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Abstract

This paper presents a model of auctions in which sellers may fail to sell an object
in spite of receiving a bid above the announced reserve price. In this sense, sellers use
a secret reserve price. Such behavior is seen frequently in auctions and yet would be
sub-optimal in most existing auction models. Here, sellers have information about the
object that cannot credibly be communicated to buyers. Sellers with more favorable
information about the object’s value would prefer a higher reserve price; however, any
such reserve price would be mimicked by a seller with less favorable information. As
a consequence, a seller’s only option is to have a secret reserve price, rejecting bids
that are too low and auctioning the object in the future. The model predicts that
re-auctioned items, on average, sell for higher prices and that prices of re-auctioned
items rise as the delay in re-auctioning increases.
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1 Introduction

Auction models typically assume that the seller of an object announces a minimum acceptable
bid, known as the reserve price, prior to any bidding by buyers. This price represents a
commitment by the seller to sell if and only if the highest bid exceeds the reserve price. A
standard result in the auction literature is that, if the seller can commit to an announced
reserve price, it is always in his interest to do so: the reserve price serves to increase the bids
of buyers and so raises the seller’s expected revenue from the auction. The implication is
that the issue for reserve-price setting is not whether the seller wants to set a reserve price
- it is optimal to do that — but rather whether the seller is able to commit to this price ez
ante.

Interestingly, a feature of actual auctions is that the reserve price often is not announced
er ante, even when it would appear that the seller is able to commit. Referring to English

auctions, Ashenfelter (1989) writes:

Auctioneers are very secretive about whether and at what level a reserve price may
have been set, and there is a real art in getting the bidding started on each item
without revealing the reserve price... If you sit through an auction you will find
that every item is hammered down and treated as if it were sold. Only after the
auction does the auctioneer reveal whether and at what price an item may have
actually been sold. In short, the auctioneers do not reveal the reserve price and
they make it as difficult as they can for bidders to infer it.

Hendricks and Porter (1988) and Porter (1995) note a similar phenomenon in sealed-bid
auctions for off-shore oil and gas leases in the U.S.. In these auctions, leases are often
not sold even though the highest bid exceeds the announced reserve price. Porter reports

1



Secret Reserve Prices in a Bidding Model with a Re-Sale Option

that, over the period 1970-1979, 12.7% of all highest bids that exceeded the reserve price
were nevertheless rejected. Apparently, government decisions were being based not on the
announced minimum acceptable bid, but on some higher, unannounced reserve price. Porter
also notes that, among all tracts with rejected high bids over the period 1954-1979, 46.8%
were subsequently re-auctioned with an average delay time to re-auction of 2.7 years. The
mean value of the high bid on these tracts increased 2.5 times upon re-auction.

These observations, as Ashenfelter pointed out, raise two questions. First, why are sellers
not announcing their reserve prices if it is in their interests to do so? And second, when
sellers are not announcing their reserve prices, why do they typically use delay in sale as an
alternative means of raising the ultimate sale price? Both Ashenfelter and Porter suggest
that secret reserve prices might be used as a means of deterring collusive bidding behavior.
While this explanation has some appeal, it is not apparent why sellers would find a secret
reserve price preferable to a high announced reserve price that would directly reduce the
rents available to the cartel (as in Graham and Marshall (1986)). Ashenfelter also suggests
that a “search” motive could account for the seller’s refusal to sell to the highest bidder.
The delay in sale is then presumed to provide the seller with an opportunity to search for
a group of new, higher-valuation buyers. Vincent (1995), finally, offers an explanation of
secret reserve prices as a way for the seller to increase bidder participation at the auction
(and so expected sales revenue), low-valuation bidders being unwilling to bid when there is
a high announced reserve price. Vincent does not seek to explain re-sale behavior by sellers

when the high bid is rejected.
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In this paper, we propose an alternative explanation for the twin observations of secret
reserve prices and re-sale behavior. In contrast to the above explanations, we view these
outcomes as the result of both attempts by the seller to communicate information and
learning on the part of the buyers. The setting for our analysis is a common-value auction
model in which the seller is assumed to possess information about the value of the object
that cannot be directly transmitted to the buyers. In such a situation, one might imagine
the seller trying to signé.l his information via the announced reserve price. However, if this
announced price were to signal the value of the object, the seller would always prefer to set
a reserve price associated with a highly-valued object rather than reveal its value to be low.
Therefore, equilibrium must result in a seller with information that the value of the object
is low announcing the same reserve price as would be announced were the object of some
greater value.

In cases in which the seller attaches some intrinsic value to owning the object, the above
pooling behavior is sufficient to explain the use of secret reserve prices. In such cases, a seller
with a high personal valuation for the object may well reject a bid above the announced
reserve price that that same seller would accept were the object of lesser value to him. The
setting we examine, however, is one in which the seller attaches no intrinsic value to owning
the object, only valuing it for its re-sale possibilities (as would be the case for oil and gas
leases). A refusal to sell can then only be optimal if the seller with a high value object
expects to be able to sell it subsequently for a higher price. In a common value auction,

it is possible that, while the seller’s information reveals a high value for the object, buyers’
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information indicates that the object is of low value and so buyers submit low bids. If the
seller expects buyers to learn more about the object’s value over time, then it may be in
the interest of a seller with a highly-valued object to refuse to sell now and wait for better
information to come to light. Buyer learning, then, provides a motive for the seller’s refusal
to sell and subsequent re-auctioning.

In this setting, we find that the seller’s inability to condition his reserve price announce-
ment on information concerning the object’s value, combined with buyer learning about this
value, means that the seller will operate with a secret reserve price. That is, given the
possibility of generating greater revenue by re-auctioning the object later when buyers have
acquired more information, the seller will find it profitable to refuse to sell below some (un-
nannounced) price. This price, which is increasing in the object’s value, is the seller’s secret

1 The refusal to sell, in this case, allows a seller with a more highly-valued

reserve price.
object to signal this fact and so use this signal in combination with buyer learning to obtain
higher bids in the future. Signaling via delay is effective because learning by the buyers
makes imitation unprofitable for the seller with an object of lower value.

Our model, then, provides an explanation for the government’s decision to reject bids
above the announced reserve price (use of a secret reserve price) in offshore oil and gas leas;e
auctions. It also helps to explain other features of oil and gas lease auctions. For instance,

Porter notes that the announced reserve price is the same for all tracts in a given sale, being

set at either $15/acre or $25/acre. McAfee and Vincent (1992) argue that this announced

1 Porter notes that “the government’s rejection decision takes into account its private estimate of the value
of the tract (italics added; Porter (1995) p. 4).
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price is far too low, the optimal reserve price being around $200/acre. This pattern of
announced reserve prices, however, is exactly what our model would predict: the marginal
tracts drive reserve prices for all tracts and so $15/acre could be the equilibrium announced
reserve price. Porter also notes that sale prices on re-auctioned tracts were on average 2.5
times that of the rejected high bid on initial auction but that this re-auction price is still low
relative to accepted high bids on initial auctions. As will be seen, this pattern of sale prices
is also consistent with our model.

