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Abstract 

Astrocytes perform many homeostatic roles in the brain while supplying metabolites 

to neurons and mediating synaptic transmission. The current study explored a 

possible role of the Atrx gene in astrocytes. Hypomorphic mutations in this gene 

cause the ATR-X intellectual disability syndrome. Deletion of Atrx in the forebrain 

leads to an apparent increase in reactive astrocytes, potentially caused by the high 

level of neuroprogenitor cell death. To avoid such non cell-autonomous effects on 

astrocytes, we generated mice with inducible conditional inactivation of Atrx in 

astrocytes. Preliminary analysis two weeks following induction of Atrx gene deletion 

revealed variably lower expression of Connexin 30 (Gjb6), encoding a gap junction 

protein. Morphologically, ATRX-null astrocytes displayed larger domain coverage by 

peripheral astrocytic processes, suggesting altered functionality. This work provides 

key advances to our understanding of ATRX function in astrocytes and provides a 

unique mouse model for future investigations. 
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Chapter 1  

1 Introduction 

1.1 Astrocytes 

There are many different cell types in the brain, including neurons, and glia cells 

which include astrocytes, oligodendrocytes and microglia.  Research on brain 

development and function has historically been focused on neurons and 

oligodendrocytes. The astrocyte is only beginning to become an area of interest 

and appears to have importance in normal brain function. It was estimated that 

between 20 to 40% of all cells in mammalian brains are astrocytes (Herculano-

Houzel, 2014). The number of astrocytes does vary depending on species and 

area of the brain (Khakh and Sofroniew, 2015). Astrocytes are sparse in areas with 

numerous neuron cell bodies but are abundant in areas populated with axons and 

dendrites (Khakh and Sofroniew, 2015). Human astrocytes are up to 20x larger in 

volume and contact up to 10x more synapses compared to rodent astrocytes 

(Oberheim et al., 2009). Important synaptic proteins produced in astrocytes are 

more abundant in the human brain compared to chimpanzees and macaques 

(Caceres et al., 2007). These findings support an important role for astrocytes in 

the human brain.  

The functional diversity of astrocytes is still underappreciated, however two distinct 

types of astrocytes have been identified. Protoplasmic astrocytes are found in the 

gray matter and surround synapses (Sofroniew and Vinters, 2010). They have 
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many fine branches, called peripheral astrocytic processes (or PAPs) that connect 

to synapses, blood vessels, and other astrocytes, and account for approximately 

80% of the cell’s surface area (Rossi, 2015). Fibrous astrocytes are present in the 

white matter and have many long fiber-like processes that make contacts with 

axons (Sofroniew and Vinters, 2010). GFAP (glial fibrillary acidic protein) is used 

to label astrocytes, but this protein labels astrocyte subtypes differently (Rossi, 

2015). Fibrous astrocytes express higher levels of GFAP throughout their 

processes (Cahoy et al., 2008; Rossi, 2015) while GFAP expression is weaker in 

protoplasmic astrocytes and is mainly in the cell body and immediate large 

processes (Cahoy et al., 2008; Sofroniew and Vinters, 2010). The amount of GFAP 

present in astrocytes also varies in different brain regions. For example, 

hippocampal astrocytes express high levels whereas cortical astrocytes express 

low levels (Khakh and Sofroniew, 2015). GFAP is also upregulated in reactive 

astrogliosis (Sofroniew and Vinters, 2010), a topic that will be discussed further in 

the next section. There are many other differences between astrocytes, including 

morphology and density, depending on area of the murine brain (Emsley and 

Macklis, 2006; Khakh and Sofroniew, 2015).  

1.1.1 Functions of astrocytes in the CNS 

Astrocytes have long been regarded as support cells in the brain, as reviewed by 

Sofroniew and Vinters (2010) and Rossi (2015) (Figure 1). While they do perform  
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Figure 1. Astrocytes perform many essential functions at the synapse and 

the blood brain barrier. The astrocyte PAPs extend to make connections at the 

synapse and contact blood brain barrier with their endfeet. At the synapse, 

astrocytes release important neurotrophic factors during development to induce 

synapse formation. Lactate is released to neurons during periods of high neuronal 

activity and gliotransmitters are also released to help modulate synaptic function 

of neurons. Astrocytes also take up excess neurotransmitters present at the 

synapse. pH and ion homeostasis is maintained at the synapse through water and 

ion uptake by astrocytes. Astrocytes are the only cells that contact blood vessels 

in the brain and take up glucose and control water levels in the brain. Astrocytes 

can also release vasodilators to modulate blood flow based on neuronal activity 

and metabolic demand. 
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many vital functions to support neuronal homeostasis, astrocytes also have key 

roles in synaptic plasticity and the response to brain injury (Rossi, 2015; Sofroniew 

and Vinters, 2010).  Astrocytes are the only cell type in the brain to make contacts 

with the blood vessels and can secrete factors that mediate blood flow based on 

neural activity (Quaegebeur et al., 2011). They are also the site of glycogen 

storage in the brain, with the highest amount of glycogen accumulation in 

astrocytes in areas of high synaptic density (Belanger et al., 2011; Sofroniew and 

Vinters, 2010). Astrocytes also maintain fluid, ion, and pH homeostasis at the 

synapse (Rossi, 2015; Sofroniew and Vinters, 2010), contact blood vessels to 

allow for control of fluid homeostasis (Sofroniew and Vinters, 2010), and take up 

excess neurotransmitters from the synaptic space to prevent prolonged stimulation 

(Rossi, 2015; Sofroniew and Vinters, 2010). Astrocytes form a network with each 

other through gap junctions to allow for efficient communication and to deplete the 

molecules they take up and prevent accumulation of said molecules at the synapse 

and within a single astrocyte (Rossi, 2015; Sofroniew and Vinters, 2010). 

Astrocytes are also important in responding to brain injury, cell death, and 

inflammation as they are capable of forming glial borders, and possibly glial scars, 

to contain damage from an insult (Sofroniew and Vinters, 2010). Astrocytes 

responding to these events are called reactive astrocytes and their characteristics 

include: (1) upregulation of GFAP, as well as other genes, (2) hypertrophy of the 

cell body and processes, and (3) proliferation (if damage is significant) to 

reorganize the tissue and contain inflammation (Sofroniew and Vinters, 2010). This 

process is also referred to as astrogliosis. Depending on the severity of the brain 
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injury, a glial scar may form to act as a barrier around the injury to protect 

surrounding tissue from inflammation (Sofroniew and Vinters, 2010).  

1.1.2 Astrocyte development and maturation 

Astrocytes begin to appear just before birth at approximately embryonic day 18.5, 

or E18.5, and peak astrogliogenesis continues until postnatal day 7, or P7, in mice 

(Yang et al., 2013). Following the end of neurogenesis, radial glia progenitor cells 

switch from a neuronal to an astrocytic differentiation program (Anthony et al., 

2004; Yang et al., 2013). New astrocytes continue to divide while differentiating to 

produce clonal astrocytes locally (Garcia-Marques and Lopez-Mascaraque, 2013; 

Ge et al., 2012; Tsai et al., 2012), however, astrocytes are not fully mature until 3 

to 4 weeks after birth (Freeman, 2010; Yang et al., 2013). 

The morphological maturation of astrocytes that occurs postnatally involves the 

extension of PAPs. These processes are required to make contacts with other 

astrocytes, synapses and blood vessels (Yang et al., 2013). PAPs from one 

astrocyte can contact approximately 100,000 synapses in the rodent brain and up 

to 2,000,000 in the human as astrocyte size is drastically increased (Oberheim et 

al., 2006). These processes form between P14 and P26 (Yang et al., 2013) which 

is also the time of peak synaptogenesis (occurring between P14 and P21) 

(Freeman, 2010). PAPs often overlap between astrocytes during this time of 

intense outgrowth, but are eventually pruned so that astrocytes occupy specific 

and distinct domains by 4 weeks of age (Bushong et al., 2004). These astrocyte 

domains represent the area covered by PAPs. This morphological maturation is 
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followed, with brief overlap, by the induction of several astroglial genes. Glutamate 

transporter Slc1a2, gap junction proteins connexin 30 (Gjb6) and connexin 43 

(Gja1), and potassium channel Kir.1, for example, are all induced between P21 

and P28 (Yang et al., 2013). This timeline (Figure 2) suggests that mature 

astrocyte morphology is tightly associated with molecular maturation as the 

astroglial genes mentioned above are all membrane proteins present at PAPs and 

used at the synapse (Yang et al., 2013). 

1.1.3 The role of astrocytes at the synapse 

As astrocytes extend their processes they guide the migration of developing axons 

and neurons by forming molecular boundaries (Powell and Geller, 1999). 

Astrocytes also help refine synaptic processes by taking part in synaptic pruning 

(Stevens et al., 2007). Stevens et al. reported that C1q, an initiating protein in the 

complement cascade (part of the innate immune system response) is upregulated 

in postnatal neurons in the presence of immature astrocytes. C1q was later 

determined to be induced by TGF-β, an astrocyte-secreted factor that initiates the 

complement cascade in neurons, leading to synaptic pruning in the developing 

visual system (Bialas and Stevens, 2013).   

Astrocytes are also extremely important in synaptogenesis. A pioneering study 

provided evidence that synapse formation was limited without the presence of glial 

cells (Ullian et al., 2001). The authors demonstrated that neurons cultured in the 

absence of astrocytes, or astrocyte-conditioned media, formed very few synapses 

and those that did form were functionally immature (Ullian et al., 2001). Through 
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Figure 2. Timeline of astrocyte development in the mouse. Embryonic day 0 

(E0) represents conception and peak astrogliogenesis, or astrocyte production, 

occurs shortly before birth at E18.5 and continues to approximately a week after 

birth (P7). The astrocytes produced are immature and do not begin to extend PAPs 

and form networks with each other and synapses until two weeks after birth (P14). 

This morphological maturation of astrocytes overlaps with peak synapse formation 

between neurons. Molecular maturation through expression of astroglial genes 

also overlaps with the end of the morphological maturation period, beginning at 3 

weeks after birth (P21).   
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the use of electron microscopy and immunofluorescence directed at detecting 

synaptic proteins and astrocytic markers, they demonstrated that synapse 

formation corresponds with the appearance of astrocytes in the mouse brain 

(Ullian et al., 2001).  

Many astrocyte-secreted molecules were subsequently identified as important 

signals for synapse formation and stability. Thrombospondins are released from 

astrocytes and promote synaptogenesis (Christopherson et al., 2005). These 

molecules induce the structural formation of new synapses that are functionally 

immature and cannot produce an action potential (Christopherson et al., 2005). 

Another astrocyte signaling factor, Hevin, induces excitatory synapse formation 

while its inhibitor secreted protein, acidic, cysteine-rich (SPARC) prevents 

synapse formation (Kucukdereli et al., 2011). SPARC prevents excessive 

excitation of synapses by controlling the level of alpha-amino-3-hydroxy-5-methyl-

4-isoxazole propionic acid receptors (AMPARs) at the synapse (Jones et al., 

2011). Loss of SPARC in mice results in accumulated AMPAR at synapses and 

impaired synaptic plasticity (Jones et al., 2011). SPARC inhibits integrin 

complexes associated with AMPARs (Jones et al., 2011). Therefore in the absence 

of SPARC, sustained stability of the AMPAR at synapses is achieved resulting in 

increased excitatory synapse function and reduced synaptic plasticity (Jones et al., 

2011). Astrocyte-derived cholesterol is also required during synaptogenesis as 

retinal ganglion cells (RGCs) were unable to form immature synapses without 

cholesterol supplied by astrocytes (Mauch et al., 2001). The RGCs were able to 

produce enough cholesterol to differentiate and extend dendrites and axons but 
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large amounts of cholesterol were required to form functional synapses (Mauch et 

al., 2001).  

