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Abstract

In this thesis, a new type of haptic teleoperator system for remote control of Unmanned

Aerial Vehicles (UAVs) has been developed, where the Simultaneous Localization and Map-

ping (SLAM) algorithms are implemented for the purpose of generating the haptic feedback.

Specifically, the haptic feedback is provided to the human operator through interaction with

artificial potential field built around the obstacles in the virtual environment which is located

at the master site of the teleoperator system. The obstacles in the virtual environment replicate

essential features of the actual remote environment where the UAV executes its tasks. The

state of the virtual environment is generated and updated in real time using Extended Kalman

Filter SLAM algorithms based on measurements performed by the UAV in the actual remote

environment. Two methods for building haptic feedback from SLAM algorithms have been

developed. The basic SLAM-based haptic feedback algorithm uses fixed size potential field

around the obstacles, while the robust SLAM-based haptic feedback algorithm changes the

size of potential field around the obstacle depending on the amount of uncertainty in obstacle

location, which is represented by the covariance estimate provided by EKF. Simulations and

experimental results are presented that evaluate the performance of the proposed teleoperator

system.

Keywords: SLAM, EKF, UAV, Haptic, Teleoperation
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Chapter 1

Introduction

In this chapter, some introductory material is presented, and the goals of the research presented

in this thesis are formulated and discussed. In particular, a brief overview is given of the

three major areas of engineering to which this thesis is related, which are Unmanned Aerial

Vehicles (Section 1.1), Simultaneous Localization and Mapping (Section 1.2), and Haptics and

Teleoperation (Sections 1.3-1.5). Motivation behind the research presented in this thesis is

discussed in Section 1.6. Thesis contribution is described in Section 1.7, and thesis outline is

given in Section 1.8.

1.1 Unmanned Aerial Vehicles

Recent advances in a number of engineering disciplines have lead to development and fabri-

cation of efficient and powerful Unmanned Aerial Vehicles (UAVs). An UAV is defined as a

machine that is capable of flying remotely without the presence of a human operator in the

control cabin [4]. The ability of UAVs to perform tasks without the presence of a human oper-

ator inside the vehicle makes them suitable for numerous applications, particularly those where

safety of the pilot is a major concern. Popularity of UAVs has recently increased drastically

due to their applications to both military and civilian tasks [5, 6, 7, 8]. In the past, the usage of

UAVs was mostly limited to military missions, however, currently there also exists substantial

1
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and growing demand for UAVs in civilian applications [9]. In particular, UAVs can be used

for scientific research [9], agricultural tasks [10], surveillance [11], mine scanning [12], search

and rescue [13], aerial photography [14], etc. One of the most fascinating and promising civil-

ian applications was recently announced in a letter submitted by Amazon company to the U.S.

Federal Aviation Administration on July 9, 2014, which states that delivery of customers’ or-

ders might be done in 30 minutes or less by using UAVs [15]. For a survey of some current

and potential applications of UAVs, both military and civilian, the reader is referred to [9].

A class of UAVs that are capable of take-off and landing vertically is known as VTOL

(Vertical Take-Off and Landing) UAVs [16]. This class of aerial vehicles does not require

runways, which makes them a natural choice for missions that require quick and flexible access

to the incident place, such as search and rescue missions. Another important advantage of

VTOL over fixed-wing aircrafts is their manoeuvrability which, in particular, allows for flying

in confined spaces and/or over difficult terrains. Nowadays, VTOL vehicles come in a variety

of sizes such as heavy, normal, small, mini-small, and even micro, and may have different

structures such as a single rotor, two side by side rotors, two rotors with coaxial configuration,

and multi-rotors [4]. The most common multi-rotor configuration is the quadrotor (four rotors

aircraft), which is the type of UAV addressed in this thesis.

1.2 Simultaneous Localization and Mapping

The notion of Simultaneous Localization and Mapping (SLAM) refers to methods and algo-

rithms that allow a robot for building a map of an unknown environment while concurrently

estimating its own position and orientation on that map. Recently, SLAM has become a very

active research area, and it continues to grow in popularity due to a number of promising appli-

cations. One such application is driverless cars, which has potential to change the transporta-

tion industry by fundamentally increasing safety and bringing comfort while driving over long

distances. Other potential applications of SLAM techniques are related to space exploration,
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mining industry, unmanned aerial vehicles, etc.

The term SLAM was apparently introduced in the paper [17] published in 1996. However,

SLAM as a concept was known well before the term has been coined. In late 1980s, the idea of

a stochastic map was introduced [18] where uncertainty is taken into account when describing

transformations between spatial coordinate frames. This work can be considered as the birth

of SLAM techniques, in the sense that it explicitly formulates the idea that deterministic ap-

proaches are not suitable for fully autonomous navigation, and that uncertainty must be taken

into account. Nowadays, the dominant approaches for solving SLAM problem are based on

probabilistic methods. From probabilistic perspective, SLAM problem can be formulated as

follows: given noisy measurements and control inputs, find the probability distribution of the

current state of robot and the environment under the assumption that the environment is a priori

unknown. In Chapter 3, it will be shown how can such a probability distribution be computed

using recursive Bayesian approach.

Over the last 20 years, SLAM algorithms have been implemented, simulated, and validated

successfully in a variety of indoor and outdoor scenarios. In marine environments, the first

deployable underwater mission that uses SLAM was carried out at Australian Center for Field

Robotics [19]. In that project, Extended Kalman Filter (EKF)-based SLAM algorithms were

implemented on an autonomous underwater vehicle (AUV) called Oberon which was used to

discover and build a a feature-based map of an unknown underwater environment. Another

similar project that involves autonomous underwater vehicles has been carried out at the coast

of Costa Brava city, Spain [20]. EKF and Nearest Neighbor Standard Filter (NNSF) have been

adopted in these experiments, while a modified Hough transform was used for obtaining line

features from sonar data. In airborne environments, the first airborne SLAM has been imple-

mented in [21]. The platform used in these experiments was an unmanned aerial vehicle of a

fixed wing type equipped with onboard sensors (such as a camera and an inertial measurement

unit). In [22], SLAM has been implemented on a UAV of a rotary wings type (i.e., a mini he-

licopter), where a single camera was used as a sensor, hence the approach was called a visual
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SLAM. The obtained results show the reliability of the visual SLAM for estimating the posi-

tion of the platform relative to observed landmarks in outdoor environments. Paper [23] is an

example of applications of SLAM to indoor environments. In this work, SLAM is implemented

on a semi-autonomous UAV equipped with 3D laser sensor which is capable of navigating in

demolished buildings and designed for handling radioactive materials. For some survey related

to applications of SLAM, the reader is referred to [24, 25].

1.3 Haptic Technology

The word “haptics” is derived from a Greek word “άπτω” which means “touch” [26]. Haptic

technology deals with exchanging information between the machine and a human being via

the sense of touch. Nowadays, multimedia is not restricted to visual and audio feedback;

in particular, haptic technology can be used in virtual environments to create more realistic

scenarios. Haptic feedback become essential in numerous applications such as pilots training,

surgical training, computer-aided design, and entertainment.

The two major types of haptic feedback are kinesthetic and tactile feedback. The former

is related to the haptic information that human acquires via tendons, joints, and muscles, and

is represented as forces/torques that are felt by the human as a result of interaction with the

surrounding environment. On the other hand, the tactile feedback is acquared via sensitive

receptors inside and under the skin that enable a human to feel temperature, pain, pressure,

and vibrations. Machine haptics is a part of haptic technology that is related to design and

manufacturing of haptic devices (also known as haptic interfaces or haptic displays). These are

typically electro-mechanical devices that enable physical contact between the human operator

and objects in the virtual/remote environment [27]. Computer haptics is an emerging field

which deals with generating and rendering virtual objects and environments so that human op-

erator can interact with them through the sense of touch [28]. The representation of a haptic

device inside a virtual environment is called an avatar [1]. Haptic rendering is the process of
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computing and generating haptic feedback [29]. Typical update rate of haptic rendering algo-

rithms is approximately 1kHz which is higher in comparison with the typical update rates used

in visual feedback; such a high update rate is necessary to guarantee stability of haptic interac-

tion [30]. Different engineering and scientific disciplines related to haptics are schematically

shown in Figure 1.1.

Figure 1.1: Scientific and engineering disciplines related to haptics [1].

1.4 Teleoperation

Teleoperation is defined as an extension of human operator’s sensing and manipulation capa-

bilities to a remote or otherwise unaccessible location [31]. It allows the human operator to

access hazardous environments and manipulate dangerous materials without putting the op-

erator’s safety at risk [32]. It may also be used to scale up or down the human forces and

motions, thus allowing the operator to perform manipulation of objects that cannot be manip-

ulated directly as their size/weight is beyond the range of human capabilities [33]. Moreover,

teleoperation technology can be used to overcome the distance barrier in different exploration

applications, where it may be difficult or impossible for the human operator to perform manip-

ulation directly; examples include space and undersea applications, among others.
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Human
Operator

Master
Communication

Channel
Slave

Remote
Environment

Figure 1.2: Teleoperation system structure.

The structure of a typical single-master-single-slave bilateral teleoperator system is shown

in Figure 1.2. It consists of five components, which are the human operator, the master de-

vice, the slave device, an environment, and a communication channel between the master and

the slave [34, 35]. The human operator controls the master device, which communicates its

position, velocity, and sometimes acceleration to the remotely located slave. The slave robot

follows the motion of the master thus executing a task on the remote environment. On the other

hand, the slave device typically has an ability to sense the forces exerted on it due to the inter-

action with the remote environment; information about these forces is transferred back to the

master over the communication channel. These interaction forces are subsequently presented

to the human operator in the form of haptic feedback. The haptic feedback allows the human

operator to feel the remote interaction, which leads to improved situation awareness and higher

performance of teleoperation. Transparency is a measure of how well the teleoperator system

replicates the motion/forces on the opposite side. A perfectly transparent teleoperator system

creates an illusion for the human operator as if the task is executed directly.

1.5 Visual and Haptic Feedback in Teleoperation

In a teleoperation system, the human operator can be provided with different types of feed-

back, such as visual, auditory, haptic (including kinesthetic and tactile components), and in

some cases even smell and taste. The purpose of all these types of feedback is to increase the
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situational awareness of the human operator about the remote environment. Each type of feed-

back has its own advantages and disadvantages. Among all these types of feedback, the visual

feedback typically provides the human operator with the most substantial information about

the remote environment. Nowadays, cameras are extremely cheap and ubiquitous; moreover,

they are typically light and their energy consumption is low. However, purely visual feedback

suffers from numerous disadvantages. For example, a single camera does not provide the depth

clues. In UAVs teleoperation, this implies that the human operator may not be able to perceive

whether the platform is getting closer to or going away from the obstacles.

Providing more than one camera to acquire depth perception (such as stereo vision) is a

classical solution, however, it may be unsuitable in some cases due to the fact that the payload

of the platform and complexity of manipulating images will increase drastically. Moreover,

cameras provide information only in the direction of view and the visual information may be

limited due to occlusions; this is commonly known as the limited field of view problem. In

particular, the human operator may not be able monitor blind spots to avoid potential collision.

Another common modality that is known to enhance the human operator’s awareness in

teleoperation is haptic feedback. Haptic feedback has some advantages over its visual counter-

part. For example, the environment surrounding the slave device can be mapped into artificial

force field, which eliminates the limited field of view problem. The human operator reacts

faster to haptic feedback than to visual feedback [36]. Moreover, the receptors of haptic feed-

back covers the whole body of the human operator which means it is not limited to specific

organs like ears for audition and eyes for vision [37, 38]. Another unique characteristic of hap-

tic feedback is that the energy flow between the sender and the receiver is bidirectional [39]; in

other words, action and perception are not separated in the case of haptic feedback.

Haptic feedback has also some disadvantages. Haptic rendering algorithms require higher

update rate (up to 1kHz) in comparison with visual feedback. Also, one of the most substantial

problems with haptic feedback is that, in the presence of communication delay, haptic feed-

back may lead to instability of teleoperator systems [40, 41, 42, 33]. This is due to the fact
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that, in the presence of time delay, the communication channel is no longer a passive subsys-

tem [34]. There are numerous approaches reported in the literature that deal with instability of

teleoperation systems that occurs due to delayed haptic feedback. For example, wave variables

approach stabilizes a force-reflecting bilateral teleoperator by encoding force and velocity vari-

ables into another set of variables known as wave variables, see [43, 33]. The wave variables

are then sent via the communication channel and decoded once they are received to extract

the force and velocity. This approach guarantees stability if the time delay is constant [44].

Other approaches suggest to abandon haptic feedback altogether and utilize other modalities

such visual, auditory, vibrotactile, and graphical feedbacks to display forces. This approach is

known as sensory substitution [45, 46, 47, 48]. One more approach to deal with instability

of bilateral teleoperation generated by time delays is to rely on a virtual model of the remote

environment at the master side to acquire the haptic feedback rather than exchanging haptic

data over the communication channel. This approach is based on using predictive displays,

and is described in Section 4.2.

1.6 Motivation

The primary objective of this thesis is to design a teleoperator system for remote control of a

quadrotor UAV that provides the human operator with haptic and visual feedback. In particular,

the goal of haptic feedback is to alert the human operator regarding proximity of the obstacles

to the UAV. The physical separation between the human operator and the remote environment

may make it extremely difficult to perform such a task; in particular, sufficiently rich sensory

information such as auditory, visual, and haptic feedback may not be readily available due to

communication constraints including delays, data loss, distortion of signals, etc,. This may de-

grade the ability of the human operator to perceive the remote environment and to control the

UAV in a reliable and safe manner. One possible approach to solve the teleoperation problem

under such constraints is to use the virtual environment approach, which consists of build-
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ing a virtual model of the remote environment at the master side, and subsequently provide the

human operator with the feedback from the virtual model rather than the actual remote environ-

ment. Even though such an approach gives a solution in the case where the data flow between

master and slave is delayed and unreliable, however, it requires a sufficiently detailed and pre-

cise model of the remote environment to be available. In the case of teleoperation of UAV,

this may not be possible if the UAV performs a task over unknown terrain or inside confined

spaces for which a detailed map is not available. Therefore, there is a need for development

of a teleoperator system with the ability to build a virtual model of the remote environment in

real-time while executing the task on the actual remote environment.

1.7 Thesis Contribution

The main contribution of this thesis consists of developing a new type of teleoperator system

for remote control of UAVs where the haptic feedback is generated using SLAM algorithms.

Specifically, SLAM algorithms are utilized in this work for the purpose of building a virtual

environment on the master site of the teleoperation system. The objects in this virtual envi-

ronment replicate essential features of the actual remote environment where the UAV executes

its tasks. The haptic feedback is subsequently generated at the master site by building arti-

ficial potential field around obstacles in the virtual environment. Two methods for building

haptic feedback from SLAM algorithms are developed. The first basic algorithm utilizes a

fixed size potential field around each obstacle in virtual environment. The second proposed

algorithm changes the size of the potential field around the obstacle depending on the amount

of uncertainty in the obstacle’s location, the latter is represented by the covariance estimate

provided by EKF SLAM algorithm. It is worth to mention that, in today’s scientific literature,

SLAM and haptics are treated as two completely separated disciplines. The haptic technology

aims to provide the human operator with haptic feedback, which makes it naturally directed

towards human-centered applications, such as teleoperation, human-machine interaction, etc..
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The SLAM techniques, on the other hand, are currently directed to applications where the pri-

mary goal is to make the robot as autonomous and independent of the human intervention as

possible. This thesis is apparently the first work where the SLAM and the haptic technologies

are combined together to solve a meaningful technological problem.

1.8 Thesis Outline

The structure of the remaining part of the thesis can be described as follows:

In Chapter 2, the kinematics, dynamics, and control algorithms for a quadrotor UAV are ad-

dressed. In particular, both attitude control and position control problems are formulated,

and the control strategies for both linearized and fully nonlinear models of the quadrotor

are developed in detail. In the case of linearized model, PD and PID controllers are used,

while the control strategies for nonlinear model are based on the integrator backstepping

approach. Comprehensive mathematical derivation of the backstepping control algo-

rithm for a quadrotor UAV is provided. In both cases of linearized and nonlinear models,

simulations have been carried out using Matlab and C++ to evaluate the performance of

the controllers, and the results are discussed.

In Chapter 3, the problem of Simultaneous Localization and Mapping (SLAM) is addressed

from probabilistic perspective. A general form of probabilistic SLAM approach based

on Bayesian framework is presented. Different types of metric maps and parametric

filters are discussed. The Extended Kalman Filter (EKF) implementation of the SLAM

algorithms is described in detail, and a complete EKF-SLAM algorithm for a quadrotor

UAV is developed.

In Chapter 4, a teleoperator system with SLAM based haptic feedback for remote control of

a quadrotor UAV is developed. A predictive display approach to teleoperation is dis-

cussed, and the structure of a teleoperator system with SLAM-based haptic feedback is
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developed. An artificial potential field approach to haptic feedback is described, and

semi-experimental results are provided that evaluate the influence of the stiffness and

damping terms of the potential field. Two types of algorithms for SLAM based haptic

feedback are proposed, where the basic algorithm uses fixed size potential field around

obstacles, while the robust algorithm changes the size of potential field around the obsta-

cle depending on the amount of uncertainty in obstacle location, which is represented by

the covariance estimate provided by EKF. Semi-experimental results are presented that

evaluate performance of the developed teleoperator system with SLAM based haptic

feedback.

In Chapter 5, conclusions to the thesis are provided, and possible directions for future re-

search are discussed.



Chapter 2

Kinematics, Dynamics, and Control of a

Quadrotor UAV

In this Chapter, kinematics, dynamics, and control of a quadrotor aircraft are addressed. Sec-

tion 2.1 gives a general introduction into quadrotor operation and shows how forces/torques

generated by the rotors affect the platform’s movement. Section 2.2 discusses the basics of

quadrotor’s kinematics. Section 2.3 focuses on the dynamic behaviour of the quadrotor; in

particular, it shows how the dynamic equations can be derived using Euler-Newton approach.

Section 2.4 deals with control algorithms for quadrotor. In this section, linear and nonlinear

models of the quadrotor are addressed, and algorithms for attitude control and position control

are derived, with special emphasis on the nonlinear control design using backstepping meth-

ods. Numerical simulations of different control algorithms are performed using Matlab and

C++, and the results are presented. Conclusions are given in Section 2.5.

2.1 Basic Quadrotor Operation

The quadrotor platform is an example of VTOL UAVs with cross configuration that has four

propellers connected separately to four motors which play the role of actuators. The configu-

ration space of a quadrotor has 6 degrees-of-freedom (DOFs), which include three DOFs for

12
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translational movement and three DOFs for rotational movement. As the number of DOFs is

higher than the number of actuators, the quadrotor is an underactuated system [7]. The forces

and the torques that create the translational and rotational movements of the quadrotor depend

on the motors’ angular velocities, which are denoted by ωi, where i = {1, 2, 3, 4}. The i-th spin-

ning motor generates a vertical force Fi and a torque Mi that are proportional to the motor’s

squared angular velocity ωi, i.e.,

Fi = kFω
2
i , (2.1)

Mi = kMω
2
i , (2.2)

where kF and kM are constants that can be acquired through an experimental test [49], [50].

Figure 2.1 shows a top view of the platform, where the red arrows denote the rotational direc-

ω2
Motor 2

Motor 4

ω4

ω1
Motor 1

Motor 3

ω3

Figure 2.1: Cross configruation of the quadrotor, view from the top.

tion of propellers; specifically, Motors 1 and 3 rotate counter-clockwise whereas Motors 2 and

4 rotate clockwise. Notation U is the control input which can be force or torque. The upwards

thrust U1 is defined as follows,

U1 =

4∑
i=1

Fi. (2.3)
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Notation U1 in (2.3) represents the total force that is responsible for lifting the quadrotor up.

