and Uy containing x and y. From normality

there are closed sets F, and Fy and open sets Vx and Vy, such that

erngngx erynggUy

(10)
From local compactness there are 01 and 02 open such that x € 01, y € 02, and Ul and 02 are
compact. Now let 0x = 01 N VX and 0y = 02 N Vy, to get all of the following inclusions:

ngﬁl ngFngx

Uygﬁz UynggUy (11)
These together imply that UxﬁUy and that Ux and Uy are compact (a closed subset of a compact
set is compact); also Ox and 0y are both open, all of which means that (9) holds as required.

For the second part, we begin with any B(01,02) € ‘21( and show that B(01,02) € T, by
showing that if p € B(OI’OZ) thenpe O¢c B(OI’OZ) for some 0 € ©. Since S is open in

T X T X 1 we can write

S=
Coyopres <Y Op @

with each 0p € % and each Ox and 0y in . The collection of sets {0x X Oyl(x,y) € Ul x 0,,xpy}

is an open covering of the product of compact sets Ul X 02 which is therefore also compact; so

we can write

- — n
0,x0,cv0 x0 (13)
255

for a finite number n of triples (xi,yi,pi) € S. The set



n
0=n0 (14)
i=1 P

now satisfies 0 € € and p € 0; and if q € O then ox.qoy. for 1 <i < n. Given (13), this means
i i

that 01(“10 ,s00¢ B(01,02). 0

Another topology on spaces of continuous preferences was suggested by Debreu (1969),
who used the topology of closed convergence on families of closed sets in the case where
these sets correspond to elements of PC(X). If (Y,7) is topological space and {Fnln >1}isa
sequence of closed subsets of Y then we define

lim F ={yeYlfyeOer, then0nF_#¢

for all sufficiently large n}

lim F ={ye YIifyeOe'c,thenOnFn;é(b

for infinitely many n} (15)

Clearly lim F c lim nFn’ We write F 2 F to denote that lim F = F=1lim nF i in which
case we say that {Fnln > 1} closed converges to F. In practice all one needs to verify is that
llmnanF_glim Fn‘

Now we can let Y = X x X and define a notion of convergence of preferences by

noting that if p is a continuous preference then the set

S(p) = {(x,y,) € X x Xlxpy]) (16)

is a closed subset of X x X. We write PPt denote that S(pn) closed converges to S(p) as

defined above. In terms of elements of X, one can show thatp = p if and only if



¢)) If xpy, then there are open Ox and 0y such that x € Ox’ ye Oy, and OxpnOy for
all sufficiently large n, and

(2)  If xpy then for all open 0x and 0y containing x and y respectively, there is a

nPn¥n for all

sufficiently large n. an

sequence of pairs {(x oY n)In > 1} such that (xn,yn) € 0x X 0y and x

Lemma 2 Let (X,t) be locally compact. Then the topology of closed convergence is at least
as strong as the topology which takes ..?K(S) as a base. Thatist $K €T, = {0c Pc(x)lif peO

and P, 2P then P, € 0 for all sufficiently large n}. (18)

Proof All we have to show is that the basic open sets B(01,02) are open in T So let
p € B(0,,0,) with Ul and 02 compact, and let p 2P we have to show that p e B(0,,0,) for
all sufficiently large n. If (x,y) € 01 X 02 then xpy, so from (1) in (17) there are open 0x and

0y and n(x,y) such that Oxf) 0, for all n > n(x,y). So

ny
0,x0,c v 0_x0_, (19
1772 erlx y
erz

an open covering and hence

_  _ m
0l X 02 c \iJ 0xi X 0yi (20)

_for 1 <i<m, which implies

for some finite subcovering. If n > max n(x.,y.) then O_ p_0
iYi x;'n'y;

P, € B(01’02)° u]

Conditions under which the reverse inclusion, and hence equality, holds in (18), are
somewhat more specialized, but still occur often enough in economic theory so that it is

probably not worth the effort to distinguish the two topologies.