After formation of synapses there are signals that lead to synaptic maturation and 

reinforce synaptic strength. Allen et al. identified astrocyte-secreted glypicans 4 

and 6 as molecules that are able to induce functionally mature synapses (Allen et 

al., 2012). Glypicans increase the surface level and clustering of a subunit of the 

AMPAR (Allen et al., 2012). The authors also demonstrated that glypican 4-

deficient mice had defective synapse formation and reduced amplitude of 

excitatory synaptic currents in the hippocampus (Allen et al., 2012). Extracellular 

matrix components have also been implicated in reinforcing synaptic strength by 

stabilizing the AMPAR at synapses and preventing mobility (Frischknecht et al., 

2009). In another study, hippocampal neurons were cultured on an astrocyte 

feeder layer resulting in the formation of many synapses (Pyka et al., 2011). 

However, with the addition of enzymes that digest certain astrocyte-secreted 

extracellular matrix factors these synapses became weaker and also resulted in 

an accumulation of immature synapses (Pyka et al., 2011).  

Astrocytes are important for synapse development and plasticity of neurons, but 

what is their role at a functional synapse? As mentioned previously, astrocytes 

possess glutamate transporters required for proper glutamate clearance at the 

synapse to prevent excitotoxicity and neurodegeneration (Rossi, 2015; Rothstein 

et al., 1996; Sofroniew and Vinters, 2010). Astrocytes also release various 

“gliotransmitters”, in response to synaptic activity (reviewed in (Araque et al., 

2014). There are in fact many gliotransmitters that are released in response to 
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Ca2+ elevation in astrocytes, including astrocytic glutamate, ATP, D-serine, and 

TNFα (Araque et al., 2014).  Astrocytic glutamate has been implicated in 

modulating the frequency of excitatory and inhibitory postsynaptic potentials and 

of basal synaptic transmission in the hippocampus. It is also able to modulate long 

term depression in the cortex (Araque et al., 2014). ATP has been implicated in 

modulation of long term potentiation, basal synaptic depression, and depression 

of evoked excitatory postsynaptic potentials in the hippocampus and regulation of 

basal synaptic transmission in the cortex (Araque et al., 2014). D-serine has been 

strongly implicated in long term potentiation in the hippocampus and both long term 

potentiation and depression in the cortex. Finally TNFα has been associated with 

insertion of AMPARs to strengthen synapses (Araque et al., 2014). Although these 

gliotransmitters have been implicated in neuromodulation, many mechanistic 

questions remain unanswered such as how certain astrocyte receptors are 

differentially activated to cause Ca2+ elevation and how this leads to the release of 

different gliotransmitters (Araque et al., 2014). The mechanism behind the release 

of each gliotransmitter requires more attention to fully understand how astrocytes 

function at the synapse. 

The plasticity of astrocyte morphology has been implicated in promoting excitatory 

synapse stability (Bernardinelli et al., 2014). In response to synaptic activity, 

specifically activation of metabotropic glutamate receptors (mGluRs) by neuronal 

glutamate resulting intracellular Ca2+ signaling, PAPs undergo structural 

remodeling to enhance active synapse coverage and synapse stability 

(Bernardinelli et al., 2014). The authors explored this further by activating single-
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synapses through photoactivation to demonstrate that this PAP mobility is synapse 

specific and therefore astrocytes contacting many synapses can respond to each 

individually (Bernardinelli et al., 2014). This mobility of PAPs and their ability to 

respond to and strengthen individual synapses implies that astrocytes may be 

involved in long term potentiation and ultimately learning and memory 

(Bernardinelli et al., 2014). 

1.1.4 Astrocyte involvement in the pathology of 

neurodevelopmental disorders 

Neurodevelopmental disorders are characterized through a set of similar 

symptoms such as cognitive impairments, autistic features, epilepsy and motor 

abnormalities. The research conducted on these disorders has focused mostly on 

neuronal dysfunction; however, recent studies have emerged describing a role for 

astrocytes as a contributor to pathology of these disorders. Autism spectrum 

disorder is a set of neurodevelopmental disorders without an identified single 

etiology, because it is most likely caused by both genetic and environmental 

factors (Fakhoury, 2015). Autistic patients exhibit reduced language and social 

skills, repetitive behaviours and with some secondary symptoms such as 

aggression and anxiety (Fakhoury, 2015). Postmortem brain samples from autistic 

patients revealed astrogliosis as indicated by elevated GFAP protein levels 

(Laurence and Fatemi, 2005). The mRNA levels of two astrocyte-specific 

glutamate transporters were also increased in patient samples, mainly from the 

cerebellum (Purcell et al., 2001). In another study protein levels of water channel 

gene aquaporin 4 (Aqp4) were decreased in the cerebellum and gap junction 
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protein Gja1 was increased in the superior frontal cortex of autistic patients (Fatemi 

et al., 2008). Gain-of-function mutations in another key astroglial gene, potassium 

channel Kir4.1, have been found in autistic patients with seizures indicating a 

possible causative mechanism for altered neuronal excitability (Sicca et al., 2011). 

These findings indicate a pathological role for astrocytes in patients with autism. 

Many other neurodevelopmental disorders contain both autistic features and 

epilepsy, including Fragile X syndrome. 

Fragile X syndrome is caused by the transcriptional silencing of fragile X mental 

retardation protein (FMRP), a translational repressor, due to hypermethylation of 

a large repeat present in the FMR1 gene locus on the X chromosome (Verkerk et 

al., 1991). Fragile X syndrome is the most common form of inherited intellectual 

disability and affected males display intellectual disability, seizures, motor 

abnormalities and autistic features, such as the inability to communicate effectively 

(Gallagher and Hallahan, 2012; Kidd et al., 2014). Astrocytes lacking FMRP were 

co-cultured with wildtype neurons to determine if proper neuronal growth could be 

supported by fmr1-/- astrocytes (Jacobs and Doering, 2010). These neurons 

displayed abnormal dendrite morphology and decreased levels of presynaptic and 

postsynaptic protein aggregates (Jacobs and Doering, 2010). This phenotype was 

absent when neurons were cultured with normal astrocytes, indicating fmr1-/- 

astrocytes cannot support proper neuronal growth and synapse formation (Jacobs 

and Doering, 2010). Another study determined that astroglial glutamate transporter 

Slc1a2 protein levels were reduced in the fmr1-/- mouse cortex and this resulted in 

reduced glutamate uptake (Higashimori et al., 2013). The authors determined that 
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fmr1-/- astrocytes expressed similar levels of Slc1a2 when compared to wildtype 

astrocytes but could not upregulate Slc1a2 expression in response to neurons 

(Higashimori et al., 2013). This was a result of loss of mGluR5 receptor, which was 

regulated by FMRP (Higashimori et al., 2013). The above evidence therefore 

indicates astrocytes as important contributors to Fragile X syndrome pathologies.  

Rett syndrome is caused by loss of function mutations in an X-linked gene called 

MeCp2 (Amir et al., 1999). The methyl CpG binding protein 2 (MeCP2) protein is 

a chromosomal protein that preferentially binds 5-methyl cytosine in CpG 

dinucleotides (Lewis et al., 1992). This protein functions as a transcriptional 

repressor by changing chromatin structure, making genes more or less accessible 

(Nan et al., 1998). Baby girls affected by this disorder initially appear normal but 

exhibit developmental and cognitive regression at 12 to 18 months of age along 

with loss of verbal skill and motor abnormalities (Dolce et al., 2013). Recent 

literature describes a cell non-autonomous role for astrocytes in Rett syndrome 

pathology. Ballas et al. found that MeCP2 was lost in both neurons and astrocytes 

in Rett syndrome brains (Ballas et al., 2009). They also determined that wildtype 

neurons cultured with mutant astrocytes from a Rett syndrome mouse model, or 

treated with mutant astrocyte-derived media, resulted in abnormal dendrite 

morphology (Ballas et al., 2009). Astrocytes lacking MeCP2 grew significantly 

slower than wildtype astrocytes and MeCP2 levels in heterozygous female 

(MeCP2-/+) cultured astrocytes decreased when left in culture for longer than 2 

weeks (Maezawa et al., 2009). MeCP2 transcript levels remained the same in 

these cells and inhibition of astrocyte gap junctions prevented the spread of 
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MeCP2 deficiency through astrocytes (Maezawa et al., 2009). MeCP2-null 

astrocytes have altered expression of several astroglial genes and impaired 

glutamate clearance in vitro (Okabe et al., 2012). An exciting rescue study re-

expressed MeCP2 only in astrocytes in MeCP2-deficient mice and several 

symptoms were rescued, such as restored respiratory abnormalities, improved 

locomotion and prolonged life span (Lioy et al., 2011).  The discovery that 

astrocytes are defective in the brains of Rett syndrome girls confirms that astrocyte 

biology must be investigated to fully understand the underlying causes of 

neurodevelopmental disorders.  

1.1.5 Alpha thalassemia mental retardation X-linked syndrome 

Alpha thalassemia mental retardation, X-linked syndrome is caused by mutations 

in the X-linked ATRX gene (Gibbons et al., 1995), which encodes a chromatin-

remodeling protein. This syndrome affects males due to its X-linked nature and 

has the following symptoms: moderate to severe intellectual disability, 

characteristic facial abnormalities, alpha thalassemia blood disorder, skeletal 

abnormalities, microcephaly, seizures, genital abnormalities (Gibbons, 2006) and 

myelination defects (Wada et al., 2013). ATR-X syndrome has many overlapping  
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Table 1. Overlapping symptoms of three neurodevelopmental disorders 

Feature of disorder Fragile X 

Syndrome 

Rett 

Syndrome 

ATR-X 

syndrome 

Cognitive Impairment    

Autistic features    

Epilepsy     

Motor abnormalities    

Abnormal expression of a 

chromatin remodeling protein  

X   
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features with Rett Syndrome and Fragile X syndrome (Table 1). Furthermore 

MeCP2 interacts with ATRX, and this interaction is important for ATRX recruitment 

to sites of heterochromatin (Nan et al., 2007). These observations suggest an 

overlap at both the phenotypic and molecular level between these 

neurodevelopmental disorders. 

1.2 ATRX is a key regulator of chromatin structure 

1.2.1 Gene location and protein structure 

The ATRX gene is located on the X chromosome at Xq13.3 (Gibbons et al., 1995) 

and undergoes X inactivation (Gibbons et al., 1992). This gene contains 36 exons 

and is 300 kb long, giving rise to a 280 kDa protein (Picketts et al., 1996) that is 

ubiquitously expressed in humans and mice (Gecz et al., 1994; Stayton et al., 

1994). A 200 kDa truncated form of ATRX, ATRXt, was reported (Berube et al., 

2000; McDowell et al., 1999) and shown to result from alternative splicing of the 

gene (Garrick et al., 2004). ATRX has two highly conserved domains (Picketts et 

al., 1998): the N-terminal ATRX-DNMT3-DNMT3L (ADD) domain that is 

homologous to the DNA methyltransferase family (Aapola et al., 2000) and the C-

terminal Swi/Snf helicase domain that contains an ATPase/helicase motif (Picketts 

et al., 1996) (Figure 3).  