The pure upwards thrust is generated when all motors are rotated with the same angular ve-

locity, see Figure 2.2. In the aforementioned figure, the axes of the body frame are defined

in which the positive part of the z axis points to the ground. The roll torque U2 is the torque

x y

z

ω2
Motor 2

Motor 4

ω4

ω1
Motor 1

Motor 3

ω3

Movement Direction

Figure 2.2: Generating the upwards thrust by increasing/decreasing all motors’ velocities si-
multaneously with the same magnitude. The movement direction in this figure is upward.

that causes the platform to rotate about its x-axis. It is generated by increasing the angular

velocity of motor 2 and decreasing the angular velocity of motor 4 for achieving the clockwise

rotation (i.e., the right turn), see Figure 2.3. For the counter-clockwise rotation about x-axis,

the process is reversed, i.e., the angular velocity of motor 4 increases and the angular velocity

of motor 2 decreases. The formula for roll torque U2 is as follows:

U2 = l(F4 − F2), (2.4)

where l is the distance from each rotor to the center of the quadrotor’s mass. The pitch torque

U3 is the torque that causes the platform to rotate about its y-axis. It is generated by increasing

the angular speed of motor 3 and decreasing the angular speed of motor 1 for achieving the

clockwise rotation, or vice versa for the counter-clockwise rotation see Figure 2.4. Torque U3
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Figure 2.3: Generating roll torque. Increase in angular velocity of motor 2 and decrease in
angular velocity of motor 4 while keeping the angular velocities of motors 1 and 3 lower
than that of motor 2 and greater than that of motor 4 causes the platform to roll about x axis
subsequently move in the direction shown.

is given as follows,

U3 = l(F3 − F1). (2.5)

The yaw torque U4 is the torque that causes the platform to rotate about its z-axis. Whenever

the angular velocities of motors 3 and 1 increase with same magnitude while the angular ve-

locities of the other two motors decrease, a drag torque is generated that causes the platform to

rotate in the direction opposite to the rotations of motors 3 and 1. Figure 2.5 shows the rotation

of the platform in the clockwise direction.

U4 = Kw(F3 + F1 − F4 − F2), (2.6)

where Kw is the ratio of propeller torque constant to propeller force constant [55].
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Figure 2.4: Generating the pitch torque. Increase in angular velocity of motor 3 and decrease
in angular velocity of motor 1 while keeping the angular velocities of motors 2 and 4 lower
than that of motor 3 and greater than that of motor 1 causes the platform to pitch about y axis
subsequently move in the direction shown.
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Figure 2.5: Generating yaw torque. Increase in angular velocities of motors 3 and 1 and
decrease in angular velocities of motors 4 and 2 generates clockwise rotation due to drag torque.
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2.2 Quadrotor Kinematics

Kinematics of a rigid body describes the motion of the body without considering forces/moments

that cause this motion. An assumption that the quadrotor can be represented as a rigid and sym-

metrical body is widely used in literature [51, 6, 52]; this assumption simplifies the model to

a certain extent. For representation of position and orientation of a quadrotor’s body in space,

two coordinate frames are required, which are called the inertial frame and the body frame,

respectively. The center of an inertial frame F I is usually attached to a given point on the

Earth’s surface; the latter is assumed to be flat [53]. One possible configuration of the inertial

frame is such that its x-, y-, and z-axes are directed towards the North, East, and the center of

the Earth, respectively. This type of frame configuration is known as North-East-Down (NED)

coordinate system [54]. Another possible configuration of the inertial frame is where the x-, y-,

and z-axes point toward the East, North, and in the Upward direction (ENU), respectively [55].

Figure 2.6 shows the NED and the ENU coordinate systems. On the other hand, the body

(a) North-East-Down (NED) coordinate system (b) East-North-Up (ENU) coordinate system

Figure 2.6: Two common representations of the inertial frame under the assumption of flat
Earth surface represented by the blue plane, where the golden sphere represents the Earth.

frame FB is a frame whose origin is attached to the center of the quadrotor’s mass. Figure 2.7

shows the body frame in the NED and ENU inertial frames. With this configuration, the posi-
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(a) Body frame in (NED)
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(b) Body frame in (ENU)

Figure 2.7: The representations of the body frame in NED and ENU coordinates.

tion of the center of quadrotor’s mass is specified in the inertial frame through three variables

denoted as x, y and z, whereas the orientation of the quadrotor in the body frame is specified

through three angles φ, θ and ψ, that describe the rotation around xB, yB, and zB axes, respec-

tively. Orientation of a rigid body in 3D space can be carried out using various methods. The

most common and widely used approach is based on Euler angles [56, 54, 57]. This method

describes orientation of a rigid body in 3D space by specifying three angles known as yaw (ψ),

pitch (θ) and roll (φ).

2.3 Quadrotor Dynamics

The dynamics of a rigid body describe the relationship between the motion of the body in space

and the forces/torques that cause this motion. In the case of the quadrotor system, the primary

forces (i.e., F1, F2, F3, and F4) that cause the quadrotor to fly are generated by the four motors.

The i-th spinning rotor contributes to the whole upwards thrust by generating the vertical thrust

Fi and the drag torque Mi, which are given by the following formulas [58]:

Fi = CFρAω2
i R2, (2.7)

Mi = CMρAω2
i R3, (2.8)
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where CF > 0, CM > 0, ρ > 0, R > 0, and A > 0 are thrust coefficient, torque coefficient,

the air density, the rotor radius, and the area of the rotor disc, respectively. A spinning rotor

can be considered as a rotating disk that interacts with air in its vicinity [59]; because of this

interaction, difference in air pressure between the top and the bottom parts of the rotating disk

is created which makes the air flows in a streamtube manner. Modelling the rotor as an actu-

ator disk allows for applying the momentum theory. This theory determines the relationship

between the upwards thrust that a propeller generates, the induced velocity, and the induced

power of the rotor via Bernoulli’s equation [59]. The dynamics of the quadrotor are also sub-

Figure 2.8: Modeling the rotor as a rotating disk; the figure shows the direction of the air flow
through the rotor.

ject to external forces that impede quadrotor’s motion. For the sake of simplicity, it is assumed

throughout this thesis that the only external force that acts on the quadrotor’s body is the gravi-

tational force Fg. The dynamics of the quadrotor are a combination of the translational and the

rotational dynamics [7], in which the translational dynamics depend on the rotational dynamics

but not vice versa, as will be shown below.

The two most common approaches for deriving dynamical equations of the quadrotor are

based on the Euler-Lagrange and the Newton-Euler methods. The Newton-Euler approach
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applies Newton’s laws directly to derive the mathematical model of the quadrotor by consid-

ering all forces/torques that cause the motion. The general form of the dynamics equations of

an aerial vehicle under the influence of external forces/torques can be expressed through the

following equations:

Υ̇ = V, (2.9)

mV̇ = FΥ, (2.10)

Ṙ = RΩ̂, (2.11)

�Ω̇ = −Ω × �Ω + Mη, (2.12)

where Υ := (x, y, z) ∈ R3 is the position of the center of quadrotor’s mass and V ∈ R3 is the

linear velocity of the center of the quadrotor’s mass expressed in the inertial frame, FΥ ∈ R3 and

Mη ∈ R3 are the vectors of translational forces and rotational moments, respectively, Ω ∈ R3 is

the angular velocity expressed in the body frame, Ω̂ ∈ R3×3 is a skew symmetric matrix which

is defined as follows,

Ω̂ =


0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


and R ∈ S O(3) is the orthogonal rotation matrix.

The mathematical model of the quadrotor in this thesis is adopted from [55]; according to

this work, the dynamics of the quadrotor are described by the following nonlinear equations:

ẍ =
U1

m
(cos φ sin θ cosψ + sin φ sinψ), (2.13)

ÿ =
U1

m
(cos φ sin θ sinψ − sin φ sinψ), (2.14)

z̈ =
U1

m
(cos φ cos θ) − g, (2.15)

φ̈ =
Jy − Jz

Jx
θ̇ψ̇ +

l
Jx

U2, (2.16)

θ̈ =
Jz − Jx

Jy
φ̇ψ̇ +

l
Jy

U3, (2.17)
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ψ̈ =
Jx − Jy

Jz
φ̇θ̇ +

1
Jz

U4. (2.18)

where the parameters of the quadrotor are given in the following Table [55]

Parameter Description Value Unit

l Distance from pivot to rotor 0.25 m

m The quadrotor’s mass 0.75 kg

Jx Inertia moment about x-axis 0.019688 kgm2

Jy Inertia moment about y-axis 0.019681 kgm2

Jz Inertia moment about z-axis 0.03938 kgm2

2.4 Quadrotor Control Strategy

The quadrotor is a typical example of a substantially nonlinear dynamical system. Also, it

is an inherently unstable system, which makes it even more difficult to design an appropriate

control strategy. In the literature, numerous control algorithms have been proposed that aim to

stabilize the quadrotor system. Some controllers are designed based on a linearized model of

the platform, whereas others are designed to handle the nonlinear model. A linearized model of

the platform, which is widely used in the literature [51, 50, 49, 60], is based on the assumption

that the quadrotor does not perform aggressive manoeuvres. Specifically, the Euler angles are

assumed to be small, which leads to a near hovering status. The quadrotor control algorithms

for both models (i.e., linear and nonlinear) can be divided into two classes, namely the attitude

control and the position control. In the attitude control algorithms, the goal is to control the

quadrotor’s orientation; in a more general setting (adopted in this thesis) the attitude control

problem also includes the altitude control. Figure 2.9 shows a general block diagram for the

attitude control in which φd, θd and ψd are the desired roll, pitch, and yaw angles, respectively,

whereas zd is the desired altitude. In position control, one seeks to control the translational

position of the center of the platform’s mass, therefore given a spatial trajectory in which the

desired translational position xd, yd and zd are provided, the platform should follow it in a stable
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Figure 2.9: General attitude control scheme, where U1,U2,U3, and U4 are the control inputs.

manner. Position control is more difficult than the attitude control due to the fact that the system

is underactuated. In literature, the common approach for position control is implementing two

control loops called outer and inner loops instead of just one control loop as in the attitude

control case. Figure 2.10 shows a general block diagram for position control, in which xd and

yd represent the desired position in x−y plane, respectively. The red blocks define the outer

loop whereas the blue one defines the inner loop. The popular controllers for stabilizing the

linearized model of the platform include PD, LQR, PID controllers, among others.

2.4.1 Control Strategy for Linear Model

Using small angle assumption (i.e., assuming the quadrotor is approximately in the hovering

state), the following approximations [60] can be used to linearize the platform’s model,

U1 ≈ mg,
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Figure 2.10: General position control scheme, where Ux and Uy are the virtual inputs that
control position on the x−y plane.

cos$ ≈ 1,

sin$ ≈ $.

Consequently, the nonlinear model (2.13)-(2.18) can be reduced to the following linearized

model,

ẍ = gθ, (2.19)

ÿ = −gφ, (2.20)

z̈ =
U1

m
− g, (2.21)

φ̈ =
L
Jx

U2, (2.22)

θ̈ =
L
Jy

U3, (2.23)

ψ̈ =
1
Jz

U4. (2.24)
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Attitude Control for Linear Model

In the attitude regulation problem, the desired roll φd, pitch θd, and yaw ψd angles, as well as

the desired altitude zd are assumed constant, and the goal is to achieve asymptotic convergence

of the actual variables φ, θ, ψ and z to their desired constant values, and the convergence of

the corresponding velocities to zero. Mathematically, the goal is to guarantee that φ(t) → φd,

θ(t) → θd, ψ(t) → ψd, z(t) → z, and φ̇(t) → 0, θ̇(t) → 0, ψ̇(t) → 0, ż(t) → 0 as t → ∞. Using

PD controller, the control inputs for the attitude control can be specified as follows

U1 = m
(
g + Kz

p(zd − z) + Kz
d

d
dt

(zd − z)
)
, (2.25)

U2 = Kφ
p(φd − φ) + Kφ

d

d
dt

(φd − φ), (2.26)

U3 = Kθ
p(θd − θ) + Kθ

d
d
dt

(θd − θ), (2.27)

U4 = Kψ
p (ψd − ψ) + Kψ

d

d
dt

(ψd − ψ), (2.28)

where K%
p > 0 and K%

d > 0 are the proportional and derivative gains, respectively, and % ∈

{z, φ, θ, ψ}. In order to illustrate the performance of the PD controller in the attitude regulation

problem, the closed-loop system (2.19)-(2.28) was simulated in Matlab. Table 2.1 presents

numerical values of the parameters used in the simulations, while Figures 2.11, 2.12, and 2.13

show the response of the quadrotor.

initial values Gains Desired Trajectory
Altitude z(0) = 0

ż(0) = 0
Kz

p = 12.34
Kz

d = 5.67
zd = 5 (m)

Roll φ(0) = π
4

φ̇(0) = 0
Kφ

p = 11.2
Kφ

d = 4.2
φd = 0 (rad)

Pitch θ(0) = π
4

θ̇(0) = 0
Kθ

p = 9.7
Kθ

d = 3.6
θd = 0 (rad)

Yaw ψ(0) = π
3

ψ̇(0) = 0
Kψ

p = 10.78
Kψ

d = 5.2
ψd = 0 (rad)

Table 2.1: PD controller parameters for the attitude regulation problem
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Figure 2.11: Attitude regulation problem: altitude and attitude errors for PD controller.
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Figure 2.13: Attitude regulation problem: magnitude of the control inputs for PD controller.

In PID controller, a new term (i.e., the integral term) is added to the PD controller, therefore

the control inputs can be specified as follows

U1 = m ·
(
g + Kz

p(zd − z) + Kz
d

d
dt

(zd − z) + Kz
i

∫ t

0
(zd − z(τ))dτ

)
, (2.29)

U2 = Kφ
p(φd − φ) + Kφ

d

d
dt

(φd − φ) + Kφ
i

∫ t

0
(φd − φ(τ))dτ, (2.30)

U3 = Kθ
p(θd − θ) + Kθ

d
d
dt

(θd − θ) + Kθ
i

∫ t

0
(θd − θ(τ))dτ, (2.31)

U4 = Kψ
p (ψd − ψ) + Kψ

d

d
dt

(ψd − ψ) + Kψ
i

∫ t

0
(ψd − ψ(τ))dτ, (2.32)

where K(·)
i are the integral gains. Again, the system (2.19)-(2.24), (2.29)-(2.32) was simulated

in Matlab in order to illustrate the performance of the PID controller in the attitude regulation

problem. Table 2.2 shows the numerical values of the parameters for these simulations, and

Figures 2.14, 2.15, and 2.16 show the resulting behavior of the quadrotor.
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initial values Gains Desired Trajectory
Altitude z(0) = 0

ż(0) = 0
Kz

p = 11.5
Kz

d = 6.2
Kz

i = 0.0001

zd = 7 (m)

Roll φ(0) = π
9

φ̇(0) = 0
Kφ

p = 13.22
Kφ

d = 10.01
Kφ

i = 0.0075

φd = 0 (rad)

Pitch θ(0) = π
7

θ̇(0) = 0
Kθ

p = 12.63
Kθ

d = 9.1
Kθ

i = 0.007

θd = 0 (rad)

Yaw ψ(0) = π
12

ψ̇(0) = 0
Kψ

p = 13.58
Kψ

d = 8.2
Kψ

i = 0.008

ψd = 0 (rad)

Table 2.2: PID controller parameters for the attitude regulation problem

Position Control for the Linear Model

It can be noticed from equations (2.19)-(2.20) that the linear accelerations ẍ and ÿ can not

be controlled directly. However, the aforementioned linear accelerations depend on the roll

and pitch angles. One can exploit this fact to control x and y indirectly through appropriately

designed desired (reference) trajectories for roll φd(t) and pitch θd(t) angles [50]. Specifically,

let the desired pitch and roll angles be defined as follows,

θd :=
Ux

g
, (2.33)

φd := −
Uy

g
, (2.34)

where Ux and Uy are virtual control inputs for x and y linear positions, respectively. Assuming

θ = θd, φ = φd, one sees from (2.19), (2.20) that

ẍ = Ux,

ÿ = Uy.
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Figure 2.14: Attitude regulation problem: altitude and attitude errors for PID controller.
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Figure 2.16: Attitude regulation problem: the magnitude of the control inputs for the PID
control.
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The virtual control inputs Ux and Uy can now be defined as follows,

Ux = Kx
p(xd − x) + Kx

d
d
dt

(xd − x), (2.35)

Uy = Ky
p(yd − y) + Ky

d

d
dt

(yd − y). (2.36)

In Matlab, simulations have been carried out to illustrate the performance of the PD controller.

Table 2.3 shows the numerical values of the parameters for the simulations and Figures 2.17,

2.18, and 2.19 show the response of the quadrotor.

initial values Gains Desired Value
Altitude z(0) = 0

ż(0) = 0
Kz

p = 14
Kz

d = 7
zd = 2.5 (m)

x-Position x(0) = 0
ẋ(0) = 0

Kx
p = 10

Kx
d = 5

xd = 2.5 (m)

y-Position y(0) = 0
ẏ(0) = 0

Ky
p = 10

Ky
d = 5

yd = 2.5 (m)

Yaw ψ(0) = π
3

ψ̇(0) = 0
Kψ

p = 25
Kψ

d = 10
ψd = 0 (rad)

Roll φ(0) = 0
φ̇(0) = 0

Kφ
p = 21.3

Kφ
d = 12.72

Pitch θ(0) = 0
θ̇(0) = 0

Kθ
p = 19.5

Kθ
d = 9.7

Table 2.3: PD controller parameters for position regulation problem

2.4.2 Control Strategy for Nonlinear Quadrotor Model

In the literature, a number of nonlinear controllers are described that successfully stabilize po-

sition and attitude of the quadrotor. For example, the Lyapunov-based backstepping control

is one of the most common approaches for stabilizing the quadrotor. It is has been used to

yield satisfactory results in [61, 55, 62, 63]. Another common nonlinear control approach is

the sliding mode control which is based on the variable structure control (VSC) principle. VSC

modifies the system’s structure through switching control to keep the system’s trajectory on a
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Figure 2.17: Position regulation problem: errors of linear positions and yaw angle for PD
controller.
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Figure 2.19: Position regulation problem: the magnitude of the control inputs for PD controller.
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predetermined surface in the state space called the sliding surface [64, 65]. In [66, 61, 67, 55],

the sliding mode controller has been used for quadrotor control. Feedback linearization con-

trollers are another class of controllers that target nonlinear systems by cancelling all sub-

stantial nonlinearties; as a result, the closed-loop system becomes linear and therefore can be

controlled using linear methods. In [68, 69], the feedback linearization approach has been used

to stabilize the quadrotor. In this thesis, we concentrate on the Lyapunov-based backstepping

control method, therefore the following sections deal with control algorithms that are based on

the backstepping approach.

2.4.3 Backstepping Controller

In [70], which is currently the most comprehensive book that deals with backstepping control

methods, the backstepping is defined as an approach ”to design a controller recursively by

considering some of the state variables as ”virtual controls” and designing for them inter-

mediate control laws”[70]. The word “backstepping” comes from the fact that it is essentially

a step-by-step design approach, where at each step the control algorithm propagates through

one integrator back to the control input [71]. At each step, the control input is designed in such

a way that makes the time derivative of a given Lyapunov function negative definite, which

leads to stability of the system in the sense of Lyapunov. It is worth to mention that Lyapunov-

based backstepping is different from the feedback linearization methodology. The latter ap-

proach eliminates all nonlinearities in the system, so that the closed-loop system becomes

linear [70]. Canceling all the nonlinearies requires an accurate description of the mathematical

model which may be hard to achieve in practice [72]. Moreover, the feedback linearization

approach does not distinguish between “good” and “harm” nonlinearities [70], therefore all

nonlinearies are treated equally in the sense that they all are considered destabilizing which

may not always be the case. On the other hand, the Lyapunov-based backstepping approach is

more flexible than the feedback linearization in that the “good” nonlinearies are retained while

the “harm” ones are eliminated.
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2.4.4 Attitude Control for Nonlinear Model

Design of Upwards Thrust Control Input U1

In this section, the control input U1 is derived according to the step-by-step backstepping pro-

cedure [71, 73], as follows.

