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Abstract

The J and Cox non-nested tests do not follow the usual N(0, 1)
distribution when the non-nested regression models are nearly uncor-
related or orthogonal. This paper attempts to assess the question of
whether or not one can do better (in terms of size and power) than
existing tests by using two alternative testing procedures based on the
notion of pretesting. The Monte Carlo evidence on this question indi-
cates that the testing procedure of first testing the null of zero correla-
tions among the non-nested regressors in two' non-nested models and
then using either the J test if the null is rejected or the encompassing
F test if the null is not rejected, may outperform the encompassing F'
test in terms of power especially when the number of regressors in the
alternative model is large. Ience, such a procedure may be useful in
practical applications.

*T am grateful to Russell Davidson and James G. MacKinnon for helpful suggestions
and comments. Helpful comments from A.L. Nagar and T. Stengos are also gratefully
acknowledged. All remaining errors are mine.



1 Introduction

Within the class of one degree of freedom non-nested tests the Cox (C) test
(Cox (1961, 1962), Pesaran (1974)) and the J test of Davidson and MacKinnon
(1981) have been studied under the standard assumption of non-orthogonal
regression models. In this case both tests are asymptotically equivalent and
distributed as N(0, 1) under the null hypothesis.

Neither of these two conclusions, however, is true under model orthogo-
nality. The standard results are no longer valid under the condition of near
population orthogonality (NPO) according to which the non-nested regres-
sors in two linear regression models become asymptotically uncorrelated or
orthogonal in the population distribution from which they are drawn (Miche-
lis (1994)). Specifically, under NPO the asymptotic null distributions of the J
and C tests are expressible as functions of a N(0, 1) variate and a y? variate.
Furthermore the Monte Carlo simulations indicated that the NPO results pre-
dict better than standard results the finite-sample behavior of the J and C
tests. In fact the simulation evidence indicated that this is true for correlation
values among the non-nested regressors as high as .30.

Given this evidence and given the fact that under NPO the J and C tests do
not follow the usual N(0, 1) distribution, what can applied econometricians
do? That is, when working with non-nested models that have non—-nested
regressors with low correlations, can an applied econometrician do better in
terms of alternative new testing procedures than using the standard non-
nested tests or the encompassing F test? In this paper we deal with these
questions in the framework of pretest testing theory (see Giles and Giles (1993)
for an excellent review of the literature). In general, this theory amounts to,
first, using a preliminary test to test a relevant null hypothesis on a certain
aspect of a testing problem, and then based on the outcome of the test, to
employ alternative testing procedures in order to test the main hypothesis
of interest. In the present context we adopt the following testing strategy
which is based on a two stage decision problem. In the first stage, the null
hypothesis of zero correlations among the non-nested regressors is tested using
a preliminary test of significance. In the second stage, if the null hypothesis
is rejected, the J test is chosen as a non-nested test; otherwise, either the Ja
test of Fisher and McAleer (1981) or the encompassing F test of Mizon and
Richard (1986) is employed. The so called pretest test statistics thus generated
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are random combinations of the two component tests and, in general, have
different sampling properties from them. More specifically, we propose and
investigate the finite sample properties of the following non-nested pretesting
procedures:

(1) Test 1: J combined with Jy4

(if) Test 2: J combined with F.

An investigation of the pretest testing procedures (i) and (ii) may be quite
useful and informative. Depending on the outcome of the preliminary test,
each procedure uses the potentially more powerful J test or a test with better
size in finite samples (i.e., the J, test or the F test).! It is therefore interesting
to examine whether (i) and (ii) have better properties in finite samples than
do the standard J, J4 and F tests. The Monte Carlo experiments in this
paper were designed with this purpose in mind. The results indicate that the
procedure (ii) may be potentially useful in practical applications.

The plan of the rest of the paper is as follows. In Section 2 we set out the
framework of analysis and explore four testing procedures and choose one, the
likelihood ratio test, to be the preliminary test in the context of the testing
procedures (i) and (ii). These procedures are then formalized and stated ex-
plicitly. Section 3 deals with the design of the Monte Carlo experiments and
the presentation of the results of these experiments. Here the main emphasis
is on the properties of the non-nested pretest testing procedures (i) and (ii).
However, these are also compared to the properties of the “naive” procedures
(strategies) of either always ignoring the null of zero correlations and using
the J test all the time, or always allowing for it and using either the J, test
or the F test all the time. The various testing procedures will be compared on
the basis of three criteria: size, power and power after correcting for size for
the non—exact tests (i.e., the J test and the pretest tests). Section 4 contains

some concluding remarks.

11t is well known that the J and C tests tend to over-reject the null hypothesis in finite
samples but they are, in general, more powerful than the J4 and F tests. Under NPO, the
over-rejection problem of the J and C tests becomes worse. In fact, the C test becomes
explosive in this case (Michelis (1994)). For this reason, we do not incorporate the C test
in the present analysis.



2 Preliminary Tests for NPO and Non-nested Pretest Tests

In this section we formalize and present the two non-nested pretesting pro-
cedures Test 1 and Test 2 outlined above. First, though, we set out the
framework of analysis and explore several testing procedures, each of which
may be employed as a preliminary test (call it the NPO test) to test the null
hypothesis of zero correlations among the non-nested regressors of two non-
nested models. In order to keep the total number of experiments down to a
small number, we recommend using only one of them, the likelihood ratio test,

based on some plausible arguments.