The ADD domain recognizes modified histone tails, specifically H3K9me3 in 

combination with unmethylated H3K4 (Dhayalan et al., 2011; Eustermann et al., 

2011; Iwase et al., 2011). The switch/sucrose-nonfermenting (SWI/SNF) domain 
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Figure 3. Schematic of ATRX protein. The conserved domains ADD, Swi/Snf 

and PML body (promyelocytic leukemia body) targeting domains are indicated by 

the blue regions while protein interaction sites are indicated by purple regions. The 

ATRXt premature stop codon that gives rise to the truncated form of ATRX is 

represented by the arrow. The seven highly conserved collinear helicase domains 

in the Swi/Snf domain are represented by the vertical black lines in the conserved 

domain region. The red line indicates the approximate location of the loxP sites 

inserted in the Atrx floxed mice used in this work. Figure adapted from review by 

Nathalie Bérubé (Berube, 2011). 
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closely resembles the Rad54 family of proteins (Picketts et al., 1998) and is 

characterized by seven highly conserved collinear helicase domains (Picketts et 

al., 1998) that confer the ATPase and chromatin-remodeling activities of ATRX 

(Tang et al., 2004). ATRX associates with many proteins such as heterochromatin-

associated protein 1 alpha (HP1α) (Berube et al., 2000; McDowell et al., 1999), 

death-associated protein 6 (Daxx) (Tang et al., 2004; Xue et al., 2003), and methyl-

CpG-binding protein (MeCP2) (Nan et al., 2007) (Figure 3). A proportion of ATRX 

and Daxx colocalize to promyelocytic leukemia nuclear bodies (PML bodies) in the 

nucleus (Xue et al., 2003). The conserved domains of the ATRX protein and the 

aforementioned protein-protein interactions are vital for its diverse cellular 

functions. The majority of disease-causing mutations map within the ADD and 

SWI/SNF domains of ATRX and result in reduced expression or activity of the 

protein (Gibbons et al., 1995; Picketts et al., 1996).  

1.2.2 ATRX’s diverse functions in the cell and at chromatin 

ATRX is an exclusively nuclear protein and associates with pericentromeric 

heterochromatin throughout all stages of the cell cycle (Berube et al., 2000; 

McDowell et al., 1999). ATRX also associates with highly repetitive sequences in 

both telomeres and euchromatin (Law et al., 2010). ATRX interacts with 

heterochromatin through its N-terminal domain (McDowell et al., 1999), particularly 

using its ADD domain to bind H3K9me3 (Dhayalan et al., 2011). ATRX is also 

phosphorylated in a cell cycle dependent manner (Berube et al., 2000). 
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ATRX and its binding partner Daxx localize to pericentric heterochromatin DNA 

repeats and telomeres and control transcription of these repeats by integrating 

histone variant H3.3 into nucleosomes (Drane et al., 2010; Goldberg et al., 2010). 

H3.3 is a replication independent histone variant that is associated with open and 

active chromatin (Loyola et al., 2006). ATRX binds Daxx/H3.3 to target repetitive 

sequences to deposit H3.3 (Drane et al., 2010). Loss of ATRX in the neonatal 

forebrain resulted in altered transcript levels of a subset of genes, including 

ancestral pseudoautosomal genes and a network of imprinted genes (Kernohan et 

al., 2010; Levy et al., 2008). The method of imprinted gene regulation was further 

investigated, leading to the model in which ATRX and MeCP2 position 

nucleosomes around CCCTC-binding factor (CTCF) binding sites (Kernohan et al., 

2014). CTCF is involved in chromatin looping to separate or bring together 

enhancers and/or repressor and regulate the expression of nearby genes (Ong 

and Corces, 2014). Through regulation of chromatin looping, ATRX and MeCP2 

can coordinate gene expression of selected imprinted genes (Kernohan et al., 

2014). Another mechanism for ATRX regulation of gene expression in a subset of 

genes, including autism susceptibility gene Neuroligin 4, is the incorporation of 

H3.3 at G-rich regions of the gene body (Levy et al., 2015). ATRX was found to 

interact with G-quadraplexes, a secondary structure that forms in regions of DNA 

rich in guanine, in vitro (Law et al., 2010) and ATRX-null neuroprogenitors treated 

with a drug that stabilizes G-quadraplex formation had increased DNA damage 

(Watson et al., 2013). Levy et al. determined that ATRX deficiency in the mouse 

forebrain resulted in decreased H3.3 incorporation and stalled RNA polymerase II 
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at G-rich intragenic sites (Levy et al., 2015). These findings suggest that ATRX 

helps resolve G-quadraplex formation through H3.3 deposition at these regions to 

allow transcriptional elongation (Levy et al., 2015).  

Loss of ATRX also results in replication and mitotic abnormalities. ATRX depletion 

in human HeLa cells led to many mitotic defects including: prolonged 

prometaphase to metaphase transition, abnormal sister chromatid congression 

and reduced sister chromatid cohesion at the metaphase plate, chromosome 

decondensation and overall lengthening of mitosis (Ritchie et al., 2008). 

Micronuclei, pyknotic nuclei and misaligned chromosomes were also identified in 

vivo in embryonic mouse brain sections (Ritchie et al., 2008). Interestingly, ATRX 

depletion in mouse myoblasts also led to mitotic defects, genomic instability, 

telomere defects and p53 accumulation (Huh et al., 2012). Atrx deletion resulted 

in increased sensitivity to replication stress-inducing agents with increased double 

strand breaks, increased S phase population, and accumulated DNA damage at 

telomeres (Leung et al., 2013; Watson et al., 2013). Proper replication restart after 

DNA damage, prevention of replication fork stalling and progression through S-

phase also require ATRX (Clynes et al., 2014; Leung et al., 2013).  ATRX is 

important for proper meiotic spindle organization and chromosome alignment in 

meiosis in the mouse oocyte (De La Fuente et al., 2004).  

1.2.3 ATRX and neuronal development 

ATRX is important in neurons during development, as exhibited by mouse models 

with both loss and overexpression of ATRX. One model using transgenic mice that 
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overexpress ATRX exhibited embryonic lethality and those pups that did survive 

exhibited craniofacial abnormalities and disorganization of the proliferative 

neuroepithelium (Berube et al., 2002). Berube et al. created a mouse model that 

used Cre recombinase mediated deletion of Atrx by flanking exon 18 with loxP 

sites under the control of the Foxg1 promoter (Berube et al., 2005). Foxg1 

expression is confined to the forebrain in mice and expression begins at E8.5, 

causing conditional deletion of ATRX in these cells (Hebert and McConnell, 2000). 

Male mice lacking ATRX in the forebrain were smaller in length and weight than 

their wildtype counterparts and exhibited cortical and hippocampal size reduction 

(Berube et al., 2005). These regions were hypocellular due to increased apoptosis 

and not a defect in proliferation (Berube et al., 2005). This cell death in the ATRX-

null forebrain was determined to be p53-mediated as deletion of both ATRX and 

p53 rescued cell death in the brain (Seah et al., 2008).  

Further investigation of these mice with conditional inactivation of ATRX 

specifically in the embryonic forebrain revealed increased DNA damage through 

γH2AX (a marker for double-stranded breaks) immunostaining, and these cells 

also had elevated levels of cleaved caspase 3, an apoptosis marker (Watson et 

al., 2013). These mice also exhibited systemic effects, such as reduced life span, 

heart enlargement, decreased bone mineral density and reduced circulating levels 

of thyroxine and IGF-1, due to ATRX being deleted in the anterior pituitary as well 

as the forebrain (Watson et al., 2013). Another study using the same mouse model 

found an increase in cell-cycle exit in early to mid-neurogenesis and a depletion in 

progenitor cells leading to disproportionate layering of neurons in the cortex 
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(Ritchie et al., 2014). ATRX was also required for correct timing of neuroprogenitor 

differentiation (Ritchie et al., 2014). These findings ascertained the importance of 

ATRX in neurons. However, our understanding of ATRX function in other cell types 

of the central nervous system, such as astrocytes, is severely lacking. As 

previously mentioned, MeCP2-null astrocytes display growth defects, and co-

culture with wild-type neurons demonstrated that MeCP2-deficient astrocytes are 

unable to support dendritic growth and maturation (Ballas et al., 2009; Maezawa 

et al., 2009). Given that MeCP2 deficient astrocytes fail to recruit ATRX to 

chromatin, we predict that ATRX-null astrocytes will display similar defects.  This 

question can be addressed by developing a model of ATRX inactivation specifically 

in astrocytes and this was the main goal of the present thesis. 

1.3 Hypothesis and Summary of Findings  

The role of astrocytes in the pathology of neurodevelopmental disorders is an 

emerging focus of research. With cell non-autonomous effects on neurons 

demonstrated in similar neurodevelopmental disorders, the role for astrocytes in 

ATR-X syndrome pathology requires investigation. I hypothesize that ATRX is 

important for proper astrocyte development and function and that creation of a 

novel mouse model will allow the study of ATRX in astrocytes.  

The effect of Atrx deletion in astrocytes was assessed in a mouse model where 

ATRX is conditionally deleted in the forebrain (Berube et al., 2005). The protein 

levels of ALDH1L1, an astrocyte-specific marker, were decreased in the cKO 

males but this decrease was variable between 3 control and cKO pairs and did not 
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reach significance. Cell counts were performed to determine whether this decrease 

in ALDH1L1 is due to decreased protein expression per cell or a decrease in 

astrocyte population. There was a slight, but non-significant decrease in Aldh1l1 

positive nuclei in the cKO. Variability in astrocyte number between control and cKO 

pairs was observed. Analysis of a previously performed microarray revealed 

altered expression of astrocyte-enriched genes and gene ontology analysis 

determined enriched, altered astrocyte functional pathways in cKO males when 

compared to controls. 

Mice with inducible and conditional inactivation of Atrx in astrocytes were created.  

Atrx deletion in astrocytes was validated through hippocampal cell counts 

revealing GFAP positive cells lacking ATRX at P26. Immunofluorescence staining 

for ATRX, DAPI and GFAP in the cerebellum revealed many nuclei lacking ATRX 

staining. Measurement of Atrx mRNA levels in the hippocampus and cortex of 

inducible KOs revealed no significant difference when compared to controls. To 

further investigate the induction of Cre recombinase by tamoxifen, a double 

fluorescent reporter allele was utilized. This allele expresses GFP in response to 

Cre recombinase activity, and therefore in astrocytes in response to tamoxifen 

treatment in this model. GFP expression in the cortex and hippocampus was only 

present in males carrying the inducible Cre recombinase allele in response to 

tamoxifen.  

Assessment of astrocyte domain size and morphology was accomplished through 

use of the previously mentioned double fluorescent reporter allele. The inducible 

KO demonstrated larger astrocyte domains and an increased amount of GFP 
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domain induction by tamoxifen. This indicated that more astrocytes are responding 

to tamoxifen-mediated recombination. The larger domains observed may be due 

to larger astrocyte domains or to increased overlap between separate astrocyte 

domains. qRT-PCR of astroglial genes demonstrated a decrease in connexin 30, 

a component of astrocyte gap junctions, expression. Although this decrease did 

not reach significance, additional biological replicates should be analyzed to 

investigate the possible altered levels in the inducible KO.  Decreased expression 

of Connexin 30 could lead to communication defects between astrocytes as it is 

one of only two gap junction proteins connecting the astroglial network. 

2 Materials and Methods 

2.1 Animal Husbandry and Genotyping 

Several mouse lines were used throughout the following studies and these are 

summarized in Table 2. AtrxloxP(or Atrxf/f) mice containing loxP sites flanking intron 

18 of Atrx (Figure 4) were kindly provided by D. Higgs (Weatherall Institute of 

Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom). 

