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Adaptive Estimation of the Dynamic Linear Model
with Fixed Effects*

By Tiemen Woutersen and Marcel Voial

September 2002

Abstract

This paper shows how the dynamic linear model with fixed regressors can be efficiently
estimated. This dynamic model can be used to distinguish spurious correlation from
state dependence and we show that the integrated likelihood estimator is adaptive for
any asymptotics with T increasing where T is the number of observations per individual.
KEYWORDS: Panel data, Efficient Estimation, Bayesian Analysis

JEL cLassiFicaTiON: C31, C33, C11, Cl14

1 Introduction

THE ANALYSIS OF THE DYNAMIC LINEAR MODEL with fixed effects has been subject of some
attention in econometrics for slightly more then two decades, starting with Nickell (1981)
and Anderson and Hsiao (1982). The popularity of this linear model might be due to the fact
that it is the simplest model in which Heckman’s (1981a and 1981b) spurious correlation and
state dependence can be studied. Another reason for the popularity of the dynamic linear
model is that it can be use for studying the dynamic version of Solow’s (1956) growth model,
see for example Mankiw, Romer and Weil (1992) .

Nickell (1981) shows that the maximum likelihood estimation of the dynamic linear model

with fixed effects suffers from the incidental parameter problem of Neyman and Scott (1948).
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In particular, Nickell shows that the inconsistency of the maximum likelihood estimator
is O(T™1) where T is the number of observations per individual. Econometricians have
subsequently developed moment estimators. Examples include Anderson and Hsiao (1982),
Holtz-Eakin, Newey and Rosen (1988), Arellano and Bond (1991), Ahn and Schmidt (1995),
Blundell and Bond (1998). Combining moment restrictions can be difficult, especially, when
some moments become uninformative for particular regions of the parameter space. Newey
and Smith (2001) give a general discussion on how combining moments usually causes a
higher order bias.

Hsiao et al (2002) react to the problem of combining moments by deriving an estimator
based on the likelihood. This paper also uses the likelihood as a starting point but the results
do not rely on normality of the error term. Moreover, the distribution of yp, the dependent
variable in period zero, is left unrestricted.

Lancaster (2002) proposes to approximately separate the parameters of interest from the
nuisance parameters. In particular, Lancaster uses a parametrization of the likelihood that
has a block diagonal information matrix. That is, the cross derivatives of the log likelihood of
the nuisance parameters and parameters of interest is zero in expectation. Lancaster (2002)
then integrates out all fixed effects. Woutersen (2001) shows that information-orthogonality
reduces the bias of this integrated likelihood estimator to O(T~2) and that the integrated
likelihood estimator is asymptotically unbiased and adaptive if T o« N* where a > -13- and N
is the number of individuals. That is, the integrated likelihood estimator is as efficient as the
infeasible maximum likelihood estimator that assumes the values of the nuisance parameters
to be known.

Alvarez and Arellano (1998) develop an alternative asymptotic where the number of
individuals, N, increases as well as the number of observations per individual, T. Using this
alternative asymptotics, Hahn and Kuersteiner (2002) develop an expression for the bias for
the case in which T o< N. Then, Hahn and Kuersteiner (2002) developed an estimator for
the dynamic linear model without regressors that is efficient as long as T increasing as fast

as N. Hahn, Hausman and Kuersteiner (2001) also developed a bias corrected maximum



likelihood estimator but use long differences. Their bias-corrected GMM and Nagar-type
estimator reaches the efficiency bound in the same asymptotics as the estimator of Hahn and
Kuersteiner (2002).

In most panel datasets, T is much smaller than N, as is discussed in the overviews by
Chamberlain (1984), Hsiao (1986) and Baltagi (1995). It is therefore desirable to have an
efficiency or adaptiveness result that allows T to increase at an arbitrarily slow rate instead of
requiring that T' o< N. This paper derives such an adaptiveness result without strenghtening
the conditions of Hahn and Kuersteiner (2002) or Hahn, Hausman and Kuersteiner (2001). In
particular, we show that the integrated likelihood estimator reaches the efficiency bound for
T increasing arbitrarily slowly while V can be fixed or increasing. Interestingly, the efficiency
result is an adaptiveness result if Lancaster’s (2002) parametrization with a block diagonal
information matrix is used. That is, the asymptotic variance of the integrated likelihood
estimator is the same as asymptotic variance of an infeasible maximum likelihood estimator
that uses the true value of a reparameterized fixed effect.

This paper is organized as follows. Section 2 reviews the integrated likelihood estimator
and information orthogonality, and section 3 applies these to the dynamic linear model.
Section 4 gives adaptiveness results for the integrated likelihood estimator. Section 5 gives

simulation results and section 6 concludes.