2.1 The Framework of Analysis

Consider the following two non-nested linear regression models
Ho: y = XB+u, u~iid(0,0%l;), 0< o’ < o0 (2.1)

H: y=Zy+v, v~iid(0,w?l,), 0< w? < oo (2.2)

where y is an n x 1 vector of observations on the dependent variable, X and
Z are the n x p and n X ¢ observation matrices of the explanatory variables of
models Ho and H, respectively, 8 and v are px 1 and g x 1 vectors of unknown
regression coefficients and u and v are n x 1 vectors representing the random
errors in the two models. We assume, for convenience, that the non-nested
models intersect only at the origin. If this assumption is not true to begin with,
then any common regressors can be removed in an obvious way, by projecting
the dependent variable and the non-overlapping regressors in each model into
the space orthogonal to the intersection subspace, see Michelis (1995).

Given the two linear models in (2.1) and (2.2) the encompassing F' test
of testing Ho against H, is simply a test for v = 0 in the compound model
y = XB + Zy + ¢. Next, the J and J4 tests are easily computed from single
artificial regressions as ¢ statistics for a nesting parameter. The J test artificial

regression may be written as
Hy: y= XB+aPy+e (2.3)

where P, = Z(Z2'Z)"'Z' and P,y = Z4 is the orthogonal projection on the
span of Z, representing the n x 1 vector of fitted values from H;. Then the J
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test is simply the ¢ statistic for the hypothesis o = 0, i.e.

y' P M.y

J = &J(?J'PzAl:s:sz)l/2

(2.4)

where & is the OLS estimate of the standard deviation of the error in the J
test regression.
Similarly, the J4 test artificial regression may be written as

Hj,: y= XB+aP.Py+e (2.5)

where P, = Z(2'2)'Z', P, = X(X'X)™'X' and P.Pry=Z%. isthenx1
vector of fitted values obtained by regressing P.y on the columns of Z. The

J4 test is the ¢ statistic for testing a = 0 in the artificial regression model
given by (2.5). That is, ‘

yIPszsz

JA - &JA(y'PxPzMIPszy)llz

(2.6)

where &, is the OLS estimate of the standard deviation of the error term in
(2.5).

Whether or not non-nested models are orthogonal depends on the form of
the asymptotic covariance matrix of the random variables in X and Z. In the
standard case of non-orthogonal models it is assumed that

plim(n™'X'Z) = £,, #0 (2.7)

n—oo
The condition T, # 0 is to be understood as stating that not every element
of the p X g matrix I, is zero. If that is not the case and the elements of Z.
are near but not necessarily equal to zero, then the distributional results that
we obtain are quite different from those in the existing literature. This case
can be stated formally by the NPO condition:

plim(n~%X'Z) = A (2.8)

n=—+00

where A is a p x g non-null matrix of constants such that A’8 # 0. Notice
that (2.8) implies £, tends to the null matrix asymptotically, so that the
columns of X and Z become asymptotically uncorrelated or orthogonal as the
sample size, n, tends to infinity. Since A is O(1) by assumption, asymptotic
orthogonality is attained at a rate proportional to n—"%. Alternatively, as the
sample size becomes large, the sample matrices X and Z are drawn from a (p+

4



q)-dimensional distribution of which the p components are nearly uncorrelated
with or orthogonal to the remaining ¢ components.

The F test has the same distribution under (2.8) as it does under (2.7).
The same is true for the J4 test. On the other hand, under (2.8), the J test
converges to the random variable

Yo+ Vg + Vo
(Vo +¢)* + Vo)

where c is a constant that is proportional to A and inversely proportional to

(2.9)

o, Vo is a N(0, 1) variate and V1 is a x*(¢g— 1) variate which is independent
of Vo (Michelis (1994), Theorem 4.2). It is precisely because the J test has a
discontinuous distribution under (2.7) and (2.8) that the present analysis of
non-nested pretest tests is interesting.

2.2 Tests for Preliminary Testing

Here we consider four testing procedures that can be used to test for the
possible lack of correlation among the columns of X and Z. For analytic
tractability we assume that the rows of X and Z come from a joint (p+49)
variate normal distribution with mean g = (p, p2) and covariance matrix

Ln Iy ) :
Y= 2.10
( Ty Iz . (2.10)
where gy and g, are vectors of dimension p and g respectively, TnispXxp,
Tpnisqgxgand T, =5 ispxq.
We wish to test the null hypothesis that X and Z are uncorrelated against
the alternative that they are not, i.e.,

Hy: 10 =0 versus Hy: 212 # 0 (2.11)

It is well known that the population canonical correlations, corresponding to
X and Z, are null or non-null depending on whether X2 = 0 or T # 0.
Therefore, Hy and H4 in (2.11) can be restated equivalently in terms of the
population canonical correlation coefficients p;, : =1, ..., k = min(p, ¢q), as

Hy: pp=...=p =0 versus Hj: atleast onep; # 0. (2.12)

Expressing the null and the alternative in terms of the canonical correlation

coefficients is illuminating. The test criteria we shall consider below can all be
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expressed in terms of the sample canonical correlations between X and Z, and
the decision on whether or not to reject the null will depend on the statistical
significance of a function of those coefficients.