Step one. Let a1 define the altitude tracking error, as follows,

a1 := zd(t) − z(t), (2.37)

where zd(t) and z(t) are the desired and the actual altitudes, respectively. From now on, the

independent time variable will be omitted for simplicity of notation. Let a Lyapunov function

V(a1) be defined to be a positive definite function of a1, as follows,

V(a1) =
1
2

a2
1. (2.38)

Taking into account (2.37), the time derivative of Lyapunov function (2.38) is

V̇(a1) = a1(żd − ż). (2.39)

To make the expression (2.39) bounded from above by some negative definite function, we

would like to guarantee that V̇(a1) satisfies the following inequality,

V̇(a1) ≤ −κ1a2
1, (2.40)

where κ1 > 0 is a constant. Using (2.39), inequality (2.40) becomes

a1(żd − ż) ≤ −κ1a2
1. (2.41)

Inequality (2.41) is guaranteed if the state variable ż satisfies

ż = żd + κ1a1. (2.42)

According to the basic ideas of the backstepping procedure [70], the state variable ż can be
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used as a virtual control for the purpose of stabilization. To this end, define

zvir := żd + κ1a1. (2.43)

The above defined variable zvir represents the desired value of the state variable ż, i.e., the value

of ż that would guarantee the exponential convergence a1(t)→ 0.

Step two. Let a new variable a2 be defined as the difference between the state variable ż

and the virtual control input zvir, as follows,

a2 := ż − zvir. (2.44)

Using (2.44), the expression (2.39) for V̇(a1) can be rewritten to yield the following formula

V̇(a1) = a1(żd − ż) = a1(żd − (a2 + zvir))

= a1(żd − (a2 + żd + κ1a1)) = ��
�a1żd − a1a2 −��

�a1żd − κ1a2
1

= −a1a2 − κ1a2
1. (2.45)

Let us now augment the Lyapunov function (2.38) with an additional term V(a2) := 1
2a2

2 which

accounts for the dynamics of variable a2. The total Lyapunov function V(a1, a2) has a form

V(a1, a2) := V(a1) + V(a2) =
1
2

a2
1 +

1
2

a2
2

=
1
2

(zd − z)2 +
1
2

(ż − zvir)2 =
1
2

(z2
d − 2zzd + z2) +

1
2

(ż2 − 2żzvir + z2
vir)

=
1
2

(z2
d − 2zzd + z2) +

1
2

ż2 − ż(żd + κ1zd − κ1z)

+
1
2

(ż2
d + 2κ1żdzd − 2κ1ż + κ2

1z2
d − 2κ2

1zdz + κ2
1z2)

(2.46)

The time derivative of the total Lyapunov function V(a1, a2) is given by the following expres-

sion

V̇(a1, a2) = (zd − z − κ1ż + κ1żd + κ2
1zd − κ

2
1z)żd
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+ (−zd + z + κ1ż − κ1żd − κ
2
1zd + κ2

1z)ż

+ (−ż + żd + κ1zd − κ1z)z̈d

+ (ż − żd − κ1zd + κ1z)z̈.

(2.47)

By rearranging equation (2.47), one obtains

V̇(a1, a2) = a2z̈ − a2(z̈d − κ1(a2 + κ1a1)) − a1a2 − κ1a2
1. (2.48)

The exponential convergence a1(t) and a2(t) to zero will be guaranteed if the time derivative of

the total Lyapunov function V(a1, a2) satisfies the inequality

V̇(a1, a2) ≤ −κ1a2
1 − κ2a2

2, (2.49)

where κ1, κ2 > 0. Taking into account (2.48), inequality (2.49) becomes

a2z̈ − a2(z̈d − κ1(a2 + κ1a1)) − a1a2��
�

−κ1a2
1 ≤ ��

�
−κ1a2

1 − κ2a2
2,

or

a2z̈ − a2(z̈d − κ1(a2 + κ1a1)) − a1a2 ≤ −κ2a2
2. (2.50)

The last inequality (2.50) is satisfied if the following relation holds

z̈ = a1 + (z̈d − κ1(a2 + κ1a1)) − κ2a2. (2.51)

Indeed, substituting (2.51) into (2.50), one obtains

a2[a1 + (z̈d − κ1(a2 + κ1a1)) − κ2a2) − a2(z̈d − κ1(a2 + κ1a1)) − a1a2

= (���a2a1 +
((((

(((
((((a2(z̈d − κ1(a2 + κ1a1)) − a2κ2a2) −

((((
(((

((((a2(z̈d − κ1(a2 + κ1a1)) −���a1a2

= −a2κ2a2 = −κ2a2
2. (2.52)

Finally, combining (2.51) and (2.15), formula for U1 is obtained as follows:

U1

m
(cos φ cos θ) − g = a1 + (z̈d − κ1(a2 + κ1a1)) − κ2a2 (2.53)
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⇒
U1

m
(cos φ cos θ) = a1 + g + (z̈d − κ1(a2 + κ1a1)) − κ2a2 (2.54)

⇒ U1 =
m

cos φ cos θ
(a1 + g + z̈d − κ1(a2 + κ1a1) − κ2a2) . (2.55)

Setting z̈d = 0 [61], the altitude control input that guarantees the asymptotic stability in the

sense of Lyapunov is yielded, as follows

U1 =
m

cos φ cos θ
(a1 + g − κ1(a2 + κ1a1) − κ2a2) . (2.56)

Design of Roll Control Input U2

The the control algorithm for roll input U2 can be derived using the same line of reasoning

as the control input U1 in the previous section. We first define the roll tracking error a3, as

follows:

a3 := φd − φ, (2.57)

where φd and φ are the desired and actual roll angles, respectively. Next, define the Lyapunov

function candidate V(a3) of the roll tracking error to have the following form:

V(a3) =
1
2

a2
3. (2.58)

The time derivative of Lyapunov function (2.58) is

V̇(a3) = a3(φ̇d − φ̇). (2.59)

One would like to make the expression (2.59) bounded from above by a quadratic negative

definite function of a3:

V̇(a3) ≤ −κ3a2
3, (2.60)
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where κ3 > 0 is a constant. By substituting (2.59) into (2.60), the following inequality is

yielded,

a3(φ̇d − φ̇) ≤ −κ3a2
3. (2.61)

The inequality (2.61) is guaranteed if the state variable φ̇ satisfies the following relation

φ̇ = φ̇d + κ3a3. (2.62)

At this stage of the backstepping procedure, the virtual control for the state variable φ̇ is defined

as follows,

φvir := φ̇d + κ3a3. (2.63)

This virtual variable φvir determines the desired value of the state variable φ̇. The next step of

the backstepping procedure is to define a new variable a4 that represents the difference between

the state variable φ̇ and the virtual control φvir, hence,

a4 := φ̇ − φvir. (2.64)

Using the above equation, the time derivative of Lyapunov function V̇(a3) (2.59) is calculated,

as follows,

V̇(a3) = a3(φ̇d − φ̇) = a3(φ̇d − (a4 + φvir))

= a3(φ̇d − (a4 + φ̇d + κ3a3)) = ��
�a3φ̇d − a3a4 −��

�a3φ̇d − κ3a2
3

= −a3a4 − κ3a2
3. (2.65)

After augmenting the Lyapunov function (2.58) with a new term V(a4) := 1
2a2

4, the total Lya-

punov function V(a3, a4) becomes

V(a3, a4) = V(a3) + V(a4)

=
1
2

a2
3 +

1
2

a2
4
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=
1
2

(φd − φ)2 +
1
2

(φ̇ − φvir)2

=
1
2

(φ2
d − 2φφd + φ2) +

1
2

(φ̇2 − 2φ̇φvir + φ2
vir)

=
1
2

(φ2
d − 2φφd + φ2) +

1
2
φ̇2 − φ̇(φ̇d + κ3φd − κ3φ)

+
1
2

(φ̇2
d + 2κ3φ̇dφd − 2κ3φ̇ + κ2

3φ
2
d − 2κ2

3φdφ + κ2
3φ

2)
(2.66)

The time derivative of the total Lyapunov function V(a3, a4) is

V̇(a3, a4) = (φd − φ − κ3φ̇ + κ3φ̇d + κ2
3φd − κ

2
3φ)φ̇d

+ (−φd + φ + κ3φ̇ − κ3φ̇d − κ
2
3φd + κ2

3φ)φ̇

+ (−φ̇ + φ̇d + κ3φd − κ3φ)φ̈d

+ (φ̇ − φ̇d − κ3zd + κ3φ)φ̈.

(2.67)

By rearranging (2.67), we get

V̇(a3, a4) = a4φ̈ − a4(φ̈d − κ3(a4 + κ3a3)) − a3a4 − κ3a2
3. (2.68)

The exponential convergence a3(t), a4(t) → 0 will be guaranteed if the time derivative of the

total Lyapunov function V(a3, a4) satisfies the inequality

V̇(a3, a4) ≤ −κ3a2
3 − κ4a2

4 (2.69)

where κ3, κ4 > 0. Taking into account (2.68), inequality (2.69) becomes

a4φ̈ − a4(φ̈d − κ3(a4 + κ3a3)) − a3a4�
��−κ3a2

3 ≤ ��
�

−κ3a2
3 − κ4a2

4

or

a4φ̈ − a4(φ̈d − κ3(a4 + κ3a3)) − a3a4 ≤ −κ4a2
4. (2.70)

The last inequality (2.70) is satisfied if the following relation holds

φ̈ = a3 + [φ̈d − κ3(a4 + κ3a3)] − κ4a4 (2.71)
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Substituting (2.16) into (2.71), the following formula is yielded,(
Jy − Jz

Jx

)
θ̇ψ̇ +

l
Jx

U2 = a3 + (φ̈d − κ3(a4 + κ3a3)) − κ4a4 (2.72)

⇒
l
Jx

U2 = a3 −

(
Jy − Jz

Jx

)
θ̇ψ̇ + (φ̈d − κ3(a4 + κ3a4)) − κ4a4 (2.73)

⇒ U2 =
Jx

l

(
a3 −

(
Jy − Jz

Jx

)
θ̇ψ̇ + φ̈d − κ3(a4 + κ3a3) − κ4a4

)
(2.74)

Setting φ̈d = 0 [61], the roll angle control input U2 is defined according to the following

formula,

U2 =
Jx

l

(
a3 −

(
Jy − Jz

Jx

)
θ̇ψ̇ − κ3(a4 + κ3a3) − κ4a4

)
. (2.75)

Design of Pitch Control Input U3

The pitch control input U3 is derived in the same way as U1 and U2 in the previous sections.

The first step of the backstepping procedure for the pitch control input is to define the pitch

tracking error a5, hence

a5 := θd − θ, (2.76)

where θd and θ are the desired and actual pitch angles, respectively. The Lyapunov function

candidate of the pitch tracking error is defined according to the following formula,

V(a5) =
1
2

a2
5. (2.77)

The time derivative of (2.77) is

V̇(a5) = a5(θ̇d − θ̇). (2.78)

Our goal is to guarantee that V̇(a5) satisfies the following inequality,

V̇(a5) ≤ −κ5a2
5, (2.79)
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where κ3 > 0 is a constant. Substituting (2.78) into (2.79), one obtains the following inequality

a5(θ̇d − θ̇) ≤ −κ5a2
5. (2.80)

The inequality (2.80) holds if the state variable θ̇ satisfies the following relation

θ̇ = θ̇d + κ5a5. (2.81)

The virtual control θvir which represents the desired value of the state variable θ̇ is, therefore,

defined as follows

θvir := θ̇d + κ5a5. (2.82)

The next step is to define a new variable a6 which represents the difference between the state

variable θ̇ and the virtual control θvir; hence,

a6 := θ̇ − θvir. (2.83)

Combining (2.82) and (2.83), one gets

V̇(a5) = −a5a6 − κ5a2
5. (2.84)

The total Lyapunov function V(a5, a6) is formed by augmenting (2.77) with an additional term

V(a6) := 1
2a2

4, which gives

V(a5, a6) = V(a5) + V(a6)

=
1
2

a2
5 +

1
2

a2
6

=
1
2

(θd − θ)2 +
1
2

(θ̇ − θvir)2

=
1
2

(θ2
d − 2θθd + z2) +

1
2

(θ̇2 − 2θ̇θvir + θ2
vir)

=
1
2

(θ2
d − 2θθd + θ2) +

1
2
θ̇2 − θ̇(θ̇d + κ5θd − κ5θ)

+
1
2

(θ̇2
d + 2κ5θ̇dθd − 2κ5θ̇ + κ2

5θ
2
d − 2κ2

5θdθ + κ2
5θ

2).
(2.85)
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The time derivative of the total Lyapunov function V(a5, a6) is

V̇(a5, a6) = (θd − θ − κ5θ̇ + κ5θ̇d + κ2
5θd − κ

2
5θ)θ̇d

+ (−θd + θ + κ5θ̇ − κ5θ̇d − κ
2
5θd + κ2

5θ)θ̇

+ (−θ̇ + θ̇d + κ5θd − κ5θ)θ̈d

+ (θ̇ − θ̇d − κ5θd + κ5θ)θ̈.

(2.86)

By rearranging (2.86), we get

V̇(a5, a6) = a6θ̈ − a6(θ̈d − κ5(a6 + κ5a5)) − a5a6 − κ5a2
5. (2.87)

The exponential convergence a5(t), a6(t) → 0 will be guaranteed if the time derivative of the

total Lyapunov function V(a5, a6) satisfies the inequality

V̇(a5, a6) ≤ −κ5a2
5 − κ6a2

6, (2.88)

where κ5, κ6 > 0. From (2.87) and (2.88), we get

a6θ̈ − a6(θ̈d − κ5(a6 + κ5a5)) − a5a6 ≤ −κ6a2
6. (2.89)

The last inequality holds if θ̈ satisfies the following relation:

θ̈ = a5 + [θ̈d − κ5(a6 + κ5a5)] − κ6a6. (2.90)

Combining (2.90) and (2.17), the formula for U3 is obtained as follows:(
Jz − Jx

Jy

)
θ̇ψ̇ +

l
Jy

U3 = a5 + (θ̈d − κ5(a6 + κ5a5)) − κ6a6 (2.91)

⇒
l
Jy

U3 = a5 −

(
Jz − Jx

Jy

)
θ̇ψ̇ + (θ̈d − κ5(a6 + κ5a6)) − κ6a6 (2.92)

⇒ U3 =
Jy

l

(
a5 −

(
Jz − Jx

Jy

)
θ̇ψ̇ + θ̈d − κ5(a6 + κ5a5) − κ6a6

)
(2.93)
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Finally, by setting θ̈d = 0 [61], the pitch angle control input is obtained:

U3 =
Jy

l

(
a5 −

(
Jz − Jx

Jy

)
θ̇ψ̇ − κ5(a6 + κ5a5) − κ6a6

)
. (2.94)

Design of Yaw Control Input U4

In this section, the yaw control input U4 is designed. The derivation follows the same line of

reasoning as those for U1,U2, and U3 in the previous sections. Let us carry out the first step of

the backstepping procedure by defining the yaw tracking error as follows,

a7 := ψd − ψ, (2.95)

where ψd and ψ are the desired and actual yaw angles, respectively. Define a Lyapunov function

candidate V(a7) as follows

V(a7) =
1
2

a2
7. (2.96)

We seek to determine the time derivative of Lyapunov function (2.96), hence,

V̇(a7) = a7(ψ̇d − ψ̇). (2.97)

Again, we aim to guarantee that V̇(a7) is bounded from above by a negative definite function

of a7, such as

V̇(a7) ≤ −κ7a2
7, (2.98)

where κ7 > 0 is a constant. Combining (2.97) and (2.98), the following inequality is obtained

a7(ψ̇d − ψ̇) ≤ −κ7a2
7. (2.99)

Inequality (2.99) is guaranteed if the state variable ψ̇ satisfies the following relation,

ψ̇ = ψ̇d + κ7a7. (2.100)



2.4. Quadrotor Control Strategy 47

The virtual control ψvir that corresponds to the state variable ψ̇ is therefore defined as follows:

ψvir := ψ̇d + κ7a7. (2.101)

The second step of the backstepping procedure is to introduce a new variable a8 which repre-

sents the difference between the state variable ψ̇ and the virtual control ψvir,

a8 := ψ̇ − ψvir. (2.102)

Combining (2.102) and (2.97), we get the following expression

V̇(a7) = −a7a8 − κ7a2
7. (2.103)

At this stage, we form a total Lyapunov function V(a7, a8) by adding a term V(a8) := 1
2a2

8 to

(2.96) to get

V(a7, a8) = V(a7) + V(a8)

=
1
2

a2
7 +

1
2

a2
8

=
1
2

(ψ2
d − 2ψψd + ψ2) +

1
2
ψ̇2 − ψ̇(ψ̇d + κ7ψd − κ7ψ)

+
1
2

(ψ̇2
d + 2κ7ψ̇dψd − 2κ7ψ̇ + κ2

7ψ
2
d − 2κ2

7ψdψ + κ2
7ψ

2).
(2.104)

The time derivative of the total Lyapunov function V(a7, a8) is

V̇(a7, a8) = (ψd − ψ − κ7ψ̇ + κ7ψ̇d + κ2
7ψd − κ

2
7ψ)ψ̇d

+ (−ψd + ψ + κ7ψ̇ − κ7ψ̇d − κ
2
7ψd + κ2

7ψ)ψ̇

+ (−ψ̇ + ψ̇d + κ7ψd − κ7ψ)ψ̈d

+ (ψ̇ − ψ̇d − κ7ψd + κ7ψ)ψ̈,

(2.105)

or

V̇(a7, a8) = a8ψ̈ − a8(ψ̈d − κ7(a8 + κ7a7)) − a7a8 − κ7a2
7 (2.106)



48 Chapter 2. Kinematics, Dynamics, and Control of a Quadrotor UAV

Again, our goal is to guarantee that

V̇(a7, a8) ≤ −κ7a2
7 − κ8a2

8, (2.107)

where κ7, κ8 > 0, which implies the exponential convergence a7(t), a8(t) → 0. From (2.106)

and (2.107), we get

a8ψ̈ − a8(ψ̈d − κ7(a8 + κ7a7)) − a7a8 ≤ −κ8a2
8 (2.108)

The above inequality (2.108) holds if the state variable ψ̈ satisfies the following relation

ψ̈ = a7 + (ψ̈d − κ7[a8 + κ7a7)] − κ8a8. (2.109)

From (2.109) and (2.18), the following expression is yielded,(
Jx − Jy

Jz

)
φ̇θ̇ +

1
Jz

U4 = a7 + (ψ̈d − κ7(a8 + κ7a7)) − κ8a8

⇒
1
Jz

U4 = a7 −

(
Jx − Jy

Jz

)
φ̇θ̇ + (ψ̈d − κ7(a8 + κ7a8)) − κ8a8

⇒ U4 =
Jy

l

(
a5 −

(
Jx − Jy

Jz

)
φ̇θ̇ + ψ̈d − κ7(a8 + κ7a7) − κ8a8

)
(2.110)

Setting ψ̈d = 0 [61], we obtain the yaw angle control input U4 that guarantees the asymptotic

stability as follows,

U4 =
Jy

l

(
a5 −

(
Jx − Jy

Jz

)
φ̇θ̇ − κ7(a8 + κ7a7) − κ8a8

)
. (2.111)

Simulation Results for Attitude Backstepping Control

Using odeint C++ library, simulating the system has been carried out to illustrate the perfor-

mance of the backstepping controller. Table 2.4 shows the numerical values of the parameters

for the experiment and Fig. 2.20, 2.21, and 2.22 show the response of the quadrotor.
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Figure 2.20: Attitude regulation problem: altitude and attitude errors for backstepping con-
troller.
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Figure 2.21: Attitude regulation problem: the position (x, y, z) of the center of the quadrotor’s
mass using backstepping controller.
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initial values Gains Desired Trajectory Unit
Altitude z(0) = 0

ż(0) = 0
κ1 = 6.35
κ2 = 2.91

zd = 5 (m)

Roll φ(0) = 0
φ̇(0) = 0

κ3 = 7.32
κ4 = 5.99

φd = π
7 (rad)

Pitch θ(0) = 0
θ̇(0) = 0

κ5 = 9.6184
κ6 = 8.11

θd = π
9 (rad)

Yaw ψ(0) = 0
ψ̇(0) = 0

κ7 = 8.412
κ8 = 6.21

ψd = π
4 (rad)

Table 2.4: Backstepping controller parameters for attitude control (regulation problem)

2.4.5 Position Control for Nonlinear Model

From (2.13) and (2.14), we can see that ẍ and ÿ can not be controlled directly due to the

fact that the system is underactuated. However, one can notice that the vertical force U1 en-

ters the aforementioned equations. The control input U1 in (2.13) is multiplied by the term

(cos φ sin θ cosψ + sin φ sinψ), while in (2.14) it is multiplied by the term (cos φ sin θ sinψ −

sin φ cosψ). One can exploit this fact to control the roll and pitch angles that form the new force

vectors in x−y plane. Consequently, let Ux and Uy be virtual control inputs for x and y linear

positions, respectively, and ψT be the yaw angle. We need to extract φd and θd from (2.13)

and (2.14), therefore, the relationship between Ux, Uy, φd and θd is given by the following

expressions,

Ux = (cos φd sin θd cosψT + sin φd sinψT ) , (2.112)

Uy = (cos φd sin θd sinψT − sin φd cosψT ) . (2.113)

Multiply both sides of (2.112) by (sinψT ), and those of (2.113) by (cosψT ), we obtain

Ux sinψT =
(
cos φd sin θd sinψT cosψT + sin φd sin2 ψT

)
, (2.114)

Uy cosψT =
(
cos φd sin θd sinψT cosψT − sin φd cos2 ψT

)
. (2.115)
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Figure 2.22: Attitude regulation problem: magnitude of the control inputs for backstepping
controller .