Recombination of these loxP sites result in the deletion of exon 18, which is 

equivalent to a null mutation of Atrx (Figure 4) (Berube et al., 2005).  

First, conditional deletion of Atrx in the mouse forebrain was achieved by crossing 

Atrxf/WT female mice (129Sv background) with heterozygous FoxG1-Cre 

recombinase knock-in males (129Sv/FVBN background). The FoxG1-Cre 

recombinase mice were originally obtained from S. McConnell (Stanford 
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University, Stanford, California, USA). Cre recombinase driven by the FoxG1 

promoter directs recombination and silencing of Atrx in cells with the loxP allele in 

the mouse forebrain beginning at embryonic day 8.5 (E8.5, (Hebert and 

McConnell, 2000)). Male offspring of this cross resulted in two genotypes used in 

this study: Atrxf/YFoxG1-Cre+, who lack ATRX in the forebrain, and AtrxWT/YFoxG1-

Cre+, who will still express ATRX despite also expressing Cre recombinase but 

lack the loxP-flanked Atrx allele. 

Secondly, to achieve spatial and temporal deletion of Atrx in astrocytes, Atrxf/WT 

female mice were crossed to males carrying the transgenic Glast-CreERT 

recombinase allele (Mori et al., 2006; Slezak et al., 2007) (Jackson Laboratory, 

C57BL/6 background). Glast-CreERT allele expresses Cre recombinase in 

response to tamoxifen treatment in retinal muller glia, Bergmann glia in the 

cerebellum, astrocytes, and neural progenitors in the dentate gyrus (Mori et al., 

2006; Slezak et al., 2007). The Cre recombinase enzyme is fused to the estrogen 

receptor and stimulation with tamoxifen leads to translocation of the enzyme into 

the nucleus where it can induce recombination. Atrxf/YGlast-CreERT mice will delete 

Atrx in response to tamoxifen while the control males, AtrxWT/YGlast-CreERT, will 

have active Cre recombinase with the addition of tamoxifen but will still express 

the wildtype Atrx allele.  

Finally, females heterozygous for the Atrx floxed allele and carrying a knock-in 

double reporter allele, mT/mGWT/+ (129Sv background), were also crossed with 

Glast-CreERT males. This double reporter allele, driven by the chicken β-actin 

promoter, causes ubiquitous expression of tdTomato (mT) (Muzumdar et al., 
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2007). The coding sequence of membrane-targeted tdTomato is flanked by loxP 

sites (Muzumdar et al., 2007). Upon Cre-activation, the tdTomato sequence is 

excised and membrane-targeted enhanced green fluorescent protein (GFP) is 

then expressed (mG) (Muzumdar et al., 2007) (Figure 5). This means that cells 

expressing Cre-recombinase driven by the Glast promoter will switch from 

tdTomato fluorescence to GFP fluorescence upon tamoxifen administration. 

Atrxf/YGlast-CreERTmT/mGWT/+ astrocytes will lack ATRX and exhibit GFP 

fluorescence in response to tamoxifen administration. AtrxWT/YGlast-CreERTmT/mG 

WT/+ astrocytes will still express ATRX but will also express GFP due to the 

activation of Cre recombinase by tamoxifen. Mice lacking the Glast-CreERT allele 

but carrying the mT/mG allele will only express tdTomato fluorescence.  

For genotyping, tail or ear notch samples from mice were digested and genomic 

DNA was extracted using DirectPCR and proteinase K (Thermo Scientific). DNA 

from these samples was then genotyped by PCR using primer sets for Atrx (17F, 

18R and neoR), Glast-CreERT (GlastF, GlastR), mT/mG (mT/mG+ F, mT/mG+ R), 

and Sry (SryF and SryR), as listed in Table 3. Placement of loxP sites in the Atrx 

gene is indicated by Figure 4, which also corresponds to primers used to genotype 

the Atrx gene in Table 3.  

2.2 Tamoxifen Preparation and Injection 

Tamoxifen (≥99%, Sigma) was diluted to 10 mg/mL for tamoxifen injections. The 

appropriate amount of the drug was measured and dissolved in ethanol (95%) at  
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Table 2. Summary of mouse genotypes used within this thesis, grouping 

control and knockout pairs compared by colour. 

Genotype Description Referred to as 

AtrxWT/YFoxG1-Cre+ Cre recombinase positive 

control 

Control 

Atrxf/YFoxG1-Cre+, Conditional inactivation in 

forebrain cells 

cKO 

AtrxWT/YGlast-CreERT Inducible Cre recombinase 

positive control 

Control 

Atrxf/YGlast-CreERT Inducible inactivation in 

astrocytes 

Inducible KO 

AtrxWT/YGlast-

CreERTmT/mG WT/+ 

Fluorescent Cre recombinase 

positive control 

Fluorescent 

Control 

AtrxWT/YGlast-

CreERTmT/mG WT/+ 

Fluorescent inducible 

knockout in astrocytes 

Fluorescent 

Inducible KO 

 

 

  



35 

 

 
 
 
 

 

Figure 4. LoxP site placement in Atrx gene. Blocks and corresponding numbers 

represent respective exons in the Atrx gene. The top line indicates the wildtype 

Atrx allele (AtrxWT). The middle line shows the insertion of loxP sequences flanking 

exon 18 along with a neo marker (Atrxf). The bottom line demonstrates the 

recombination of Atrx upon Cre recombinase activation in which exon 18 and the 

neo cassette have been removed (AtrxΔ18Δneo). 
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Figure 5. Schematic representation of the mT/mG fluorescent reporter allele. 

The mT/mG allele under the control of the chicken β-actin promoter with flanking 

loxP sites around the tdTomato allele (mT) (represented by arrows). After Cre 

recombinase is activated, the tdTomato sequence is excised allowing expression 

of membrane-targeted enhanced green fluorescent protein (GFP or mG). The 

arrow indicates direction of transcription and pA denotes polyadenylation sites 

present. Adapted from Muzumdar et al. (2007). 

 

 

 

 

 



37 

 

 

 

 

 

Table 3. List of Primers used for genotyping  

Primer Name Sequence (5’ to 3’) 

Atrx 17F  AGAACCGTTAGTGCAGGTTCA 

Atrx 18R TGAACCTGGGGACTTCTTTG 

Atrx neoR CCACCATGATATTCGGCAAG 

Sry F GCAGGTGGAAAAGCCTTACA 

Sry R AAGCTTTGCTGGTTTTTGGA 

Glast F ACAATCTGGCCTGCTACCAAAGC 

Glast R CCAGTGAAACAGCATTGGTGTC 

mT/mG+ F  CTCTGCTGCCTCCTGGCTTCT 

mT/mG+ R TCA ATG GGCGGGGGTCGTT 
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10% of the final volume. This solution was heated at 65°C until the tamoxifen was 

completely dissolved. Ninety percent of the total volume of corn oil (Sigma) was 

added to the ethanol-tamoxifen solution to achieve the desired concentration of 10 

mg/mL. 

Two injection protocols were used in this study. Adult males (3 months) were 

injected intraperitoneally with 2 mg of tamoxifen (200 μL of 10 mg/mL) daily for 5 

days. These control and inducible knockout males were then sacrificed 1 week 

post-final injection for experimental analysis. Males were also injected at an earlier 

time point. Intraperitoneal injections of 1 mg of tamoxifen (100 μL of 10 mg/mL) 

began at postnatal day 10 (P10) and continued daily for 3 days until P12. Control 

and inducible knockout males were then sacrificed 2 weeks post-final injection at 

P26. 

2.3 Western Blot Analysis 

Tissue was mixed with cold RIPA buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1% 

NP-40, 0.5% deoxycholic acid, 0.1% SDS, 0.2 mM PMSF, 0.5 mM NaF, 0.1 mM 

Na3VO4) (3 mL per gram of tissue) and homogenized and incubated on ice for 30 

minutes. The samples were then centrifuged at 4°C at 15800 g for 30 minutes and 

the supernatant transferred to a new, cold 1.5 mL Eppendorf tube, discarding the 

cell pellet. The protein concentration was then measured using a Bradford assay 
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(BioRad). Protein extracts were stored at -80°C. The samples were thawed when 

required and denatured at 90°C for 10 minutes.  

Polyacrylamide gels, including a separating gel (10%) and a stacking gel (4%) 

were generated and 25 μL of each sample in 1x loading buffer were loaded into 

the gel along with 8 μL of protein ladder (BioRad). Gels were run at 90V for 30 

minutes, then 125-130 V for 2 hours in 1x running buffer. Once adequate protein 

separation was achieved, the gels were transferred to nitrocellulose membranes 

(BioTraceTM, Pall Life Sciences) and run at 75 V for 2 hours in 1x transfer buffer. 

The transferred nitrocellulose membranes were blocked for 1 hour with 5%-milk-

TBST. Primary antibody diluted in 5%-milk-TBST was added and the membrane 

was incubated at 4 °C overnight. Membranes were then washed with 1x TBST and 

secondary antibody diluted in 5%-milk-TBST was added. The membrane was 

incubated in the secondary antibody for 1 hour and then washed with 1x TBST. 

ECL (enhanced chemiluminescence) solution was then added to membrane for 

approximately one minute. The membranes were then imaged using the BioRad 

ChemiDoc MP imaging system. Antibodies and respective dilutions are displayed 

in Table 5. An unpaired t-test was performed to reveal significance between control 

and cKO mice (p<0.05). 

2.4 Quantitative Real Time PCR (qRT-PCR) 

The brain samples were extracted at various timepoints (P26 or 3 months) 

depending on the experiment. The cortex and hippocampus were isolated and 

stored at -80°C. RNA was then extracted from thawed samples using the RNeasy® 
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Mini or Micro Kit (Qiagen).  The extracted RNA was then reverse transcribed into 

cDNA by the following protocol: RNA (1 μg), DEPC-H2O and random primers were 

heated for 10 minutes at 65°C, and then incubated on ice for two minutes. Next, 

5X first strand buffer, 100 mM DTT, 25 nM dNTPs, Superscript Reverse 

Transcriptase, RNA guard and more DEPC-H2O were added to the reaction 

mixture. Control reactions lacking reverse transcriptase were performed to ensure 

reagents were not contaminated. The reaction mixture was then incubated first for 

10 minutes at 30°C and then for 45 minutes at 42°C. The resulting cDNA was 

quantified and stored at -20°C.  

qRT-PCR was performed on the cDNA prepared from extracted RNA. Primers 

used are listed in Table 4. cDNA was mixed with primers, H2O and iQTM SYBR® 

Green mastermix (BioRad) and run through the following conditions on a Chromo-

4 thermocycler to amplify transcripts of interest: 30-35 cycles of 95°C for 10 

seconds, 55°C for 20 seconds and 72°C for 30 seconds. A final melting curve was 

generated in increments of 1°C per plate read. Gene expression analysis was 

performed using Opticon Monitor 3 and GeneX (Biorad) software. Analysis of each 

cDNA sample was performed in duplicate for each primer set and gene expression 

was normalized to Gapdh expression levels. An unpaired t-test was performed to 

reveal significance between control and inducible KO mice (p<0.05). 20 μL of qRT-

PCR product was run on a 1.5% agarose gel by electrophoresis to ensure band 

size of amplified cDNA matched the transcript of interest.  
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2.5 Immunofluorescence and Cell Counts 