Let X and Z, as given above, denote the n x p and n X ¢ matrices of
sample observations and assume n > p + ¢. Define the sample covariance

matrix between X and Z by
- Sll 512 2.13
s= (o 3) (213)

where the partition of S is similar to that of £ in (2.10), and let

H = 51255, 5n (2.14)
and
E = Snz = Su— 51255 8z (2.15)
Then the null hypothesis can be tested using Wilks’ U-statistic
| E}
U= ——, 2.16
|E + H| (216)

where |E| and |E + H| denote the determinants of E and E + H respectively.
It can be easily shown that the likelihood ratio test for the same null
hypothesis is a function of the U-statistic. The former test is (see Eaton

(1982), Chapter 10)
1] h
A= (=2l (2.17)

|S11] 52|
Using the identity |S| = |S22||S11.2| we have
Isl — ISll-2| — IEl (2.18)
1SulSl — 1Sul — |E+AH|

which is exactly (2.16). Consequently, U = Ak,

Although the exact distribution of U is complicated, in large samples
—nlogU is approximately distributed as a x*(pg) variate. A better approxi-
mation to the x? distribution is given by the adjusted statistic (Box (1949)),

A = =bloglU (2.19)
where b = —n/d in which
d = 12npq/(2¢ + 3m) (2.20)
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with £ = 2pg and m = (p+ ¢) — (p° + ¢°). For a test of size o we would reject
Ho if A > x2.

The U-statistic has intuitive appeal when it is expressed in terms of the
sample canonical correlations between X and Z. Using (2.18) we obtain

U = |Sll-5123;21521| -
[Sul

. -1 -1 :
where r? > r2 > ... > r? are the nonzero eigenvalues of St S1252; Sar, 1€y

k
|, — S5 S1S5 SuSRE| = (1 =rd), (221)

the nonzero squared canonical correlations among the columns of X and Z.
This form of the test makes it clear that Hy: py =...=p; =01is unlikely to
be rejected when the r? are small. This is likely to be the case when X and Z
are drawn from nearly orthogonal populations.

In addition to the likelihood ratio test, there are three other criteria that

can be used to test Hy. These are,

k k
T, = wHE+H)) = Y (6/0+6) = Y (2.22)
Jj=1 j=1
k ko2
T, = t((HE™) = Ze,- = Zl—r? (2.23)
j=1 j=1
ri
Ts = Max{ly, ..., &} = & = 1= (2.24)
-n
where ¢, > ¢, > ... > {; are the nonzero roots of
|H—-¢E| = 0. (2.25)

The third set of equalities in (2.22), (2.23) and (2.24) follows from the fact

that \

;= i, 2.26
e (2:26)

To establish (2.26) just substitute E = S;; — H in (2.25) and rearrange.
In large samples nT; and nT; are approximately distributed as x*(pg) vari-

ates while T3 does not follow any tabulated distribution and requires its own
table of percentage points. In the literature on multivariate analysis T1, T2,
and T are known respectively as the Bartlett—-Nanda-Pillai trace test, the
Lawley-Hotelling trace test and Roy’s maximum root test (e.g., see Anderson
(1984), Chapter 8). Interestingly, from the work of Berndt and Savin (1977),



we can identify T} as a Lagrange multiplier test and T as a Wald test. The
same authors have noted that

hH<THh <D (2.27)

where Tp = log U~ is the likelihood ratio test. Consequently, in finite samples
there may be a conflict among T, T> and T5 with respect to deciding on Ho.
If the x? significance point is used, T, may lead to a rejection while Toor T}
may not. Clearly, the inequalities in (2.27) pose a difficulty in choosing one of
the three criteria. On the other hand, Roy’s test criterion is exact but requires
its own significance points.

As a guide to choosing one of these four tests we would also like to compare
their power functions. Unfortunately, none of these tests is uniformly most
powerful against all alternatives. Anderson (1984, p. 331) reports a condition,
due to Rothenberg (1977), that can be used to rank T}, T; and T3 in terms of

power. This condition is

\/ (p p‘ll)-(l_p2+ q) (2.28)

where © = () 20, wi, 02 = (Y%) Th., (wi — ©)? and wy, wy, ..., wp are the
roots of the noncentrality matrix associated with the three statistics. If (2.28)
is satisfied then

Power(T;) > Power(Ty) > Power(T}), (2.29)

and otherwise the inequalities are reversed. As noted above, Roy’s largest
root test does not have a x? distribution under the null and a non-central x?
distribution under the alternative hypothesis. Hence, it cannot be compared
to Ty, 11 and T3 using Rothenberg;s condition. However, Monte Carlo evidence
has shown that the maximum root test has greatest power if the alternative
is one dimensional (i.e., p; # 0, pz = ... = px = 0). Otherwise, it is inferior
to other tests.

With no clear-cut answers regarding the power and size properties of these
tests, we have chosen the likelihood ratio test as the preliminary test to test for
NPO in X and Z. We feel this is a judicious choice for several reasons. First,
the likelihood ratio test is intermediate between Ty and T3 in terms of size and

power and therefore its own behavior reflects the average behavior of the three
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tests. Furthermore, in general, it is more powerful than Roy’s greatest root
test. Second, the likelihood ratio test may throw more light on the relationship
between X and Z through its various factorizations. This property can be
exploited to construct likelihood ratio criteria for the association between any
subsets of the variables in X and Z. The resulting criteria are all x* distributed
with appropriate degrees of freedom adjustments. Third, from (2.27) we may
 conjecture that on average the actual size of To must be closer to the true size
of the x? approximation. Consequently, the null distribution of To may be
closer to that of x? than is the distribution of either T; or T,. Furthermore,
the adjusted likelihood ratio statistic (2.19) is an improved approximation to
the x? distribution. In fact, it is the X statistic in (2.19) that we have used in

our simulation experiments.