We note, finally, that the presence of a secret reserve price means that buyers face a
“double” winner’s curse in the initial auction of an object. There is the usual winner’s curse
associated with the fact that the highest bidder received a higher signal of the object’s value
than did all other bidders. In addition, there is a possible second winner’s curse due to the
fact that the objects that are sold initially are ones for which the buyers’ information is
optimistic relative to the seller’s. This second winner’s curse leads the buyers to shave their
bids more at the initial auction than they would at a one-shot auction.

The remainder of the paper provides more details on all of these issues. In the next
section, the specifics of the model are presented. In Section 3, the buyers’ and seller’s
optimization problems are formulated and the conditions that define the equilibrium are
derived. Section 4 discusses the implications of the model for auction behavior while Section

5 provides some concluding remarks. Proofs of the results are collected in the Appendix.
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2 The Model

A seller uses a second-price, sealed-bid auction to sell an indivisible object. There are n
potential buyers for the object where the value of n is fixed exogenously and known to all
agents. The object has no intrinsic value to the seller. The value of the object is the same
to each buyer and is denoted by V. Buyers are assumed to be uninformed about this value
but to have common prior beliefs given by thé probability distribution F(v), with v € (v, 7).
The seller, in contrast, is assumed to know the object’s value (that is, the realization v of the
random variable V).2 Prior to bidding, each buyer obtains noisy information about the value
of the object, summarized by a scalar random variable, X;, referred to as the buyer’s signal.
.The vector of first-period signals is denoted by X = (Xu,... ,X»). The signal-generating
process is described by a conditional probability distribution of the form Gx,(- | v), with
the signal for each buyer, 7, being an independent draw from Gy, (- | v). It is assumed that
the family of conditional densities {gx,(- | v)} associated with the signal-generating process
possesses the strict monotone likelihood ratio property (MLRP): for all z > z’, all v > v,
gx.(z | v)gxi(z' | v') > gxi(z | v)gxi(z | v). This condition captures the notion that the
signal is informative regarding V; roughly speaking, it guarantees that a larger value of the
signal is more likely the larger is the value of V.

The sequence of events in the model is as follows. At time ¢ = 1, a seller with an object of

2 The assumption that the value of the object is known by the seller is made to simplify the exposition. The
substance of our results would not be altered were it assumed that the seller observed a signal correlated
with V rather than the value itself, as long as this signal were more informative than the buyers’ signals.
The case for the superiority of the information held by the seller is apparent in the case of oil and gas leases,
where the government has access to the seismic information collected by all bidders on all tracts being leased
at the auction. A bidding firm, on the other hand, only has its own seismic readings on the tracts of interest
to the firm. :
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value, V = v, announces an auction and a reserve price, r(v). The reserve price commits the
seller to accepting no bid below r but does not commit the seller to selling if the highest bid
is above the reserve price. Each buyer, i, receives a signal of the value, z; € [z;,%;], drawn
from the conditional distribution Gx;,(- | v). Given the signal and any information contained
in the seller’s choice of reserve price, each buyer chooses a bid, b;1(zi,r). Having received the
bids, the seller chooses either to sell the object to the highest bidder at the second-highest
bidder’s bid (assuming that the bid is above the reserve price) or to reject all bids and not
sell the object this period. In the former case, the highest bidder obtains the object and the
game ends. In the latter case, the game proceeds to a second period. In either case, all bids
are revealed at the end of the first auction.

Should all the bids be rejected at ¢t = 1, then the seller re-auctions the object at ¢ =
2. Before this second auction, each buyer obtains a new signal, y; € [y,,7:]. The signal-
generating process in the second period shares the basic features of the first-period one:
the signals Y;,....Y,, drawn from a distribution, Gy;(- | v), are conditionally independent
and the corresponding family of densities, {gy;(- | v)}, satisfies MLRP.®> In addition, the
densities of first- and second-period signals are related by the fact that the vector of first-
period signals, Xi,...,Xn, is a “garbling” of any one of the second period signals, ;. To
be precise, it is assumed that the joint density of (V, X, .. . Xn, Y1,...,Y,) can be written

as a(V,Y1,...,Ys) - B(X1,..., Xn | Yi), for any i = 1,...,n.* This assumption is meant to

3 In what follows we use G.(-) to designate distribution functions on signals, with the subscript indicating
the random variable(s) being considered. We use H.(-) to denote a distribution involving both the value
of the object and signals, with the random variables of interest again being given by the subscript. The

expression F(-) designates the beliefs of the buyers regarding the value of the object if it sells in period ¢.
4 This concept is used in communication theory (see Kullbach (1978)), and is called “garbling” by Milgrom

and Weber (1982).



Secret Reserve Prices in a Bidding Model with a Re-Sale Option

capture the notion that the ;ignal received in the second period is at least as informative
regarding the value of the object as the complete sample of first-period signals. Such would
be the case if, for instance, the distribution of the first-period signals were the same as the
distribution of a random sample generated by adding n realizations of a white noise variable,
Z, to one of the signals Y;. This specification of the information structure incorporates into
the model the notion that buyers learn about the value of the object over time; that is, buyers
obtain not only more information in the second period but also more accurate information.

Based on this new information and the fact that the seller refused to sell at ¢ = 1,
each buyer places a bid at the second auction. The bid for buyer ¢ at ¢ = 2 is denoted by
b; 2(r, by, y;) where by is the vector of first-period bids. At this point, since it is assumed
that there are no future periods, the seller sells the object to the highest bidder at the
second-highest bidder’s bid as long as this bid exceeds the reserve price.

All buyers and the seller are assumed risk neutral. Buyers choose bids each period
to maximize the present value of their expected surplus. The seller determines a reserve
price and re-auction decision to maximize expected sales revenue. All agents discount future
returns at a common rate, 6, with 0 < § < 1. Equilibrium strategies are those that constitute

a Perfect Bayesian Equilibrium.
3 Strategies and Equilibrium Conditions

The presentation of equilibrium behavior is divided into two parts, corresponding to the two

main issues outlined in the Introduction: i) the equilibrium in announced reserve prices and



Secret Reserve Prices in a Bidding Model with a Re-Sale Option

ii) the seller’s equilibrium secret reserve price and re-auction policy. This latter issue, of

necessity, will require a presentation of the buyers’ equilibrium bidding strategies.

3.1 Announced Reserve Prices

It is fairly immediate that any equilibrium announced reserve price strategy must involve
some pooling on v. To see why, suppose, by way of contradiction, that announced reserve
prices completely revealed the value of the object. Then, buyers could correctly infer v from
the announced reserve price and would bid as if they had perfect information; that is, each
buyer would submit a bid of v. Clearly, a seller with a low v could profitably deviate from
the proposed reserve price schedule by announcing the reserve price that would have been
chosen by a seller with a high v. Therefore, this cannot constitute an equilibrium. We

summarize this result below as:

Lemma 1 In equilibrium, the announced reserve price r : [v,7] — [0,7] cannot be sirictly

monotonic in the seller’s type.