Brains were dissected and perfused with 4% PFA at varying ages (P7, P20, P26, 

3 months) and were embedded in OCT (optimal cutting temperature) medium and 

snap frozen in liquid nitrogen. The samples were then stored at -80°C until 

cryosectioned sagittally or coronally at a thickness of 8 μM. Sections used for 

immunofluorescence were thawed at room temperature for 1 hour. Matched slides 

between pairs (control and knockout) were then rehydrated in 1x PBS. The slides 

were then placed into warm sodium citrate for antigen retrieval and microwaved 

on the low heat setting for 10 minutes. Slides were then cooled in sodium citrate 

for 20 minutes and then washed with 1x PBS once and twice with 1x PBS+0.3% 

TritonX-100 to permeabilize the cell membranes. Primary antibody diluted in 1x 

PBS+0.3% TritonX-100 +1% BSA was then added to slides. Slides were incubated 

overnight at 4°C. The slides were then washed with 1x PBS+0.3% TX-100 three 

times and incubated in secondary antibody diluted in 1x PBS+0.3% TritonX+1% 

BSA for 1 hour at room temperature in the dark. Slides were then washed with 1x 

PBS+0.3% TritonX-100 twice and counterstained with DAPI. After washing slides 

with 1x PBS+0.3% TritonX-100 twice and 1x PBS once, slides were mounted and 

imaged using one of three microscopes: Leica CTR 6500 microscope, ZEISS 

Axioscop40 microscope and Leica DM5500B microscope. Figure 6A is an example 

of a sagittal section and the areas of interest in this study. The hippocampus is 

imaged many times in this study and its components have been labeled in Figure 

6B. A list of primary and secondary antibodies used, and their respective dilutions, 

in this study are represented in Table 5. Blind cell counts were performed on many 
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of these slides for different experiments throughout this work. Volocity software 

was used to set the pixel/μm for each microscope and create a fixed area that 

remained the same for each image analyzed. This fixed area was placed on each 

image and cell counts were performed within its boundaries. 

2.6 Microarray Analysis  

A microarray was performed comparing Atrxf/YFoxG1-Cre+ (conditional knockout) 

and AtrxWT/YFoxG1-Cre- (control) males at P17 (unpublished, Michael Levy). Three 

P17 control and conditional knockout male forebrains were dissected and total 

RNA was extracted using the RNeasy Mini kit (Qiagen). cRNA was generated and 

hybridized to an Affymetrix Mouse Genome 430 2.0 Array at the London Regional 

genomics Center (London, Canada). One microarray chip per mouse was used 

and probe intensities were measured using GCOS1.4 (Affymetrix Inc.). Specific 

genes enriched in the astrocyte population were selected from this microarray 

based on a recently published study that generated a transcriptome database 

comparing 8 cell types in brain (Zhang et al., 2014). The top 48 genes that were 

enriched by more than 30 fold in astrocytes were selected and the intensity of RNA 

binding to each genetic probe was assessed. Heat maps indicating intensity of 

probe binding for each sample were generated using Partek software. Gene 

ontology (GO) analysis was performed on genes with altered expression. Gene 

levels were calculated using RMA pereprocessor in GeneSpring GX 7.3.1 (Agilent 

Technologies Inc.) and fold-change calculated using p<0.05.  
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Table 4. Primers used for qRT-PCR. 

Primer Name Sequence (5’ to 3’) 

Atrx 17F AGAACCGTTAGTGCAGGTTCA 

Atrx 18R TGAACCTGGGGACTTCTTTG 

Gapdh F CAACGACCCCTTCATTGACCT 

Gapdh R ATCCACGACCGACACATTGG 

Gjb6 F GCCCTGGAGAACAAGACTCA 

Gjb6 R CTCATCACCCCACACTTCCT 

Gja1 F GAGAGCCCGAACTCTCCTTT 

Gja1 R TGGAGTAGGCTTGGACCTTG 

Slc1a2 F AGATCATCGCCATCAAGGAC 

Slc1a2 R TCCAAGCAACGGAAGGTAAC 
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Table 5. List of antibodies used for immunofluorescence (IF) and western 

blot (WB) experiments 

Antibody Description and company Dilution used in IF and 

WB 

GFAP Mouse monoclonal antibody, 
Sigma  

IF: 1:100 

WB: 1:2000 

ATRX H-300 Rabbit polyclonal antibody, 
Santa Cruz 

IF: 1:100 

ALDH1L11 Mouse monoclonal antibody, 
Millipore 

IF: 1:50 

WB: 1:1000 

Secondary 

antibody - red 

Alexa Fluor 594 nm, goat anti-

rabbit IgG, Life Technologies 

IF: 1:800 

Secondary 

antibody - 

green 

Alexa Fluor 488 nm, goat anti-

mouse IgG, Life Technologies 

IF: 1:800 

Secondary 

antibody - HRP 

Rabbit anti-mouse IgG HRP, 

Santa Cruz 

WB: 1:4000 
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Figure 6. Regions of the mouse brain used for experimental analysis. (A) 

Image of a sagittal section of the mouse brain with the cortex, hippocampus and 

cerebellum. (B) Hippocampus enlarged and labelled for its 4 distinct regions: 

cornus ammonis 1 (CA1), 2 (CA2), 3 (CA3) and the dentate gyrus (DG). Images 

were adapted from the Allen Brain Atlas website, available online at 

www.brainmap.org. 
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3 Results  

3.1 Assessing the astrocyte population in Atrxf/YFoxg1-Cre 
mice 

The FoxG1 driven Cre recombinase is active in all cell types in the forebrain and 

expression begins at approximately E8.5 (Hebert and McConnell, 2000). Previous 

studies have demonstrated that loss of ATRX in the forebrain resulted in increased 

DNA damage induced by replication stress and reduced cortical mass due to 

increased p53-mediated cell death in neuroprogenitor cells (Berube et al., 2005; 

Ritchie et al., 2014; Seah et al., 2008; Watson et al., 2013). What occurs in the 

other cell types in the Atrx-null forebrain has not yet been elucidated. To examine 

the astrocyte population, samples collected by previous graduate students (Kieran 

Ritchie and Matt Edwards) from previously assessed timepoints (P7 and P20, 

respectively) using the FoxG1 conditional deletion of Atrx were analyzed. Coronal 

cryosections from P7 control and conditional knockouts (cKO) were stained with 

GFAP to determine astrocyte reactivity in an environment with neuronal cell death 

(Figure 7). There appears to be more reactive astrocyte activation in the cKO 

based on GFAP staining in outlined area (Figure 7). This result is not quantifiable 

and therefore a western blot assessing GFAP protein levels was performed next.   
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Figure 7. Potential reactive astrocyte activation in cKO hippocampus 

compared to control at P7. Coronal cryosections were immunostained with glial 

fibrillary acidic protein GFAP (green) and analysis of the hippocampus (outlined 

and labeled in white) revealed increased GFAP activation in the hippocampal 

space, outlined in yellow, in the cKO. n=2. Scale bar=205 μm.  DG=Dentate gyrus, 

CA1=Cornu Ammonis 1, CA2=Cornu Ammonis 2 and CA3= Cornu Ammonis 3. 
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To determine quantitative levels of GFAP protein levels, a Western blot was 

performed on P20 forebrain samples of three control and cKO pairs. ALDH1L1 

levels, a cytoplasmic marker that more broadly and specifically labels astrocytes 

throughout the brain (Cahoy et al., 2008), were also assessed. Western blot 

analysis of these two astrocyte markers revealed a decrease in ALDH1l1 protein 

levels in the cKO, however the difference was not significant (Figure 8A, B). GFAP 

protein levels were slightly increased, but not significantly, in the cKO compared 

to control (Figure 8A, B). Increased GFAP levels could indicate there are more 

reactive astrocytes present in the forebrain in the cKO. Decreased ALDH1L1 

protein levels could indicate decreased protein levels per astrocyte or a decrease 

in the amount of astrocytes present in the forebrain. GFAP levels were analyzed 

relative to ALDH1L1 levels (Figure 8C) to determine if GFAP levels are increased 

per astrocyte. There is no significant difference between control and cKO 

GFAP/ALDH1L1 protein levels. To determine if the nonsignificant decrease in 

ALDH1L1 could be due to a decrease in astrocyte number, cell counts were 

performed.  

Cell counts on P20 control and cKO coronal cryosections immunostained for 

ALDH1L1 and DAPI were performed where DAPI-stained nuclei surrounded by 

cytoplasmic ALDH1L1 staining were counted as an astrocyte. These counts were 

performed while blinded on three pairs of control and cKO cryosections, with 3 to 

4 sections per slide. The number of astrocytes per 100,000 μm2 for each section  
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Figure 8. Quantification of ALDH1L1 and GFAP proteins levels in the cKO 

forebrain at P20 (A) Protein extracts from control and cKO forebrain were isolated 

and ALDH1L1 and GFAP levels assessed via immunoblotting. (B) Quantification 

of protein levels revealed an insignificant decrease in ALDH1L1 in the cKO. GFAP 

levels remained unchanged. (C) GFAP levels were assessed relative to ALDH1L1 

expression, revealing a slight but insignificant increase in the cKO. ALDH1L1 and 

GFAP levels normalized to INCENP levels.  
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was averaged for each control and cKO. The control and cKO cell counts were 

then averaged and this revealed no significant difference in the number of Aldh1l1 

positive nuclei in cKO compared to control (Figure 9A). When assessing the 

individual pairs of control and cKO astrocyte cell counts, two pairs demonstrate a 

decrease in astrocyte number in the cKO, but one pair showed the opposite result 

(Figure 9B). This demonstrates a variability in the astrocyte population between 

pairs. Comparing immunofluorescence staining of Aldh1l1 between cKO and 

control mice in pair 2 revealed lower intensity of fluorescence in the cKO (Figure 

9C). This is paired with a decrease in the number of astrocytes counted in pair 2 

(Figure 9B).  These results indicated that the amount of astrocytes in the cKO is 

variable between cKO males. GFAP levels may be increased relative to the 

number of astrocytes present in the cKO (Figure 8C), but this phenotype was also 

variable between cKO males (Figure 8A). Overall, we conclude that this cKO 

mouse model is not ideal for studying the effect of ATRX loss in astrocytes due to 

the non-cell-autonomous effects from ATRX deletion in other cell types, which may 

underlie the high variability observed between samples. 
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Figure 9. The number of astrocytes is not changed in the cortex of P20 cKO 

males compared to controls. (A) Cell counts were performed on P20 coronal 

cryosections of control and cKO cortex stained for ALDH1L1 and DAPI. Cell counts 

on 3 to 4 brain sections for each control and cKO mouse were performed and 

averaged per 100,000 μm2. (B) Cell counts of each pair of control and cKO is 

shown here to demonstrate variability between pairs from different litters. (C) 

Example of immunofluorescence staining for pair 2 (C2 and cKO2) where Aldh1l1 

staining (green) surrounds DAPI stained nuclei (blue). Outlined areas of the cortex 

are enlarged and arrowheads indicate examples of astrocytes (ALDH1L1+ nuclei). 