2 The Integrated Likelihood Estimator and Orthogonality

Suppose we observe N individuals for T periods. Let the log likelihood contribution of the
tth spell of individual ¢ be denoted by L*. Summing over the contribution of individual
yields the log likelihood contribution,

Li(p, )\2) = Z Lit(P: )“i),
t

where p is the common parameter and ); is the individual specific effect. Suppose that the
parameter p is of interest and that the fixed effect ); is a nuisance parameter that controls for
heterogeneity. This paper considers elimination of nuisance parameters by integration. This

Bayesian treatment of nuisance parameters is straightforward: Formulate a prior on all the
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nuisance parameters and then integrate the likelihood with respect to that prior distribution
of the nuisance parameters, see Gelman et al. (1995) for an overview. For a panel data model
with fixed effects this means that we have to specify priors on the common parameters and
all the fixed effects. Berger et al. (1999) review integrated likelihood methods in which
flat priors are used for both the parameter of interest and the nuisance parameters. The
individual specific nuisance parameters are then eliminated by integration. We denote the

logarithm of the integrated likelihood contribution by L/ i.e.
LY (p)=In / el d,.
Summing over i yields the logarithm of the integrated likelihood,

L) =3 1) = Ll [ eFax. (1)

After integrating out the fixed effects, the mode of the integrated likelihood can be used as

an estimator!. Let the integrated likelihood estimator p be the mode of L!(p),
p = argmax L!(p).

A parametrization of the likelihood is information-orthogonal if the information matrix is

block diagonal. That is

ELpx(pgy20) = 0
i.e.

tm“
[ Lo rojeeoiar = o,

tmin
where t denotes the dependent variable, t € [tmin, tmax] 2nd pg, Ao denote the true value of
the parameters. Cox and Reid (1987) and Jeffreys (1961) use this concept and refer to it
as ‘orthogonality’. We prefer the term information-orthogonality to distinguish it from the
other orthogonality concepts and to stress that it is defined in terms of the properties of

the information matrix. See Tisbshirani and Wasserman (1994) and Woutersen (2000) for

'As N — oo, using the marginal posteriors is asymptotically equivalent. Considering the mode of the
posterior, however, simplifies the algebra.



an overview of orthogonality concepts. Consider the log likelihood L{p, f(p, X)) where the
nuisance parameter f is written as a function of p and the orthogonal nuisance parameter A.

Differentiating L(p, f(p, A)) with respect to p and X yields

dL(p, f(p, N)) of
AP AALOZ A SRy Pcd
ap P fap
P L(p, f(p,N) _ ;. 9f af af 8% f
ap - Uegx T, T e,

where Ly is a score and therefore EL; = 0. Information orthogonality requires that the
cross-derivative y—"%%%’ﬁ))- is zero in expectation, i.e.

af ofof
EL,\ = ELjp-aj + ELffa-a-; =0.

This condition implies the following differential equation
0
Epr + ELff-é—i- =0. (2)

The information-orthogonal parametrization of the dynamic linear model without regressors

is explicit and given by Lancaster (2002).

3 Orthogonality in the Dynamic Linear Model with fixed ef-
fects

Consider the dynamic linear model with fixed effects,

Yis = Yi,s—1P + fi + Eis (3)

where
E(eislyin, - ¥is) = 0, E(ed|vi1, - ¥is) = 02, Eeiscitlyin, -, Yis) = 0

fors#t,s=1,..,T, and ¢ = 1,...N. Lancaster (2002) conditions on y;p and suggests the
following parametrization?

T
1
fi = yio(1 — p) + Xie~¥P) where b(p) = = E

s=1

T—s
s

S

% Appendix 5 of Woutersen (2001) gives information-orthogonal parametrizations for linear models with
more then one autoregressive term.



Analogue to quasi-maximum likelihood estimators, normality of the error terms is assumed in
order to derive the integrated likelihood estimator. The estimator depends only on the first
two moments of y;; and is given by Lancaster (2002). Integrating the likelihood contribution
Lid

of individual 7 with respect to A gives e* ", where

B %ewp)-g—;q o We—bs-19)2+ F @G vom1P)?

The asymptotic variance can be found by deriving the normalized scores of the integrated
likelihood (see appendix 1 for derivation),
1 2 il
Lp(ﬁ,a ) = #L
1
= V() +— 2 {Z = Ya-10)Ys-1 = 5T (¥s = Ys-1P)T5—1}

Lo = ZiLi]

1 T- 1 > 2 2
o2 T T9%2 N {Z(ys Ys—1P) + Ys — Ys—1P)"}]

where b(p)’ = & "7, (T'—s)p*~1. In particular, one can show that the difference L}(8,,03) —

L,(By,03, o) is Op(ﬁ)' That is, the difference between the score of the integrated likeli-
hood and the score of the regular likelihood is small. Intuitively, this suggests that L,’,(,B, o?)
and L,(8y,02, M) would yield the similar estimators, say the same up to first order. We

show in the next section that this intuition is correct.

4 Adaptiveness

Woutersen (2001) shows that the integrated likelihood estimator is adaptive in the sense that
it is equivalent to the infeasible maximum likelihood estimator that assumes the nuisance
parameters to be known. The conditions for this result are a regularity condition that
the integrated likelihood can be approximated by a Laplace formula and the substantial
condition that T o« N® where o > % We now weaken the latter condition for the dynamic
linear model. Consider the maximum likelihood estimator for known Ag. Let {@,@\L} =

arg max, L(p, 02, Ag). Assuming normality of the error term, the distribution of (g7, — p) is



v/ NT(1 - p?) with T increasing and N constant or increasing®. Hahn and Kuersteiner (2002)
establish the same bound using a Hajek-type convolution theorem®. The following theorem

states that the integrated likelihood estimator reaches this theoretical bound.

Theorem 1
Let the data be generated by equation (8);let |p| < 1 and T increasing while N is constant

or increasing. Then the integrated likelihood estimator p is an adaptive estimator and
VNT(p; — po) —a N(0,1 - p?),

where 1 — p? equals at the Cramér-Rao lower bound.