As for the form that pooling takes, one possibility is that all seller types announce the
same reserve price. For such complete pooling to obtain, it is sufficient for the buyers
to believe that, if another reserve price were announced, then the seller is of type v with
probability one. The buyers would then all bid v, making such a deviation unprofitable
for any seller type. This type of equilibrium is the one examined in what follows, with all
seller types adopting a common announced reserve price of v. Consideration of this case is

at least partly motivated by the evidence for oil and gas leases auctions presented in the
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Introduction. In that context, a single reserve price is adopted for all tracts in any given
sale. Setting the announced reserve price to the lowest type is a technical convenience; since
buyers would never bid below v, it ensures that the reserve price is not binding.

There are other potential equilibrium announced reserve price strategies involving only
partial pooling; i.e., the same reserve price is set by seller types from a strict subset of [v,7]
but reserve prices differ across subsets of seller types. If each subset of seller types announcing
a common reserve price is a connected set, then the announced reserve price for any set of
seller types must exceed the infimum of that set of types, except for the set containing .5

For this case, the analysis of buyer and seller behavior presented below can be applied to
each connected subset of seller types simply by weighting the seller’s expected profit by the
probability that the high bid exceeds the announced reserve price and by adjusting buyer
bidding functions so that the reserve price serves as a binding lower bound on bids. If the
subsets of seller types adopting a common reserve price is not connected, then, in additon,
the support of the distribution of V would have to be modified to account for this feature

of the equilibrium.

3.2 Secret Reserve Prices and the Re-auction Decision

That some pooling on announced reserve price must always occur in equilibrium, coupled
with the fact that the object has no intrinsic value to the seller, means that there may be

circumstances in which the seller can gain by refusing to sell to the highest bidder at ¢ =1

5 Indeed, if this were not the case, sellers of types [v!, v?] C [y, 7] announcing a reserve price r! < v* could
expect a high bid in excess of v! with probability one. This, in turn, would imply that a seller with an object
of value v < v! would prefer to announce a reserve price of r! rather than another reserve price which would
yield a high bid below v! with certainty.

10
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and re-auctioning the object at t = 2. Clearly, such will be the case whenever the seller’s
discounted expected profits should he wait and re-auction the object exceed the proposed
price for the object in the first period (the second highest bid). The place to begin an
analysis of the seller’s decision to re-auction, therefore, is in the second period with the
buyers’ bidding strategy. Doing so allows us to determine the expected profits when the
seller waits and re-auctions the object and the circumstances under which a refusal to sell
at t = 1 occurs. The seller’s re-sale decision, in turn, allows us to characterize the buyers’

bidding behavior at ¢ = 1.

3.2.1 Second Period Bidding Behavior

Suppose, then, that the seller has refused to sell at £ =1 and now must re-auction the object
at t = 2. Since the seller has no future opportunities for re-sale and attaches no intrinsic
value to the object itself, the highest bid at ¢t = 2 will be accepted. This auction, therefore,
is described by the standard second-price, common-value auction model. As has been shown
elsewhere (see Migrom and Weber (1982) or Wilson (1992)), the equilibrium strategy is for
each buyer to bid the expected value of the object, given all the information available to
him. As in the standard case, the information available to buyer ¢ includes his signal y;, and
the fact that, should he submit the winning bid, all other buyers value the object less than
he does. In addition, from the first auction, each buyer 7 can infer the vector of first-period
signals, z = (zy,...,2y,), from the announcement of the first-period bids and the first-period

bidding function (which will be shown to be monotonic). Finally, the seller’s refusal to sell

11
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may convey information about the value of the object.

A consequence of the assumption that X is a garbling of each Y; is that each buyer’s
value, and so the equilibrium bidding function, is independent of X at ¢ = 2. Intuitively,
the reason for this result is that X being a garbling of each ¥; means that the first-period
signals provide no additional information, either about the object’s value or the highest
signal among bidders other than ¢, beyond that available through Y;. As a consequence,
each buyer’s expected rents (the difference between the expected value of the object and
the expected value of the second highest bid) are independent of first-period signals and so,
therefore, is each buyer’s bid. This result on second-period bidding behavior is given in the

following lemma.

Lemma 2  Buyers’ bidding behavior in the second period is independent of the vector of

first-period signals, z.

An implication of Lemma 2 is that the additional (i.e., beyond Y;) information provided
by the first auction outcome is the information about the value of the object conveyed by the
seller’s refusal to sell. Let F(v), defined on the support [vL,v"] C [u,7], be the probability
distribution for the value of the object that updates the prior probability distribution F(v)
on the basis of the seller’s equilibrium re-auction strategy and the fact that the seller refused
to sell to the highest bidder at ¢ = 1. This distribution represents the beliefs that buyers hold
regarding the value of the object before each gets his private signal; it is the distribution
that buyers will use, in conjunction with second-period signals, to calculate the expected

value of the object. The strategic situation faced by each buyer at ¢ = 2 is then captured by
12
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a one-shot common-value auction where the prior probability distribution on V is given by
F3(v) and where each buyer observes one of n conditionally independent signals Y3, ..., Y.

To define the buyers’ bidding strategies, we need only define the expected value of the
object for the above auction. Using superscripts to denote ordered samples of n bids or
signals, and using the combination of a “~” and a superscript to denote an ordered sample
of n — 1 observations where the bid or signal from the agent under consideration has been
omitted, we have ¥1 > ¥2 > ... > Y"1 as the ordered sample of second-period signals for

all bidders other than i. The expected value of the object is then given by:

wy(yi,u, F3(-)) = E[V | Yi=yi, Y =u, V ~ F(v)] (1)

which is the expected value of the object for  when his signal has value y;, the highest signal
among all other bidders is u and the common beliefs on the value of the object are given
by Fy(-). Then i’s strategy in a symmetric equilibrium is to bid b3(y:) = wa(y:, yi, F2(-))-
Because the family of densities associated with the signal-generating process {gy;js(- | v)}
satisfy MLRP, ws(-,-, F5(-)) is increasing in its first argument so that the buyer with the
highest signal is awarded the object. The price is the value of the object to the buyer with

the second-highest signal, yielding second-period seller revenue of ws(y?,y%, F3(+)) = b.

3.2.2 The Seller’s Re-Auction Decision

Knowing that second-period sales revenue is defined as above, the seller can decide whether

to sell to the highest bidder at ¢ = 1 once bids at ¢ = 1 have been submitted. Letting

13
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p(b2 | v) be the probability that b7 is accepted by a seller of type v, the seller’s problem is

’}'(rzgaiic) p(B | v) b2 + (1 —p(bd|v))é ./,,2 wa(y%,y%, Fa(-))gyaw (v* | v)dy® (2)

The expected revenue from the auction at ¢ = 1 is the second highest bid, b3, weighted by the
probability that the seller accepts this price. The expected revenue from the auction at ¢t = 2
is the expected price weighted by the probability that the seller has refused to sell at ¢t =1
and by the discount factor 6. Defining K(y?, F2()) = [y wa(y2, y2, Fa(+))gyaw (2 | v)dy?,
then the first-order condition of the maximization problem in (2) yields
0, when b2 < §K(y?, F5('))
p(8 | v) =1 €[0,1], when & = 5K(y?, F("))

1, when b2 > §K(y?, Fa(+))

These conditions say that, for given second period beliefs F3(-), the seller accepts (refuses)
the price from the auction at ¢t = 1 whenever its value exceeds (is less than) the discounted
expected price from the auction at ¢ = 2. When these two values are just equal, the seller
is indifferent between accepting and rejecting the first-period price. Because the family of
densities {gy>v (- | v)} satisfies MLRP whenever {gy;v (- | v)} does, if there exists a value of
v for which b = §K(y?, F3(-)), this value is unique.