n=3. Scale bar=100 μm. 
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To further examine the effects of Atrx inactivation in astrocytes, astrocyte-enriched 

genes were analyzed in a previously performed microarray comparing 3 control 

and 3 cKO males at P17 (unpublished, Michael Levy). To determine which genes 

were enriched in astrocytes a recently published RNA transcriptome comparing 

oligodendrocytes, neurons, microglia, astrocytes and vascular cells in the mouse 

cerebral cortex was used (Zhang et al., 2014). The top 48 genes that were enriched 

more than 30-fold in astrocytes, compared to all other central nervous system cell 

types, were examined in the microarray (Figure 10A). Heat maps displaying the 

intensity of RNA-binding to each gene probe were generated, comparing 3 control 

and cKO males (Figure 10A). Aqp4, an astrocyte-specific water channel, displayed 

the most changed binding-intensity and is down-regulated (2-fold) in the cKO 

(Figure 10A). Deiodonase-2 (Dio2), the enzyme responsible for thyroid hormone 

activation was also displays lower binding intensity in the cKO and is significantly 

downregulated (1.6-fold), along with Tenasin C (Tnc) (1.6-fold), an extracellular 

matrix protein gene that is implicated in guidance of migrating neurons and axons 

during development and synaptic plasticity. Slc4a4, the 4th most down-regulated 

gene in the cKO (1.4-fold), is a protein important for glucose transport and 

maintaining intracellular pH. GO analysis was performed on these astrocyte-

enriched genes and the top 10 altered gene groups based on biological function 

are shown in Figure 10B. One-carbon compound transport genes, such as those 

important for carbon dioxide and urea transport, were the most altered in the list of  
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Figure 10. Astrocyte-enriched genes demonstrate altered transcript levels in 

the forebrain of cKO males at P17. (A) Heat map representing the RNA-binding 

intensity of the top 48 astrocyte-enriched genes in a microarray performed on 3 

control and 3 cKO mice. Genes listed are from most down-regulated in cKO to 

most upregulated, based on RNA-binding intensity. (B) Gene ontology (GO) for 

astrocyte-enriched genes reveals altered functional pathways in astrocytes. Heat 

map generation and GO analysis were performed using Partek software, p<0.05, 

C=control, K=conditional knockout. 
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astrocyte- enriched gene list (Figure 10B). Urea and amide transport genes were 

also enriched in altered genes, as well as water transport and membrane 

component genes (Figure 10B). The membrane component genes altered in the 

GO analysis overlap with many transporter genes altered in the microarray that 

reside in the membranes of astrocytes. Conditional deletion of Atrx by Cre 

recombinase driven by the FoxG1 promoter results in complete deletion in the 

forebrain and therefore makes the effects of Atrx loss in one cell type, such as 

astrocytes, difficult to detect. To eliminate any cell non-autonomous effects from 

other cell types, a model that deletes Atrx specifically in astrocytes is required. 

3.2 Creation of a novel mouse model deleting Atrx in 

astrocytes  

To study the role of ATRX in astrocytes specifically, a new mouse model was 

required.  Atrxf/WT females were crossed with Glast-CreERT males to generate 

inducible KO (Atrxf/YGlast-CreERT) and control (AtrxWT/YGlast-CreERT) males. Cre 

recombinase under the Glast promoter will delete Atrx in astrocytes specifically. 

Tamoxifen administration results in Cre recombinase translocation to the nucleus 

and recombination at any loxP sites present in the genome. To validate that 

tamoxifen successfully induces deletion of Atrx expression in astrocytes, 

preliminary tamoxifen injections were performed on 3 month old inducible knockout 

and control males. One week post-final injection, male mice were sacrificed and 

hippocampal tissue was harvested for mRNA isolation. qRT-PCR of Atrx 

demonstrated no detectable change in Atrx expression (Figure 11A).  P10, the  
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Figure 11. Atrx expression is not significantly decreased in the hippocampus 

of inducible knockout males. (A) Control and inducible knockout male mice were 

injected at 3 months of age for 5 consecutive days with 2 mg of tamoxifen. One 

week post-final injection, hippocampal RNA was isolated and mRNA levels of Atrx 

are not significantly decreased (p= 0.171) (B) Control and inducible knockout 

males were injected at P10 for 3 consecutive days with 1 mg of tamoxifen. Two 

weeks post-final injection, hippocampal RNA was isolated and no detectable 

change between control and inducible KO was observed (p= 0.743). Relative 

expression of Atrx was normalized to Gapdh. n=3. 
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Figure 12. Atrx expression in the cortex of P26 contorl and inducible KO 

mice. (A) P26 cortical Atrx expression revealed no significant difference between 

3 control and inducible KO pairs (p=0.0584). (B) Individual control and inducible 

KO pairs demonstrated variability in inducible KO Atrx expression after tamoxifen 

administration. Relative expression normalized to Gapdh expression. n=3. 
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injection start timepoint used throughout the rest of this work, control and inducible 

KO males were injected with tamoxifen for 3 consecutive days and sacrificed 2 

weeks post-final injection at P26. Analysis of Atrx mRNA expression in the 

hippocampus of inducible KO revealed no detectable change from control levels 

(Figure 11B). Atrx mRNA levels were also measured in the cortex at P26 after P10 

to P12 injection with tamoxifen. Although overall there is no significant change in 

average Atrx expression in the cortex of three pairs of control and inducible KO 

males (Figure 12A), if each pair is analyzed individually, there is variation in Atrx 

expression between pairs from different litters (Figure 12B). Pair 1 demonstrated 

decreased Atrx expression, however pair 2 displayed no change and pair 3 

indicated a smaller decrease than pair 1 (Figure 12B). This variability between 

pairs contributed to no significant change being observed overall (Figure 12A). 

Overall, because Atrx is deleted in a subset of astrocytes and is still expressed in 

other cell types in the brain, detecting changes in Atrx by qRT-PCR is difficult. The 

expression of Atrx in neurons, oligodendrocytes and other cell types may be 

clouding any decrease in Atrx expression in astrocytes. Therefore, a different 

method, such as assessing whether ATRX is present in cells by 

immunofluorescence detection is required. 

To validate that Atrx is being deleted specifically in astrocytes, cell counts were 

performed in a blinded manner on P26 control and inducible KO sagittal 

cryosections 2 weeks post-tamoxifen injection (Figure 13A). The sections were 

immunostained for GFAP, ATRX and DAPI. Three control and inducible KO males,   
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Figure 13. Percent of GFAP+ nuclei lacking ATRX is significantly increased 

in P26 hippocampus of inducible knockout compared to control. (A) Sagittal 

sections of control and inducible knockout hippocampi stained for GFAP (green), 

ATRX (red) and DAPI (blue). (B) Enlarged area of the hippocampus from (A). 

Arrowheads indicate GFAP positive cells expressing ATRX and full arrows indicate 

GFAP positive cells without ATRX staining. (C) Quantification of percent of GFAP 

positive nuclei that do not express ATRX. * indicates p<0.05, n=3. Scale bar=100 

μm 
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with one slide containing 3 sections for each of the 6 mice, were assessed. GFAP 

positive nuclei were counted, regardless of ATRX staining. Next, the GFAP 

positive but ATRX negative nuclei were counted in the same area. The number of 

GFAP positive nuclei lacking ATRX staining present in the hippocampus of 

inducible KO males was significantly higher when compared to controls (Figure 

13C). An average of 34.4% of GFAP positive nuclei did not contain ATRX staining. 

Although ATRX is deleted in many GFAP-positive astrocytes (indicated by full 

arrows in Figure 13B), it is not deleted in all astrocytes, as indicated by arrowheads 

in Figure 13B. ATRX may be deleted in another astrocytes that do not express 

GFAP and therefore the deletion of ATRX in astrocytes may be more widespread 

than reported by GFAP and ATRX co-staining alone. Glast-CreERT is also 

expressed in Bergmann glia in the cerebellum, and therefore ATRX staining in the 

cerebellum was also assessed.  Immunostaining for GFAP, ATRX and DAPI was 

performed in the cerebellum of one P26 control and one inducible KO male. Many 

DAPI positive nuclei lacking ATRX staining were present in the inducible KO, 

where all nuclei in the control exhibited ATRX staining (Figure 14).  Some of the 

ATRX-null nuclei are not surrounded by GFAP staining. These cells would require 

staining with another astrocyte marker to demonstrate they are indeed astrocytes. 

It is likely these nuclei lacking GFAP cytoplasmic staining are a different subtype 

of astrocyte expressing lower levels of GFAP. Overall, the ATRX staining in the 

cerebellum indicates that the Glast-CreERT allows for Cre activation and  
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Figure 14. ATRX protein expression is decreased in cerebellum of P26 

cerebellum of inducible KO. Sagittal sections of control and inducible KO 

hippocampi stained with GFAP (green), ATRX (red) and DAPI (blue) revealed 

DAPI positive nuclei lacking ATRX staining, as indicated by arrowheads. n=1. 

Scale bar=25 μm. 
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recombination after tamoxifen administration.  

GFAP does not label all astrocytes in the brain (Cahoy et al., 2008), and this makes 

visualization of Atrx deletion in astrocytes by immunofluorescence staining difficult. 

Therefore one copy of a double fluorescent reporter allele, mT/mGWT/+, was 

crossed into the Atrxf/WT female mice. The female mice carrying the double 

fluorescent reporter allele were crossed with Glast-CreERT male mice to produce 

fluorescent control (AtrxWT/YGlast-CreERT mT/mGWT/+) and fluorescent inducible 

knockout (Atrxf/YGlast-CreERT mT/mGWT/+). The male mice will express GFP in 

astrocytes after Cre recombinase activation by tamoxifen. To ensure that GFP 

expression is specific to Cre recombinase activation by tamoxifen, male mice with 

and without the Glast-CreERT but carrying a copy of the double fluorescent reporter 

allele (AtrxWT/YmT/mGWT/+ and Atrxf/YGlast-CreERT mT/mGWT/+, repectively) were 

injected from P10 to P12 and sacrificed 2 weeks post-final injection (at P26). One 

of these males (AtrxWT/YmT/mGWT/+) does not contain Cre recombinase and 

therefore tamoxifen administration will not induce recombination and subsequent 

GFP expression from the double fluorescent reporter allele.  The brains were 

sectioned sagitally and stained with DAPI to identify nuclei. The male lacking the 

Glast-CreERT allele and carrying the mT/mG allele demonstrated no GFP 

expression after exposure to tamoxifen in both the cortex (Figure 15A) and 

hippocampus (Figure 15B). The male carrying the double reporter allele and the 

Glast-CreERT allele demonstrated successful GFP induction (Figure 15A, B), 

indicating that tamoxifen administration is activating Cre recombinase activity. 
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Figure 15. GFP expression in the cortex and hippocampus after tamoxifen 

administration in male mice carrying the mT/mG allele. (A) Sagittal sections of 

the cortex from males possessing both the mT/mG allele and with (right) or without 

(left) the Glast-CreERT allele were stained with DAPI to reveal cytoplasmic GFP 

induction after tamoxifen administration only in the presence of the Glast-CreERT 

allele. (B) Sagittal sections of the hippocampus from males possessing the mT/mG 

allele and with (right) or without (left) the Glast-CreERT allele were stained with 

DAPI to reveal cytoplasmic GFP induction after tamoxifen administration only in 

the presence of the Glast-CreERT allele. Scale bar=360 μm. 
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3.3 Preliminary morphological assessment of ATRX-null 

astrocytes 

Astrocyte morphology can reflect astrocyte function. The cytoplasmic expression 

of GFP from the recombined mT/mG double reporter allele therefore provides an 

ideal system for studying morphology in astrocytes lacking Atrx. Astrocyte 

morphology was assessed after tamoxifen administration of control and inducible 

KO littermate pairs harbouring the mT/mG allele (Figure 5). Fluorescent control, 

AtrxWT/YGlast-CreERTmT/mGWT/+, and fluorescent inducible KO, Atrxf/YGlast-

CreERTmT/mGWT/+, P26 sagittal cryosections were stained with DAPI and 

compared for GFP expression (Figure 16). The hippocampus of the fluorescent 

inducible KO demonstrated an increase in GFP domain number, however the 

astrocyte domain size appeared to be similar between fluorescent control and 

fluorescent inducible KO. Glast-CreERT is also expressed in neural stem cell 

present in the dentate gyrus (Mori et al., 2006; Slezak et al., 2007), which is 

outlined in Figure 16A. GFP expression in this region was different when compared 

to the staining of hippocampal astrocytes (Figure 16A).  