By subtracting (2.115) from (2.114), we obtain

(Ux sinψT ) − (Uy cosψT ) = sin φd
���

���
���

�:1(
sin2 ψT + cos2 ψT

)
(2.116)

By rearranging (2.116), we obtain a closed form for φd, as follows

φd = sin−1(Ux sinψT − Uy cosψT ) (2.117)

Again, multiply both sides of (2.112) by (cosψT ) and (2.113) by (sinψT ), we obtain,

Ux cosψT =
(
cos φd sin θd cos2 ψT + sin φd sinψT cosψT

)
(2.118)

Uy sinψT =
(
cos φd sin θd sin2 ψT − sin φd sinψT cosψT

)
(2.119)
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By adding (2.119)) to (2.118), we obtain,

Ux cosψT + Uy sinψT = cos φd sin θd
���

���
���

�:1(
cos2 ψT + sin2 ψT

)
(2.120)

By rearranging (2.120), a closed form for θd is yielded, hence

θd = sin−1
(
Ux cosψT + Uy sinψT

cos φd

)
(2.121)

where φd is provided by (2.117).

Design of Virtual Control Inputs Ux, Uy

As we have seen from the previous section, the vertical force can be used to yield new force

vectors in x−y plane; specifically, ẍ and ÿ can be rewritten as follows,

ẍ =
U1

m
Ux, (2.122)

ÿ =
U1

m
Uy, (2.123)

where Ux and Uy are

Ux = (cos φ sin θ cosψ + sin φ sinψ) , (2.124)

Uy = (cos φ sin θ sinψ − sin φ cosψ) . (2.125)

The control input Ux is derived in the same way as were the previous control inputs for attitude

control. The first step is to define a new variable a9 that represents the x-component of the

position tracking error, as follows,

a9 := xd − x, (2.126)

where xd and x are the desired and actual linear position of the center of the quadrotor’s mass

along x-axis. Let a Lyapunov function candidate V(a9) be defined as follows,

V(a9) =
1
2

a2
9. (2.127)
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The time derivative of Lyapunov function (2.127) is

V̇(a9) = a9(ẋd − ẋ). (2.128)

Now we impose an upper bound on the expression (2.128) in the form of a quadratic negative

definite function of a9, as follows,

V̇(a9) ≤ −κ9a2
9, (2.129)

where κ9 > 0 is a constant. From (2.128) and (2.129), we acquire the following expression,

a9(ẋd − ẋ) ≤ −κ9a2
9. (2.130)

Inequality (2.130) is guaranteed if the state variable ẋ satisfies

ẋ = ẋd + κ9a9 (2.131)

Let a new variable xvir be defined to represent the desired value of the state variable ẋ, as

follows,

xvir := ẋd + κ9a9 (2.132)

The above defined variable xvir represents the virtual control for the linear position of the center

of the quadrotor’s mass in x-axis. The second stage of the backstepping approach is to define

a new variable a10 that represents the difference between the state variable ẋ and the virtual

control xvir as follows,

a10 := ẋ − xvir. (2.133)

From (2.133) and (2.128), we get another expression for V̇(a9), which is

V̇(a9) = −a9a10 − κ9a2
9. (2.134)
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By adding a new term V(a10) := 1
2a2

10 to the Lyapunov function (2.127), the total Lyapunov

function V(a9, a10) is yielded as follows,

V(a9, a10) = V(a9) + V(a10)

=
1
2

a2
9 +

1
2

a2
10

=
1
2

(x2
d − 2xxd + x2) +

1
2

ẋ2 − ẋ(ẋd + κ9xd − κ9x)

+
1
2

(ẋ2
d + 2κ9 ẋd xd − 2κ9 ẋ + κ2

9 x2
d − 2κ2

9 xd x + κ2
9 x2).

(2.135)

The time derivative of the total Lyapunov function V(a9, a10) is

V̇(a9, a10) = (xd − x − κ9 ẋ + κ9 ẋd + κ2
9 xd − κ

2
9 x)ẋd

+ (−xd + x + κ9 ẋ − κ9 ẋd − κ
2
9 xd + κ2

9 x)ẋ

+ (−ẋ + ẋd + κ9xd − κ9x)ẍd

+ (ẋ − ẋd − κ9xd + κ9x)ẍ.

(2.136)

By rearranging (2.136), one obtains

V̇(a9, a10) = a10 ẍ − a10(ẍd − κ9(a10 + κ9a9)) − a9a10 − κ9a2
9 (2.137)

The following inequality impose a bound on the derivative of the total Lyapunov function

V(a9, a10) so that the exponential convergence a9(t), a10(t)→ 0 will be guaranteed:

V̇(a9, a10) ≤ −κ9a2
9 − κ10a2

10, (2.138)

where κ9, κ10 > 0. From (2.137) and inequality (2.138), one gets

a10 ẍ − a10(ẍd − κ9(a10 + κ9a9)) − a9a10 ≤ −κ10a2
10. (2.139)

The last inequality (2.139) is satisfied if the following relation holds

ẍ = a9 + (ẍd − κ9[a10 + κ9a9)] − κ10a10. (2.140)
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Finally, combining (2.140) and (2.122), formula for Ux is obtained as follows,

U1

m
Ux = a9 + (ẍd − κ9(a10 + κ9a9)) − κ10a10 (2.141)

⇒ Ux =
m
U1

(a9 + (ẍd − κ9(a10 + κ9a9)) − κ10a10) . (2.142)

Setting ẍd = 0 [61], the control input Ux is obtained as follows,

Ux =
m
U1

(a9 − κ9(a10 + κ9a9) − κ10a10) . (2.143)

Using the exact same procedure, Uy is derived as follows,

Uy =
m
U1

(a11 − κ11(a12 + κ11a11) − κ12a12) (2.144)

where κ11, κ12 > 0 are constants, and

a11 := yd − y, (2.145)

a12 := ẏ − yvir, (2.146)

yvir := ẏ + κ11a11, (2.147)

where yd and y are the desired and the actual linear position of the center of the quadrotor’s

mass along y-axis.

Simulation Results for Backstepping Position Control

Using odeint C++ library, simulations have been carried out to illustrate the performance of

the backstepping controller. Table 2.5 shows the numerical values of the parameters for the

simulations, and Figures 2.23, 2.24 and 2.25 for show the response of the quadrotor.
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initial values Gains Desired Trajectory
Altitude z(0) = 0

ż(0) = 0
κ1 = 3.6
κ2 = 3.3

zd = 2.5 (m)

x x(0) = 0
ẋ(0) = 0

κ9 = 3.4
κ10 = 2.0

xd = 2.5 (m)

y y(0) = 0
ẏ(0) = 0

κ11 = 3.4
κ12 = 2.0

yd = 2.5 (m)

Roll φ(0) = 0
φ̇(0) = 0

κ3 = 25.5
κ4 = 20.0

Pitch θ(0) = 0
θ̇(0) = 0

κ5 = 25.5
κ6 = 20.0

Yaw ψ(0) = 0
ψ̇(0) = 0

κ7 = 25.5
κ8 = 20.0

ψd = 0 (rad)

Table 2.5: Backstepping controller parameters for position control (regulation problem)

2.4.6 Spatial Velocity Control for UAV

In previous sections, backstepping controller has been utilized for attitude and position con-

trols of nonlinear model of UAV. For position control, the objective is to force actual position

variables (i.e. x, y, and z) to follow their desired trajectories (i.e. xd, yd and zd). In some ap-

plications, it is preferable and convenient to control the spatial velocity of an UAV rather than

its position. This is due to the limited workspace of the haptic device, which doesn’t allow for

position-position control when the UAV is to cover large distances. The aim of this section is

to show how the backstepping controller can be modified to achieve linear velocity control. Let

a13 define the linear velocity tracking error in z-axis, as follows

a13 := żd − ż, (2.148)

where żd and ż are the desired and actual linear velocities of the center of the quadrotor’s mass

in z-axis, respectively. Let a Lyapunov function V(a13) be defined to be a positive definite
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Figure 2.23: Position regulation problem: errors of linear positions and yaw angle for back-
stepping controller.
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Figure 2.25: The magnitude of control inputs of backspteing controller for attitude control
(regulation problem).

function of a13, as follows

V(a13) =
1
2

a2
13. (2.149)

The time derivative of Lyapunov function (2.149) is determined as follows

V̇(a13) = a13(z̈d − z̈). (2.150)

To guarantee the exponential convergence of a13, we would like to impose the following upper

bound for V̇(a13),

V̇(a13) ≤ −κ13a2
13, (2.151)
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where κ13 > 0 is a constant. Using (2.150), inequality (2.151) becomes

a13(z̈d − z̈) ≤ −κ13a2
13. (2.152)

Inequality (2.152) is guaranteed if the state variable z̈ satisfies

z̈ = κ13a13 + z̈d. (2.153)

Finally, combining (2.153) and (2.15), the following formula is yielded

U1

m
(cos φ cos θ) − g = κ13a13 + z̈d

⇒
U1

m
(cos φ cos θ) = κ13a13 + z̈d + g

⇒ U1 =
m

cos φ cos θ
(κ13a13 + z̈d + g) . (2.154)

Setting z̈d = 0, the linear velocity control input in z-axis that guarantees the asymptotic stability

in the sense of Lyapunov is yielded, as follows

U1 =
m

cos φ cos θ
(κ13a13 + g) . (2.155)

The linear velocities control inputs in x−y axes can be acquired using the same line of reasoning

as in the derivation of (2.155) , therefore, Ux and Uy are

Ux =
m
U1

(κ14a14) , (2.156)

Uy =
m
U1

(κ15a15) , (2.157)

where κ14, κ15 > 0 are constants, and the variables a14 and a15 are defined as follows

a14 := ẋd − ẋ, (2.158)

a15 := ẏd − ẏ, (2.159)
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where ẋd, ẏd, ẋ and ẏ are the desired and actual linear velocities of the center of the quadrotor’s

mass in x−y-axes, respectively.

Simulation Results for Backstepping Velocity Control

Using odeint C++ library, simulations have been carried out to illustrate the performance of

the backstepping velocity controller. Table 2.6 shows the numerical values of the parameters

for the simulations, and Figures 2.26, 2.27, and 2.28 show the response of the quadrotor to the

regulation task of the linear velocity control.

initial values Gains Desired Trajectory
Altitude z(0) = 0

ż(0) = 0
κ13 = 6.2 żd = 2.5 (m/s)

x x(0) = 0
ẋ(0) = 0

κ14 = 2.68 ẋd = 2.5 (m/s)

y y(0) = 0
ẏ(0) = 0

κ15 = 3.73 ẏd = 2.5 (m/s)

Roll φ(0) = 0
φ̇(0) = 0

κ3 = 8.5
κ4 = 8.0

Pitch θ(0) = 0
θ̇(0) = 0

κ5 = 8.5
κ6 = 8.0

Yaw ψ(0) = 0
ψ̇(0) = 0

κ7 = 8.5
κ8 = 8.0

ψd = 0 (rad)

Table 2.6: Backstepping controller parameters for linear velocity control (regulation task)

2.5 Conclusion

In this chapter, the kinematics, the dynamics, and the control strategy for quadrotor UAV sys-

tems have been addressed. Even though there are numerous approaches for kinematic descrip-

tion of rotation of rigid bodies in 3D space, Euler angles parametrization has been chosen due

to its relative simplicity. Regarding the control strategy, the design of controllers for both linear
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Figure 2.26: Velocity regulation problem: errors of linear velocies and yaw angle for backstep-
ping controller.
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Figure 2.28: The magnitude of control inputs of backspteing controller for velocity control
(regulation problem).

and nonlinear models have been described in detail. In the case of a linear model, the small

angles assumption is utilized, and PD and PID controllers have been used to stabilize the lin-

earized model of quadrotor for both attitude and position control problems. In the case of a non-

linear model, the backstepping control approach is implemented. Simulations of both attitude

and position control problems have been carried out by using C++ odeint library. Moreover,

the linear velocity control has been addressed as an alternative to position control. The benefits

of using linear velocity control will be further clarified below in Chapter 4 where it will be used

to overcome the limitation of haptics device’s workspace. This allows quadrotor to cover large

distances, which may not be possible using position control. The simulations demonstrated

satisfactory performance of the nonlinear backstepping controller, which is therefore chosen to

stabilize the quadrotor in the subsequent chapters.



Chapter 3

Simultaneous Localization and Mapping

3.1 Introduction

The problem of Simultaneous Localization and Mapping (SLAM) consists of building a map

of an unknown environment while simultaneously determining the location of the robot on this

map. SLAM algorithms enable a robot with a capability to estimate its pose in a variety of

scenarios, both indoor and outdoor, in cases of static and dynamic environments. The ability

of a robot to determine its current location opens the door to a variety of applications. In this

thesis, SLAM algorithms will be used to generate haptic feedback in a virtual reality based

teleoperator system for remote control of UAVs. In this chapter, SLAM problem is addressed

in some detail from a probabilistic perspective. Section 3.2 provides a general description of

how SLAM algorithms can be constructed probabilistically using Bayesian framework; also in

this section, Section 3.2.2 describes two alternative representations of the metric maps and, in

Section 3.2.4, parametric filters are briefly introduced as a means to implement Bayesian filters.

Section 3.3 discusses Extended Kalman Filter (EKF) implementation of the SLAM algorithms.

A complete EKF-SLAM algorithm for UAV model is presented in Section 3.4.

66
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3.2 Structure of Probabilistic SLAM

3.2.1 Random Variables and Belief Distributions

In this subsection, some background information regarding random variables and belief distri-

butions are given; some basic notions of probability theory are also summarized in Appendix A.

A random variable is a variable that can be used to describe an outcome of a statistical experi-

ment. For example, in a flipping of a coin experiment, possible outcomes are head and tail, and

a random variable E that describes an outcome of this experiment can be defined as follows:

E =

1 if the outcome is head,
0 if the outcome is tail.

Random variables are associated with probabilities. The probability of the outcome where E

takes a particular numerical value e is denoted by p(E = e); for simplicity, notation p(e) is

typically used instead of p(E = e). In the discrete case, where a random variable e is defined

on a discrete set, the probability p(e) satisfies the following two properties:

1. 0 ≤ p(e) ≤ 1,

2.
∑
e

p(e) = 1,

where summation in the second formula is performed over all possible values of e. In the

continuous case, where a random variable e is defined on a continuum of values, p(e) is called

the probability density function (PDF) and has the following properties:

1. 0 ≤ p(e),

2.
∫

p(e) de = 1,

where, again, the integration in second formula is performed over all possible values of e. One

of the most commonly used PDFs is the Gaussian (normal) distribution which is defined via

the following formula:

p(e) =
1

√
2πσ2

e(− 1
2

(e−µ)2

σ2 ), (3.1)

where µ and σ2 are mean and variance, respectively, of the normal distribution. Gaussian

(normal) distribution with mean µ and variance σ2 is denoted by N(µ, σ2).
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In experiments that involve multiple random variables, one might be interested to find out

whether a given random variable has any effect on the other random variables. The joint

probability of two random variables E and W is defined through the following expression,

p(E = e and W = w).

The above expression can be written shortly as p(e,w). Two random variables E and W are

independent if

p(e,w) = p(e) · p(w) (3.2)

Frequently, one might be interested to find out the probability that E takes a numerical value

e given the fact that W takes a numerical value w. Such a probability is called conditional

probability, and denoted by

p(E = e |W = w)

or shortly as p(e | w). The conditional probability p(e | w) can be found through the following

formula

p(e | w) =
p(e,w)
p(w)

(3.3)

whenever p(w) > 0. It follows from (3.2), (3.3) that, if E and W are independent random vari-

ables, their conditional probability p(e | w) = p(e). In other words, if E and W are independent,

then knowledge of W does not give any information regarding the value of E, and vice versa.

The relation between conditional probability p(e | w) and its inverse p(w | e) is determined via

the Bayes rule, which states

p(e | w) =
p(w | e) · p(e)

p(w)
,

where p(w) > 0. The Bayes rule plays a fundamental role in Bayes filters; specifically, it allows

for calculating the posterior probability p(e | w) based on prior probability p(e), generative

model p(w | e) and data w. The Bayes rule can also be applied to calculate the probability of

multiple random variables conditioned on other multiple random variables. For example, the

probability that E takes a value e can be conditioned on two other randoem variables W and Z.
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In this case, the Bayes rule states

p(e | w, z) =
p(w | e, z) · p(e | z)

p(w | z)
.

Theorem of total probability for discrete and continuous cases is formulated as follows:

p(e) =
∑

w

p(e | w) · p(w) (discrete probabilities),

p(e) =

∫
w

p(e | w) · p(w) dw (continuous probabilities).

The notion of belief is defined as an internal knowledge of a robot about its own state, the

state of the environment, or both [74]. The belief is represented probabilistically in the form of

a posterior probability over state variables conditioned on the available data; specifically, given

control inputs u∗k+1 and observations z∗k+1 at a time instant (k+1), the belief (bel) over a state

variable x∗k+1 is described by the formula,

bel(x∗k+1) = p(x∗k+1 | z
∗
1:k+1,u

∗
1:k+1),

where the subscript 1 : k+1 denotes the history of all control inputs and observations starting

from the first instant of available data up to the current moment k + 1. The above expression

encapsulates the knowledge that the robot possesses about its current state which takes the

uncertainty into account. If the PDF of the posterior probability is represented by Gaussian

distribution (i.e., p(e) = N(µ, σ2)), the belief that the robot possesses about its current state can

be represented graphically as a bell curve. Examples of Bell curves are shown in Figure 3.1,

where the red curve (bel 3) represents belief distribution with lowest uncertainty while the blue

curve (bel 1) represents belief distribution with highest uncertainty among the three curves.

The robot calculates its belief from measurement and control data. A general algorithm for

calculating belief is the Bayes filter algorithm represented below as Algorithm 1. The Bayes

filter calculates the belief recursively through two steps which are the prediction step and the

measurement update step. In the first step, the filter calculates a temporary belief bel(x∗k+1)
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Figure 3.1: Bell curves of multiple belief distributions.

based on previous belief bel(x∗k) and control input u∗k+1; the corresponding step is shown in the

line 3 of Algorithm 1. Once the robot acquires new observations z∗k+1, the filter carries out the

measurement update in which the temporary belief bel(x∗k+1) and the new measurements z∗k+1

are utilized to calculate a new belief bel(x∗k+1) according to line 4 of Algorithm 1.