2.3 Non-nested Pretest Tests

Suppose again we wish to test for the empirical adequacy of the two non-
nested models (2.1) and (2.2) respectively, while suspecting that the non-
overlapping regressors in the two models may be uncorrelated. In view of
pretesting theory, this suggests the following two stage testing strategy: first,
we use Box’s likelihood ratio statistic (2.19) to test the null Hy : ¥12 =0, and
then if the null is rejected we use the J test or otherwise we use the J4 test in
one case and the F in the other. Therefore, we can define two new non-nested

pretest testing procedures as follows
NP, = Ipg(A)Ja + o)A (2.30)

and
NPz(/\) = I[O‘c](A)F-*‘I(c'm)(A)J (2.31)

where I(-)(}) is an indicator function which takes the value of unity if A falls
in the subscripted range and zero otherwise, and c is the critical value of the
x%(pq) distribution for a test of size a.

Notice that in contrast to NP,, the NP, procedure combines two test
statistics, namely the J and F tests, which have different null distributions.
Consequently, when the F test is chosen, the critical values of the relevant
F distribution must be employed in order to calculate the empirical size and
power of the NP, test. Similarly, when the J test is chosen, the critical values
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of N(0, 1) must be used. Since the actual choice of either component test
depends on the value of )\, we write NP, as an explicit function of A.

Representing NP, and NP, as we have done in (2.30) and (2.31) is illu-
minating because these expressions highlight the difficulty of deriving exact
results. Each statistic is the sum of two parts, both of which are product-
s of two non-independent random variables. For this reason it is difficult
to obtain exact analytic expressions for the sampling properties of NP, and
NP;. Nonetheless, some observations can be made. Suppose for instance that
Hp : £12 = 0 holds. In this case we would like to use the J4 or F test, but
100a% of the time the ) test will incorrectly reject Ho and the J test will be
chosen. Given that the J test over-rejects rather severely in this case NP,
and NP, will also tend to over-reject relative to the J4 and F tests. On the
other hand, when Hp does not hold we would like to use the more powerful J
test. However, the proportion of times that the J test is chosen will depend
on the power of the ) test (likelihood ratio). The higher the power of the
likelihood ratio test the more often the J test will be chosen and the more
powerful NP, and NP, will be. Otherwise, the latter tests may be expected
to be less powerful. Clearly, the size « of the preliminary test is important in
determining the properties of NP, and NP;.

Since the nature of the problem precludes analytic results, we shall follow
the practice of other researchers and investigate the sampling properties of
NP, and NP, through Monte Carlo simulations. These properties will be
compared to those of the J, J4 and F tests. We examine the size and power
properties of the NP, NPy, J, J4 and F tests in finite samples, so that the
Monte Carlo evidence may be potentially useful in practical applications.

3 Monte Carlo Simulations
3.1 Experimental Design

The design of the experiments is similar to that given in Godfrey and Pesaran
(1983). The model that generated the data for the size calculations was

P
Ho! Ye = 50+ZB.-$¢.-+u¢, ul"-’NID(O, 0'2), t=1,...,n (3.1)

=1
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where 8 = (8o, B1, ..., Bp) is a vector of regression coefficients. For each repli-
cation the values of the explanatory variables z,; were generated according to
N(0, 1) using the pseudo-random number generating subroutine DRNNOF
from the IMSL library. The covariance matrix of the explanatory variables
was chosen to be the identity matrix, I,, so that E(zszy;) is unity if ¢ = £ and
1 = j and zero otherwise.

The model that generated the data for the power calculations was

g

H: y = ‘70+Z7.'Zu+wt, we ~ NID(0, w?), t=1,...,n (3.2)
=1 .

where v = (70,71, ...y 7¢) is & vector of regression coefficients. The DGP (data

generation process) for the z,;'s was
zg = iz +ve, vi~NID0,1), i=1,..., min(p,q) (3.3)

and, if ¢ > p,
zZi = v, t=p+1,...,¢ (3.4)

Notice that the design is such that the simple population correlation coeffi-
cients among the non-nested regressors are equal to the population canonical

correlation coefficients, i.e.,

é = pi, i=1,...,min(p, q) (3.5)

and in all the experiments we set p; = p, so that the non-nested regressors
were equally correlated.

We carried out several experiments to cover various possibilities of in-
terest by changing the principal parameters that should affect the results.
These parameters are (8, v, n, 0, w, p, q, p, @) where 8 = (Bo, B1, ---» Bp)
and 4 = (Y0, 71, - - -, 7q) are vector valued and the remaining parameters are
scalar. Throughout all the experiments the components of 8 and ~ were set
equal to unity. The parameters n, 0 and w were set at values 25, 2.0 and
2.0 respectively. The effects of changes in these parameters on size/power
estimates were as expected, namely an increase in n or a decrease in o and
w improves size/power estimates and conversely. For this reason, we do not
report the effects of changing =, o or w.

The parameters p and g represent the non-overlapping regressors in the
‘two models. The relation between p and ¢ as well as their magnitudes are
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important in determining the properties of the tests. For instance, when
g > p the J, test is not as powerful as it would be in the opposite case
(Godfrey and Pesaran (1983)). Furthermore, under NPO (see (2.9) above),
the asymptotic null distribution of the J test depends explicitly on g. The
larger the value of g is the greater the discrepancy should be between the s-
tandard results and the new results. For these reasons we have considered the
following cases for pand ¢: (a) p=¢=2,(b) p=4,¢=2,2and (c) p =2,
g=4.