A striking increase in GFP domains in the cortex was demonstrated in fluorescent 

inducible KO compared to fluorescent control in the cortex (Figure 16B), indicating 

Cre recombinase expression is induced in more astrocytes. Astrocytic domains, 

visualized by GFP expression, also appeared larger in the fluorescent inducible 

KO, indicating larger astrocyte domains or more overlap between individual 

astrocyte domains (Figure 16C).  
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Morphological maturation is connected to molecular maturation and therefore 

expression of astrocyte maturation genes in the inducible KO should be assessed.  

To determine if loss of ATRX in astrocytes has an effect on astroglial maturation 

genes, qRT-PCR was performed on P26 (2 weeks post-injection) control and 

inducible knockout cortex. Relative expression of connexin 30 (Gjb6), connexin 43 

(Gja1) and glutamate transporter Glt1 (Slc1a2) revealed no significant change 

between control and inducible KO (Figure 17). However, Connexin 30 expression 

did appear decreased without reaching statistical significance. Increasing the 

number of biological replicates and assessing protein levels of connexin 30 will be 

required to clarify this result. 
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Figure 16. ATRX- GFP+ astrocytes display altered morphology in the P26 

cortex. (A) GFP expression was induced in the hippocampus of fluorescent 

control (AtrxWT/YmT/mGWT/+ GlastCreERT) and fluorescent inducible KO 

(Atrxf/YmT/mGWT/+ GlastCreERT). Expression of GFP was also in neural stem cells 

in outlined dentate gyrus. Scale bar= 500 μm (B) GFP was expressed in more 

astrocytes, giving rise to more GFP positive domains, in the inducible KO cortex. 

Domains also appear larger in fluorescent inducible KO compared to fluorescent 

control. Scale bar= 200 μm. (C) Higher magnification of GFP domains revealed 

larger domains with higher intensity of GFP expression in fluorescent inducible 

KO. Scale bar= 100 μm. 
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Figure 17. Expression analysis of astroglial genes in the P26 cortex of 

control and inducible KO mice. Analysis of control and inducible KO cortical 

transcript levels at 2 weeks post-injection (P26) revealed no significant change in 

connexin 30 (Gjb6) (p=0.101), connexin 43 (Gja1) (p=0.287) and Glt1 (Slc1a2) 

(p=0.876). Relative expression normalized to Gapdh expression. n=3.   
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4 Discussion  

4.1 Loss of ATRX in the forebrain affects the astrocyte 

population 

4.1.1 Aldh1l1 expression and the number of astrocytes present in 

the cKO is variable  

The deletion of Atrx beginning at E8.5 in the forebrain by Cre recombinase driven 

by the Foxg1 promoter resulted in p53-mediated apoptosis of neuroprogenitors 

and microcephaly in the mouse brain (Berube et al., 2005; Ritchie et al., 2014; 

Seah et al., 2008). It is well established that ATRX is required for maintenance of 

the neuroprogenitor pool and its loss causes sensitivity to replicative stress (Ritchie 

et al., 2014; Watson et al., 2013). However, the effects on the astrocyte population 

remain unclear.  The increased amount of neuroprogenitor cell death in the 

embryonic brain of the cKO indicates that astrocytes may respond by becoming 

reactive (Sofroniew and Vinters, 2010). Astrocytes are not generated until after 

birth (Yang et al., 2013), however the cell death observed in the neuroprogenitor 

population occurs embryonically (Berube et al., 2005; Seah et al., 2008; Watson 

et al., 2013). Reactive astrocytes may remain reactive to block off damage in the 

brain (Sofroniew and Vinters, 2010). Assessment of immunofluorescent staining 

for GFAP in the hippocampus revealed an increase in 2 pairs of P7 control and 

cKO coronal sections (Figure 7). It is possible that GFAP staining would be higher 

closer to birth, after the first astrocytes are born and begin to react to their 

environment.  
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Quantitative analysis of GFAP by western blot revealed no significant change in 

the expression of this astrocyte-specific marker (Figure 8A, B). However, the 

possibility of whether there was a decrease in the number of astrocytes in the cKO 

needed to be addressed. Although the protein levels of Aldh1l1, a more global 

astrocyte-specific marker (Cahoy et al., 2008), did not show significant change 

between control and cKO when averaged between three pairs, variability was 

observed in the western blot (Figure 8A). Pairs 1 and 2 showed a decrease in the 

expression of Aldh1l1 in cKOs compared to controls, but pair 3 did not show the 

same trend (Figure 8A). To determine whether this decrease in Aldh1l1 was due 

to decreased protein expression per cell or a decrease in the astrocyte population 

overall (Figure 9A), cell counts of Aldh1l1 positive cells in the cortex of three control 

and cKO pairs were performed and also revealed inconsistencies between pairs 

(Figure 9B): two pairs demonstrated a decrease in astrocytes number in the cKO 

and one pair displayed the opposite result. Immunostaining also revealed 

decreased intensity of Aldh1l1 staining in the cKO, indicating there may be 

decreased levels of Aldh1l1 per astrocyte (Figure 9C). The biological variability in 

these experiments is likely a result ATRX loss in these cells. If there were less 

astrocytes in the cKO forebrain, GFAP levels may be increased per astrocyte as 

there was an increase (nonsignificant) in the cKO males (Figure 8B). Indeed, when 

GFAP protein levels were normalized to Aldh1l1, GFAP levels were increased, 

however this increase was still not statistically significant (Figure 8C). Analysis of 

additional mice might help to determine if astrocyte number is consistently 

decreased and if there is a higher number of reactive astrocytes in the cKO. This 
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could result in altered astrocyte function in the cKO brain as reactive astrocytes 

alter their gene expression to contain damage and inflammation, thereby 

neglecting normal functions (Zamanian et al., 2012). These results are, however, 

variable between control and cKO pairs. A better model to study ATRX inactivation 

in astrocytes, without cell non-autonomous effects, was required and is discussed 

further in section 4.2. 

4.1.2 ATRX loss in the embryonic forebrain results in altered 

expression of astrocytes enriched genes. 

A microarray assessing altered gene expression in control and cKO was previously 

performed in our lab (unpublished, Michael Levy). The analysis of microarray data 

at P17 indicated that many astrocyte-enriched genes exhibited altered expression, 

based on microarray binding intensities, in the ATRX-null forebrain. (Figure 10A). 

The top 3 downregulated genes were all decreased by approximately 1.6 to 2-fold.  

Aqp4 was the most altered astrocyte-enriched gene and was downregulated 2-fold 

in the cKO forebrain. AQP4 channels are present at the endfeet of astrocytes and 

make contacts with the blood brain barrier and the barriers of cerebral spinal fluid 

vessels (Amiry-Moghaddam and Ottersen, 2003; Gomes et al., 2009). They also 

colocalize with potassium channel Kir4.1 at the membrane of astrocytic endfeet 

and PAPs, assisting with potassium transport by concentration gradient regulation 

in the brain (Amiry-Moghaddam and Ottersen, 2003; Gomes et al., 2009). Deletion 

of Aqp4 in glia resulted in reduced water absorption at the blood-brain barrier, but 

did not increase permeability to macromolecules (Haj-Yasein et al., 2011). AQP4 

is important in regulating the extracellular space of synapses during excitatory 
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synaptic transmission in the brain (Haj-Yasein et al., 2012). This decrease in Aqp4 

could affect synaptic function in the cKO brain and overall water and potassium 

homeostasis.  

Dio2 was the second most downregulated gene in the cKO P17 forebrain. DIO2 is 

the enzyme responsible for converting thyroxine (T4) into the active thyroid 

hormone triiodothyronine (T3) and its expression takes place predominantly in glial 

cells, specifically in astrocytes (Morte and Bernal, 2014). Astrocytes can take up 

circulating T4 from the blood through their connections with the blood brain barrier 

and T4 can be converted to T3 through DIO2-mediated deiodination (Morte and 

Bernal, 2014). This decrease in Dio2 could lead to decreased T3 production in the 

brain. T3 is important for brain development and has been linked to neuronal 

migration, synaptogenesis and myelination (Preau et al., 2015). Interestingly, cKO 

have decreased serum T4 levels (Watson et al., 2013) and also exhibit decreased 

levels of myelin proteins at P20 (Matthew Edwards, unpublished). Given that 

astrocytes are responsible for converting T4 to T3 through DIO2, they may play a 

role in the myelination defects observed in cKO males. 

Tnc was downregulated to a similar degree as Dio2. TNC is an astrocyte-secreted 

molecule that is involved in extracellular matrix remodeling after brain injury and in 

synaptic plasticity and axonal guidance during brain development (Jones and 

Bouvier, 2014). TNC can promote or inhibit synapse formation during 

development, depending on other signals present (Jones and Bouvier, 2014). 

TNC-null mice exhibited high neuronal density, increased reactive astrogliosis, and 

reduced LTP in the hippocampus (Evers et al., 2002; Irintchev et al., 2005). Tnc 
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expression decreases in the adult brain after development but an increase in its 

expression is correlated with the induction of reactive astrocytes (Jones and 

Bouvier, 2014). In fact, GFAP levels were significantly lower in TNC-null reactive 

astrocytes when compared to wildtype and inflammatory cytokine levels were also 

altered (Ikeshima-Kataoka et al., 2008). Therefore, if Tnc is downregulated in the 

cKO, this could impact synaptogenesis as well as how astrocytes respond to injury 

or inflammation. This decrease in Tnc expression could also result in GFAP not 

being upregulated to its full extent in reactive astrocytes, yielding an insignificant 

change in protein levels observed in Figure 8.  

GO analysis identified enriched pathways in altered genes. The majority of altered 

pathways involved homeostatic functions, such as urea transport and water 

transport performed by astrocytes (Figure 10B). Integral and intrinsic membrane 

components were also enriched in altered genes and this refers to the many 

transporters and channels present on the membrane of astrocytes that are altered 

in the cKO. Taken together, the results suggest homeostatic functions of 

astrocytes are altered in the cKO, contributing to pathology in the brain.  

4.2 Creation of a novel mouse model 

To further study the role of ATRX in astrocytes, Cre recombinase driven by an 

astrocyte-specific promoter was required to delete Atrx. To accomplish this, a 

cross between Atrxf/WT females and males carrying the Glast-CreERT allele was 

performed. This Cre recombinase is activated by tamoxifen administration, 

causing recombination of the floxed Atrx allele in astrocytes. This model also 
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allows for temporal control of Atrx deletion in astrocytes. Efficient recombination of 

the floxed Atrx gene was difficult to detect as qRT-PCR analysis of Atrx expression 

in the hippocampus could not detect a significant decrease in the inducible KO at 

3 months of age (Figure 11A). This difficulty can be explained by all other cell types 

still expressing Atrx in the inducible KO and the small change in astrocyte-specific 

Atrx expression is undetectable as a result of the high expression of the gene in 

other cell types. A more effective approach will be to use a fluorescent reporter 

allele that is activated by Glast-CreERT to purify control and inducible KO astrocytes 

with fluorescence-activated cell sorting (FACs). This will provide a relatively pure 

astrocyte populations and deletion of Atrx would be detectable in males carrying 

the floxed Atrx allele. 