Algorithm 1 Bayes Filter Algorithm
1: get {bel(x∗k),u∗k, z

∗
k }

2: for all x∗k+1 do
3: bel(x∗k+1) =

∑
x∗k

p(x∗k+1 | x
∗
k,u

∗
k+1) · bel(x∗k) (prediction)

4: bel(x∗k+1) =
p(z∗k+1 | x∗k+1)

p(z∗k+1) · bel(x∗k+1) (measurement update)
5: end for
6: return bel(x∗k+1)

3.2.2 Map Representations

Maps play an essential role in localization and SLAM algorithms. As mentioned in Section 1.2,

there exist two types of metric map representations which are feature-based maps and cell-

based maps [75]; these are illustrated in Figure 3.2. Each representation has its own advantages

and disadvantages. The feature-based map is the representation that is most commonly used

in SLAM. It represents the world as a collection of geometric primitives called features (also
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Figure 3.2: Metric map representations: a feature-based map (left); a cell-based map (right).

known as landmarks and beacons). This representation has several advantages. It allows for

altering and/or relocating the features [74]; in addition, a group of features can be combined

together to form a single feature and subsequently treated as such [76]. Another appealing ad-

vantage of using feature-based maps is their ability for encapsulating complex physical objects

into geometric ones which leads to lower memory usage [77] and faster computational pro-

cess [75]. On the other hand, a cell-based map (also known as an occupancy grid) is defined

as a matrix of equally spaced cells. Each element of the matrix represents a belief regarding

whether the corresponding cell is occupied or empty. This representation provides rich infor-

mation regarding the environment since it is a volumetric description [74]. Cell-based maps

describe both occupied and free spaces which make them suitable for path planning [75]. The

empty space between the source of generating sensor signal and the detected obstacle is up-

dated in cell-based map [78] whereas in feature-based map only the location of a feature is

updated. Even though cell-base map offers rich information about the environment, the conse-

quence of increasing cell resolutions leads to complexity in the computational process [75] and

higher requirements for data storage [77]. In [76] the authors performed a comparison between

the two representations and concluded that, for SLAM of UAVs, the feature-based map repre-

sentation is preferable over the cell-based one. In this thesis, the feature-based representation

is utilized, and the map is represented as a vector that consists of Cartesian coordinates of N
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obstacles. Specifically, the map is represented as a vector of the form

m = [m1,x,m1,y,m1,z︸            ︷︷            ︸
m1

, m1,x,m2,y,m2,z︸            ︷︷            ︸
m2

, ... ,mN,x,mN,y,mN,z︸             ︷︷             ︸
mN

]T

Throughout the thesis, it is assumed that the features (obstacles) are stationary and can be

geometrically represented as points.

3.2.3 Probabilistic SLAM

As mentioned in Section 3.1, the term “Simultaneous Localization And Mapping” (SLAM)

refers to the process of building a map of an unknown environment while simultaneously de-

termining the location of the robot on this map. The most common approaches to the SLAM

problem use probabilistic descriptions and methods, as the actual map of the environment and

the robot’s location on it are almost never precisely known and robot’s sensors data are inher-

ently noisy. Consequently, the state of the robot ξ, the state of the map m, the observations

z, and the control inputs u are considered and treated as random variables. Mathematically,

SLAM problem involves estimation of the the following posterior probability

p(ξk,m | z1:k,u1:k, ξ0), (3.4)

where ξ0 and ξk represent the initial state of the robot and its current state (i.e., the state at the

current instant k), respectively. Calculation of the posterior probability (3.4) corresponds to the

so-called online SLAM problem, where only the current robot’s state ξk is considered to be of

interest. On the other hand, the so-called full-SLAM problem corresponds to the case where

one seeks to estimate the posterior probability that involves the entire history of the robot’s

path, as follows

p(ξ1:k,m | z1:k,u1:k, ξ0). (3.5)

In this thesis, only the on-line SLAM problem (3.4) is addressed. The posterior probabil-

ity (3.4) can in principle be calculated recursively using Bayes filter algorithm described above
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as Algorithm 1. Initially, the Bayes filter algorithm requires the initial probaility distribution

(i.e., the initial belief) of ξ0, m. At each iteration, calculation of the posterior probability (3.4)

using Bayes filter algorithm consists of two steps. The first step is the prediction, which is

formulated as follows,

p(ξk+1,m | z1:k,u1:k+1, ξ0) =
∑
ξk

p(ξk+1 | ξk,uk+1) · p(ξk,m | z1:k,u1:k, ξ0). (3.6)

The prediction step requires knowledge of the following probability distribution

p(ξk+1|ξk,uk+1), (3.7)

which is called the motion model of the robot. The second step of Bayesian filter is the

measurement update. This step is executed after the robot acquires observations through its

sensory system. This step is formulated as follows,

p(ξk+1,m | z1:k+1,u1:k+1, ξ0) =
p(zk+1 | ξk+1,m) · p(ξk+1,m | z1:k,u1:k, ξ0)

p(zk+1 | z1:k,u1:k+1)
(3.8)

The measurement update step utilizes the knowledge of the following probability distribution

p(zk+1|ξk+1,m), (3.9)

which is called the observation model. The detailed mathematical derivation of the recursive

Bayesian filter can be found in [74, 79].

3.2.4 Parametric Filters

In most cases, the analytical solution for posterior probability is intractable when using Bayesian

filters. Parametric and non-parametric filters approximate the Bayesian filter to provide a

tractable solution for SLAM [79]. Parametric filters are the type of filters that are most com-

monly utilized to handle the SLAM problem. In parametric filters, random variables are

described using an appropriate parametrization. For example, in Gaussian filters, the moment

parametrization describes random variables through their mean and covariance (also known as
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the first and second moments). There are numerous types of parametric filters that are used

for solving the SLAM problem. The Extended Kalman Filter (EKF) is one of the most com-

monly used parametric Gaussian filter for SLAM. EKF uses the nonlinear function of the mo-

tion model to predict the mean, and the linearized version of the motion model to propagate the

covariance. The linearization is performed using the first order Taylor series expansion, which

may in some cases limit the applicability of EKF. The Unscented Kalman Filter (UKF) is

another common parametric filter [80] that, similarly to EKF, utilizes the mean and the covari-

ance of the Gaussian. The difference between EKF and UKF is in the way the nonlinearity is

handled. EKF linearizes non-linear models using Taylor series whereas UKF uses Unscented

Transformation (UT) technique [80]. UKF draws a finite set of points called sigma-points

deterministically from Gaussian distribution. These points are propagated through the nonlin-

ear model and, after the transformation process is done, each point is assigned a weight. The

weighed sum of these points is utilized to approximate the mean and the covariance according

to UKF, see [74] for details and specific algorithms. This technique may lead to improved

estimates in the case of nonlinear models in comparison with EKF. Moreover, in contrast with

EKF, UKF does not require to calculate derivatives and/or Jacobians. These features make

UKF superior to EKF in some cases [81]. A detailed comparison between EKF and UKF can

be found in [82, 83, 81]. The Extended Information Filter (EIF) is a parametric filter that,

similarly to EKF and UKF, describes Gaussian random variables based on two parameters. The

difference between EIF and EKF, however, is in the way the Gaussian model is parametrized.

EIF does not utilize the mean and the covariance, but rather uses the information matrix and

the information vector as a canonical parametrization [74]. The comparison between EIF and

EKF can be found in [84], while the actual algorithms for EIF can be found in [74].
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3.3 Extended Kalman Filter SLAM Algorithm for a Quadro-

tor UAV

As mentioned above, the Extended Kalman Filter (EKF) is a parametric filter which is used

for SLAM. EKF relies on the assumption that the posterior probability (i.e. (3.4) ) can be

parametrized by the mean and the covariance matrix,

p(ξk+1,m | z1:k+1,u1:k+1, ξ0) ∈ N(µk+1,Σk+1) (3.10)

where N(µk+1,Σk+1) denotes a multivariate Gaussian distribution with mean µk+1 and covari-

ance matrix Σk+1. EKF recursively calculates µk and Σk+1 under the assumption that both the

motion model (3.7) and observation model (3.9) have special form, as described below.

3.3.1 Motion Model

Generally speaking, the motion model describes how the robot is being driven from one state

at a discrete time instant k to another state at a discrete time instant k + 1. In the case of EKF

SLAM, the motion model has a form

ξk+1 = g(ξk,uk+1) + wk+1, (3.11)

where g(·) is a nonlinear function that describes the robot kinematics, and w is the process noise

which is required to be Gaussian with zero mean and known covariance (i.e. wk ∈ N(0,Rk)).

In this thesis, a simplified version of the SLAM problem is addressed where the motion model

only deals with translational motion of the quadrotor. The orientation of the quadrotor, on the

other hand, is assumed to be perfectly known at any instant of time. Essentially, this means

that the quadrotor’s local coordinate frame FL can always be chosen such that its orientation

is equal to the orientation of the stationary global frame FG, see Figure 3.3. From dynamic

equations (2.13)-(2.15), the following model is obtained that describes the translational motion
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Figure 3.3: Representation of the quadrotor’s frame FL in FG

of the quadrotor:

ẍ =
U1

m
(cos φ sin θ cosψ + sin φ sinψ) := fx(φ, θ, ψ,U1), (3.12)

ÿ =
U1

m
(cos φ sin θ sinψ − sin φ sinψ) := fy(φ, θ, ψ,U1), (3.13)

z̈ =
U1

m
(cos φ cos θ) − g := fz(φ, θ,U1), (3.14)

where fx(·), fy(·) and fz(·) are nonlinear functions that govern the translational movement of the

center of quadrotor’s mass in the inertial frame along x, y, and z axes, respectively. Below, the

arguments of these functions will be omitted to simplify the notations. Using notation x1 := x,

x2 := ẋ, y1 := y, y2 := ẏ, z1 := z, z2 := ż, equations (3.12) - (3.14) can be rewritten in the

following state-space form

ẋ1 = x2, (3.15)

ẋ2 = fx, (3.16)
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ẏ1 = y2, (3.17)

ẏ2 = fy, (3.18)

ż1 = z2, (3.19)

ż2 = fz. (3.20)

Equations (3.15)- (3.20) can be discretized using Euler approximation to obtain

x1(k+1) = x1(k) + x2(k)∆t (3.21)

x2(k+1) = x2(k) + fx∆t (3.22)

y1(k+1) = y1(k) + y2(k+1)∆t, (3.23)

y2(k+1) = y2(k) + fy∆t, (3.24)

z1(k+1) = z1(k) + z2(k+1)∆t, (3.25)

z2(k+1) = z2(k) + fz∆t, (3.26)

where ∆t > 0 is a sufficiently small sampling period. From (3.21) - (3.26), the motion model

(i.e. g(·)) of the quadrotor’s translational motion is

xk+1

ẋk+1

yk+1

ẏk+1

zk+1

żk+1

︸︷︷︸
ξk+1

=



xk + ẋk∆t

ẋk + fx∆t

yk + ẏk∆t

ẏk + fy∆t

zk + żk∆t

żk + fz∆t

︸       ︷︷       ︸
g(ξk ,uk+1)

+wk+1. (3.27)
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As mentioned above, the process noise w is assumed to be Gaussian with zero mean and known

covariance R (w ∈ N(0,R)), where the covariance matrix has a form

R =



σ2
xx 0 0 0 0 0

0 σ2
ẋẋ 0 0 0 0

0 0 σ2
yy 0 0 0

0 0 0 σ2
ẏẏ 0 0

0 0 0 0 σ2
zz 0

0 0 0 0 0 σ2
żż



(3.28)

Th implementation of EKE requires linearization of g(·) around the current state estimate.

The Jacobian matrix of g(·) is

G =
∂g(·)
∂ξ

=



1 ∆t 0 0 0 0

∆t ∂ fx
∂x 1 + ∆t ∂ fx

∂ẋ 0 0 0 0

0 0 1 ∆t 0 0

0 0 ∆t ∂ fy
∂y 1 + ∆t ∂ fy

∂ẏ 0 0

0 0 0 0 1 ∆t

0 0 0 0 ∆t ∂ fz
∂z 1 + ∆t ∂ fz

∂ż



(3.29)

where

fx =
U1

m
(cos φ sin θ cosψ + sin φ sinψ) ,

∂ fx

∂x
= 0,

∂ fx

∂ẋ
= 0,

fy =
U1

m
(cos φ sin θ sinψ − sin φ cosψ) ,

∂ fy

∂y
= 0,
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∂ fy

∂ẏ
= 0,

fz =
U1

m
(cos φ cos θ) − g,

=
[
(zd − z) − κ1

(
ż − żd − κ1(zd − z) + κ1(zd − z)

)
− κ2(ż − żd − κ1zd + κ1z)

]
,

∂ fz

∂z
=

[
(0 − 1) − κ1

(
0 − 0 −���

��κ1(zd − z) +���
��κ1(zd − z)

)
− κ2(0 − 0 − 0 + κ1)

]
,

= [−1 − κ2κ1],

∂ fz

∂ż
=

[
(0 − 0) − κ1

(
1 − 0 −���

��κ1(zd − z) +���
��κ1(zd − z)

)
− κ2(1 − 0 − 0 + 0)

]
= [−κ1 − κ2].

3.3.2 Observation Model

The observation model (3.9) describes probability distribution of observations conditioned on

the robot location and the state of the map. In this thesis, the quadrotor is assumed to be

equipped with a 3D sensor that provides the range r, the azimuthal angle bθ and the polar angle

bφ to obstacles, and is subject to observation noise. The primary purpose of the observation

model is to generate the predicted observations ẑ, so that the difference between the actual z

and the predicted ẑ observations (i.e. z− ẑ) forms an innovation. The observation vector zi has

the following form,

zi =


ri

bi
θ

bi
φ

 , i = 1, 2, ..., n, (3.30)

where

q = (m j,x − ξx)
2 + (m j,y − ξy)

2 + (m j,z − ξz)
2, (3.31)

r =
√

q, (3.32)

bθ = tan−1
(m j,y − ξy

m j,x − ξx

)
, (3.33)



80 Chapter 3. Simultaneous Localization andMapping

bφ = cos−1
(
m j,z − ξz

r

)
. (3.34)

and n is the total number of observations for a given scan. It can be seen from the above

Figure 3.4: 3D sensor that provides observations to a beacon

equations that the observations depend on the quadrotor’s position and the location of a beacon,

therefore, a general description of the observation model is formulated as follows,

z(k + 1) = h(ξ(k + 1),m j) + v(k + 1) (3.35)

where v is the measurement noise which is assumed to be Gaussian with zero mean and some

known covariance Q (i.e. v ∈ N(0,Q)). EKF utilizes a linearized version of the observation

model (3.35). The Jacobian H of the observation model h(·) has the following form,
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H =
∂h(.)
∂x

=



−Dx
r 0 −

Dy
r 0 −Dz

r 0 Dx
r

Dy
r

Dz
r

Dy
Dy2+Dx2 0 − Dx

Dy2+Dx2 0 0 0 −
Dy

Dy2+Dx2
Dx

Dy2+Dx2 0

− DzDx√
1−Dz2

q (q)3/2
0 −

DzDy√
1−Dz2

q (q)3/2
0

1√
q−

Dz2

(q)3/2√
1−Dz2

q

0 DzDx√
1−Dz2

q (q)3/2

DzDy√
1−Dz2

q (q)3/2
−

1√
q−

Dz2

(q)3/2√
1−Dz2

q


(3.36)

where

Dx = m j,x − ξx ,

Dy = m j,y − ξy ,

Dz = m j,z − ξz .

The zero columns in H reflect the fact that the measurements are not affected by the trans-

lational velocities of the quadrotor. Finally, the covariance matrix Q of the observations is

assumed to have the following form,

Q =


σ2

rr 0 0

0 σ2
bθbθ

0

0 0 σ2
bφbφ

 (3.37)

.

3.3.3 Data Association

For each actual observation zi, the robot must decide whether an observation belongs to a new

beacon, to the one that has been observed before, or is due to false alarm. This is done through

a procedure known as data association which must be made before fusing the location of the

beacon into the state vector. For the sake of simplicity, the case of false alarms is not addressed

in this thesis.

Data association is one of the most difficult and critical parts of SLAM. Failure in data asso-
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ciation step may result in adding incorrect beacons to the state vector which may make it grow

unboundedly, consequently leading to divergence of the EKF-SLAM algorithm. There ex-

ist numerous techniques for data association. One of the most common methods is the nearest

neighbour (NN) method. This method is applicable if the uncertainty of the location of beacons

is low [74]. NN approach uses maximum likelihood (ML) estimation to determine whether an

actual observation represents a new landmark or a landmark that has been observed before. The

idea behind the NN technique is to compute the squared Mahalanobis distance [85] between

the actual and the predicted observations. It is defined as follows,

D2(zi, ẑp) := (zi − ẑp)T Ψ−1(zi − ẑp), (3.38)

where D2 and Ψ are the squared Manalanobis distance and the innovation covariance matrix,

respectively. The two indexes i and p correspond to the number of the actual observation per

scan and the number of the existing beacon in the state vector. In NN method, the computed

distances (3.38) are passed through a validation gate to establish the correspondence between

the actual observation and the known beacons. The validation gate is implemented according

to the formula

D2 ≤ χ2
τ,α (3.39)

where χ2 is the validation gate threshold (obtained from Chi-square distribution table), where

τ is the rank of the predicted observation vector [86] and α is the confidence level. If the

inequality (3.39) does not hold then the observation is assumed to belong to a new beacon;

otherwise, the observation is associated with an existing beacon. In the latter case, the corre-

spondence between the actual and the predicted observations is established to determine the

existing beacon’s index, as follows,

p(i) = argmin
p

(D2(zi, ẑp)). (3.40)
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3.3.4 Constructing EKF-SLAM

The EKF-SLAM approach in this thesis is adopted from [74]; the difference, however, is that

in our case the SLAM for UAV is addressed, whereas in [74] the platform is a ground mobile

robot that follows a circular path in a planar environment. The primary objective of EKF-

SLAM algorithm is to keep the estimates of system’s state and uncertainties updated based on

control inputs and measurements. The estimate (or the mean) of the state vector x̂ consists

of the robot’s state vector ξ̂ and the map’s state vector m̂, where the hat indicates that these

quantities are estimates. More precisely, the state vector is as follows

x̂ = [ξ̂ m̂]T ∈ R(6+3N)×1 (3.41)

where

ξ̂ = (x, ẋ, y, ẏ, z, ż) ∈ R6×1, (3.42)

m̂ = (m̂1, m̂2, ..., m̂N) ∈ R3N×1. (3.43)

The dimension of the state vector x̂ is (6 + 3N) × 1, where N is the total number of beacons

in the map’s state vector. From Figure 3.4, m j is a vector that holds the Cartesian coordinates

of jth beacon, hence m j = (m j,x,m j,y,m j,z) ∈ R3×1; its counterpart in EKF that represents

its mean is m̂ j. The covariance matrix P reflects the uncertainty of the state vector estimate;

its dimension is (6+3N)×(6+3N), and it depends quadratically on the number of the existing

beacons. The covariance matrix P has a form

P =



Pξ̂ξ̂ Pξ̂m̂1
. . . Pξ̂m̂N

Pm̂1ξ̂
Pm̂1m̂1 . . . Pm̂1m̂N

...
...

. . .
...

Pm̂N ξ̂
Pm̂Nm̂1 . . . Pm̂Nm̂N


∈ R(6+3N)×(6+3N). (3.44)
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The covariance matrix (3.44) can be written in a more compact form, as follows

P =

Pξ̂ξ̂ Pξ̂m̂

Pm̂ξ̂ Pm̂m̂

 . (3.45)

It can be seen from (3.45) that the covariance matrix P consists of four submatrices, where Pξ̂ξ̂

is a covariance matrix that reflects the uncertainty in the robot’s state vector and the correlation

between its elements, Pm̂m̂ is a covariance matrix that reflects the uncertainty in beacons’ loca-

tions and the correlation between their elements, and Pξ̂m̂ = PT
m̂ξ̂

are covariance matrices that

reflect the uncertainty between the robot’s state vector and the location of existing beacons.

EKF Prediction Step

The prediction step is the first step of EKF algorithm that calculates how the estimate is driven

from a given state to the next one. The estimate x̂k+1|k represents a prior state estimate of the

system and Pk+1|k represents its uncertainty. For the sake of simplicity, we assume that control

inputs are not corrupted by noise, however, this is not always the case. If the control inputs

themselves are corrupted by noise, then their covariance matrix estimate must be augmented,

see [74]. If the ontrol inputs are not corrupted by noise, the predicting step consists of the

following two equations,

x̂k+1|k = g(x̂k|k,uk+1), (3.46)

Pk+1|k = Gk+1Pk|kGT
k+1 + Rk+1, (3.47)

where Gk+1 and Rk+1 are the “augmented” versions of the matrices (3.29) and (3.28), respec-

tively. The augmentation process corresponds to adding new beacons to the map; it will be

described below in “Adding a new beacon” subsection.
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EKF Update Step

Update step is the second step of EKF algorithm. In this step, the filter is provided with

the actual observations, and the predicted observations are generated using the observation

model (3.35) using the existing state estimates. The innovation is then calculated and multiplied

by the Kalman Gain Kk+1, the latter is calculated according to equation (3.48) below. The result

is added to a prior estimate to yield a new posterior state estimate (x̂k+1|k+1) in (3.49). The

updated covariance is subsequently computed in (3.50). The algorithm has a form

Kk+1 = Pk+1|kHT
k+1(Hk+1Pk+1|kHT

k+1 + Qk+1)−1, (3.48)

x̂k+1|k+1 = x̂k+1|k + Kk+1(z − h(ξ̂k+1|k, m̂ j)︸        ︷︷        ︸
ẑ

), (3.49)

Pk+1|k+1 = (I − Kk+1Hk+1)Pk+1|k, (3.50)

where I is the identity matrix. Kalman gain Kk+1 is essentially a measure to which the posterior

estimate should rely on the actual observations to enhance the prior estimate.