The most important parameter from the point of view of this paper is
p, the correlation coefficient among the non-nested regressors. Here we were
interested in investigating the size-power properties of the tests for low values
of p. Thus, p was set at the following values: p = (.30, .20, .10, .05, 0).

Finally, « is the size of the likelihood ratio test for testing the preliminary
hypothesis of zero correlations among the non-nested regressors. As discussed
above, the size of a preliminary test plays an important role in determining
the properties of pretest test statistics. Accordingly, to see the effects of o on
the size and power characteristics of the NP, and NP; tests, we set o at two
values: a = .05 and a = .20.

The computer programs used for the Monte Carlo experiments were writ-
ten in Fortran 77. Each experiment was started by calling the DRNNOF
subroutine from the IMSL library and then replicating for a specified number
of times. We report the results of these experiments next.

3.2 Results of the Monte Carlo Experiments

The simulation results will be presented either in tabular form or by plots.
The former includes numerical tables with estimates for the size and power of
the J, Ja, NP,, NP; and F tests. The latter consists of plots of the empirical
size—power tradeoff curves for the five tests.

For the numerical results and for each of the 5000 replications in each
experiment we computed the test statistics J, J4, NP, and NP, given by the
equations (2.4), (2.6), (2.30) and (2.31) respectively, and the encompassing F’
statistic for the test for 4 = 0 in the combined regression y = X+ Zv+e¢. We
then computed estimates of the size and power of these tests by calculating
the proportion of times that each test statistic exceeded the appropriate 5%
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and 1% nominal critical values when Ho was the DGP and when H, was the
DGP respectively. For the J, J4 and NP, tests the critical values 1.96 and
9.576 of the N(0, 1) distribution were used whereas for the F test the 5% and
1% critical values of the F(g, n — p — g — 1) distribution were employed given
our specific choice of n, p and ¢.

As mentioned above, the NP, test incorporates the J and F tests, and
thus requires two different sets of critical values; one set when the J test
is used and another when the F test is used. To deal with this problem,
we first converted the actual values of the J and F statistics to p—values
(i.e., prob-values) and then combined the latter to obtain p-values for the
NP; test. Each pvalue, Py, for the J test was obtained from the relation
Py = 2(1 = NCDF(|J])) where |J| is the absolute value of J and NCDF is
the cdf of N(0, 1). Similarly, each p-value, Pr, for the F test was calculated
from the relation Pr = 1 — FCDF(F), where FCDF is the cdf of the F
distribution with appropriate degrees of freedom. Letting P denote the p—
value for the NP, test, we set P = P if the A test rejected the null in (2.11)
and P = Pr otherwise. Using this formulation, size and power estimates for
the NP, test were obtained by calculating the proportion of times, under Hp
and H, respectively, that 1 — P exceeded the values .95 and .99.

In addition to the information provided by the numerical tables, we have
also constructed size-power tradeoff curves. These curves are more informa-
tive than the results presented in numerical tables because they allow for the
comparison of the five tests’ powers on a size corrected basis. The size-power
curves are so constructed that for the same estimated size of each test one can
compare and rank their estimated powers just by inspecting the graph with
the overlaid plots of those curves. By contrast in the numerical tables we,

inevitably, compare the powers of the tests of which the sizes are different.

3.2.1 Cases withp=¢gq=2and p=4,q¢=2

Table 1 and Table 2 contain respectively the size and power estimates of the J,
Ja, NP,, NP, and F tests in the case withp=¢=2 for different values of o
and p. Several interesting features emerge from these experiments. Consider
first Table 1. For given «, a fall in p from .30 toward .00 leads to a gradual
increase in the size of the J test. The J4 and F tests are exact and their size
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estimates differ from 5% and 1% only because of sampling variations. The NP,
- and NP; tests have sizes much closer to nominal size with NP, being even
better than NP, in this respect. Next, when a increases from .05 to .20 the
size of N P, remains the same but the size of the VP, test increases marginally
when p = .30 or p = .20. The latter finding is easily explainable. For these
values of p and a, the J test is chosen more frequently as a component of
the NP, test, and since it over-rejects the null, it causes the NP, test to
over-reject as well.

Table 2 contains power estimates for the five tests at nominal levels 5%
and 1%, and for different combinations of the parameters o and p. A simple
inspection of the table shows that all tests are more powerful at the 5% level
than at the 1% level. The most powerful test of all is the J test, followed by
the NP,, F, NP, and J, tests regardless of the values of the parameters. As
p falls toward zero, the powers of the J and F tests tend to increase and the
powers of the J4, NP, and NP, tests tend to decrease.

When a increases from .05 to .20 the power of the tests remains relatively
unaffected except for the power of the NP, which increases. This reflects the
fact that the NP, test, in this case, incorporates the relatively powerful J test
more frequently.

Tables 3 and 4 contain size and power estimates of the five tests for the case
with p = 4 and ¢ = 2. The pattern of results in Tables 3 and 4 are qualitatively
similar to those in Tables 1 and 2 respectively. Differences though do exist in
the two pairs of tables. In comparing the results in Tables 1 and 3 a noticeable
difference is that the size of the J test is smaller in Table 3 than it is in Table
1. This result should not be surprising. It is well known from the work of
Godfrey and Pesaran (1983) that the mean of the J test is directly related
to the difference of ¢ — p. For the results in Table 1 this difference is zero,
whereas for the results in Table 3 the same difference is —2.0, thereby reducing
the mean of the J test and hence its estimated size.