Previous studies identified ATRX as important for neuroprogenitor survival when 

ATRX was deleted embryonically (Berube et al., 2005; Ritchie et al., 2014; Seah 

et al., 2008; Watson et al., 2013). Given the importance of ATRX in proliferating 

cells, injection during peak astrogliogenesis was avoided as to not induce 

replication, DNA damage, and apoptosis in astrocytes. Instead, control and 

inducible KO males began injections at P10, and ended at P12, as peak 

astrogliogenesis ends at approximately P7 (Yang et al., 2013). Atrx mRNA levels 

were not significantly decreased in the hippocampus (Figure 11B). Tamoxifen 

injections may cause variability in Cre recombinase induction if one male receives 

less tamoxifen than another due to human error. Also, the brain is smaller at P26 

as it is developing and hippocampal dissection is difficult. It is possible that the 

high expression of Atrx in neurons may shield any decrease in astrocytes from 
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being observed. More tamoxifen treated control and inducible KO pairs must be 

assessed to determine if there is a detectable. qRT-PCR performed on P26 control 

and inducible cortex also demonstrated no significant change in average 

expression in three pairs (Figure 12A). If each pair is analyzed individually, 

however, it is clear that there is variability in Atrx expression (Figure 12B). Pair 1 

exhibited a significant decrease in Atrx levels by approximately 50% and Pair 3 

also showed a decrease in inducible KO, however not to the same extent. Pair 2 

demonstrated no change in Atrx levels between control and inducible KO. This 

variability could be due to different tamoxifen levels reaching the brain after 

injection. To determine whether this decrease in the cortex is consistent, more 

biological replicates must be performed to rule out any technical issues with 

tamoxifen delivery via intraperitoneal injection. Also a FACs experiment, as 

mentioned in the above paragraph, could be used to isolate the astrocyte 

population and assess the deletion of Atrx at this timepoint. 

The protein levels of ATRX in astrocytes revealed that an average of 34.4% of 

GFAP positive nuclei lacked ATRX staining in a selected area of the hippocampus 

(Figure 13C). It is important to note that GFAP does not stain all astrocytes (Figure 

13A, B) and therefore this may underestimate the recombination efficiency. 

Immunostaining in the cerebellum also revealed nuclei lacking ATRX staining, 

some surrounded by cytoplasmic GFAP staining and some not (Figure 14). These 

ATRX-deficient nuclei lacking GFAP staining could indicate that another subtype 

of astrocyte, which does not express GFAP at detectable levels, expressed Cre 

recombinase in response to tamoxifen. One major challenge in the field is a lack 
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of a nuclear astrocyte marker, and the heterogeneity of astrocytes makes 

cytoplasmic marker ALDH1L1 the best candidate for labeling the most astrocytes 

(Cahoy et al., 2008).  Cell counts in the cortex after tamoxifen injection should 

therefore be performed using an anti-Aldh1l1 antibody. This will allow for validation 

of ATRX deletion at the protein level in the cortex. A double reporter allele, 

however, was used to track Cre recombinase induction after tamoxifen injection. 

This allele expressed GFP after Cre recombinase-mediated recombination, and 

therefore after tamoxifen treatment in astrocytes in this model. Figure 15 

demonstrates that GFP expression is only observed in the presence of the Glast-

CreERT allele, indicating that tamoxifen is reaching the brain and inducing 

recombination. This also shows that tamoxifen can cross the blood brain barrier 

successfully and bind the estrogen receptor-fused Cre recombinase, allowing for 

its translocation to the nucleus.  

4.3 Altered morphology and decreased expression of gap 
junction protein in inducible KO 

4.3.1 Increase in number of astrocytes undergoing recombination 

and altered morphology in the cortex at P26 in inducible KO 

Through use of a double reporter allele, astrocyte domains and morphology were 

assessed in AtrxWT/YGlast-CreERTmT/mGWT/+ and Atrxf/YGlast-CreERTmT/mGWT/+ 

mice. Interestingly, in both the hippocampus and cortex of the fluorescent inducible 

KO there was an increase in the number of GFP domains (Figure 16A), which 

represent astrocyte domains as the GFP in the double reporter allele is membrane 

targeted (Muzumdar et al., 2007). The increase in GFP positive domains indicates 
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more astrocytes being exposed to tamoxifen at the blood brain barrier. It is 

important to note that before tamoxifen injection, the fluorescent control and 

inducible KO have the same gene expression as Atrx will not be deleted in 

astrocytes until after tamoxifen exposure. The injection protocol for these mice was 

3 consecutive, daily injections from P10 to P12 (Figure 11B). After the first 

injection, the permeability of astrocytes lacking Atrx to tamoxifen at the blood brain 

barrier may increase, leading to more astrocytes taking up tamoxifen from the 

blood in the daily injections that follow. Investigation as to why more astrocytes 

carrying the Atrx-floxed allele undergo recombination after tamoxifen 

administration is required to understand the mechanism of how ATRX loss may 

affect permeability of astrocytes to tamoxifen.  

In the cortex, the fluorescent inducible KO exhibited larger GFP positive domains 

(Figure 16B, C). This could indicate that 1) astrocyte morphology is altered such 

that individual astrocyte domains are larger in the inducible KO, 2) there is more 

overlap between individual astrocyte domains, or 3) a combination of the two. 

Because the GFP expressed form the double reporter allele is membrane targeted, 

it is difficult to distinguish if the large GFP domain is from one or multiple nuclei. 

Therefore if the large domains result from astrocytes having expanded PAPs, this 

could indicate a defect in morphological maturation. Astrocytes lacking ATRX do 

not respond to development cues that result in the pruning of their PAPs by 4 

weeks of age (Yang et al., 2013). This is also a possibility if the large GFP positive 

domains are caused by an overlap of multiple astrocytes. Astrocytes should retreat 

to non-overlapping domains by P28 (Yang et al., 2013). The timepoint analyzed 
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was P26 and therefore most astrocytes should occupy their own respective 

domains. The apparent domain expansion might be caused by a combination of 

increased astrocyte domain coverage and overlap between astrocytes. This 

morphology defect could be caused by delay in astrocyte morphological maturation 

due to ATRX loss or the permanent inability for ATRX-null astrocyte to prune their 

excess PAPs. To assess if this phenotype is permanent or a delay in development, 

the mutant mice should be assessed a month post-tamoxifen injection. If the 

phenotype persists, one could conclude that ATRX-null astrocytes have lost their 

ability to occupy specific domains.  

Regardless of whether this phenotype is a delay in maturation or a permanent 

increase in astrocyte domain size, it is clear that there are implications for 

synaptogenesis and synaptic plasticity. The timing of synaptogenesis overlaps 

with astrocyte morphological maturation (Figure 2). Astrocytes release factors that 

help with the pruning of unnecessary synapses during development (Bialas and 

Stevens, 2013). If astrocytes have enlarged domains, it is likely that they are 

making more connections with synapses. This could lead to decreased synaptic 

pruning if astrocytes themselves are not pruning PAPs during development. 

Assessment of TNF-β levels, the signal secreted from astrocytes to initiate 

synaptic refinement, should be assessed in the future. Dendrite morphology of 

neurons through Golgi staining would also provide insight as to whether synaptic 

refinement has taken place in the cortex of the inducible KO.  

If this phenotype is permanent, it has implications for synaptic plasticity in memory 

and learning after development. Astrocytes can help strengthen synapses during 
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a learning event by adjusting PAPs to contact synapses undergoing stimulation 

(Bernardinelli et al., 2014). The mobility of astrocytic PAPs is important to allow for 

selective contacts with synapses (Bernardinelli et al., 2014). If astrocytes cannot 

prune excess PAPs during development, they may also be unable to undergo PAP 

plasticity to reach and strengthen stimulated synapses in the adult brain. Further 

investigation is required to understand if astrocytes lacking ATRX retain structural 

plasticity, and more importantly if the enlarged astrocyte domains remain at later 

timepoints. Confocal microscopy and a primary antibody labeling GFP would 

enable better visualization of fine PAPs. 

4.3.2 Change in connexin 30 (Gjb6) expression in cortex of 

inducible KO at P26 

A nonsignificant decrease in connexin 30 (Gjb6) expression was observed at P26 

in the cortex of the inducible KO when compared to control (Figure 17). This 

decrease will need to be verified in a pure astrocyte population after using FACs 

to sort out control and inducible KO astrocytes. Western blot analysis of GJB6 

protein levels between control and inducible KO should be performed to determine 

if there is a significant decrease in the gap junction protein. If there is indeed a 

decrease in GJB6, there are many implications to astrocyte morphology and 

function.   GJB6 and GJA1 make up gap junctions present in astrocytes and allow 

for intercellular communications between astrocytes (Pannasch and Rouach, 

2013). These connections allow for efficient mediation of brain homeostasis 

through ion buffering and nutrient transport (Pannasch and Rouach, 2013). GJB6 

controls excitatory synaptic transmission in the hippocampus and does so by 
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mediating morphological changes that insert the astrocytic PAPs into synaptic 

clefts where glutamate transport can be more finely regulated (Pannasch et al., 

2014). GJB6-null mice have larger astrocytic domain with elongated processes 

and increased branching (Pannasch et al., 2014), a phenotype similar to the 

morphological changes observed in the fluorescent inducible KO. Loss of Gjb6 

also resulted in increased insertion of PAPs into synaptic clefts and altered 

excitatory transmission at the synapse (Pannasch et al., 2014). Therefore the 

decrease in Gjb6 expression in our mouse model could play a role in the 

morphological changes observed in ATRX-deficient astrocytes.  

Conclusions and future directions 

This study was initiated to address the potential functions of ATRX in astrocytes. 

We found that deletion of ATRX in all cells in the forebrain affected the astrocyte 

population by increasing the amount of reactive astrocytes. The results, however, 

were variable and firm conclusions could not be made. ATRX loss likely affects the 

number of astrocytes in the brain, as well as increasing their reactivity. More 

biological replicates are required to establish the consistency of these phenotypes. 

Analysis of microarray expression between control and cKO revealed ATRX 

deletion affects the expression of astrocyte-specific genes and pathways.  

A novel mouse model was created utilizing an inducible Cre recombinase under 

the control of an astrocyte-specific promoter. This Cre recombinase responds to 

tamoxifen administration, causing recombination of the floxed Atrx allele 

specifically and temporally in astrocytes. The use of a double reporter allele 
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revealed enlarged and possibly overlapping astrocyte domains in ATRX mutant 

mice compared to controls. This morphological change was accompanied by a 

potential decrease in expression of Cxn30, a key component of astrocyte gap 

junctions. Further analysis of connexin 30 expression at both the mRNA and 

protein level is required to determine if deletion of Atrx results in its decreased 

expression. 

The extent of ATRX inactivation on gene expression in astrocytes must be 

investigated further to understand the phenotypes observed above. Future 

directions for this study include assessing gene expression changes in ATRX-null 

astrocytes. Fluorescence-activated cell sorting could be used to isolate astrocytes 

and subsequent RNA sequencing would reveal changes between control and 

inducible KO. This would provide more insight into defects caused by ATRX loss 

in astrocytes. Another important question to answer involves whether ATRX-null 

astrocytes can support the growth and development of neurons, which could be 

addressed in co-culture experiments. Behavioural analysis of inducible KO mice 

would indicate whether ATRX is required in astrocytes for proper learning and 

memory. These experiments will indicate as to whether ATRX loss in astrocytes is 

contributing to the pathology experienced in the brains of individuals with ATR-X 

syndrome.  
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