Proof: See appendix.

Efficiency bounds were developed by Stein (1956) and are also discussed in Bickel (1982),
Newey (1990) and Bickel et al (1993).

5 Simulation Results

We use the same simulation designs as Hahn, Hausman and Kuersteiner (2001), HHK, and
Hahn and Kuersteiner (2002), HK. In particular, the fixed effects ; and the innovations €
are assumed to have independent standard normal distributions, N (0, 1). Initial observations
yiola; are assumed to be generated by the stationary distribution N (ﬁ;, V;’: 5;‘ ) , See sec-
tion 9 for the tables. In table 1 we consider the same parameter values as HHK and calculate
the root mean squared error for the integrated likelihood estimator, p;. For convenience, we
also reproduce the simulation results of HHK; pgoo denotes the Bias Corrected estimator of
HHK, py;p the LIML estimator and pgpsps the GM M estimator of Arellano and Bover
(1995). All results are based on 5000 replications and the integrated likelihood estimator has
a lower MSE then the other estimators for all parameter values. Table 2 gives the bias of
all estimator and the integrated likelihood estimator performs comparable to the other esti-
mators for low values of p and better for higher values. Table 3 gives the simulation design

of HK. The estimator of HK is denoted by p and the RMSE of the integrated likelihood

3See Lemma 1 of the appendix.
1That is, N(0,1 — p?) is the minimal asymptotic distribution.
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estimator is lower than the RMSE of the other estimators in all cases. In table 4, we com-
pare the integrated likelihood estimator to the ‘long difference’ 2SLS estimator, p;951.5 10>
and ‘long difference’ continuous updating estimator, poy g 1 p, of HHK. The RMSE of the
integrated likelihood estimator is lower than the RMSE of the other estimators in all cases
and the bias is lower in most cases. The lower part of table 4 as well as table 5 show a very
good performances of the integrated likelihood estimator in the vicinity of unit root. That
is, both in terms of RMSE and bias.

We can summarize our estimation results by saying that the simulation results shows the
relevance of our theoretical efficiency result. Our efficiency result allows T' to increase very
slowly and, as a result, the integrated likelihood estimator is superior in terms of RMSE and

very good in terms of bias.

6 Conclusion

This paper considers the dynamic linear model with fixed effects and derives an adaptiveness
result for the integrated likelihood estimator. In particular, the integrated likelihood estima-
tor is shown to be adaptive for an asymptotic with T increasing where T is the number of
observations per individual. Simulations show the relevance of the adaptiveness result. In
particular, the Root Mean Squared Error of the integrated likelihood estimator is smaller
then the Root Mean Squared Error of competing estimators for any of the parameter values
and performs very good in terms of bias. Moreover, the integrated likelihood estimator is

consistent for fixed T and performs very well for p close to unit root.



7 Appendices

Appendix 1.
We assume normality of the error term, €;5 ~ N (0, 02) , to derive moment conditions.

Integrating the likelihood with respect to A gives:

eL"»’ ( P, 02)

o.iT/eLdf= '&!feb(p)/e"ﬁ 2,(ya-—-ya-1p~—f)2df

- %eb(p)—ﬁzz:,(y,—y,-lp)z / ¢ s {220 @Tm ) g
1

LR DI URC AR, LS SR my)
This implies the following log of the integrated likelihood contribution for individual i:

T
Ly = —5 In(o?) + b(p) — 592 Z(ya —ys1p) + 202 s — ¥s—10),

s=1

where we suppressed the arguments of L*/. Differentiating with respect to p and o? gives

T
i 1 Ys—1
L' = V(o) + —{d ¥ ~ ¥s-10)¥s-1 ~ T(¥s — Gs-1P)Ts=1}
=1

T
i 1. 1-T 1 T
o —l—- 50—22(% - ¥s-10)% + 5 s —ys-1p %}.

g=1

L

iJ . Li,l
We use Zﬁ%’# and gjﬁ-@"l as moment functions.
Appendix 2. Lemma 1

To be shown:

VNT (1, — po) —a N(0,1 - p?).

Proof:
We assume normality of the error term, g;5 ~ N (O, 02) , in order to derive the ML estimator.

The log-likelihood with known orthogonal fixed effects for individual i, L?, has the following

form:
. T 1 <
I=-3 In(o®) - 202 ;(ﬂis — Gi,a-1P — Mie"2P))2 where i, = yis — io.
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The asymptotic variance only depends on the first two moments. Without assuming normal-
ity, the asymptotic variance of ML estimator for orthogonal fixed effects has the following

form:
-1 -1
Asy.var (Pyi) = [ NTELPP] [ E((Ly) (Lp)')] [ ELPP] .
To derive Asy.var (Py1), we start differentiating L? with respect to p and o2, which gives:
. 1 - - _ . _
L, = = (fis = G190 = e ) (Giom1 — Mt/ (p)e*P)
8

i T 1 L —b(p)\2
w2 = —'2-0—24'50—423:(%3—%,3—1/’—/\& (e))2,

Given that }; is the orthogonal parametrization, using % p" = —yo + ¥V (p)e"’(”) yields:

i of;
LP = 0.2 Z(y‘zs Yis—-10 — ft) (yz,s—] -+ ap)

: -T
:,2 20_2 + — 0_4 Z(yus Yis—1p — f1)2

s=1

Equalizing L,2 = 0 gives 52, = T i Zz;l (yis — Yi,s—1p — fi)?. Considering the fact that