1]

i



First, notice that the definition of local compactness is equivalent to the statement that

the topology can take as a base the set
.ﬂc =(0¢e 0 is compact} (21)

A topology is defined to satisfy the second axiom of countability if it can take as a base
a countable collection % of subsets of X; we also say in this case that T is second countable.
If 1 is second countable and locally compact, then we can find a countable subset of 30 in
(21) which also generates the topology. If A ¢ X then any topology T on X induces a topology

on A called the relative topology on A, which is denoted ! A and is defined by

td,={0nAl0e 1) (22)

Lemma 3 Let T be normal, locally compact, and second countable, and let P be any subset of
P C(X) such that for all p € P we have:
If xpy, then for every open 0, and 0y containing x and y respectively, there exist

eer and ne()y such that ¢pn. (23)

Then "K|P = tclP'

Proof First, notice that given the condition (23) on preferences in P, 1) implies 2) in the
definition of closed convergence for sequences {p nIn > 1} c P. For if xpy and (x,y) € ()x X 0y
then we can let (x oY n) = (§,n) in (23) for all n, and from 1) we will have &pn for all
sufficiently large n.

To prove the lemma we suppose that Ec P but E ¢ TKlP’ and try to show that E ¢ Tc'P
by constructing a sequence {pn|n > 1} that stays outside of E but closed converges to a
preference in E.

IfE ¢ Ty|p then there is p € E such that every nonempty open set 0 € Tk|p containing

p intersects P —E. In particular, if p € B(O1 i’02i) for1 <i<n,and
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n
U = .n B(Oli,OZi), (24)
1=

n =1
then U a0 (P-E) # ¢. Since 7 is normal and locally compact, and S(p) = {(x,y)Ixpy) is open,
we know that every (x,y) in S(p) is contained in some open product 0 x 0y for which ﬁxpﬁy

and 5x and 6y are both compact. From second countablity, we can write

b 25
S) gi: 0, xoy. (25)

1% i

for some countable subset of those open products. Now, if we let 0li = Ox. and 02i = Oy. and
i i

define Url according to (24), then we can pick a sequence of preferences {p n|n > 1} so that for

every n,
p, € U, n(P-E)#¢. (26)

So the proof is complete, once we show p 2P If xpy then (x,y) € Ox. X Oy. for one of the
i i

open products in (25); and for n > i we will have Ox.f)noy‘. This establishes (1) of closed
i i

convergence, and hence (2) according to the remarks above. o

It is worth remarking that the hypotheses of the lemma — specifically, normality and
second compatibility — are sufficient to imply that the topology 7T is metrizable. That is,

there is a metric d on X such that T can take as a base the set of spheroids

S= {Be(x)le >0, xe X) 27

where

Be(x) = {z e Xld(x,z) < €}. (28)

This result is called the Urysohn Metrization Theorem.

(v
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Now recall the remarks on the questionnaire topology made at the end of the
introductory section. It was asserted there that under suitable hypotheses, answers of

"indifference"” would occur negligibly often. This is true in the following sense:

Lemmad4 Letpe Pc(X) satisfy condition (23). Then the set of indifferent pairs
I(p) = {(x,y) € X x Xlxpy} 29
is nowhere dense as a subset of X x X (in the product topology), and the indifference classes
IL()= {z € Zlzpx} (30)

are all nowhere dense as subsets of X.

Proof Omitted.

Actually, in one of the examples to be discussed later on one can prove much more; if
X= Rf and p is monotonic then the indifference classes are all nowhere dense and have
Lebesgue measure zero. Also, the set of indifferent pairs has product Lebesgue measure zero;

and furthermore these results are true without any assumption of continuity.

4, Equivalence of 'cQ with To and T on Economic Preferences

The purpose of this paper is to show that on certain sets of economic preferences, the
Kannai and closed convergence topologies both coincide with a third topology with a much
simpler characterization, namely the questionnaire topology. So we turn now to a definition of
what we mean by a domain of economic preferences. Loosely speaking, we need there to
exist an ordering on X which is similar to "more than" on the real line. Formally, let > be an

asymmetric and transitive relation on X, and let > be the relation derived from > via

xryifxe{z e Xlz > ylorye {z € XIx » z} (31)
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It is not hard to show that if p is a continuous preference which extends > (i.e. for which x » y

implies xpy), then x > y implies xpy. For what follows, we need there to exist a countable set

K ¢ X which is dense (i.e. for which K= X), and the following conditions on »:
(1)  If x is not a minimal element according to », then for every open set 0,’(
containing x there is an open set 0, containing x, and Ee 0)'( n K, such that
0x > &
(2) Ifyis not a maximal element according to *, then for every open set 0)',
containing y there is an open set 0y containing y, and 1 € 0}’, N K, such that
0. 32
20, (32)
(A maximal element according to > is an x € X such that x » z for all other z € X, and a

minimal element is one for which z > x for all other z € X).

Proposition 1 Let X have a countable dense subset K, and let P ¢ PC(X) be a set of continuous
preferences on X which satisfy (23), and which extend an ordering > satisfying (32). Then the
restriction to P of the topology of closed convergence on Pc(X) coincides with the

questionnaire topology on P.