We are now able to characterize the seller’s sell/re-auction strategy. It is given below as:

Proposition 1 Suppose that in the first-period auction each buyer uses the increasing bid-
ding function bj(-). Given the buyers’ beliefs in the second auction, Fy(-), the bidding strategy

in the second auction, b3(-),and a second highest bid in the first auction, bj(z?), the seller

14
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accepts (refuses) the first auction price whenever v is smaller (greater) than v*(z?):

0 when v > v*(z?)

p(b? | v) =1 €[0,1] when v =v*(z?)

1 when v < v*(z?)
An implication of this proposition is that buyers must recognize that, if the object is sold at
t = 1 at price bj(z?), then its value is no higher than v*. Similarly, if the object fails to sell
at this price, then its value is at least v*. It is in this sense that refusal to sell acts as a signal

of value. Second-period beliefs after a refusal to sell are given by Fo(v) = Pr(V <v |V 2>
o Flv) - F(v')
V)= = F@)

any prior F(v), a buyer’s second-period valuation, ws(s, ¢, F2(-)), can be more conveniently

. Further, because v* completely determines second-period beliefs, given

expressed as Wa(s,t,v*).

To see the intuition behind this result, consider a first-auction price of bj(z?). By def-
inition, a seller with object of value v* is just indifferent between accepting and rejecting
the bid. Now consider a seller of type v > v*. Because the family of densities {gy;,v(- | v)}
satisfies MLRP, the densities {gy2jv(- | v)} do as well. As a consequence, the conditional
distribution of the second highest signal, Y2, puts more weight on higher values of the signal
when the value of the object is v than when it is v*. This fact, combined with the fact that
the second-auction bidding function is increasing in the buyer’s signal, means that a seller
of type v can expect on average higher bids in the second period than a seller of type v*.
This immediately implies that a seller of type v > v* has a higher expected revenue in the
second auction and so should reject the first auction bid. A completely analogous reasoning

can be used to argue that a seller of type ¥ < v* would accept the first auction price.

15
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Proposition 1 can be used to define the secret reserve price policy for the seller. A seller
with an object of value v*(z?) is just indifferent between selling and not in the first auction,
given that the second-highest signal and bid were z? and b3 (z?) respectively. One can show
that, given the equilibrium second-period beliefs held by the buyers, F(-), the function v*(-)
is increasing whenever the first-period bidding function bj(-) is increasing. This means that it
is possible to define an inverse function, x(v), giving, for any value of the object, the second
highest signal that would make a seller of type v indifferent between accepting and rejecting
the first-period price. The secret reserve price for a seller with object of value v is then given
by b;(x(v)); that is, by the bid that an agent having the signal x(v) would submit. Because
the function v*(-) is increasing, its inverse is also. This fact, combined with the fact that the
first-period bidding function is increasing, means that the secret reserve price increases with

the value of the object. The result is summarized in the following proposition.

Proposition 2 In equilibrium, a seller of type v has a secret reserve price of s(v) = bj(x(v)),

where v*(x(v)) = v, and where s(v)is an increasing function of v.

Clearly, for Propositions 1 and 2 to be relevant, it must be that the bidding function
employed by the buyers at ¢ = 11is increasing and that there are circumstances for which the
value v* is interior to the interval [v,7]. If no such v* exists, then either the object will never
be sold at ¢t = 1, or it will always be sold at ¢ = 1. In the former case there is essentially no
auction at ¢ = 1; in the latter case a secret reserve price is never used.

We turn, then, to the consideration of buyer bidding behavior at ¢ = 1 and the cir-

cumstances under which an interior value of v* exists. Recall that at the start of the first
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auction, each buyer receives a private signal X;. Further, buyers know the (uninformative)
announced reserve price, r = v, and the prior distribution of the value of the object, F(:).
To determine the bidding strategy for buyer 7, we assume that all other bidders are using
the bidding function bj(zx), k=1,...,n; k # ¢, and that this bidding function is increasing.
We later show that b?() is indeed the equilibrium bidding strategy and that it is increasing

in Z.

3.2.3 First Period Bidding Behavior

To proceed, note that, for any given bid b;, for buyer i, there are four relevant outcomes
to be considered. If the seller awards the object to the highest bidder in the first auction,
either bidder i has the highest bid, b;; = b}, (outcome 1) or not (outcome 2). These are the
usual outcomes of a one-shot auction. If the seller decides to re-auction in the second period,
bidder i’s expected rents only accrue to him in the second period. Given that the second
period bidding behaviour is independent of the first period signals, bidder ¢’s bid in the first
period only affects his second period rents when his bid is used to shape the second period
beliefs formed on the basis of the seller’s re-sale strategy. The set of seller types that find
it profitable to re-auction is a function of the second-highest first-period bid, b2. Therefore,
the other two relevant outcomes are that the seller decides to re-auction, and that bidder :
has submitted the second highest bid, b;,; = b2, (outcome 3) or not (outcome 4).

If the seller decides to sell the object in the first period. bidder 7 only earns positive rents

when he submits the highest bid (outcome 1). This outcome occurs when: first, buyer ¢’s
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bid, b;,, exceeds the bid submitted by the buyer holding the highest signal among all buyers
but 7, b(Z!); and second, when the seller would not find it profitable to re-auction in the

second period, v < v*(Z!). Letting:
wi(zi,t, Fi()) = Walzit,07) = E[V | Xi=2, X' =4,V ~ Fy(v)] 3)

where Fy(v) = Pr(V < v |V < v¥) = g(—(;%, then :’s expected rents can be written as

follows:
E[(V - 5;(X") I{bia > (X", V < V(XYY | Xi= ]
(63)7 (bi)
= [ ety ()~ KO Py 070 |2t 9305, 20) o @
5

These rents give the usual expression for rents in a one-shot common value auction when the
beliefs of the buyer are Fj(-), but weighted by the probability that these rents are realized.
This probability is the probability that v < v*(Z?).