2

02 is unknown, we replace it by 6%, in L} . Thus,

Zs(yzs Yis—1P — fi) (yi,s—] + %p&)
P —7 E,, Es—-l (yzs Yi,s—1p — fi)2

We prove that %f,‘- = —FEY;,_; when T — oo

ZZ:] (Ps‘lyio + (T — s+ 1) p"_lfji + €is-1 z:ll pj_s)
lim Eyi s—1 = lim F
T—oo 7 T—00 T

= lim M + lim ZZ=1 (T-s+1) ps—lfi
T—o0 T T-—’OO T

. ZZ:] Eei,s1 3—1 | pime
+ lim
T—o0 T

1

__yiO
— 1—pJ0
= 71_’.20 T

lim 23;:] (S — 1) ps_lfi
T—o00 T

1
+1__'_";fz_

1
= fz + O (T_l) because Tp ;_' vio O (T_l)

d Zs:l (3 ;l)ps.']fi isO (T—l) .
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Thus, EY; ;1 — Té; and given that

T T
1
. / - : _ = 1 8—1 _ .0 = s—1
&U@>—£&(Eﬁ'ﬂj)kagp A7 2

s=1 s=1
= L lim i1 1
T 1-p ToT(1-p2 1-p
af; fi
-é;’ — —IT'p-=—Ey'i,s_1, when T — co.

Using €is = Yis — Yi,s—1p — fi and the fact that %{,"- = —E¥; s_1, we have:

D 518(.% s—1 y,, )

i = 1, z and differentiating L, with respect to p gives
1 8 18

i = — > s(Wis—1 — Eﬁi,_)z + Nlr (s €is(¥is—1 — E!Z-,_)) (i s is(yio—1 — E?g,_))

[/ 1 2 .

NT Z:i Zs €is (FIT" 2,’ s zs)
Taking expectations of L;,p, we have:
. -E is—1 — E7; _)? 2 E(yis—1 — Eg; _)? -
EL;,p — Zs(yt,é;; yl, ) +O ((NT)—I) + N_TZs (y )8012 y!, ) +O ((NT) ])
—S By,  +T(E¥;5.,)
- T2.Fu S Eac)) | (D)) +o (N,

and thus we derive grELy, as
NTEL,,,, T NTo? ZZE Yis-1 + Fo3 N 2 Z Bio-1)' +0 (NT'T7) +0 (NT'T7).
We now consider (L}) (Lf,)’ :
2

LY (LY = > s €is(Yis—1 — EF; )

R
s €5(Yiom1 — BT _ Y + 234, (€is) (€45) (¥i,-1 — i) (i1 — EFi )

(Fr i Xeel)’

Given that Ee;; = 0, Ee2, = 02 and Feisei; = 0 for j # s, we have E ((L;,) (L:,)') that is

> s €8 (Yis—1 — BF; )2 + 2 ips (€is) (€45) (¥i,0-1 — BF; ) (yij—1 — BF;,_)
D)
('N]_T Z:i Zs ez?s)

with EZ,E,.(% s—1—E7; _ )2+221¢;(€w)(€u)(% s—1—~E; _ )(yt i—1—E¥; _ )
(FrZ:%, 5.23)

E(Ly) (L) =E

)

11



]

Bty = 5 (BTan)’ +O (VD))
Independence across individuals and EL, = 0 gives 2+ (L) (L,)) = ¢E ¥ (L) (L3),

= & Btecs = B (BGionr) + 5 (Bie)” + 0 (WD) )
>

so, we have

78 (L) 1)) = raB L B ~ gz & (BFia)' + O (NT7),
which gives
((LP) (Lp)) = __ELpp +O(NTITTY).
And thus the Asy.var (pM L) is given by:
Asywvar PpL) = [—%EL,,,,] B + O(NIT).
Now using the fact that Asy.var (py1) = [—ﬁELpp]_l + O (N7'T"') we can rewrite it

as:

-1
Asyvar (Pprr) NT0_2 z ZE(.% s—1 — yz—))zl +0 (N_IT_I)

- [?Var (yi,S—l)]—] +O(NTITT) = [ﬁﬁ]_l +O(NT'T)

Asyvar (Pp) = 1-p2+O(NTIT7Y).

Thus, the asymptotic variance of the infeasible maximum likelihood estimator equals at the
limit the Cramer-Rao lower bound (1 — p?) (see also Hahn and Kuersteiner (2002))
Q.E.D.
Appendix 3. Theorem 1
To be shown:
VNT(B; — po) —a N(0,1 - p%).
Proof:
a) Determining the asymptotic variance of the integrated likelihood estimator.

Using L{, as a moment, yields the following asymptotic variance (see, for example, Newey

and McFadden (1994)).

Asy.var(ﬁ,)=[%EL{,p]—l NIT (&« )(Ll))] [WEL’]—I.