System Initialization

The starting point from which the robot begins its operation is considered as the origin of the

global frame OFG. The robot starts with an empty map. Therefore, the initial values of the

estimate ξ̂ and the covariance matrix Pξ̂ξ̂ of the robot are set to zero, the latter reflects the fact

that the robot has zero uncertainty about its state in the beginning,

ξ̂(0) = 0 ∈ R6×1, (3.51)

Pξ̂ξ̂(0) = 0 ∈ R6×6. (3.52)

Adding a new beacon

The robot gradually constructs the map by adding new beacons to it. Once a new beacon is

recognized, an estimate of its position on the map can be obtained through the inverse mea-
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surement function [74] which, for given measurements in spherical coordinates, calculates the

corresponding position in Cartesian coordinates,

m j(k+1) = Ω(ξk+1, z
i
k+1). (3.53)

The inverse measurement function Ω(·) has a form

m j,x = ξx + ri cos(bi
θ) sin(bi

φ), (3.54)

m j,y = ξy + ri sin(bi
θ) sin(bi

φ), (3.55)

m j,z = ξz + ri cos(bi
φ). (3.56)

In EKF-SLAM, once the robot observes a new beacon, the size of x̂ and P grows accordingly.

The estimate of the new beacon’s location in the global frame is acquired through the inverse

measurement function:

m̂ j(k+1) = Ω(ξ̂k+1, z
i
k+1). (3.57)

Subsequently, the estimate of the state vector x̂ is augmented as follows

x̂ =



ξ̂

m̂1

...

m̂j−1

m̂j


(3.58)

The covariance matrix P also needs to be augmented. Before the new beacon is added, the

covariance matrix has a form

P =



Pξ̂ξ̂

Pξ̂m̂︷               ︸︸               ︷
Pξ̂m̂1

. . . Pξ̂m̂N

Pm̂1ξ̂
Pm̂1m̂1 . . . Pm̂1m̂N

...
...

. . .
...

Pm̂N ξ̂
Pm̂Nm̂1 . . . Pm̂Nm̂N


.
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The dark red block represents the uncertainty of the robot’s state vector, and the light red

blocks represent its cross-covariance matrix with the existing beacons in the map’s vector. The

covariance matrix of the new beacon Pm̂N+1m̂N+1 is acquired as follows,

Pm̂N+1m̂N+1 = Gξ̂Pξ̂ξ̂G
T
ξ̂

+ GzQGT
z (3.59)

where Gξ̂ is the Jacobian matrix of the inverse measurement function (3.53) with respect to the

robot’s state vector,

Gξ̂ :=
∂Ω(.)
∂ξ̂

=


Gξ̂11 Gξ̂12 Gξ̂13 Gξ̂14 Gξ̂15 Gξ̂16

Gξ̂21 Gξ̂22 Gξ̂23 Gξ̂24 Gξ̂25 Gξ̂26

Gξ̂31 Gξ̂32 Gξ̂33 Gξ̂34 Gξ̂35 Gξ̂36


3×6

, (3.60)

where the elements of Gξ̂ are,

Gξ̂11 =
rξ̂y sin(bθ) sin(bφ)

(ξ̂
2
y + ξ̂

2
x)

+
rξ̂xξ̂z cos(bθ) cos(bφ)

√
1 − ξ̂

2
z

q

 q3/2

+ 1 ,

Gξ̂13 =
rξ̂yξ̂z cos(bθ+) cos(bφ)

√
1 − ξ̂

2
z

q

 q3/2

−
rξ̂x sin(bθ) sin(bφ)

(ξ̂
2
y + ξ̂

2
x)

,

Gξ̂51 = −

r cos(bθ + Rθ) cos(bφ + Rφ)
(

1
r −

ξ̂
2
z

q3/2

)

√

1 − ξ̂
2
z

q


,

Gξ̂12 = Gξ̂14 = Gξ̂16 = 0

Gξ̂21 =
rξ̂xξ̂z sin(bθ) cos(bφ)

√
1 − ξ̂

2
z

q

 q3/2

−
rξ̂y cos(bθ) sin(bφ)

(ξ̂
2
y + ξ̂

2
x)

,

Gξ̂23 =
rξ̂x cos(bθ) sin(bφ)

(ξ̂
2
y + ξ̂

2
x)

+
rξ̂yξ̂z sin(bθ) cos(bφ)

√
1 − ξ̂

2
z

q

 q3/2

+ 1 ,
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Gξ̂25 = −

r sin(bθ) cos(bφ)
(

1
r −

ξ̂
2
z

q3/2

)

√

1 − ξ̂
2
z

q


,

Gξ̂22 = Gξ̂24 = Gξ̂26 = 0 ,

Gξ̂31 = −
rξ̂xξ̂z sin(bφ)
√

1 − ξ̂
2
z

q

 q3/2

,

Gξ̂33 = −
rξ̂yξ̂z sin(bφ)
√

1 − ξ̂
2
z

q

 q3/2

,

Gξ̂35 =

r sin(bθ)
(

1
r −

ξ̂
2
z

q3/2

)

√

1 − ξ̂
2
z

q


+ 1 ,

Gξ̂32 = Gξ̂34 = Gξ̂36 = 0.

The Jacobian matrix Gz of the inverse measurement function (3.53) with respect to the actual

observation vector (i.e. z) is obtained as follows:

Gz =
∂Ω(.)
∂z

=


Gz11 Gz12 Gz13

Gz21 Gz22 Gz23

Gz31 Gz32 Gz33

 (3.61)

where the parameters of Gz are,

Gz11 = cos(bθ) sin(bφ),

Gz12 = −r sin(bθ) sin(bφ),

Gz13 = r cos(bθ) cos(bφ),

Gy21 = sin(bθ) sin(bφ),

Gz22 = r cos(bθ) sin(bφ),

Gz23 = r sin(bθ) cos(bφ),
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Gz31 = cos(bφ),

Gz32 = 0,

Gz33 = −r sin(bφ).

The cross-covariance matrix PΛ of the new beacon’s can now be computed as follows:

PΛ = [Gξ̂Pξ̂ξ̂
... Gξ̂Pξ̂m̂] ∈ R3×(6+3N) (3.62)

Finally, the augmented covariance matrix becomes

P =



Pξ̂ξ̂ Pξ̂m̂1
. . . Pξ̂m̂N

PT
Λ︷ ︸︸ ︷

Pξ̂m̂N+1

Pm̂1ξ̂
Pm̂1m̂1 . . . Pm̂1m̂N Pm̂1m̂N+1

...
...

. . .
...

...

Pm̂N ξ̂
Pm̂Nm̂1 . . . Pm̂Nm̂N

...

︸                              ︷︷                              ︸
PΛ

Pm̂N+1ξ̂
Pm̂N+1m̂1 . . . . . . Pm̂N+1m̂N+1


. (3.63)

3.4 EKF-SLAM Algorithm

For simplicity, EKF-SLAM algorithm is divided below into two parts. Algorithm 2 corre-

sponds to the prediction step; it shows how the estimate of the robot’s state vector ξ̂ and its

uncertainty are being updated. The matrix Π is utilized to map the corresponding submatrices

to higher dimensions, so that the dimensions of matrices are compatible for multiplication [74].

Algorithm 2 Prediction Step of EKF-SLAM
1: EKF-SLAM (x̂k|k,Pk|k,uk+1, zk+1)
2: Nk+1 = Nk

3: Π =



1 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 · · · 0
0 0 1 0 0 0 0 · · · 0
0 0 0 1 0 0 0 · · · 0
0 0 0 0 1 0 0 · · · 0
0 0 0 0 0 1 0 · · · 0


6×(6+3N)
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4: x̂k+1|k = x̂k|k + ΠT
x



ξ ẋ(k+1)∆t
fx∆t
ξẏ(k+1)∆t

fy∆t
ξż(k+1)∆t

fy∆t



5: Gk+1 = I + ΠT
x



0 ∆t 0 0 0 0
∆t ∂ fx

∂x ∆t ∂ fx
∂ẋ 0 0 0 0

0 0 0 ∆t 0 0
0 0 ∆t ∂ fy

∂y ∆t ∂ fy
∂ẏ 0 ∆t

0 0 0 0 0 ∆t
0 0 0 0 ∆t ∂ fz

∂z ∆t ∂ fz
∂ż


Π

6: Pk+1|k = Gk+1Pk|kGT
k+1 + ΠT

x Rk+1Π

Algorithm 3 shows the data association and updating steps. The first part of Algorithm 3

(lines 7-22) handles the data association by generating the predicted observations ẑ and com-

paring them with the actual observation to establish the correct correspondence (line 18). In

line 8, it is assumed that each actual observation corresponds to a new beacon, however, the

beacon will not be added until the observation passes the validation gate threshold (line 17).

Line 9 starts a cycle that generates the predicted observations for the existing beacons as well

as for the new one generated in line 8. The innovation covariance matrix Ψ is then computed in

the line 14 and, subsequently, on line 15 the squared Manalanobis distance is determined. On

line 13, Γ is ∂h(ξ̂k+1|k ,m̂p)
∂x and Hp is Γ after being mapped to higher dimension by Fx,p. The same

operation is applied to H j(i) in the line 27. First, ∂h(ξ̂k+1|k ,m̂ j(i))
∂x is computed and then mapped by

another matrix to yield H j(i). Updating step starts from line 27 by computing the Kalman gain.

The estimate and the covariance matrix of the system is updated on lines 28 and 29 accord-

ing to EKF algorithm. Lines 30 and 31 compute the new belief of the robot which completes

EKF-SLAM algorithm.

Algorithm 3 Data Association and Updating Steps of EKF-SLAM

7: for all actual observations zi
k+1 do
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8:


m̂N+1,x

m̂N+1,y

m̂N+1,z

 =


ξ̂x,(k+1|k)

ξ̂y,(k+1|k)

ξ̂z,(k+1|k)

 + ri


cos(bi

θ) sin(bi
φ)

sin(bi
θ) sin(bi

φ)

cos(bi
φ)


9: for p = 1 to (Nk) + 1 do

10: δp =


δp,x

δp,y

δp,z

 =


m̂p,x − ξ̂x,(k+1|k)

m̂p,y − ξ̂y,(k+1|k)

m̂p,z − ξ̂z,(k+1|k)


11: qp =

√
δT

pδp

12: ẑp
k+1 =


qp

tan−1
(

m̂p,y−ξ̂y,(k+1|k)

m̂p,x−ξ̂x,(k+1|k)

)
cos−1

(
m̂p,z−ξ̂z,(k+1|k)

qp

)


13: Hp
k+1 = Γ

p
k+1Fx,p

14: Ψp = Hp
k+1Pk+1|k[H

p
k+1]T + Qk+1

15: D2
p = (zi

k+1 − ẑp
k+1)T Ψ−1

p (zi
k+1 − ẑp

k+1)

16: end for

17: D2
(Nk)+1 = χ2

τ,α

18: j(i) = argmin
p

D2
p

19: if j(i) > Nk then . augment the system

20: Nk+1 = j(i)

21: Add m̂Nk+1To x̂k+1|k

22: Add Pm̂Nk+1 m̂Nk+1
And PΛTo Pk+1|k

23: else . don’t augment the system

24: Nk+1 = Nk

25: end if

26: Ki
k+1 = Pk+1|k[H

j(i)
k+1]T Ψ−1

j(i)

27: x̂k+1|k = x̂k+1|k + Ki
k+1(zi

k+1 − ẑ j(i)
k+1)
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28: Pk+1|k = (I − Ki
k+1H j(i)

k+1)Pk+1|k

29: end for

30: x̂k+1|k+1 = x̂k+1|k

31: Pk+1|k+1 = Pk+1|k

3.5 Conclusion

In this chapter, the SLAM problem has been addressed from probabilistic point of view, and the

Extended Kalman Filter (EKF) SLAM algorithm for quadrotor UAV is developed. In particular,

a general overview of the recursive Bayesian framework for constructing of SLAM is given,

and different parametric filters are described that approximate the solution provided by the

Bayesian filter. The design procedure for EKF-SLAM algorithm for quadrotor is presented

in detail. The developed EKF-SLAM algorithm will be utilized in the subsequent chapter for

the purpose of generating haptic feedback in a teleoperator system for remote control of a

quadrotor UAV.



Chapter 4

Teleoperation of UAVs with SLAM-based

Haptic Feedback

4.1 Introduction

In the previous chapters, the kinematics, dynamics and control of a quadrotor UAV (Chapter 2)

and basic formulations related to SLAM algorithms (Chapter 3) were presented. This chapter

represents the main contribution of this thesis, which is development of a haptic teleoperator

system for remote control of a quadrotor UAV, where the haptic feedback is generated using

SLAM algorithms. Specifically, an estimate of the state of the environment obtained using

SLAM algorithms will be used to approximately reconstruct a model of the remote environ-

ment in the virtual environment at the master site. The haptic feedback will be subsequently

generated based on location of the obstacles in the virtual environment using potential force

field methods. As a result, the human operator will haptically feel a repulsive force as the

quadrotor approaches an obstacle, which increases the situational awareness for the human

operator and results in improved performance and safety of UAV teleoperation.

The structure of this Chapter is as follows. Section 4.2 describes the notion of predictive

displays. Section 4.3 introduces the SLAM-based haptic feedback approach. In Section 4.4,

93



94 Chapter 4. Teleoperation of UAVs with SLAM-based Haptic Feedback

Virtual Environment

Master Device

Master Side

C
om

m
u
n
ic
at
io
n
C
h
an

n
el

Slave Side

Figure 4.1: Simple predictive display model for bilateral teleoperation systems.

mathematical models for artificial potential fields (APFs) are discussed, and some experimental

results are presented that demonstrate the interaction process between the human operator and

the APF. The control structure of the teleoperator system with SLAM-based haptic feedback

is discussed in Section 4.5. In Section 4.6, two algorithms for SLAM-based haptic feedback

are developed, and the corresponding semi-experimental results are presented and discussed.

Conclusions are given in Section 4.7.

4.2 Predictive Displays

In teleoperation applications, the existence of communication constraints such as time delays

in the communication channel typically results in a number of problems. As mentioned in

Chapter 1, time delay may destabilize haptic teleoperation system by generating energy in the

communication channel. When using visual feedback, time delay is shown to substantially in-

crease the task completion time [87]; essentially, in this case the human operator must adopt the

“move-and-wait” strategy before carrying out the next set of commands. Also, long time de-

lays increase the human operator’s workload [88]. One of the most popular approaches to cope

with time delay in teleoperation systems is based on the use of predictive displays. The idea

behind the predictive display is to build a virtual model of the remote environment at the master

site, and to provide the human operator with feedback from the local virtual model rather than
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with the actual data from the remote site. The predictive displays were used extensively for ap-

plications that involve long time delays, such as space and undersea [89, 90, 88]. The approach

based on predictive displays was shown to reduce the mental workload for the human operator

and to improve the task performance in the presence of large time delays; it also removes the

necessity of the “move-and-wait” strategy. The paper [91] is apparently the first work where

the predictive display approach was utilized as a means to provide the human operator with the

force feedback in the presence of time delay. The general structure of a teleoperator system

with haptic predictive display is shown in Figure 4.1. Here, the information about motion of

the master device is sent over a delayed communication channel to the remote site, where it

is used as a reference trajectory for the slave device. The same reference trajectory, however,

is applied to the virtual slave device without delay. The interaction forces between the virtual

slave and objects in the virtual environment are calculated and subsequently applied to the

master device; therefore, the delay in the haptic channel is eliminated. The central issue asso-

ciated with the predictor displays approach is that building the virtual model requires detailed

knowledge of the remote environment. The approach is therefore not directly applicable in the

situations where the remote environment is not precisely known.

4.3 SLAM-Based Haptic Feedback

In this section, the basic idea of SLAM-based haptic feedback is described. As mentioned in

the previous section, the predictive displays rely on the virtual model of a remote environment

to provide the human operator with different types of feedback. The problem with the pre-

dictive displays approach, however, is that building virtual models requires precise knowledge

of the remote environment. When the robot navigates unknown environments, the predictive

display approach can not be directly utilized due to the fact that the virtual model of a remote

environment is not available a priori. In this thesis, we propose the idea of using SLAM al-

gorithms as a means for building the virtual model of an unknown remote environment in real
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Figure 4.2: Structure of the teleoperator system with SLAM-based haptic feedback

time, and use this model in a teleoperator system to provide haptic feedback to the human

operator. Figure 4.2 shows the general structure of a teleoperator system with SLAM-based

haptic feedback. In this system, the human operator controls the haptic device; the position

of the end-effector of the haptic device determines the desired trajectory for the remote UAV.

The UAV executes the desired trajectory while simultaneously scanning the environment for

obstacles and measuring distance/direction to them; in Figure 4.2, the obstacles are denoted

by stars. These measurements are subsequently transmitted to the master site, where they are

used as inputs to the SLAM algorithm. The SLAM algorithm determines the location of the

obstacles and updates the virtual environment with a map of the obstacles as well as the posi-

tion of the UAV with respect to these obstacles. The haptic feedback is generated by building

an artificial potential force field around the obstacles in the virtual environment. Figure 4.3

gives a simple 2D picture which illustrates the method for generating the haptic feedback. In

this Figure, the blue star and the blue triangle illustrate the actual positions of an obstacle and



4.4. The Artificial Potential Field 97

the UAV, respectively; the yellow star and the yellow triangle denote estimates of the positions

of the obstacle and the UAV, respectively, obtained through running SLAM algorithm. The

dashed green line represents the border of the artificial potential field built around the obstacle;

the human operator receives haptic feedback as the platform penetrates the artificial potential

field. The red line represents the estimated distance of penetration of the UAV into the artificial

potential field; the potential field subsequently generates repulsive force which is directed away

from the obstacle, while the magnitude of this force is a function of the distance of penetration.

As a result, the human operator feels repulsive forces as the UAV approaches the obstacle.

Figure 4.3: 2D illustration of the method for generating the SLAM-based haptic feedback.

4.4 The Artificial Potential Field

As explained in the previous section, in the proposed teleoperator structure the haptic feedback

is generated using an artificial potential field; the latter is built around estimated positions of the

obstacles in the virtual environment on the master side. In this section, the methods for build-

ing artificial potential fields are addressed in some detail, and the corresponding experimental
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results are presented. The primary purpose of the artificial potential field (APF) approach is

to transform or map the surrounding environment of a physical object into virtual forces [92].

These virtual forces can be utilized for various purposes, such as to redirect a mobile robot to

avoid any potential collision [93], or to alert the human operator if an UAV is approaching a

physical object [92]. The idea of an artificial potential field was originally proposed in [94]

to deal with collision avoidance problem in robotics. The APF approach allowed for substan-

tial simplification and practical real-time implementation of the obstacle avoidance algorithms,

while effectively reducing the amount of higher level off-line planning required. The original

paper [94] proposes several different models for APFs, including the one that relies on the

shortest distance to an obstacle, as well as models that take the geometric shape of an obstacle

into account. In [95], a generalized potential field (GPF) model is proposed, where the force

depends not only on the distance to the obstacle but also on the direction of the relative velocity.

Specifically, if the robot is moving away from the obstacle then the GPF force is set to zero;

otherwise, the force is set to be inversely proportional to the difference between the so called

maximum and minimum avoidance times.