Should the seller decide to sell only upon re-auction, then bidder 7 only has positive rents
if he submits the highest bid in the second period. These rents depend on bidder #’s bid in
the first period, b;; whenever this bid influences the second period beliefs, F(v)=Pr(V <
v | V > v*((8)"1(8%))). If bidder ¢ submits the second highest bid at ¢t = 1, (outcome
3), then his bid determines directly the lower bound of the support of second-period beliefs
about the value of the object. If i submits any other bid, this bid still influences expected

rents if it constrains the possible values that the second highest bid could take. Such occurs

if i submits the highest bid in the first period (which places an upper bound on b?) or the
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third highest bid (which means that b2 > b;;). These are the only two events from outcome
4, b;y # b2, for which the expected rents will be a function of ¢’s bid.

Letting T be the median of {X?,X?,((6;)""(bi1))}, the rents from outcomes 3 and 4

result from the following expectation:
E [ (V- WP, P,07() I{ba>Wo(Y",7,0°(D), V20" (D)} | Xi== |
= E { E [(V-wf,7,0()
CI{bip > Wa(FLPL,0%(D)), V2 0 (D)} | PLYL,XLXY | Xi=ai |
= E { E [M#'\D| P %XX] | Xi=a }
where:

M(PLT) = (V = Wo(PL,P,07(D)) - I{biz > Wo(Y!,¥1,07()), V 2 0°(T) }

The inside expectation above divides into three terms, each corresponding to one of three
mutually exclusive events: the buyer submits the second-highest bid, the highest bid and

the third-highest bid, respectively, in the first period:

E [ MELD) - I{X > )7 (bia) > X} | PL%,X,X7]

+ E[ MELT) - I{()7(bia)> X' > X} | 71.Y, X', X7

+ E[ MPLD) - I{X*>X*> (8)) 7 (bia)} | 7,%,X, X7 ()
Finally, let:

Ry(Y, ¥*,0%(T))

= W%, PLo(D) - Wa(PL P (D)] - L= Py (D 171,70 (6)
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Recalling that Wa(y, yx,v*) is the equilibrium bidding function in the second period and
that Wa(y;, 7', v*) is the expected value of the object for buyer ¢, given his signal y; and the
highest of the other signals §?, this equation expresses the second period rents for bidder ¢,
weighted by the probability that the value of the object is such that the seller decides to
proceed to a second auction. Then, using Ry(Y;, V1,v*(T")) defined in (6) and equation (5),

the expected rents for outcomes 3 and 4 can be expressed as follows.

zv B (bia) [T p(53) 7 (bi2)
R i "l,vs b- -1 b{
'/(5;)—1(1);,1)-/ /!‘, /1.- 2 (4 7 07((8]) 7 (8:0)))

Zi

al a1 2 ~1 ~2 g~1
: g}q?:f:qui(yi’y ,E2,2% | z;) dy’ dyi d3° dz

) bia) [T T (63)7  (bi2)
+[ /< LL Ra(ys, 7', 07(3"))

z; b3~ (bin) Yy, Yy,

. g‘,‘?,f,}?zlxi(y;,ﬁl,ﬁl,:‘fz | z;) dg* dy; dz? dz?

= = (W (3)7 (bi2)
¥ ‘/ -/ ./ / R ) Aly v*(z!
6 (bia) J=2 Jy, Jy, 2(yi, 7%, v (EY))

: gy'.?xfqux‘.(yia gl, 51152 | .’L‘g) dgl dy; dz' dz? (7)

Total discounted expected rents for buyer i are given by the sum of (4) and (7), with the

expression in (7) weighted by the factor §/n. The first-period bidding function is determined

by differentiation with respect to ;; of total rents. Using that, in equilibrium, (8)7 (bin) =
z;, the first order condition gives the equilibrium bidding function as:

bi(zi) = Wl(x;,x;,vf(x;)) + {é} (8)

n

Tz w (63)7 (b2.0)

X,
ORa(yi ¥ v*(zi)) dv° oo (.7l 3 3 21 00, 3245
!!J yf 4 "‘;’,,." z g;, g)/..YIXlX2|V(yta y‘,xl, z? | v) dyldy,dzzdml
P26 =i

FV|X.'21 (v'(:z:,-) I xi,xi)gfxlxi(mi l 1:,')
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It can be shown that, if v* is interior, the expressic;n %—% < 0, implying that j(z;) <
Wi(z;, zi,v*), the equilibrium bid in a one-shot auction with V distribufed on the interval
[v,v*(z;)] according to the function Fi(-). That is, when a secret reserve price is used,
bidders shade their bid below the value they would bid were they certain that an object
with a value of at most v* were to be awarded. This shading of bids with respec.;t to the
relevant one-shot context results from the fact that, while raising the first-period bid creates
information regarding the value of the object should the auction proceed to a second period,
this information is public and so cannot be exploited by bidder :. In essence, the extra
information causes all other buyers to bid higher in the second-period, thereby dissipating
any rents ¢ might obtain from the improved information in the second period.

Note also that first-period bidding reflects two winner’s curses. Asin a standard common-
value auction, being awarded the object means that the bidder received the highest signal
and thus held the most optimistic estimate about the value of the object. In addition,
winning at this auction means that the seller did not find it profitable to wait to re-auction
the object. This fact implies that the signal obtained by the second highest bidder exceeded
x(v) and that the highest bidder’s signal was even higher. Thus, the buyer information was
sufficiently optimistic that it was in the seller’s interest to forgo the opportunity of additional
buyer learning and the signaling value of refusing to sell. In constructing a first-period bid,
the buyer must take account of this additional information contained in winning the object;

Finally, one can check that the equilibrium bidding function implied by (8) is an increasing

function. To do so, one need only substitute into (8) the value implied by the seller’s first-
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v.
oz;

equation defining bj(z;). The solution for the bidding function may take any one of three

order condition for the expression . This substitution yields an ordinary differential
possible forms. In one, the solution is such that v* = 7 for all possible values of z;. This
outcome would occur, for instance, were § very close to 0 so that it never paid the seller to re-
auction at ¢ = 2. In this case, b7(z;) = Wi(zi, z:,7) and so the bidding function is increasing
in z;. A second possible solution results in v* = v for all possible z;. This outcome would
occur were § = 1. In this case, b](z;) = v and so the bidding function is weakly increasing in
z;. The final possibility is that the solution results in a bidding function such that, for some
values of z;, v* is interior to the interval [v,7]. In this case, it can be shown that 4}'(z;) > 0
for all interior v*. This fact, in conjunction with the fact that v* is an increasing function of
b, implies that the bidding function is increasing for all z; greater than the smallest value of
z; such that v* is interior.® For all z; less than this value, b7(z;) = » while for all z; greater
than this value b3(z;) > v and increasing in z;. Thus, in all cases, bj(z:) is an increasing

function. These results are summarized below.

Proposition 3 Ifv* > v, then the equilibrium first-period bidding function b3 (y:) is strictly

increasing. The bidding function is increasing at when v* = v.