12



Using the result from the appendix 1 and equalizing Li,g (p, 02) = 0 gives

T
1
0? m Z (;(yis - yi,s—lp)2 —T(Yis — Yi,s—1P 2) .
Considering the fact that o2 is unknown, we replace it by &3 in L. This yields

Li,] - b’(p) + Zs (yzs - yi,s—lp)yi,S—l — T(yts — yi,s—lp)yi,s-l
p .
'ﬁ'(h Zi (ZZ:] (yis —¥Yis-1 P)2 -T Yis — Yis—1P, 2)

Using €is = yis — Yis-10 — [i gives
Yos(€is + fi) Yis—1 — T (€5 + fi) Ts —
2
mqlle " (Zs (eis + £i)> = T (€1 + J3) )
D s EisYi,s—1 — TET; _
2 b
F(ql*‘jj 2 (Zs (eis + [:)2 =T (€5 + J: )

Ly = ¥+

v'(p) +

and differentiating Lf, with respect to p gives

Zs yl 3—1 + 11’!7 ,,s——
WTqT;E (zs(ezs'l'fz —T (eis + f) )
NiT-— ] (Zs EisYi,s—1 — T-eT:’j i,9—1 ) (Z; (Zs €isli,s—1 — Ts,-_y,-,_))

(mT—:fj i (Zs (eis + £:)° = T (eis + [ 2))2

Taking expectations of L ylelds

Ly = V'(p)+

Zsyzs—l +T§zs 1
mﬁ 2 (Zs (€is+ £:)? = T (e + I 2)
TVT?gTIS (Zs EislYis—1 — T'sWi,s—l) (Z‘l (Zs €islYis—1 — Te_,-ﬂ,-,_))
2
(mﬁ Zi (Es (€is + f1)2 -T (Eis + fz)z))
” 1 T _
= b"(p) - pEZyz?,s-x + gE?z?,- +0 ((NT) 1)

¥'(p)+E

BLi}

+E

I
where N7 EL is

NTELI _"b"(”) NTa2 (EZ%H) Nz B (Eyz— )+0(N ),

13



with V" (p) = % ¥, (T - 5) (s — 1) o2 and

T—o0 T—o0

T
lim 4" (p) = lim (-%: > (T -s)(s-1) p”“")

s=1
1 T

— 2 -2
= hm (T E Ts—T—s"+s)p° )

s=1

1 T

— s 5—2 s—2 2 5-~2 el §—2
= ’Ip_rgoz sp 11m E p hm —;ﬁlsp + llm T;—I sp

1
— 5—2 -2 _
= hm 32_2(8—1)p + hm E p° ..1___p.+o(T D)
1 1 1 1
= + - +0 T‘l =
(1-p? 1-p 1-p ) (1-p)°

1
-]V_TELlIW = .T(l;_p)2+0 (T_2 NT NTA2 (Zzyz s—1 ) (Z Yi— ) lT_z) .

Now, considering (Lf;l ) (Lﬁl ) , we have:

+0(T7),

2
( L;';I) ( L:;l)' = 25 Eis(Yis—1 — Ei ) ) )

(b’(p) +— - .
NT-T) > (Zs (eis + fi)* = T (e + fi)
E €is(Yis—1 — ET; _)
¥ (p)* + 26/ (p) 2257 :
N_(TITS PIF (Zs (s + fi)’ =T (€is + 1 )2)
Zs Ew(y, s—1 E_ )2 + 22_7;53 (€is) (5:1) (yzs 1— E_ ) (sz 1- Eﬂ )

(et (5 (ot 107 TG T TY))

Given that Ee;; =0, Ee?s = o2 and FEeiseij =0 for j # s, we have E ((Lf,’l ) (Lf,‘l )') that
is
> s Eis(Yis—1 — EF; _)
vy 5t (T, (e + £~ T @ v ) )
Zs 2, (Wis1 — EG; )2 + 2354, (6is) (€35) (¥i,5-1 — BT ) (9i,5-1 — EF; ) '
(mm =i (S leis+ )P =T (‘Tf) )’

E (L) (L3 = b(p)*+2(p)E

+

But

Y s Eis(¥i,s—1—EF; ) -1
E o ' =040 ((NT d
N-_(ﬂ:'l'_j—l E-’(Z.(Eia+fi)2—7'(€is+fi)2) + (( ) ) an
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> eu(y. s—1—EF; _ +2 Z,;e,(em)(sq)(yi s—1—E7;, )(y: j—1—LY; )
E 2
(-I‘T('ITS 2 (2 (€l8+fl)2_T €is+fi ))

='&1'2'z Eyzs 17 ( st—l) +_2'(E_zs—1) +O((NT)—])
= ;lvzzs Ey,-,s_l - ;Tz ( yi’s_l) +0 ((NT) ) , 80, we have that :
E(LY") (L5') =¥(o)+ XJE 21 = 23 (BTie0)* +0 (VD)7Y).
. . 4
Independence across individuals and EL! = 0 gives 57 ((L,’,) (L)) ) =w7EY (L;,’I ) (L},") ,

so, we have that

=B (L) (1) = 22- NT,,QZZEM Vo7 2 (BTia)' + O (NT7),

2
where ¥ (p) = 2 311 (T — )01 ¥/ (p)° = (% T (T- s)ps‘l) , and

s=1

T 2 2
. / 2 _ : l _ s—1 — 15 -1 _
A = jm, (T;(T 971} = g (320 - £ 3

s=1 s—l

T 2 2
- T -1 z -1 -1
= 711—{20 <Zps ) - hm TZps Zsps + hm (TZsp )

s=1 s=1 s=1

1
+0 (TH+0(T7?).
(l—p)2 )

. E(L/IJ)( ) )2+O(T_2)+ NTo ZEZEyzs 1 NUZZ zs l) +0(N_ T_2)

Thus, we get grE (Lp) (Lp) = —g7EL], that is O (T!) . This means that, when T — oo,
we can write:
1 ’
1 I (11 -1
NTEL = -57E (@) @) ) +o@™),
therefore, the asymptotic variance of the integrated likelihood estimator is given by

-1
Asywar (p;) = [ NTEL' ] +0(T™).
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-1
Asywar (p;) = NTO’2 zz E(yis1 - E(3:.))° - T_(ll—_p)z} +0(T7)

i s=1

-1
= _;—2-Var(y,-,s_]) T(ll )2] +0 (T'l)
. 0_2 -1
= -m +0 (T_l)] +0 (T_l)

Asywvar(p;) = 1-p2+0(T7).