In [92], the APF approach was applied to haptic teleoperation of UAVs. In contrast with

the above described works where APF forces were injected into the control input to redirect

the robot in order to avoid collisions, in [92] the APF forces were used to generate haptic

feedback to the human operator. In addition, work [92] introduces a number of modification

to the APF method, which make the latter more suitable for haptic teleoperation. The modi-

fications are summarized in two new models for APFs, called the basic risk field (BRF) and

the parametric risk field (PRF). These new modifications of the APF models take into account

the hardware limitations typical for haptic devices, as well as result in decreasing the human

operator workload.
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4.4.1 Models for Artificial Potential Field

In this section, models for APFs used in this thesis are described. The APF is built around

the obstacles and applies repulsive forces to the haptic device whenever its avatar penetrates

the APF. Figures 4.4a and 4.4b show the direction of the repulsive forces; these forces always

point outward from the center of an APF which coincides with an obstacle (represented by a

red dot). For simplicity of implementation, it is assumed that the APF possesses a uniform ge-

ometric shape (i.e., a circle in 2D case, and a sphere in 3D case) regardless of the actual shape

of the object. We follow the approach of [94] in the sense that, in the algorithms utilized in our

x

y

(a) 2D uniform artificial potential field.

x

y

z

(b) 3D uniform artificial potential field.

Figure 4.4: Direction of APF force vectors in the vicinity of obstacles.

work, the APF forces are constantly applied to the end-effector of the haptic device whenever

the avatar of the device is inside the APF. Even though this may result in an increase of the

human operator workload as claimed in [92], we believe this approach has certain advantages

that make it beneficial in our case. Specifically, the approach makes the human operator con-

stantly alerted while the avatar of the device is inside the potential field, thus increasing the

human operator’s awareness and trust in safety of the operation. Moreover, since the environ-

ment in our case is feature-based, and interaction with the obstacles can be assumed relatively
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Figure 4.5: Algorithm 4: APF based on the penetration depth only

infrequent in UAV teleoperation, the corresponding increase of the human operator workload

is expected to be insignificant. In addition, stiffness of APF can be adjusted to decrease the

human operator’s workload to an acceptable level, if necessary.

Two algorithms for APFs are addressed in this work. The first algorithm is described below

as Algorithm 4. This algorithm calculates the repulsive force based on the depth of penetration

only. Specifically, the APF force is directed outward from the position of the obstacle, and

its magnitude is proportional to the depth of penetration pd multiplied by the APF stiffness

Kp. The algorithm is illustrated in Figure 4.5, where the green, the red, and the yellow circles

represent the APF, the obstacle, and the end-effector of the haptic device, respectively, while

XR and XO are the end effector’s position and the obstacle’s position, respectively.
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Algorithm 4 : APF based on the penetration depth

1: get XR and XO

2: Xd = ‖XR − XO‖

3: if Xd < p f then . where p f is APF radius
4: pd = p f − Xd . compute penetration distance
5: Fd = XR−XO

‖XR−XO‖
. determine force direction (i.e. unit vector)

6: F = Kp · pd · Fd.
7: end if

Algorithm 4 does not utilize the robot’s relative velocity vector. The use of relative velocity

can be beneficial in that it can be used to distinguish between the cases where the end-effector

approaching the obstacle and where it is moving away from the obstacle. In the second algo-

rithm (Algorithm 5), the APF force depends on the direction of the movement; specifically, a

damping term is added to the repulsive force if the platform is approaching the obstacle. Figure

4.6 illustrates Algorithm 5. Here, ẊR and X̃ represent the velocity of the end effector and the

difference between the obstacle’s position and the end effector’s position, respectively. If the

angle φ between ẊR and X̃ is less than 90◦, this implies that the end effector is approaching

the obstacle, and therefore the damping term is added to the repulsive force according to Algo-

rithm 5; otherwise, the damping term is set to zero. Both Algorithm 4 and Algorithm 5 allow

for a straightforward extension to the 3D case.

Algorithm 5 : APF with velocity-dependent term.

1: get ẊR, XR and XO

2: Xd = ‖XR − XO‖

3: if Xd < p f then
4: pd = p f − Xd,

5: Fd = XR−XO

‖XR−XO‖
,

6: X̃ = XO − XR,
7: φ = cos−1( (ẊR)T X̃

‖ẊR‖‖X̃‖ )
8: if φ < 90◦ then
9: F = Kp · pd · Fd︸       ︷︷       ︸

sti f f ness

+ Dp · ‖ẊR‖ · cos φ · Fd︸                    ︷︷                    ︸
damping

. where Dp > 0 is
damping constant.

10: else
11: F = Kp · pd · Fd

12: end if
13: end if
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Figure 4.6: Algorithm 5: APF with velocity-dependent term.

4.4.2 Experimental results for APFs

In this section, some experimental results for APF are presented. The APF has been imple-

mented according to Algorithm 5 using Phantom Omni as a haptic device (see Appendix B

for more information about this device) and OpenGL as a Graphics library. The aim of these

experiments is to demonstrate the interaction process between the human operator and the APF

under different values of stiffness and damping parameters; in particular, one of the goals is to

determine the values of these parameters that do not deteriorate performance of the haptic in-

teraction. Since the quadrotor is modelled as a point in order to generate the haptic feedback as

we will see subsequently, in this section, we carry out the tests considering solely the position

of the end-effector of the haptic device, therefore, in these experiments, the human operator

moves the end-effector of the haptic device so that the avatar penetrates the APF of a virtual

object. Figure 4.7 shows the Graphical User Interface (GUI) used in these experiments for the

2D scenario. The green circle represents APF that surrounds a virtual object, the latter shown

as the red point. The yellow point is the avatar of the end-effector of the Phantom Omni haptic

device. The menu on the right side of GUI provides real-time data related to the experiment
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Figure 4.8 stiffness Kp (N/mm) damping Dp (N· ms/mm) APF radius p f (mm)
Figure (a) 0.25 0.01 40
Figure (b) 0.1 0.1 40
Figure (c) 0.1 0.6 40
Figure (d) 0.6 0.1 40

Table 4.1: The numerical parameters of stiffness and damping terms for 2D APF.

such as position of the end-effector, velocity of the end-effector, joint angles, angular veloci-

ties, and Gimbal angles. The update rate of the haptic rendering loop is set to 1KHz. Table 4.1

summarizes the values of the parameters of APF experiments in 2D case; the corresponding

experimental results that show the stiffness and damping terms of the reflected force applied

to the human operator’s hand are given in Figure 4.8. In Figure 4.9, the GUI for 3D case is

shown. Table 4.2 summarizes the values of the parameters for 3D APF experiment, while the

experimental results are shown in Figure 4.10.

One of the observations that can be made from results of the previous experiments is that

increasing the damping constant affects stability of the haptic device. Specifically, the end-

effector starts oscillating when the human operator penetrates the APF; as a result, the human

operator needs to make additional effort to stabilize the device. This leads to increased work-

load for the human operator. To overcome this problem, the constant of the damping term is

decreased to satisfy Dp ≤ 0.1, at which the oscillations are not generated and the performance

of the haptic interaction is not affected. On the other hand, increasing the stiffness constant

does not have similar negative effect as in the case of damping constant; however, increasing

the stiffness constant results in APF generating high repulsive forces; in particular, this may re-

sult in a sudden generation of high forces when the avatar of the device interacts with the APF.

To avoid such a sudden generation of high forces, the stiffness constant is chosen to satisfy

Kp ≤ 0.2 in the subsequent studies.
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Figure 4.10 stiffness Kp (N/mm) damping Dp (N· ms/mm) APF radius p f (mm)
Figure (a) 0.25 0.1 40
Figure (b) 0.7 0.01 40
Figure (c) 0.1 0.3 40
Figure (d) 0.4 0.01 40

Table 4.2: The numerical parameters of stiffness and damping terms for 3D APF.

Figure 4.7: GUI used in the experiments with 2D APF.
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Figure 4.8: Response of 2D APF: the stiffness and the damping components of the reflected
force.
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Figure 4.8 (cont.): Response of 2D APF: the stiffness and the damping components of the
reflected force.
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Figure 4.9: GUI used in the experiments with 3D APF.
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Figure 4.10: Response of 3D APF: the stiffness and the damping components of the reflected
force.
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Figure 4.10 (cont.): Response of 3D APF: the stiffness and the damping components of the
reflected force.
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4.5 Control Structure of a Teleoperator System with SLAM-

based Haptic Feedback

In this Section, the overall control structure of a teleoperator system with SLAM-based haptic

feedback is described. The control structure is schematically shown in Figure 4.11. Two types

Figure 4.11: Control structure of a teleoperator system with SLAM-based haptic feedback.

of control architectures are used in this work, which are position-to-position control architec-

ture and position-to-velocity control architecture. In position-to-position control architecture,

the position of the end-effector of the haptic device plays a role of the desired position for the

center of the quadrotor’s mass. This type of control architecture is beneficial in applications

that require the quadrotor to hover close to obstacles in order to execute tasks that require

precise position control, such as lifting weights. On the other hand, if the task requires the

quadrotor to fly over large distances such as in the case of exploration missions, position-to-

position control may not be applicable due to the fact that the workspace of the haptic device

is limited. An alternative approach that can be used in this case to overcome the limitation of

the haptic device’s workspace is to map the position of the end-effector into the desired lin-

ear velocity of the center of the quadrotor’s mass. This type of control architecture is called

position-to-velocity.
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The overall structure can be described as follows. At the master side, the human operator

controls the end-effector of the haptic device by applying force fh. The control input um is the

position of the end-effector where the subscript m indicates the the Master side,

um := [x, y, z] (4.1)

At the slave side, the quadrotor receives the desired trajectories denoted as us where the sub-

script s indicates the slave side. For position-to-position control, us is

us = [xd, yd, zd] (4.2)

For position-to-velocity strategy, us is

us = [ẋd, ẏd, żd] (4.3)

The quadrotor follows the desired trajectory and navigates an unknown 3D environment of

a feature-based type. An example of such an environment is shown in Figure 4.12 where the

blue objects are the true locations of the beacons (obstacles) in the global frame. The quadrotor

scans the environment through its 3D sensor that is mounted at the center of its mass. For each

scan, the measurements z is generated and sent back to the master side. At the master side,

these measurements are used as an input to the EKF-SLAM algorithm; the algorithm is used

to construct a virtual environment which replicates the essential features of the actual remote

environment. An example of a virtual environment constructed by the EKF-SLAM algorithm

that corresponds to the actual environment of Figure 4.12 is shown in Figure 4.13. In this

figure, the red dot represents the estimate of the position of the center of the quadrotor’s mass.

Estimates x̂k+1|k+1 of the positions of obstacles are represented by the yellow dots. Also, the blue

dots represent the actual position of the obstacles which are not accessible in practice but shown

here for illustrative purposes. One of the obstacles in Figure 4.13 does not have its estimated

counterpart; this reflects the fact that some obstacles may not be sensed by the quadrotor’s

sensor at all times. Once the obstacle falls within the sensor’s range of the quadrotor, an
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Figure 4.12: An example of a feature-based map of the environment.
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Figure 4.13: A virtual environment constructed by EKF-SLAM algorithm on the master side
which corresponds to the map in Figure 4.12.

estimate of its location is added to the state vector of the SLAM, and its visual representation

appears in GUI at the master side. Green shaded spheres represent the artificial potential field

implemented around each obstacle in the virtual environment. Once the quadrotor penetrates

the APF around an obstacle, as shown in Figure 4.13, the APF generates repulsive forces which

provides the human operator with haptic feedback indicating proximity of the obstacle. The

deeper the end effector of the haptic device penetrates the APF, the higher reflected force is

applied to the haptic device to prevent further penetration. Figure 4.14 shows the artificial

potential field is being penetrated by the platform where pd is the penetration depth, F is the

reflected force and p f is the radius of the potential field where FB is the beacon’s local frame.
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Figure 4.14: 3D potential force field around a beacon penetrated by the quadrotor.

4.6 Algorithms for SLAM-based haptic feedback

In this section, we presents results related to two types of SLAM-based algorithms for gener-

ating the artificial potential field around an estimated location of the obstacles. The first type,

which is called the basic SLAM-based haptic feedback algorithm, the APF around each ob-

stacle is characterized by the same set of parameters, in particular the size of the APF around

each obstacle is equal. This type of APF is simplest in terms of implementation, however,

a possible drawback of this approach is that the uncertainty of the beacon location estimates

are not taken into account. The second type of algorithms proposed in this work is called the

robust SLAM-based haptic feedback algorithm. This algorithms takes into account the uncer-

tainty of the estimates of the obstacle positions which is characterized by covariance estimate

of the EKF-SLAM algorithm. In this case, the size of APF around the obstacles depends on

the uncertainty in the available estimates, i.e., larger uncertainty result in larger size of the cor-

responding APF. Below, both these algorithms are theoretically described and experimentally
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investigated.

4.6.1 Basic SLAM-based haptic feedback algorithm

Basic SLAM-based haptic feedback algorithm is presented below as Algorithm 6. This al-

gorithm uses an estimate x̂k+1|k+1 of the positions of the quadrotor and the beacons (obstacles)

provided by Algorithms 2, 3 of Chapter 3. Lines 32-34 of Algorithm 6 compute the Euclidean

distance between the estimates of the quadrotor’s position ξ̂k+1|k+1 and positions of each existing

beacon m̂k+1|k+1 in the state vector. The index λJ of the beacon which closest to the quadrotor is

determined in line 35. If the distance between the quadrotor and λJ-th beacon is smaller than

the predefined radius of the potential field p f , this indicates that the platform is penetrating the

corresponding APF. The depth of penetration into the APF is computed in line 39. Finally, the

magnitude and the direction of the reflected force F is calculated in lines 37-43. These forces

are subsequently applied to the motors of haptic device in order to provide the human operator

with haptic feedback. Algorithm 6 is illustrated in Figure 4.15.

Algorithm 6 Basic SLAM-based Haptic Feedback Algorithm
32: for b = 1 to Nk+1 do
33: λb =

√
(ξ̂x − m̂b,x)2 + (ξ̂y − m̂b,y)2 + (ξ̂z − m̂b,z)2

34: end for
35: J = argmin

b
λb

36: if λJ < p f then . where p f is the radius of potential field

37: ϕ = tan−1
(

m̂J,y−ξ̂y

m̂J,x−ξ̂x

)
38: β = cos−1

(
m̂J,z−ξ̂z
λJ

)
39: pd = p f − λJ . where pd is penetration distance
40: F = −Kp · pd . where Kp is the stiffness of APF
41: Fx = F cos(ϕ) sin(β)
42: Fy = F sin(ϕ) sin(β)
43: Fz = F cos(β)
44: end if
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Figure 4.15: Illustration of Algorithm 6.

4.6.2 Semi-experimental results for basic SLAM-based haptic feedback

algorithm

In this subsection, results of semi-experimental investigation of the basic SLAM-based haptic

feedback algorithm (Algorithm 6) are presented, where the estimates of the obstacle locations

are obtained using the EKF-SLAM algorithm (Algorithms 2 and 3). In this experiment, the

human operator physically operates the haptic device, however, the quadrotor and the remote

environment are simulated in real-time, which is the reason for the use of the term “semi-

experimental.” The position of the end-effector of the haptic device determines the trajectory

that the quadrotor should follow. In this experiment, there are four beacons (denoted B1, B2,

B3, B4, respectively) simulated at the slave side, whose actual locations are given in Table 4.3.

The human operator attempts to approach each beacon as shown in Figure 4.16, and penetrates

its APF. When the quadrotor’s sensor detects a beacon at the slave side, the estimate of its

location is added to the state vector of the SLAM algorithm and visualized in the virtual model
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Figure 4.16: The trajectory of the quadrotor on the slave side.

of the remote environment at the master side, as shown in Figure 4.17. In this figure, the blue

spheres represent estimates of the beacons’ location (denoted B̂1, B̂2, B̂3, and B̂4, respectively)

while the shaded red spheres represent the true location of the beacons. The true locations

are shown here for illustrative purposes; however, in reality, they are not visualized in the

virtual model. Once the estimate of the quadrotor’s location, represented as a yellow sphere

in Figure 4.17, penetrates the APF built around the estimated location of a beacon, a repulsive

force is generated by the APF algorithms and is applied to the hand of the human operator via

the haptic device.

The quadrotor is assumed to be equipped with a range sensor that measures distance r to

an obstacle up to 4 m with uncertainty ±σr where σr is 1 cm. Also, the sensor is assumed

to provide a bearing (i.e. the azimuthal polar angles) with uncertainty ±σbφ,θ where σbφ,θ is

0.1◦ degree. The motion model of the quadrotor is not subjected to any external noise (i.e.,

zero process noise is assumed). The GUI used in this experiment is programmed by using
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Figure 4.17: Estimates of the beacons’ locations at the master side (blue spheres) vs. true
locations (shaded red spheres).

C++/OpenGL, and shown in Figure 4.18.

Beacon jth m j,x m j,y m j,z Unit
1 7 7 6 (m)
2 7 -7 6 (m)
3 -7 7 6 (m)
4 -7 -7 6 (m)

Table 4.3: Basic SLAM-based haptic feedback: True locations of Beacons at the Slave side.

For the experiments with the basic SLAM-based haptic feedback algorithm, the position-

to-position control strategy is chosen. Table 4.4 shows the parameters of the workspace of

the Phantom Omni device (for more information about the device, see Appendix B). The

workspace is too small for the direct (not scaled) position-to-position control. To overcome

this spatial limitations of the device workspace, reference trajectory is scaled up so that the

quadrotor can cover at least an area of a large room size. In our experiments, the position of

the end-effector is scaled up 100 times; therefore, one centimeter increment of the position of
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Figure 4.18: Basic SLAM-based haptic feedback: GUI which shows the master (left) and slave
(right) sides.

the end-effector corresponds to one meter increment of the quadrotor’s reference position.

Position Minimum Maximum Unit
xh -210 210 mm
yh -110 205 mm
zh -85 130 mm

Table 4.4: The workspace of the Phantom Omni.

The APF (scaled) radius p f is chosen equal to 3 m, and its stiffness Kp is 0.15 (N/m). The

confidence level for the validation gate is chosen at 95%, which results in threshold χ2
3,0.05 =

8.0. The experimental results for basic SLAM-based haptic feedback algorithm are shown

in Figures 4.19-4.30. In these figures, estimated and true location of the beacons vs. time,

estimation errors vs. time, magnitude of the reflected force vs. time, APF penetration distance

vs. time, as well as the x, y, and z-components of the reflected force vs. time are shown for all

four beacons that were successively approached by the quadrotor during the experiment.The

results of this experiment demonstrate feasibility of the developed basic SLAM-based haptic

feedback algorithm. Moreover, they show that no false beacons have been reported. This is

crucial not only in SLAM but also in our case in which false beacons will eventually deteriorate
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the perception of the human operator about the remote environment. Another conclusion can

be made from the aforementioned results is the fact that errors in estimates of beacons’ location

are rather small and bounded. In other words, the radius of APF is large enough to cover the

place where the true location of beacons may fall.
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Figure 4.19: Basic SLAM-based haptic feedback experiment, beacon 1. Estimated and true
location vs. time (left); estimation errors vs. time (right).
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Figure 4.20: Basic SLAM-based haptic feedback experiment, beacon 1. Magnitude of the
reflected force vs. time (left); APF penetration distance vs. time (right).
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Figure 4.21: Basic SLAM-based haptic feedback experiment, beacon 1. The reflected force
components along x, y, and z axes vs. time.
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Figure 4.22: Basic SLAM-based haptic feedback experiment, beacon 2. Estimated and true
location vs. time (left); estimation errors vs. time (right).
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Figure 4.23: Basic SLAM-based haptic feedback experiment, beacon 2. Magnitude of the
reflected force vs. time (left); APF penetration distance vs. time (right).
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Figure 4.24: Basic SLAM-based haptic feedback experiment, beacon 2. The reflected force
components along x, y, and z axes vs. time.
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Figure 4.25: Basic SLAM-based haptic feedback experiment, beacon 3. Estimated and true
location vs. time (left); estimation errors vs. time (right).
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Figure 4.26: Basic SLAM-based haptic feedback experiment, beacon 3. Magnitude of the
reflected force vs. time (left); APF penetration distance vs. time (right).
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Figure 4.27: Basic SLAM-based haptic feedback experiment, beacon 3. The reflected force
components along x, y, and z axes vs. time.
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Figure 4.28: Basic SLAM-based haptic feedback experiment, beacon 4. Estimated and true
location vs. time (left); estimation errors vs. time (right).
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Figure 4.29: Basic SLAM-based haptic feedback experiment, beacon 4. Magnitude of the
reflected force vs. time (left); APF penetration distance vs. time (right).
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Figure 4.30: Basic SLAM-based haptic feedback experiment, beacon 4. The reflected force
components along x, y, and z axes vs. time.
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4.6.3 Robust SLAM-based haptic feedback algorithm

The basic SLAM-based haptic feedback algorithm presented in the previous section assumes

that the parameters of the artificial potential field, particularly its radius, are fixed and the same

for all obstacles. The major problem with this approach is that, in reality, the locations of

the obstacles determined by the SLAM algorithm are not precisely known. In other words,

the uncertainty of a beacon’s estimate represented by the covariance matrix is not taken into

account when using the basic algorithm from previous section. In 3D Gaussian distribution,

the regions where the obstacle can be found with predefined confidence levels are represented

by nested ellipsoids of different size as shown in Figure 4.31, where the red spheres represent

possible true locations of the beacon. If the uncertainty of the beacon’s location is large, then

the actual location of the beacon may differ substantially from its estimated location; as a

result, a fixed size APF built around the estimated location may be unable to prevent a collision

between the UAV and an obstacle. This situation is illustrated in Figure 4.32, which shows the

side effects of building a fixed size APF around an estimated location of the obstacle. These

considerations motivate the modification to the basic SLAM-based haptic feedback algorithm

where the size of the APF around an estimated location of the obstacle explicitly depends on

the uncertainty of such an estimate.