To this point, we have been assuming that the seller employs a secret reserve price policy.
For such to be the case, not only must the first-period bidding function be increasing, but

»* must be strictly interior to the interval (v, 7] (see Proposition 2). As the above discussion

6 Since v* is an increasing function of b, either v* will remain interior for larger values of z;, in which case
by > 0, or v* =T, in which case bj(z;) = Wi(zi,zi,v"). Moreover, once v* = 7, it will remain there for all
larger z;. Thus, the sets of signals for which v* is either interior or equal to 7 are each connected sets and
the union is a connected set.
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indicates, this latter condition is not always satisfied. In particular, when § is either very
large or very small, v* will be equal either to v or T respectively. In the former case, no sales
will ever be observed at t = 1 while in the latter no re-auctioning will ever occur. It is also
the case that an equilibrium in which v* = 7 can be supported even when § is not small by
the appropriate specification of beliefs. In particular, such an equilibrium can be supported
by beliefs requiring that any refusal to sell at ¢ = 1 signals a value of v with probability
1. With these beliefs, it would never pay the seller to refuse to sell at ¢ = 1 and so the
equilibrium is supported.

If one rules out such beliefs and imposes, instead, that beliefs when v* = 7 are the limits
of beliefs as v* approaches 7, then one can provide conditions under which v* lies strictly
between v and 7: the seller adopts a secret reserve price policy. This condition is a joint
condition on & and z;, specifying features of the signal-generating process and time to re-
auction such that the seller uses a secret reserve price. The condition is given below in

Lemma 3.

Lemma 3 For any z2 € [z;,%;| such that:

Wl(xza $2,5) < § < v
) Sz Wa(y?, 4%, 2)gy2v(y? | v) dy?

then v* € (v,T) and the seller uses a secret reserve price policy.

Clearly, § = 0 or 1 violates the above condition and so, as noted previously, a secret reserve
price policy is not employed. For intermediate values of 8, the condition is likely satisfied if

the second-period signal generating process is very informative for low values of the object. In
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this case, expected second-period revenues for a seller with object of value v (the denominator
of the upper limit of §) will be close to v and so the upper limit will be close to 1. Intuitively,
if the second-period signal is informative for low values of v, it is in the seller’s interest, when
v is low, to sell in the first period when there is less information rather than waiting. This
means that delay will be a useful way of signaling for sellers with objects of higher value and
so they will employ a secret reserve price (being unable to signal through the announced

reserve price).
4 Implications of Secret Reserve Price Policies

What are the implications for observed auction behavior when the seller employs a secret
reserve price policy? First, note that in such equilibria buyers bid at most the estimate of the
value of the object in any period. In the initial auction this value could not possibly exceed v*
if the bid is accepted; in the re-auction this value must surely exceed v". It follows, therefore,
that if there are two auctions in equilibrium, the bids in the second auction must exceed the
ones in the first. It is worth noting that this result is consistent with the observations of
Hendricks, Porter and Spady (1988) and Porter (1995) for the sealed-bid auctions of drainage
and development leases on federal lands in the U.S..

Second, consider what happens if § is decreased. As there is no natural interpretation
of a period length, a reduction in é can be interpreted as an increase in delay between the
initial auction and the re-auction. This increased delay might be due to an increase in time

until buyers learn additional information about the object. Alternatively, one might think
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of this delay as having been the result of a change in re-auction policy by the seller.” In any
event, Proposition 1 implies that an increase in delay to re-auction (a decrease in § ) results
in an increase in the value of v* for any given bid, bj(z?). The implication of this is that, for
any given (potential) selling price, the object is more likely to be sold at the intial auction
as time to re-sale increases. Further, if the object is not sold, the sale price will, on average,
be higher the longer the delay to re-auctiuon (the lower is 8).

More interestingly, the same is true when one conditions on first-period signal rather
than the bid. That is, even allowing the first-period bidding function to adjust to a decrease
in 6, v* increases for any given signal (the function v*(z?) decreases with §). This point
can easily be illustrated via a diagram. Consider Figure 1. There, the locus labelled S gives
first-period bids and associated values of v*, the seller type just indifferent between accepting
the given bid and rejecting it. From Proposition 1, this locus is upward sloping. The locus
labelled FOC gives the first-period bid and v* pairs that satisfy the first-order condition
(8). In the neighborhood of equilibrium, this locus may be either downward sloping, as in
Figure 1A, or upward sloping, as in Figure 1B; if it is upward sloping, however, second-order
conditions imply that it is less steep than the locus S. The intersection of these two loci
gives the equilibrium values of v* and first-period bid for any given signal. Now, consider
the impact of a decrease in é. From equation (A4), the locus FOC is independent of é, while,
from above, the locus S shifts right as § decreases. The result is that, regardless of the slope

of the locus FOC, v* increases. Thus, for any given first-period signal, an increase in length

7 Under this interpretation, the change in policy must not be related to the seller’s information regarding
the value of the object. If it were, then buyers would want to draw inferences about the seller’s information
from the delay to re-auction. This latter problem is a subject of on-going research.
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of time to re-auction leads to an (expected) increase in second-period sale prices.

This feature of the equilibrium provides a potential means of testing this model relative
to a search model of auction behavior. In particular, consider an alternative interpretation
of observed seller behavior involving a private values model in which the seller’s refusal to
sell is simply the result of his searching for a new set of buyers (new draw of privateA values).
Under both this interpretation and our model, increased delay in time to re-auction would
result in more intial sales. However, under the search interpretation there should be no
correlation between exogenous increases in delay and ultimate sale price. There should also
be no correlation between number of auction attempts and sale price either. Under our model
sale price should be positively correlated with both delay time and number of re-auctions.

The model also has implications for observed bids and values of (initially) unsold objects.
Porter notes that, in the case of oil leases, the “mean high bid on tracts that were sold ($6.07
million) is more than seven times that on tracts with rejected high bids (80.82 million)”.
From these data Porter concludes that the unsold tracts were “marginal tracts”. These
observations actually accord with our model. In particular, Proposition 1 implies that low
initial bids are typically rejected while high initial bids are typically accepted. Further,
when low initial bids are accepted, they are accepted by seller’s having little to gain, either
through buyer learning or signaling, from re-auction. Finally, since the bidding function is
increasing in the signal, low bids are associated with low signals and these are more likely
when the value of the object is low. In total, then, the model predicts that i) accepted intial

bids will be high on average, ii) rejected intial bids will be low and iii) the sellers rejecting
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intial bids are likely to have lower valued objects (low signals are more likely when v is low)
but still objects of such value that the increase in price resulting from re-auctioning makes
this decision profitable. This last implication suggests that, upon re-auction, price should
rise significantly but, because the intrinsic value of the re-auctioned object is still low, not to
average levels of objects sold intially (where the intrinsic value is, on average, high). Based
on our model, then, it is not surprising that the high bid on rejected tracts was quite low
and that, even after re-sale, the high bid is low relative to that on tracts sold intially (bids
on re-auctioned tracts increasing approximately 2.5 times). This outcome is what would be

expected given the selection process that is generating the data.
5 Conclusion

This paper has provided a model to explain a seller’s use of a secret reserve price policy in a
common-value auction. Because the seller holds information on the value of the object to be
sold that cannot be directly and credibly transmitted to the buyers, he sets an announced
reserve price that, in equilibrium, may prove to be too low. As a consequence, it may be in
the seller’s interest to refuse to sell to the highest bidder at the auction and wait to re-sell
the object later. In the presence of buyer learning about the object’s value, refusal to sell
becomes a means by which the seller can signal his information to the buyers. The result
is that the seller adopts a secret reserve price policy. The model makes several predictions
about the pattern of bids at initial and re-sale auctions and these predictions seem to accord

well with observed bids in offshore oil and gas leases.
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6 Appendix

This appendix. contains proofs of all lemmas and propositions in the text.