Thus, when T — oo, the asymptotic variance equals at the limit the Cramer-Rao lower
bound, (1 — p?).

Q.E.D.

b) Integrated likelihood estimator is normally distributed

To prove normality of the integrated likelihood estimator we redefine Lf,’l as
2,7 / 1 =
Ly =V(p) + =) Z(eit —Ei)Yit-1,
t
where §; = ;'-;I.l—ei If we define u;; = (it — &i)¥i,1—1, then
Ll =¥(p) + —
s =b(p) o2 Zu"
t

If we define vy = i,@- + ;lguu, then we check the conditions of the Lindberg-Levy Central
Limit Theorem (see Greene (2000)):

Ev¢=0
Ev? < o©

Evwsyp < oo, for s # 1.

To check the first condition we consider computing:

Vi) 1
B ===+ 5Ew

Given that Fu; = E(ey — &)1, where 3,1 = p " lyo + —L—f, +p 2%+ ... per_o+ e,

16



and Ee; = 0, we have that

Euy = E(e -8y

-1
= E(e -7 (p“]yo +

1-p
1-— t—1
1 L fE( %)

fi+p %+ .. .paa+ Et—l)

= " lypE(e -7) +

+E(e, —8) (0 %1 +... + per_a +€1-1)
a+...+ep1+er

= E(e - T )(pt_251+'--+P€t—-2+5t—1)
2 2 1—1 2

= T (-2 _ ol-p™ oy

= T(p +...+p+1)= T 1o, = Tb(p)

2
and that Fu, = _2_67"41_72, we have

Bu = Y0 _ ) _

If we compute Ev}, we have

Ev?

Il
=
N
|Q
~—~
)
N’
+
wl"‘
&
N—’
V]

Vp)\2 b(p) 1 1
E ((—:('rp—)) +2(Tp)§“t+§“f)

_ (Y@, V)1 1.5
= ( T ) +2 T 02Eut+o4Eut.

Given that  is Op (T‘ %) , then for Eu? we have

2
FEu;

E|(es —®)yi1]’ = E [(eye-1 — By11)?) = Eleye—1)? — 2Bzery? | + E2%7 4

1-— pl—l 2 N
E |&? (Pt_lyo + fi+ o a1+ .. . pers +Ez—1) +0 (T_§) +0(T7)

l1-p

182 1-pt!
Eei®[(p*'30) +( _pp
P

2
_ 2
fi) + (pt 251 +...p62+ €t-—1)

) 42670 (e 4 e te)

1
fi) (pt_2€1 +...pE—2 +€t—])] +0 (T_%) +0 (T“l)

fi)] +0(T74) +o(T7)

_ 1-— t—1 2 _ 1- t—1
o2 [(pt 1y0)2+< l_Pp fz) +2(pt lyo)( 14

1-p

. f,~)2 +0(T7¥) +o(17).
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Given that Eu; < oo and Eu? < oo for |p| < 1 and T — oo, we have that Ev? < co.

To check Evv,sv < 00, for s # I we write

Evywvsy = E (@ + %‘u,:) (@ + %us) (ﬁ';ﬂ + ?'1—2u1)
E (bl%)- + E];fut) ((@) i + %Ef,} (us +w) + %usuz)

(b'_(fil)3 + (b’(—”)f%E (ue + us + ur)

T T

)]

1
Tol E (usup + upus +ugy) + ?Eutusuz.

We have that B (uy +us +w) = —3;;.2-1)’ (p), which is O (T!), also we have

E (ugu; + wyus +wuy) = E(es —E)(e1 — E)Ys—1911
+E(ey — €)(€s — E)y1—1Ys—1 + E(er —E)(e1 — E)ye—11-1
= O(T#)+0(T7) whent#s# L andis

11— t—1
1-p

2
= o2 (pt_lyo + fi) +0 (T"]f) +O(T™") whent=sorl.

For Fu,uzu; we have

EBuwwuswy = E(e —€)(es — ) et — E)Yt—1ys—191-1
= Eeeseiyp—1Ys—1Yi-1 — E€eresyi—1ys—191-1 — EEEs€1Y1—1Ys—1Y1-1
—EZeieiyi-1Ys—1—1 + B (€1 + €5 + €) Y1_1¥s—191-1 — BB Y—1Ys—1Y1-1
= o(T¥)+o@)+o(174).
Thus,

Bowew = -2 (5’-'%‘-’1)3 + %ﬂl (o(T%) +o(@™)
+0 (T7%) +o (@) +0(T°%)

o(T?)+o (T ) +o(r ) +0(T#) +0(T?),
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whent#s#!andis
E _ 2 b,(p) 3 b’(p) 1- pt-] 2 [8) T—-% 0 T—l
VUV = L\ +5 7 Tod P yo + 1-p fi) + ( ) +0(T7)

+0(T#)+0(T ") +0 (T“%)
O(T%)+0(T™Y) +0 (T 4) +0(T7")+0 (r-%) +o0 (7,

when ¢t = s or [. Thus, we have that Evwsv; < 00. for |p| <1 and T — co.