Recall that, in the EKF-SLAM algorithm, an estimate of a beacon’s location is character-

ized by its mean m̂ j and a covariance matrix Pm̂ jm̂ j ,

m̂ j =


m̂ j,x

m̂ j,y

m̂ j,z

 , Pm̂ jm̂ j =


σ2

m̂xx
σm̂xy σm̂xz

σm̂yx σ2
m̂yy

σm̂yz

σm̂zx σm̂zy σ2
m̂zz


In Gaussian distribution, the mean is the centroid of the probability density function and the

covariance matrix is a measure of the dispersion of possible beacon’s locations around the

mean. The eigenvectors and eigenvalues Pm̂ jm̂ j determine the ellipsoids that correspond to

different confidence levels. Specifically, the eigenvectors represent the principal axes of the
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Figure 4.31: 3D Gaussian distribution represented as an ellipsoid with different confidence
levels.

ellipsoid whereas the lengths of these axes are determined by the eigenvalues. We propose to

build an APF of a spherical shape that would cover the ellipsoid with a predefined confidence

level. This type of potential field can be called the uncertainty-dependent artificial potential

field (UDAPF). Figure 4.33 illustrates the construction of UDAPF. The first step is to determine

the maximum half-length of the ellipsoid’s axes which is computed based on two parameters,

namely the maximum eigenvalue λmax of Pm̂ jm̂ j and the threshold of the validation gate χ2 (see

Chapter 3 for more information regarding the latter). The radius p f of UDAPF is determined

via the following formula,

p f :=
√
χ2 λmax + Lp f , (4.4)
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x

y

z

pf

Figure 4.32: The side-effect of buidling a fixed APF where the green, red, yellow, blue shapes
represent APF, a possible true location of a beacon, a beacon’s estimate and the ellipsoid of the
beacon’s estimate.

where Lp f > 0 is a positive constant that determines the minimal distance between the ellipsoid

and the border of the UDAPF, see Figure 4.33.

The Robust SLAM-based haptic feedback algorithm proposed in this section is shown be-

low as Algorithm 7. The algorithm builds UDAPF around estimated location of the obstacles,

and uses velocity dependent APF as described by Algorithm 5.

Algorithm 7 Robust SLAM-based Haptic Feedback Algorithm
32: for b = 1 to Nk+1 do
33: λb =

√
(ξ̂x − m̂b,x)2 + (ξ̂y − m̂b,y)2 + (ξ̂z − m̂b,z)2

34: end for
35: J = argmin

b
λb

36: get Pm̂Jm̂J

37: get λmax of Pm̂Jm̂J

38: p f =
√
χ2 λmax + Lp f

39: if λJ < p f then
40: ẊR = [ξ̂ ẋ, ξ̂ẏ, ξ̂ż]
41: XR = [ξ̂x, ξ̂y, ξ̂z]
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Figure 4.33: Uncertainty-dependent artificial potential field (UDAPF).

42: XO = [m̂J,x, m̂J,y, m̂J,z]
43: X̃ = XO − XR

44: pd = p f − λJ

45: Fd = XR−XO

‖XR−XO‖

46: φ = cos−1( (ẊR)T X̃
‖ẊR‖‖X̃‖ )

47: if φ < 90◦ then
48: F = Kp · pd · Fd︸       ︷︷       ︸

sti f f ness

+ Dp · ‖ẊR‖ · cos φ · Fd︸                    ︷︷                    ︸
damping

49: else
50: F = Kp · pd · Fd

51: end if
52: end if
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4.6.4 Semi-experimental results for robust SLAM-based haptic feedback

algorithm

In this subsection, results of a semi-experimental investigation of the robust SLAM-based hap-

tic feedback algorithm (Algorithm 7) are presented. The experiment performed is similar to

the one described in Section 4.6.2, where performance of the basic SLAM-based haptic feed-

back algorithm was tested. In this experiment, four beacons (i.e. B1, B2, B3, B4) are simulated

at the slave side, whose locations are shown in Table 4.5. Similarly to Section 4.6.2, the hu-

man operator controls the haptic device such that the quadrotor approaches the four beacons

successively as shown in Figure 4.16, and penetrates its APF. In this experiment, position-to-

velocity control strategy is utilized, where the position of the end-effector of the haptic device

determines the reference velocity of the quadrotor. One centimeter increment of the position

of the haptic device corresponds to reference velocity increment of 5 m/s. The backstepping

velocity control algorithm is utilized; the control parameters and initial conditions are given

in Table 4.6. Estimates of the obstacle locations are obtained using the EKF-SLAM algorithm

(Algorithms 2 and 3). The quadrotor is equipped with a noisy sensor that provides a range r

up to 3 m with uncertainty ±σr where σr is 0.8 m. Also, the sensor provides a bearing (i.e.,

the azimuthal polar angles) with uncertainty ±σbφ,θ where σbφ,θ is 0.8◦ degree. The quadrotor’s

model is not subject to any external noise (i.e., zero process noise is assumed). The threshold

of the validation gate is calculated from the chi-squared distribution table with 95% confidence

level, which gives χ2
3,0.05 = 8.0. For APF, the stiffness constant is chosen Kp = 0.1 (N/m) and

the damping constant Dp = 0.1 (N·s/m).

Beacon jth m j,x m j,y m j,z Unit
1 1 1 1 (m)
2 1 1 12 (m)
3 1 1 22 (m)
4 1 1 32 (m)

Table 4.5: Locations of beacons at the slave side

The results of the experiment are illustrated in Figures 4.34-4.45, where estimated and
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true location of the beacons vs. time, estimation errors vs. time, magnitude of the reflected

force vs. time, APF penetration distance vs. time, as well as the x, y, and z-components of

the reflected force vs. time are shown. The results of this experiment demonstrate feasibility

of the developed robust SLAM-based haptic feedback algorithm. Similar conclusions that

have been made in basic SLAM-based haptic feedback algorithm can be drawn in this section.

Particularly, no false beacons have been recorded and errors in estimates of beacons’ location

are small and bounded.

initial values Gains Unit
Altitude z(0) = 0

ż(0) = 0
α7 = 6.0
α8 = 5.1

(m)

x x(0) = 0
ẋ(0) = 0

α9 = 3.0
α10 = 3.0

(m)

y y(0) = 0
ẏ(0) = 0

α11 = 3.0
α12 = 3.0

(m)

Roll φ(0) = 0
φ̇(0) = 0

α1 = 20.5
α2 = 20.0

(rad)

Pitch θ(0) = 0
θ̇(0) = 0

α3 = 20.5
α4 = 20.0

(rad)

Yaw ψ(0) = 0
ψ̇(0) = 0

α5 = 20.5
α6 = 20.0

(rad)

Table 4.6: Backstepping controller parameters for robust SLAM-based haptic feedback algo-
rithm.
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Figure 4.34: Robust SLAM-based haptic feedback experiment, beacon 1. Estimated and true
location vs. time (left); estimation errors vs. time (right).
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Figure 4.35: Robust SLAM-based haptic feedback experiment, beacon 1. Magnitude of the
reflected force vs. time (left); APF penetration distance vs. time (right).
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Figure 4.36: Robust SLAM-based haptic feedback experiment, beacon 1. The reflected force
components along x, y, and z axes vs. time.
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Figure 4.37: Robust SLAM-based haptic feedback experiment, beacon 2. Estimated and true
location vs. time (left); estimation errors vs. time (right).
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Figure 4.38: Robust SLAM-based haptic feedback experiment, beacon 2. Magnitude of the
reflected force vs. time (left); APF penetration distance vs. time (right).
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Figure 4.39: Robust SLAM-based haptic feedback experiment, beacon 2. The reflected force
components along x, y, and z axes vs. time.



4.6. Algorithms for SLAM-based haptic feedback 139

0 50 100 150 200 250 300 350 400
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Beacon Location: <x : 1,y : 1, z : 22>

time (ms)

L
o
c
a
t
io
n

in
X
-a
x
is

(
m
)

EKF
True

(a) The beacon’s estimated vs. true location along
the x-axis

0 50 100 150 200 250 300 350 400
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Beacon Location: <x : 1,y : 1, z : 22>

time (ms)

E
r
r
o
r
in

X
-a
x
is

(
m
)

(b) Estimation error (m) along the x-axis

0 50 100 150 200 250 300 350 400
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Beacon Location: <x : 1,y : 1, z : 22>

time (ms)

L
o
c
a
t
io
n

in
Y
-a
x
is

(
m
)

EKF
True

(c) The beacon’s estimated vs. true location along
the y-axis

0 50 100 150 200 250 300 350 400
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Beacon Location: <x : 1,y : 1, z : 22>

time (ms)

E
r
r
o
r
in

Y
-a
x
is

(
m
)

(d) Estimation error (m) along the y-axis

0 50 100 150 200 250 300 350 400
20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

22.2

22.4
Beacon Location: <x : 1,y : 1, z : 22>

time (ms)

L
o
c
a
t
io
n

in
Z
-a
x
is

(
m
)

EKF
True

(e) The beacon’s estimated vs. true location along
the z-axis

0 50 100 150 200 250 300 350 400
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Beacon Location: <x : 1,y : 1, z : 22>

time (ms)

E
r
r
o
r
in

Z
-a
x
is

(
m
)

(f) Estimation error (m) along the z-axis

Figure 4.40: Robust SLAM-based haptic feedback experiment, beacon 3. Estimated and true
location vs. time (left); estimation errors vs. time (right).
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Figure 4.41: Robust SLAM-based haptic feedback experiment, beacon 3. Magnitude of the
reflected force vs. time (left); APF penetration distance vs. time (right).
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Figure 4.42: Robust SLAM-based haptic feedback experiment, beacon 3. The reflected force
components along x, y, and z axes vs. time.
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Figure 4.43: Robust SLAM-based haptic feedback experiment, beacon 4. Estimated and true
location vs. time (left); estimation errors vs. time (right).
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Figure 4.44: Robust SLAM-based haptic feedback experiment, beacon 4. Magnitude of the
reflected force vs. time (left); APF penetration distance vs. time (right).
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Figure 4.45: Robust SLAM-based haptic feedback experiment, beacon 4. The reflected force
components along x, y, and z axes vs. time.
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4.7 Conclusion

In this chapter, we have investigated the possibility of using the EKF-SLAM algorithm to gen-

erate a virtual model of the remote environment, and subsequently use this model to provide the

human operator with haptic and visual feedback. The haptic feedback is rendered by building

artificial potential field around estimated locations of the obstacles in the virtual environment.

Two algorithms for building SLAM-based haptic feedback are proposed. In the first algorithm,

artificial potential field around the obstacles is assumed to be of fixed size, regardless of the

level of uncertainty in the estimation of obstacle location. A possible drawback of this approach

is that the uncertainty of the obstacle location is not taken into account. To address this issue, a

second algorithm is proposed where the size of the APF changes depending on the level of un-

certainty in the available estimates of the obstacles’ locations. The semi-experimental results

obtained demonstrate satisfactory performance of both basic and robust SLAM-based haptic

feedback algorithms.



Chapter 5

Conclusion

5.1 Summary

In this thesis, a new type of haptic teleoperator system for remote control of UAVs have been

proposed and developed, where the simultaneous localization and mapping (SLAM) algorithms

have been used to generate the haptic feedback. More specifically, the haptic feedback is pro-

vided to the human operator through interaction with artificial potential field which is built

around the obstacles in the virtual environment located at the master site of the teleoperator

system. The obstacles in the virtual environment replicate essential features of the actual re-

mote environment where the UAV executes its tasks. The state of the virtual environment

is generated and updated in real time using EKF SLAM algorithms based on measurements

performed by the UAV in the actual remote environment. Two methods for building haptic

feedback from SLAM algorithms have been developed. The basic algorithm uses fixed size

potential field around obstacles, while the robust algorithm changes the size of potential field

around the obstacle depending on the amount of uncertainty in obstacle location, which is rep-

resented by the covariance estimate provided by EKF. Simulations and experimental results are

presented that evaluate the performance of the proposed teleoperator system.
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5.2 Future Research

The following recommendations and ideas can be considered as possible directions for future

research:

• Implementation of a more realistic model for the remote environment which contains

walls, corners, etc. In particular, both static and dynamic environments can be consid-

ered.

• Theoretical and experimental investigation of stability and performance of teleoperation

systems with SLAM-based haptic feedback in the presence of time delays, both constant

and time-varying.

• Validation of the proposed SLAM-based haptic feedback approach by performing real-

time experiments.

• Development of new algorithms for SLAM-based haptic feedback, which could be based

on implementation of different types of filters and/or new methods for building the arti-

ficial potential fields.
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Appendix A

Basic Probability Notions

This Appendix presents a brief description of some basic notions of probability theory in order

to establish notation and provide appropriate background information for the material presented

in Chapters 3 and 4. Probability theory is a mathematical discipline that deals with mathemati-

cal description of uncertainty. Nowadays, probability theory and its applications are ubiquitous

due to the fact that majority of real world problems include some level of uncertainty; as a re-

sult, they can not be adequately solved using purely deterministic methods. In probability

theory, an experiment is a process that can be performed repeatedly to yield outcomes. The

set S of all possible outcomes of an experiment is called a sample space. For example, in

rolling a die experiment, possible outcomes are {1, 2, 3, 4, 5, 6}, therefore, the sample space has

six elements. For an experiment of tossing a coin, there are only two possible outcomes which

are the head and the tail (i.e. S = {head,tail}). An event is a subset of the sample space that

consists of the outcomes of interest. For example, in dice rolling, outcomes that consist of

even numbers can be considered as an event. Probability theory assigns each outcome in S a

numeric value between zero and one, called probability, which represents the likelihood of its

occurrence in an experiment. For example, in tossing a coin experiment, S = {H,T}, where

H and T are the outcomes of getting head and tail, respectively. Chances of each of these

outcomes are 50%, which can be represented mathematically as p(H) = 1
2 , p(T) = 1

2 , where
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Figure A.1: Venn diagram for the dependency and independency of two events.

p(H), p(T) are probabilities of the head and the tail outcomes, respectively. Experimenters are

usually interested in the relationship between multiple events, and the effect of the occurrence

of an event on other events. Let A and B be arbitrary events in a sample space S. The event A is

said to be independent of the event B (and vice versa), if there is no intersection between these

events in the sample space (i.e., A ∩ B = ∅, where ∅ is an empty set). On the other hand, the

event A is dependent on the event B (and vice versa), if the intersection between these events is

non-empty (i.e., A ∩ B , ∅). This can be visualized by Venn diagram as shown in Figure A.1.

For two events A and B, their joint probability is the probability of the simultaneous occurrence

of event A and event B; such a probability is denoted by p(A,B). If A and B are independent

events, their joint probability can be calculated as a product of their respective probabilities,

p(A,B) = p(A) · p(B)

Experimenters are also frequently interested in determining the probability of the occurrence

of particular events given the fact that other events occurred. For example, in a card game, if

the outcome of drawing a card from a fairly shuffled deck belongs to the red suit, one might

be interested in finding out the probability that the drawn card is the king of hearts. Such a
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S

B

A1

A2 A3

Figure A.2: Venn diagram that illustrates the total probability theorem.

probability is called conditional probability, and it is formulated as follows:

p(A|B) =
p(A ∩ B)

p(B)
(A.1)

where p(A|B) is the probability of the occurrence of event A conditioned on the occurrence of

event B; it is assumed in the above formula that p(B) , 0. The notion of conditional probability

can be extended to the case of multiple events, such that the occurrence of an event(s) can be

conditioned on the occurrence of multiple other events. The total probability theorem states

that, if there are multiple independent events that form a partition of a sample space S, then the

probability of an arbitrary event B can be computed as follows:

p(B) = p(A1 ∩ B) + · · · + p(An ∩ B)

= p(A1) · p(B|A1) + · · · + p(An) · p(B|An) n = 1, 2, ... (A.2)

Figure A.2 shows the visualization of the total probability theorem. If the probability of an

event B is known, and one is interested in finding out the probability of the event Ai conditioned

on the event B, this can be done using the Bayes’ rule, which states that

p(Ai|B) =
p(Ai) · p(B|Ai)

p(B)

=
p(Ai) · p(B|Ai)

p(A1) · p(B|A1) + · · · + p(An) · p(B|An)
. (A.3)



Appendix B

Phantom Omni Device

B.1 Introduction

Phantom Omni is currently one of the most popular haptic interfaces that provides the user with

kinesthetic haptic feedback. The devices is manufactured by the Geomagic Touch company. It

has six degrees of freedom (6-DOF) of position sensing and 3-DOF of force feedback. The

maximum force the device can generate is 3.3 N, which is adequate to allow the user to feel

the sense of touch. For more details about the technical specifications, the reader is addressed

to [96].

Figure B.1: Phantom Omni
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B.2 Forward and Inverse Kinematics of Phantom Omni

The mathematical equations of the forward and the inverse kinematics presented below are

taken from [3]. The notation for variables and parameters are illustrated in Figure B.2. The

Figure B.2: Forward and Inverse Kinematics [3]

forward kinematics are described by the following equations,

x = − sin θ1(L2 sin θ3 + L1 cos θ2),

y = −L2 cos θ3 + L1 sin θ2 + L3,

z = L2 cos θ1 sin θ3 + L1 cos θ1 cos θ2 − L4,

and the inverse kinematics equations are

θ1 = −a tan 2(x, z + L4),

θ2 = −γ + β,

θ3 = θ2 + α −
π

2
,

where

R =
√

x2(z + L4)2,

r =
√

x2(z + L4)2 + (y − L3)2,

γ = cos−1(
L2 + r2 − L2

2

2L1r
),
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β = a tan 2(y − L3,R),

α = cos−1(
L2

1 + L2
2 − r2

2L1L2
).

B.3 Jacobian Matrix

The Jacobian matrix J(θ) represents relationship between the joint velocities and the spatial

velocity of the end-effector, as follows 
ẋ

ẏ

ż

 = J(θ)


θ̇1

θ̇2

θ̇3


where

J(θ) =


j11 j12 j13

j21 j22 j23

j31 j32 j33

 ,
and the elements of the Jacobian are [97]

j11 = − cos θ1(L2 sin θ3 + L1 cos θ2),

j12 = L2 sin θ1 sin θ2,

j13 = −L2 sin θ1 cos θ3,

j21 = 0,

j22 = L1 cos θ2,

j23 = L2 sin θ3,

j31 = −L2 sin θ1 sin θ3 − L1 sin θ1 cos θ2,

j32 = −L1 sin θ2 cos θ1,

j33 = L2 cos θ1 cos θ3.
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B.4 OpenHaptics Toolkit

Phantom Omni device comes with a complete software toolkit called OpenHaptics which pro-

vides programmers with a variety of capabilities. For example, Haptic Device API (HDAPI)

allows for access to the device hardware in order to render forces directly. On the other hand,

Haptic Library API (HLAPI) allows programmers to design and build virtual environments

that provide the user with kinaesthetic haptic feedback. The primary programming language

of the toolkit is C/C++. For the Graphics library, OpenHaptic uses OpenGL API for rendering

2D and 3D virtual objects. Figure B.3 shows the integration of OpenHaptics toolkit.

Figure B.3: OpenHaptics Toolkit [2].
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