Proof It is easy to show that questionnaire sets are open in T | P in fact this is true even if
P= Pc(x), the largest set on which © A makes sense, and whether or not X is separable.
For the reverse inclusion we will show that if E ¢ P is not questionnaire open then it is

not open in T P That is, there are p € E and a sequence {pnln > 1} which closed converges

to p but stays outside of E.
If E is not questionnaire open then it is not true that every p € E is contained in some

questionnaire Q((xl,yl)...(x oY) € E; so for some p € E, every questionnaire containing p

intersects P-E. Now consider the set

(KxK)NS(P) = {(x,y)Ixpy, x € K,y € K} = [(xl,yl),...,(x n,yn),...] (33)

“



13

a countable set of pairs (x5,¥;)- If we let

Qn = Q((XI*YI)v"-:(xn’yn)) = {qlxiqyl’ 1 S l S n]a (34)

then from the above remarks Q 0 (P-E) # ¢; so we can pick a sequence {pnln > 1} so that
P, € Q, N (P-E) for all n. The proof will be complete once we show that P 2P in view of
(23), all we have to verify is (1) of closed convergence.

If xpy then O)’(f)O’ for some open product O"( X 0;, containing (x,y). From (32) we can

y
find (En) € (0"( X 0)',) n (K x K), and open sets O, and 0, containing x and y respectively, such

y
that 0, » Eandn > Oy. Necessarily, (€,n) = (x;,y;) for some i and (x,,y;) in (33), and for n > i
we will have Oxpnxi]“)nyipnoy, which establishes Oxf)noy for an open product 0, x 0y
containing (x,y). This establishes (1) of closed convergence and, hence concludes the proof of

the proposition. o

Proposition 2 Under the same hypotheses as Proposition 1, the Kannai topology on P exists

and is equal to the questionnaire topology on P.

Proof We have to show that under these hypotheses, the set

Sp= {(x,y,p) € X x X x Pixpy} (35)

is open in the product topology T X T X thP’ and that if S is also open in T x T x %lp, then
TQ'P c 'i:IP. These steps will establish existence and equality simultaneously.
If xpy then the same 0, €, Oy, and n of the last paragraph in the proof of Proposition 1

will suffice to yield

(x.y,p) € 0, x Oy x Q&M NP Sy (36)

SO SP is therefore a union of the open products in (36) and hence open in T x T X tQIP‘

For minimality, suppose that Sp, is open in T X T X 'EIP. If xpy, then
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(x,y,p) € Ox X 0y X 0p cS p €1))

for some open product with Op € 'i:lp. In this case, Oxopoy’ SOpE 0p c Qx,y). Thus Q(x,y) is
a union of sets Op € 'izlP and hence open in 'EIP; and the basic open sets Q((xl,yl)...(xn,y n)),
being finite intersections of Q(x,y)'s, are also open in tlp. So TQ'P c *i:IP, establishing

minimality. o

Propositions 1 and 2 are both proven here with hypotheses that are more than
sufficient. In particular, Proposition 1 does not seem to require condition (23) on preferences
in P; and Proposition 2 does not require & and 1 to lie in any countable dense subset K, so X
need not have such a subset for the result to hold. But these assumptions are not violated
often enough in economics to make worthwhile the extra generality from relaxing them. As

the next section shows, it is condition (32) on » which is the hardest to satisfy.

5. Examples
In this section we present some economic examples of topological spaces (X,T) and sets

of preferences P on X which satisfy the hypotheses of Propositions 1 and 2. We also present

some examples which do not satisfy all those hypotheses.

Example 1 Let Xl = R_f with the usual topology T induced by the metric

d(x,y) = max Ix; —yil (38)
1<i<?

Let x > y denote that x, >y, for all i, and let P be any subset of
P X = {pe Pc(Xl)lif X; > y; for all i, then xpy}, (39)

the weakly monotonic preferences on X,; and let K be the set of points in X1 with rational

coordinates. It is not hard to check that the triple (XI,P,K) satisfies all the requirements of
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Proposition 1.