The conditions of Central Limit Theorem are satisfied for each individual 2. In order to show

that the Integrated Likelihood Estimator is asymptotically Normal Distributed we need to

account for all individuals i. Let .
Ly

i = & + ui,

where ¢; ~ N (O &E&) Eu; = 0 and Eu? = o(1), because we proved that

il i1\’ i1
(5) )+

Z(L”) T, T
R AR

If we define ¢ = 245 and u = E.ii‘_‘, thene ~ N O,Eﬁﬂ and E (u) = 24% — 0 and
VN VN NT N

Thus we have that:

2
E(u?) = -Zh'i'- = 0(1) since we assumed independence across individuals.

We proved that,

I I
L, ~n (o, EL,,,,
vVNT NT
and the result follows.

Q.E.D.
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9 Tables

Table 1 The Root Mean Squared Error (RMSE) of the integrated likelihood estimator
compared to estimators considered in Hahn, Hausman and Kuersteiner (2001)

(62 is unknown; 5000 data sets)

T [n [» [ RMSE pgyum [ RMSE ppoy [| RMSE ppipyy [ RMSE p;
5 | 100} 0.10 ] 0.08 0.08 0.082 0.056
10 | 1060 | 0.10 | 0.05 0.05 0.045 0.035
5 | 500 | 0.10 | 0.04 0.04 0.036 0.025
10 | 500 | 0.10 | 0.02 0.02 0.020 0.016
5 | 100 ] 0.30 | 0.10 0.10 0.099 0.061
10 | 100 | 0.30 | 0.05 0.05 0.050 0.036
5 | 500 | 0.30 | 0.04 0.04 0.044 0.027
10 |1 500 | 0.30 | 0.02 0.02 0.023 0.016
5 [100 | 0.501{0.13 0.13 0.130 0.067
10| 100 | 0.50 | 0.06 0.06 0.058 0.037
5 | 500 0.50 | 0.06 0.06 0.057 0.031
10 { 500 | 0.50 | 0.03 0.03 0.026 0.016
5 | 100]0.80 | 0.32 0.34 0.327 0.089
10 | 100 { 0.80 | 0.14 0.11 0.109 0.045
5 | 500 | 0.80 | 0.13 0.13 0.127 0.036
10 | 500 | 0.80 | 0.05 0.04 0.044 0.018
5 | 100 | 0.90 | 0.55 0.78 0.604 0.099
10 | 100 | 0.90 | 0.25 0.23 0.229 0.057
5 | 500|090 0.28 0.30 0.277 0.038
10 | 500 | 0.0 | 0.10 0.08 0.080 0.023

For comparison, the simulation results of HHK are shown; popsps denotes the GMM
estimator of Arellano and Bover (1995), pgco the Bias Corrected estimator of HHK,
Primi the LIML estimator, pgco denotes the Bias Corrected estimator of HHK, and p;

the integrated likelihood estimator.
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Table 2 Bias of the integrated likelihood estimator
compared to estimators considered in Hahn, Hausman and Kuersteiner (2001)

(02 is unknown; 5000 data sets)

Tin |p %bias papas | Tobias ppoo | Tobias pria | Jobias p;
5 | 100]0.10 | —1496 | 0.25 -3 2.66
10 [ 100 | 0.10 | —14.06 —0.77 -1 0.45
5 | 500[0.10] -3.68 —0.77 —1 —0.20
10 | 500 | 0.10 | —=3.15 —0.16 -1 —0.74
5 | 100 [ 0.30 | —8.86 —0.47 -3 1.04
10 [ 100 | 0.30 [ —7.06 —0.66 -1 —0.25
5 | 500 (0.30 [ —2.03 —0.16 —1 —~0.37
10 [ 500 | 0.30 | —1.58 —-0.10 0 —-0.14
5 | 100 | 0.50 | —10.05 —1.14 -3 0.38
10 | 100 | 0.50 | —6.76 —0.93 -1 —-0.15
5 [ 500050 —2.25 -0.15 -1 —-0.29
10 | 500 | 0.50 | —1.53 —0.11 0 —0.19
5 | 100 | 0.80 | —27.65 —11.33 —-15 0.80
10 | 100 | 0.80 | —13.45 —4.55 -5 0.25
5 | 500 | 0.80 | —6.98 —0.72 -3 —0.12
10 | 500 | 0.80 | —3.48 —-0.37 -1 —0.06
5 | 100 [ 0.90 | —50.22 —42.10 —41 1.36
10 | 100 | 0.90 | —24.27 —15.82 -15 0.83
5 | 500090 ] —20.50 —6.23 —10 —0.07
10 | 500 | 0.90 | —8.74 —2.02 -2 —0.07

The fixed effects a; and the innovations &;; are assumed to have independent standard nor-
mal distributions. Initial observations y;p are assumed to be generated by the stationary
distribution N (-l—f‘f,;, ]j 0) . Asin table 1, pgprps denotes the GMM estimator of Arellano
and Bover (1995) , pgco the Bias Corrected estimator of HHK, py 1y, the LIML estimator,