Similarly, a comparison of corresponding power estimates in Tables 2 and
4 shows that the power of the tests is, in general, lower when p = 4, ¢ = 2
than when p = q = 2. Regarding the powers of the J, NP, and NP, tests
this is partly due to the fact just mentioned, namely the reduction in the size
of the J test when p = 4, ¢ = 2. Another reason is that the ) test now has
8 degrees of freedom not just 4. Consequently, in view of the Das Gupta and

Perlman (1974) result, the likelihood ratio test will not reject as often the null
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of zero correlations when it is false. This means that the relatively powerful J
test will not be chosen as often as it should be. In turn, this translates into a
lower power for the NP, and NP; tests.

An important issue is whether the observed differences in the two sets of
tables are statistically significant or just due to the inherent variability of the
simulation results. To investigate this issue, consider the size of the J test
when p = ¢ = 2 and p = 4, ¢ = 2. If the true size of the J test is the same
in both cases then the observed difference in the estimated size of the J test
should be statistically insignificant. For example, when (a, p) = (.05, .00) the
estimated size of the J test at the nominal 5% level is .151 in Table 1 and .123
in Table 3. Under the null hypothesis that the difference is zero the z—score is
4.075 [i.e., z = (.151 — .123)/((.123 x .877 +.151 x .849)/5000)%]. Therefore,
the null hypothesis is decisively rejected at all plausible levels of significance.
Similarly, for the same choice of parameters the observed power difference, in
Tables 2 and 4, is .041 (=.921 - .880), and the corresponding z-score is 6.83.
Therefore, the null hypothesis of no difference in the powers of the J test is
overwhelmingly rejected at any level of significance.

3.2.2 Cases withp=2,g=gqand p=gq=4

Tables 5 and 6 report the simulation results of the size and power estimates
of the five tests for the case with p = 2, ¢ = 4. A cursory inspection of
the information in Table 5 indicates immediately that the size of the J test
increases dramatically when ¢ = 4. This is easily explained in terms of (2.9).
Under NPO, the asymptotic null distribution of the J test involves a term
which is x2(q) distributed. As a result the larger the value of g the larger
will be the magnitude of the test for low values of p. This is exactly what
the simulation results indicate. As p falls toward zero the size of the J test
becomes progressively larger, in general, for given values of a. The exact J4
and F tests have the correct size for all parameter values, and the NP; and
NP, tests have size closer to the nominal value in all cases. However, both
tests tend to over-reject the null more when a increases from .05 to .20. The
over-rejection is due to the fact that, when a = .20, the )X test rejects the null
hypothesis of zero correlations more often, and thus the NP and NP, tests
incorporate the J test more often than they do the J4 and F tests respectively.
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Turning to Table 6, it is seen that for all parameter values the J test is
most powerful again, followed closely by the NP, and F tests. On the other
hand the NP, and J, tests are markedly inferior to the other three tests in
terms of power. Notice that when ¢ = 4 rather than ¢ = 2, the power of the
J4 test is reduced almost by a factor of 2.0; compare the powers of the J4 test
in Tables 4 and 6. This result is not surprising. It is well known that the J4
test has poor power when the true model has more non-overlapping regressors
than the false model.

As expected, when a is increased from .05 to .20, the power of the NP,
and NP, tests increases. Evidently, this occurs because, in this case, the NP
and NP, tests incorporates the relatively powerful J test more frequently.

The finding that the NP, test is more powerful than the exact F test is
important because it points to the possibility that it may be potentially useful
in practice in cases where the number of non-nested regressors in empirical
models is large.

To obtain a better idea of the properties of the five tests it is useful to
consider their power after correcting for size. The size-power tradeoff curves,
discussed above, perform automatically size correction, thus allowing a valid
comparison of the tests. We turn to the discussion of these curves next.

3.2.3 Power after Size Correction

In this section we discuss the size-power tradeoff curves of the J, Jy4, NP,
NP; and F tests. There are basically two ways to correct for size distortions.
One is to use the Monte Carlo results under the null to estimate critical values
for the non-exact tests (i.e., J, NP, and NP,;), and then compute power
using those critical values. Unless the critical values are very accurate this
approach may not be as reliable as it should be. The second approach to
the problem is to use empirical size-power trade—off curves as in Davidson
and MacKinnon (1993, Chapter 12). These curves are easy to draw if data
from two experiments, one under the null and one under some alternatives,
are available. To construct a size-power trade—off curve we just sort each data
set, independently, and then plot their ranks (on the 0 — 1 interval) for various
values of a test statistic. For example, if in the experiment under the null a

certain test was greater than 10 2% of the time, and in the experiment under
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the alternative it was greater than 10 50% of the time, the point (.02, .50)
would lie on the size-power tradeoff curve.

We have used the latter method in the present experiments. It is more
informative than the first, and it is always valid because it automatically per-
forms size correction. By overlaying the size-power tradeoff curves of the
five tests, we can see clearly their power rankings and make immediate power
comparisons.

Given the relevant size-power data, the plots were produced on a Zeta
plotter using the GPLOT procedure from the SAS/GRAPH software package.
In order to produce plots that are relatively smooth we generated data for each
experiment by setting the number of replications equal to 15000. Since the
NP, test involves two different distributions, its size-power tradeoff curve was
constructed from the p-values, discussed above, as follows. We first computed
the quantities QS; =1 — PS; and QP;=1- PP, i =1, ..., 15000, in which
PS; and PP;: are the p-values for the null and alternative cases respectively.
Then we used the QS; and QP; in place of the actual test statistics in order
to construct the size-power tradeoff curve for the NP, test. For example,
suppose that QS; > .95 8% of the time and QP; > .95 45% of the time. This
means that, at the 5% nominal level, (.08, .45) is a point on the size-power
curve of the NP, test.