Proof of Lemma 1. If r(v) is strictly monotonic, then there exists an inverse mapping
v(r) which is also strictly monotonic. If the announced reserve price schedule r(v) were an
equilibrium strategy, then upon observing a reserve price r, buyers would infer that the seller
is of type v(r) with probability one. Each buyer would submit a bid equal to v(r) and a
seller of type v would obtain sales revenue of v. In particular, the announced reserve price
strategy under consideration requires a seller of type ¢ € [,7) to announce r(%). However,

the seller can profitably deviate by announcing r(7) since he would then obtain sales revenue

of 5>% QED.

Proof of Lemma 2.  Suppose that all buyers but i = 1 use the bidding function b3(yx).
This function has buyer k’s second-period signal yx (k = 2,...,n) as its only argument. The
reserve price r = v is not a binding lower bound on the range of possible bids, and it does not
convey any information to the buyers, so it can be omitted without loss of generality. The
vector of first-period signals, z = (z1,...Zn), is also omitted. We will show that this implies
that the expected rents for buyer 1 are independent of z. Therefore, buyer 1’s optimal bid is
independent of z also, and the assumption that the bidding function b3(yx) is independent
of z will be verified in equilibrium.

The expected rents for buyer 1 are:
E[(V-5Y) I{ta> (7Y} | Yi=w,X =2]
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where ¥! designates the first order statistic of the sample of second-period signals for all
buyers excluding buyer 1, and b, 2 is buyer 1’s bid at ¢ = 2. Given the information conveyed

by the seller’s decision to re-auction, buyers update the prior distribution on V to Fy(v) =

F(v) - F(v")
1-F(v")

from both periods will be updated to Ay xy(V, X,Y) = 1____}@_,51;‘, xv(VXY). This implies

(see Proposition 1 for details). The joint density of the value and the signals

that the updated density kv xy(V, X,Y) still has the multiplicative form &(V,Y)B(X|Y;) for
i =1,...,n as a consequence of the garbling assumption. This implies that buyer 1’s

expected rents can be written as follows:
o e((63)71)(b1.2) cw T
,[,1. /!; (v = b3(2)) hVT"IXYI (v,t ]| Z1y.e ooy Znyy1) dido
For these rents to be independent of z, it is sufficient to show that:

hv?qu‘(vagl | Z15eeesZnstn) = hV?*lY, (v,gl | 91)

where:

hy?lxyl (‘U, gl, Tiy+++9Tny yl)
§XY1(331, vee 7xn1yl)

hv?qu‘(vag‘ l xh"-vmn’yl) =

Given that
TEVXY(”, Tlyees9TnaYiy.-- ’yn) = &(vayla oo 1yn)ﬂ($l, cesyZn I yl) (v,:z:,y) €X

then:

&(v,y)B(z | y1) when (v,z,y) € T and §' = maxy;

hvxyfn ('U, I, Y, gl) =
0, otherwise.

which implies that:
B(z | y1)a(v, y) I{y' = maxy;}

hypixy, (08 | 2:3) =
VY1IXY ’ ’ .o -~
l ﬁ(z l yl) {,yz..-yneg a(v, y) dyn e dyzdv

o1 )
y =maxy
J#1 !
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LS8z 1 01) don... dza) &(v,)I{5 = maxy;}

[!1 z{ B(z | y1) dzn .. d:c1] {'y, ";,neg &(v,y) dyn ... dy2dv

kS R
=max
v I#1 Yi

hv?x H A ('U, gl l yl) =

QED

Proof of Proposition 1 Let @ C [v,] be the set of types indifferent between accepting

and rejecting b3:
veEQ & vewT and B =6 /2 wa(y?,y%, Fa(-))gyav(y? | v)dy® (A1)
Yy

If Q # 0, then Q is a singleton. Indeed, if we suppose instead that ¥ € @ and ¥ € @, and,

without loss of generality that © > ¥, then this leads to the following contradiction:

B = 6 [ wn@’ s BOevawl” | 9y’

> 6 /y, wa(y?, %, Fa(-))gvapv (v | 5)dy?

The inequality follows immediately from the fact that wo(y?, 2, F2(+)) is increasing in its first
argument, and from the fact that whenever the family of densities {gy2jv(- | v)} satisfies
the strict monotone likelihcod ratio property, it is also true that Gyzjy(- | ©) dominates
Gyzv(- | ) in the sense of first order stochastic dominance (see Milgrom (1981)).°

Thus, if @ # 0, there is just one type for which (A1) is satisfied. This implies that (A1)
implicitly defines the seller type who is indifferent between accepting and rejecting the first-
period bid as a function of the first-period bid, v*(b2). If the first-period bidding function is
increasing, then the same equation also defines v*(z?) = v=((b;)~"(42)). The reformulation

of the first order conditions is then immediate. =~ QED

8 We also assume that the range of y? is independent of the realization of V.
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Proof of Proposition 2 Given the acceptance rule of the seller, the second-period beliefs
of the buyers are completely characterized by the priors F(-) and the range of possible values
of V. Suppose that second-period beliefs are defined on the range [vs,7] and let vr be the

seller’s true type. We can now define:

K(yzi Fy()) = J(vs,vr)

W2(as ba 'UB) = w2(a7 b7 F?())
Let > v. Then

1©,9) = [, Wy y* O)arw (v | D) d?

> J(3,7) = /,,z Wa(y?, %, 0)gyzv (y* | 5) dy’

> J(@,5) = [ Wale’ .y Bavan(* | 9)dy?
where the first inequality follows from stochastic dominance, and the second follows from
the fact that, straightforwardly, the second-period price, Wa(y?, %, vB), is increasing in vp.

These inequalities have two implications. First, J(vg, vr) is increasing in both its arguments.

. Second, given the equilibrium second-period beliefs for the buyers, v* is the solution to:
b¥(z?) — 6J(v,v")=0 (4)

and (4) implicitly defines the function v*(-). Assuming differentiability of the required func-

tions yields:

ob;

6'0‘ _ axi

dz? —_-6—6—J('-) > 0
v vy

31



Secret Reserve Prices in a Bidding Model with a Re-Sale Option

. 1 ax . 0b Os
This implies that B > 0. Since Yy > 0, then T >0. QED.