Ppc2 the Bias Corrected estimator of HHK, and p; the integrated likelihood estimator.
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Table 3 The performance of the integrated likelihood estimator
compared to the GMM and BCML estimator considered by Hahn and Kuersteiner (2002) -

(0 is unknown; 5000 data sets)

T n [p [ bias poun | biasp || bias p ]| RMSE pgpras || RMSE 7 || RMSE 5,
5 [100 [0.0] —0.011 [-0.039 | —0.0004 | 0.074 0.065 0.054
5 100 [ 0.3 =0.027 —0.069 | 0.003 0.099 0.089 0.061
5 |100]0.6 | —0.074 —0.115 | 0.002 0.160 0.129 0.070
5 100 [0.9] —0.452 —0.178 [ 0.012 0.552 0.187 0.099
5 |200]0.0] —0.006 —0.041 [ —0.001 | 0.053 0.055 0.038
5 |200[0.3]—0.014 —0.071 [ 0.001 0.070 0.081 0.042
5 1200 0.6]—-0.038 —0.116 | 0.003 0-111 0.124 0.048
5 |200[0.9]—0.337 —0.178 | 0.006 0.443 0.183 0.067
10 {100 [ 0.0 | —0.011 —0.010 | —-0.001 | 0.044 0.036 0.035
10 | 100 [ 0.3 ] —0.021 —0.019 | —~0.0007 | 0.053 0.040 0.036
10 | 100 [ 0.6 | —0.045 —0.038 | 0.001 0.075 0.051 0.037
10 [ 100 [ 0.9 | —0.218 —0.079 | 0.007 0.248 0.085 0.058
10 [ 200 | 0.0 | —0.006 —0.011 | —0.0007 | 0.031 0.027 0.025
10 [ 200 [ 0.3 —0.011 —0.019 | —0.001 | 0.038 0.032 0.026
10 [ 200 | 0.6 | —0.025 —0.037 | —0.0001 | 0.051 0.045 0.097
10 [ 200 [ 0.9 —0.152 —0.079 | 0.004 0.181 0.082 0.041
20 | 100 [ 0.0 [ —0.011 —0.003 | —0.000 | 0.029 0.024 0.023
20 | 100 | 0.3 | —0.017 —0.005 | 0.000 0.033 0.024 0.023
20 [ 100 | 0.6 | —0.029 —0.011 | 0.000 0.042 0.024 0.022 :
20 [ 100 [ 0.9 | —0.100 —0.032 | 0.0005 | 0.109 0.037 0.026
20 {200 | 0.0 | —0.006 —0.003 | —0.0002 | 0.020 0.017 0.017
20 | 200 | 0.3 ] —0.009 —0.005 [ —0.0002 | 0.022 0.017 0.017
20 | 200 | 0.6 | —0.016 —0.010 [ —-0.0004 | 0.027 0.018 0.015
20 | 200 | 0.9 | =0.065 —0.031 [ 0.0008 | 0.074 0.034 0.018

Perm denotes the GM M estimator of Arellano and Bover (1995), 7 the Bias Corrected

estimator of HK, and p,; the integrated likelihood estimator.
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Table 4. The Performance of Integrated likelihood estimator for high values of p and T'=5

N =100 Privra || Prasrsep | Povern |1 |
p=0.75 | Actual mean % Bias 1.297 5.533 11.553 1.158
p=0.75 | Actual median % Bias | —3.087 | 1.381 7.470 0.475
p=0.75 | RMSE 0.181 0.176 0.213 0.084
p=0.80 | Actual mean % Bias —0.112 | 4.304 10.413 0.802
p=0.80 | Actual median % Bias | —5.725 | 1.457 8.651 —-0.112
p=0.80 | RMSE 0.213 0.173 0.205 0.089
p=0.85 | Actual mean % Bias | —3.899 | 1.966 7.983 0.995
p=0.85 | Actual median % Bias | —10.117 | 0.065 7.558 —0.022
p=0.85 | RMSE 0.233 0.160 0.194 0.093
p=0.90 | Actual mean % Bias | —9.757 | —-0.771 6.138 1.363
p=0.90 | Actual median % Bias | —15.389 | —2.346 6.114 0.288
p=0.90 | RMSE 0.246 0.153 0.180 0.099
p=0.95 | Actual mean % Bias —15.203 | —3.367 3.124 1.455
p=0.95 | Actual median % Bias | —19.637 | —4.776 3.136 —0.045
p=0.95 | RMSE 0.252 0.149 0.165 0.111

PLimL, denotes the LIML estimator, pjo51,5,1p the ‘long difference’ 2SLS estimator of
HHK, Pcyg,.p the ‘long difference’ continuous updating estimator of HHK and p; the

integrated likelihood estimator.
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Table 5 The performance of the integrated likelihood estimator
for p close to one and T = {5,10}.

(02 is unknown; 5000 data sets)

T |n |p RMSE;, | %bias p;
5 | 100} 0.95 ] 0.111 1.45

10 | 100 | 0.95 | 0.059 0.78

5 | 500 | 0.95] 0.042 -0.05

10 | 500 | 0.95 | 0.026 0.02

5 | 100 | 0.99 | 0.118 1.69

10 | 160 | 0.99 | 0.058 0.44

5 | 5001 0.99 | 0.044 0.15

10 | 500 | 0.99 | 0.028 0.22
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