Example 2 Let Xb be the set of bounded sequences of real numbers, with bound b;
Xb = {{xnln > l}lxn € R,and Ixnl < b for all n} (40)

Endow Xy with the product topology on RZ (where Z is the set of integers); this topology

takes as a base the set of products

{XOiIOi ¢ R is open for all i, and 0i = R for all sufficiently large i} 41)
1

(where openness in (41) is defined according to the usual topology on R). Also, this topology

is metrizable, by the metric

do = 2 %; min (LIx; — y;ll. (42)
1=

Let x > y denote that x, >y, for all i, and let

K= v v {xe Xblxi rational, i <n, X; =r,i>n}, (43)
n=1 rational r

a countable dense subset of Xb. Finally let P be any subset of
Pmc(XZ) ={peP c(Xb)I if X, > Y; for all i, then xpy]}. (44)

Then (Xb,P,K) satisfies all the assumptions of Propositions 1 and 2.

Example 3 Let X3 = RZ, the set of all sequences of real numbers. In the product topology on
X3 the set K in (43) is still dense; but (X3,Pmc(X3), K) does not satisfy the conditions in (32),

since no product—open set ever dominates or is dominated by any element of X3.

Example 4 Let]J =[a,b] and let X 4= D(J), the set of distribution functions on J;
X 4= {F: J-[0,1]I F is left—continuous, non—decreasing, and F(a) = 0} (45)
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Endow X 4 with the topology of weak convergence, in which we define Fn to converge to F if

Jg(x)an(x) converges to lg(x)dF(x) (46)
]

for every bounded continuous function g:J-R. This topology is metrizable, by the metric

d(F,G) = inf{elF(x—€)—€ < G(x) < F(x+¢) + € Vx € J}, 47
the Levy distance between F and G. Define F > G to mean that

Fx) <G(x)Vx el
F(x) < G(x) for some x € J (48)

and let P be any subset of
Pdc(x4) ={pe PC(X4)I if F » G then FpG}, (49)

the continuous preferences on X 4 which agree with (first order) stochastic dominance (48).

Let K be the countable set

n
K=<{—'11 3 5. Ix. rational, 15i5n<oo} (50)
i=1 %j !
where
Sx(t) = 0 t<x
1 t>x, (629

a point mass at x. Then one can show that (X 4,P,K) satisfies all the hypotheses of

Propositions 1 and 2.

Example 5 Let J = {a,=) or [—,b] or (—,»), and proceed as in example 4, with X5 = D(J).
The triple (XS,P dc(X5),K) does not satisfy the hypotheses of Propositions 1 and 2, since any
spheroid Be(F) either contains a sequence {F nIn > 1} which is undominated by any G € D(J)
(if J = [a,»)), or contains a sequence {Fnln > 1} which does not entirely dominate any G € D(J)

(if J = [—=,b]), or contains sequences of both types (if J = (—x,)).

«

to
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In examples 1, 2 and 4 the assertions are true for any subset P of the preferences
described therein but this is not necessarily true when we consider proper subsets of the sets X
involved. That is, it is possible that (X,P,K) satisfies the hypotheses of Proposition 1, but that
(X’,P’,K’) does not, where X’ c X, P’ = Plx,, K’ is a countable dense subset of X’, and the

topology is tly,,. For example, if in example 1 we let
X

X’ ={xe Rf|z(i= 1) cX, (52)

and {3 2, then no open subset of X’ dominates any point in X according to . Therefore

(32) does not hold in this new environment.

6. Conclusion

On any set of continuous preferences P C PC(X) which satisfies the conditions of
Propositions 1 and 2 there is a simple and appealing characterization of the Kannai and closed
convergence topologies. Namely, under those conditions both topologies coincide with the
questionnaire topology, or the topology of finite information on strict preference. Within such
sets of preferences, a sequence {p nIn > 1) closed converges to p if and only if it questionnaire
converges to p. That is, if for all x and y such that xpy we have Xp oY for all sufficiently large
n (compare this simple condition to (1) and (2) of closed convergence (17)). The
characterization holds also for any subset of such a family of preferences. For example in
Example 1 one might wish to consider strictly monotonic preferences, or convex monotonic
preferences, etc. Or in Example 4 one might want to consider strict subsets of Pd c(X 4), such
as expected utility preferences, or weighted utility preferences, etc.

The characterization is useful in proving that a certain type of subset of a preference set

P is topologically small — i.e. nowhere dense in the relative topology on P. Using the closed
convergence characterization one has to show that if P0 is of the type in question, and p € }—’O,

then there exists a sequence {p nln > 1} which closed converges to p and stays outside of 130.
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Using the questionnaire characterization, one can assume that there is a nonempty

questionnaire set Q ¢ I_’* and then show that P, does not have the property defining the type of
subset in question. The latter approach can make the proof substantially easier (see for

example Redekop (1988)).
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