Figures 1 and 2 give the size-power tradeoff curves of the five tests when
p=gqg=2and p =2, q=4 respectively. In each figure the horizontal axis
measures size and the vertical axis measures power. Each figure is constructed
for p = .10 and a = .20. Varying the values for these parameters produced
little additional information. Looking at Figure 1 it is seen clearly that the
most powerful test is the J test and the least powerful test is the J4 test. The
NP, test is more powerful than the J,4 test. On the other hand, the NP, and
F tests are very similar in power with the NP, test being marginally more
powerful when test size is greater than 15% approximately. Finally, the curves
corresponding to the NP, and F tests are much closer to that of the J test
than to that of either the J4 test or the NP, test.

Considering Figure 2 for the case with p = 2, ¢ = 4, it is clear that the
power rankings of the five tests are the same as those in Figure 2 but there is
one noticeable difference. The J, NP, and F tests become more powerful and
the J4 and NP, tests less powerful. Thus, the discrepancy in powers between
the two sets of tests becomes large, with the curves of the J4 and NP, tests
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moving closer to the 45° line emanating from the origin of the graph, and the
curves of the J, NP; and F tests moving closer to the (0.0, 1.0) point of the
graph. This is as expected, and reflects the fact that when ¢ — p is positive
the J test is more powerful and the J4 test less powerful than otherwise.

More importantly, Figure 2 demonstrates clearly the fact that the NP,
test is never less powerful and, in general, is more powerful than the F test.
This is primarily due to the fact that with a set at .20 the J test is chosen
frequently as a component of the NP, test. Given that the J test is the most
powerful test, we obtain a transmission of its power to the NP test and this
makes the latter more powerful than the F' test.

4 Conclusion

In summary, we can state the following results. The J test is by far the most
powerful of the five tests, but its size may be excessively large especially when
g is large. The J4 and F tests have the correct size but the Jy4 test is much less
powerful when g — p is positive and large. The NP, test behaves similarly to
the J4 test, and the NP, test has size close to the nominal level and behaves
similarly to the F test. Furthermore, when p = 2, ¢ =4 and a = .20, the
NP; test is more powerful than the F test. Given that the J test severely
over-rejects for low values of p and large values for g, and given the fact that
the NP, test has correct size and is more powerful than the F' test under
the conditions just stated, the N P; test may be potentially useful in practical
applications where these conditions are met.
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Table 1

Size estimates for the J, J4, NP, NP; and F tests
for the case withp=¢=2.

_——_———_—__—__——_—_—__——_—_—__—_-——_——_—

Estimated Size
a P 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

30 0.118 0.037 0063 0.016 0.074 0.022 0.065 0.016 0.049 0.008
20 0126 0.044 0.066 0019 0.069 0.021 0.057 0.012 0.050 0.011
05 .10 0.139 0.048 0066 0.018 0.067 0019 0.052 0.010 0.051 0.011
05 0.133 0.043 0.059 0.017 0.061 0.018 0.053 0.012 0.044 0.008
00 0.151 0.052 0.065 0.019 0.068 0.020 0.054 0.011 0.056 0.013

30 0.124 0.041 0.062 0.018 0.089 0.029 0.088 0.026 0.050 0.010
20 0.120 0.044 0.064 0.020 0.081 0.025 0.074 0.020 0.053 0.013
20 .10 0.142 0.048 0.064 0.018 0.079 0.024 0.066 0.019 0.051 0.011
05 0.143 0047 0.062 0.020 0.073 0.025 0.068 0.016 0.047 0.009
.00 0.143 0.047 0.062 0.017 0.072 0.020 0.065 0.013 0.051 0.009

Table 2

Power estimates of the J, Ja, NP, NP, and F tests
for the case with p=g=2.

#

Estimated Power

—d Ja NP NP, F
a _ p 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

30 0.909 0.775 0.563 0.396 0.663 0.510 0.817 0.612 0.749 0.410
20 0910 0.783 0.533 0.369 0.589 0.428 0.794 0.568 0.754 0.506
05 .10 00916 0.789 0.529 0.367 0.555 0.395 0.769 0.536 0.760 0.520
.05 0.917 0801 0.521 0.363 0.540 0.388 0.768 0.530 0.772 0.516
00 0921 0797 0.529 0370 0.547 0.387 0.762 0.524 0.764 0.516

30 0.909 0.786 0.580 0.413 0.776 0.634 0.852 0.694 0.759 0.511
20 0.915 0793 0.541 0.383 0.683 0.539 0.824 0.624 0.765 0.522
20 .10 0.916 0.788 0.532 0.368 0.622 0.465 0.797 0.588 0.755 0.514
05 0912 0785 0.527 0.365 0.601 0.443 0.790 0.580 0.756 0.505
00 0914 0.786 0.527 0.360 0.608 0.445 0.791 0.572 0.757 0.514




Table 3

Size estimates for the J, J4, NP, NP, and F tests
for the case with p=4 and ¢ = 2.