Proof of Proposition 3
The expression for the rents can be derived in the following way. First, consider the rents

resulting from outcomes 3 and 4. To see how (7) is obtained from (5), consider the first term
of (5).
E [(V = WP, 74, 07(()7 (5:))))
H{big > Wa(P1L 71, 07((81) 7} (Bi))s V 2 v7((61) 7 (bin))s }

%
X > (5) 7 6a) > X%, } | 71,7, X0, X7

= //_/_[ []°(b‘-‘(b ‘))[v - Wi(3', glvv-(b:—l(bi,l))] fvm?;,{’:fz(v | yiaglvgaaz) dv]
v* (b} i,

: gy‘-?lflqui(yii gla 51,52 I .’L‘,') dyl dy; dz* dz' (A2)

where the bounds on the first four integrals are omitted for notational convenience. As a

consequence of the “garbling” assumption and of the definition of Wa(-, +,v"), it is true that:

/o‘(b"’(b-,)) [v— W2(gla gl7v‘(b;-l(bi.l))] fv|y'.?1j{‘15{"2(v | yiagla ;;, 52) dv
i L

= 1= Fypypn 0" (i) | 40 7) (A3)
.fv|y..?1 (’U | i, 7') v
1- va?x (vt(b;-l(bi.l)) | 9, §")

Replacing (A3) in (A2) yields the first term in (7). The other terms of the expression for

[v - Wz(gl’ '!71’ v-(b;-l (bt'yl)))}

L‘("?" (5a))

the rents for outcomes 3 and 4 can be obtained in a similar way.
The total rents for bidder i are then given by the sum of the expression in (4) and the

expression in (7), where the latter is discounted by § and multiplied by L. Assuming first that
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there is an interior solution for v*, the first order condition for the problem, together with
the equilibrium condition (83)7!(bi,1) = i, yields (8) after re-arranging terms. Substitution

into (8) of:
ob;
av" 63;'-

9z2 0
-6 (%J(‘U , U ))

yields, after re-arranging terms:

ab‘(xi) _ =0 Y _ -2 vz
—-61;.-—_ = [bl(:z:,) Wi(zi, tav( 1))]

ngqu'.(zi I x!') Fv|x‘fl(v'(xi) I Tiy .’D,‘) J(v-(xi)’ v-(xi))

(A4)

a o~ o~ -~ - | -y "
ffff . (R2(yia ylav‘(mf))) Jy. 7151 %2 x‘-(yiayla z!,7? I $.‘) dyldy;da:lda;?
ov |.

To show that the bidding function is increasing in the case where v* is interior, we will show

that %I:—f < 0. From (8), this implies that [bj(z:) — Wi(zi, i, v*(2:))] < 0 and the result

then follows immediately from (A4).

s | =
aR?(yny y U ) <0
ov*

Claim

Proof  The distribution and density in what follows are Fy,y 5, (- | -,-)and fyy.p (- |

.,+), respectively. The subscripts are omitted below for notational convenience.

0 v}: vf(v | yi, 2)dv jvf(v | z,z)dv

5\ [T=FoTos) ~ 1=ForTas | L~ T )

- ot e s R

-[/ of(0* | 2, z)dv] : {‘f (v Ly )l = PO~ | 202+ (0" | 221 = P07 y.-,z)l}

[1 - F(v* I 2, z)]2
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= [1 = F(v" | yi, 2)] (v" — Wa(z, z,v%)) - {1 ;f(;’;l:zl’i?z) ] _{(;"(J.yli’yi)z)}

Since:
Wo(z, z,v") > v° and 1—F(*|yi,2) >0

Then,

OR,

3‘07 <0

f(v‘lz’z) = f(v‘|yi,2) =
= = > — ~ . >

= T~ F(o-| 2,2) fVlm,,(v | 2,2,V 2 v") > T Fo [952) fvmy:(” | yi, 2,V 2 v%)

It is easy to show that, given that the family of densities {gviv(- | v)} satisfy MLRP, so

does the family of densities {fvm-?l(' | ¥i,5%,V > v")}, which we denote as f*(- | Yi ¥*)

in what follows. MLRP means that for any (vi,v2, 1, 82, t1,2) such that 7 2> v; > vy 2,

(81,t1) = (82,12) and either s; > sy or ¢ > ta:

fr(v1 | 81,t1) > Fr(v2 | s1,t1)
f(v1 | s2,t2) fr(v2 | s2,12)

fr(v]s1,th) > f*(v* ] s1,t)

> Feleat) > Felmm ST

f’(v I z,z) f-(v' | z’z) v "D
> Folns > Forlwms oS
L fetlnn)

(v | i, 2)

otherwise, we would have:

fwlzz) _ @22
Folvs) > For s

but this leads to an immediate contradiction since:

Yv € (v*,7)

if.(vlz,z)dv = jf'(v|y,-,z)dv = 1 «

So the claim is established, and in the case where the solution to v* is interior, the bidding
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function is strictly increasing. There are two other cases to consider. If v*(z?) > 7 for all 22,
then the seller never proceeds to a second auction. In that case, the bidders are faced with
a one-shot auction in the first period, with beliefs F(-) and v € [v,%]. In the usual way, the
equilibrium bidding function would be W;(z:, i, 7), which is strictly increasing in its first
argument since {gx,v(- | v)} satisfy MLRP. If v*(z?) < v for all z2, then all seller types
prefer to wait for buyers to acquire additional information before auctioning the object. In
that case, it is a best reply for buyers to all bid v = r regardless of the signal that each

obtained. The bidding function is then weakly increasing. QED

Proof of Lemma 3

Suppose that v*(z?) < v for all z? € [z;, ;). If this were an equilibrium, then all seller
types would reject the first-period bid, buyers would use bj(z:) = » in the first period (see
proposition 3) and they would use b3(y:;) = Wa(vi,¥i,2) in the second period which is the
bidding function for the one-shot auction. This implies that a seller of type v can expect a

revenue of:

Ys
o = [ Wit vern(y? )
y.

For the proposed outcome to be an equilibrium, it would have to be that:
2 < bo(v)

otherwise, a seller of type v (and, as a consequence of MLRP, all other seller types as well)
would accept the first period bid. Therefore, if v > éo(v) for some & € [0,1], then it is not

possible for v*(z2) < v for all z? € [z;,T7] in equilibrium.
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Suppose next that v*(z?) 2 o for all z? € [g,-,?z"{].l If this were an equilibrium, then all
seller types would accept the first-period bid, buyers would use b3(z;) = Wh(i, zi, ) (the
one-shot auction bidding function) in the first period (see proposition 3) and, should there
be a second period, they would use b3(y;) = T as their bidding function. This implies that a
seller of type T has a revenue of W) (z%,22,7) in the first period. For the proposed outcome

to be an equilibrium, it must be true that:

Wi(z?,2%,3) 2> 69

Otherwise, it would pay a seller of type ¥ (and thus all other sellers) to re-auction the object
in the second period. Therefore, if there exists- some (z2,6) € [z, %] x [0,1] such that
Wi(z?,22,7) < 67, then it is not possible for v*(z2) > for all 22 € [z;, ;] in equilibrium.

Therefore, whenever:

Walz?. 225

1($-:$ ,'D) < 8 < — L - -
v fy2 W'I(y 'Y al’.)gYQIV(y |‘0) dy

is satisfied for some 2 € [z;,7Z;], then v* will be interior. QED
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