Estimated Size
J J A N P1 N P2 ____F
a P 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

30 0.103 0.035 0.062 0.018 0.065 0.019 0.063 0.016 0.049 0.011
20 0.115 0.036 0062 0016 0.066 0.018 0.055 0.012° 0.048 0.008
05 .10 0.112 0037 059 0.017 0.063 0.018 0.053 0014 0.050 0.008
05 0.120 0.036 0.062 0.018 0.064 0.018 0.051 0.012 0.047 0.012
00 0123 0048 0070 0.023 0.071 0.023 0.051 0.011 0.057 0.013

30 0.109 0.037 0.066 0.021 0.084 0.028 0.074 0.021 0.049 0.009
20 0.114 0.037 0066 0016 0.073 0.020 0.065 0.017 0.048 0.008
20 .10 0.120 0.042 0.067 0.020 0.075 0.025 0.063 0014 0.051 0.010
05 0.116 0.039 0063 0019 0.071 0.023 0.061 0014 0048 0.009
00 0.125 0.042 0067 0018 0.074 0.022 0.063 0.016 0.052 0.010

Table 4

Power estimates for the J, Ja, NPy, NP, and F tests
for the case with p=4 and ¢ = 2.

—ﬁ

Estimated Power
J Ja NP NP, F
a p 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

30 0.883 0.742 0.600 0.433 0.649 0.482 0754 0.522 0.712 0.446
20 0.887 0.744 0588 0418 0.614 0442 0.743 0.509 0.713 0.457
05 .10 0889 0742 0.562 0.399 0.579 0.417 0.722 0.469 0.709 0.459
05 0.883 0739 0548 0375 0.564 0.391 0.720 0.476 0.706 0.447
00 0.880 0.740 0.558 0.383 0.572 0.396 0.725 0.480 0.709 0.466

30 '0.886 0.751 0.609 0.436 0729 0.577 0.811 0.604 0.719 0.454
20 0.884 0747 0586 0417 0681 0.517 0772 0.547 0.715 0.461
20 .10 0.88 0.744 00561 0.383 0.623 0.455 0.767 0.526 0.708 0.450
05 0.882 0.740 0553 0.384 0.604 0.447 .0.753 0.515 0.707 0.444
00 0.889 0750 0.567 0.387 0.632 0.455 0.750 0.507 0.716 0.464




Table 5

Size estimates for the J, J4, NP), NP, and F' tests
for the case with p=2 and ¢ = 4.

e e

Estimated Size
J Ja NP, NP, —F
«a P 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

30 0.315 0.141 0.061 0.014 0.104 0.036 0.099 0.033 0.049 0.010
20 0.346 0.154 0.071 0.019 0.097 0.028 0.072 0.025 0.053 0.010
05 .10 0.336 0.154 0.062 0.015 0.075 0.020 0.063 0.015 0.044 0.009
05 0.352 0.165 0.062 0.017 0.074 0.023 0.060 0.015 0.053 0.009
00 0.344 0.157 0.032 0.018 0.076 0.023 0.060 0.013 0.052 0.012

.30 0.309 0.134 0.067 0.018 0.142 0.069 0.174 0.068 0.052 5010
20 0.326 0.150 0.060 0.016 0.133 0.051 0.13¢ 0.049 0.049 0.007
20 .10 0.343 0.154 0.062 0.013 0.120 0.043 0.105 0.037 0.047 0.008
.05 0.355 0.159 0.062 0.018 0.112 0.042 0.100 0.033 0.050 0.010
.00 0.343 0.162 0.064 0.019 0.110 0.045 0.099 0.034 0.052 0.012

Table 6

Power estimates for the J, J4, NP, N P; and F tests
for the case with p=2 and ¢ = 4.

——

Estimated Power
J Ja NP, NP, N
o P 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

30 0.996 0.982 0.344 0.304 0.496 0.385 0.919 0.782 0.888 0.701
20 0.996 0.984 0.357 0.213 0.433 0.302 0.904 0.734 0.895 0.710
05 .10 0.996 0.984 0.345 0.213 0.391 0.265 0.900 0.722 0.893 0.705
05 0.996 0.980 0.343 0.212 0.378 0.253 0.899 0.720 0.896 0.711
.00 0.996 0.984 0.346 0.214 0.380 0.252 0.895 0.721 0.889 0.697

30 0.997 0.982 0.339 0.201 0.686 0.611 0.948 0.849 0.889 0.700
20 0.997 0.986 0.357 0.221 0.584 0.489. 0.929 0.797 0.893 0.712
20 .10 0.995 0.983 0.354 0.226 0.513 0.408 0.920 0.774 0.897 0.710
.05 0996 0.985 0.359 0.215 0.488 0.378 0913 0.759 0.892 0.706
.00 0.996 0.982 0.354 0.215 0489 0.370 0.914 0.761 0.893 0.704




Figure 1

Size—power tradeoff curves of the J, J4, NP, NP, and F tests
for the case with p =.10,p=4,¢=2and a = .20
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Figuré 2

Size—power tradeoff curves of the J, J4, NP, NP; and F tests
for the case with p = .10,p =2, ¢=4 and a = .20

L and
.
[ —J

[ J
L]
-

aa 8 2 8 & 8. o a6 8.2 o . 8.8 b s 2 2a_2.8

0.0 0.1

Note: (1)

(2)

0.2 0.3 0.4 05 06 07 08 0.9

Each experiment is based on 15000 replications, n = 25 and
c=w = 2.0.

From left to right: the J, NP3, F, NP and J4 tests.

Illil]‘lll‘llllll'lIIITTUIlilllll‘llll‘llllllrtlll‘

1.0



	Western University
	Scholarship@Western
	1995

	Non-Nested Pretest Tests
	Leo Michelis
	Citation of this paper:


	tmp.1456498070.pdf.5yF34

