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Abstract

In a discounted expected-utility problem, tomorrow’s utilities are aggregated
across tomorrow’s states by the expectation operator. In our problems, this aggre-
gation is accomplished by a Choquet integral of the form [ u dP®, where a specifies
uncertainty aversion. We solve all finite-state problems by either a closed form
or a finite-dimensional iteration, and show that uncertainty aversion reduces the
perceived return on investment, thereby decreasing the saving rate given elastic
preferences and increasing the saving rate given inelastic preferences.

*An earlier version of this paper was entitled “Dynamic Programming for Capacity-Based Stochastic
Objectives” and was presented by Ozaki in an Invited Lecture at the Annual Meeting of the Japan
Association of Economics and Econometrics, September 23-24, 1995. Streufert thanks the Faculty of
Economics and Politics at the University of Cambridge for its hospitality during his sabbatical. Both
authors are grateful to Professors Kazuo Nishimura and Makoto Yano, and to seminar participants at
Cambridge and Paris I, for their helpful comments.
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1. Introduction

A useful distinction can be made between risk, where the information about like-
lihoods can be represented by a probability measure, and uncertainty, where the infor-
mation about likelihoods is less precise. Non-expected utility functions can specify both
risk aversion and uncertainty aversion. The literature on uncertainty aversion in a static
setting that is most relevant to our work includes Schmeidler (1989, whose concept of
uncertainty aversion resembles ours), Epstein (1999, who proposes an interesting alter-
native), Quiggin (1982), Yaari (1987), Gilboa (1987), Gilboa and Schmeidler (1989), and
Chateauneuf (1991).

One particularly simple non-expected utility function is specified by the Choquet
integral [u dP* satisfying

/udP‘*=min{/udQl (VA_C_S)Q(A)ZP"(A)},

where § = {1,2,...,#S} is a finite set; u € RS URS = (—o0, 0]*S U [0, +00)# is the
uncertain prospect to be valued; P : P(S) — [0, 1] is a probability measure [P(S) is the
set of all subsets of S}; a € [1,+00); and the choice variable in the minimization problem
is the probability measure Q. If @ = 1, the only imaginable probability measure is P itself.
Hence uncertainty vanishes and [ u dP* reduces to expected utility. But as o increases
from 1, every P*(A) decreases, and the set of imaginable probability measures expands.
Given this uncertainty, the objective [ u dP* values © under the most pessimistic of these
imaginable probability measures. For this reason, objectives with a € (1,+00) are said

to exhibit uncertainty aversion. Symmetrically, uncertainty appeal is specified by

/udP" =max{ /udQl (VA C S) Q(A) SP°(A)} ,

where a € (0, 1).

We will call a € (0, +00) uncertainty aversion. This is imprecise for two reasons.
First, thg concept is defined only within our very narrow parametric class of preferences.
Second, & controls not only uncertainty aversion (by specifying the max or min operator),

but also uncertainty itself (there is less uncertainty when o is near 1).
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We employ this specification of uncertainty aversion in dynamic problems by con-

sidering utility functions which satisfy the recurrence relation

u=c/(1-p)+ 8 [vaPe,

where the scalar u is today’s utility, the scalar c is today’s consumption, the vector v
lists tomorrow’s utility in each of tomorrow’s states, p € (0,1) U (1,+00) is dynamic
inelasticity, and 8 € (0, 4+0c0) is the discount factor.

Epstein and Wang (1994, 1995) consider similar problems which are more general in
that they admit infinite state spaces and preferences from outside our narrow parametric
class. However, we are able to solve all problems with either closed forms or finite-
dimensional iterations and to derive the effect of uncertainty aversion on the saving rate.
In addition, our assumption that impatience exceeds some measure of “average” growth
is less restrictive than their assumption that impatience exceeds growth along the most
fortuitous sequence of events. (Ozaki and Streufert (1999) contains preliminary results of
a similar nature for continuum state spaces.)

We study three cases. In the first (Section 3.1), the transition probabilities P, is
independent of today’s state s. Here we derive a closed-form solution to the dynamic

problem and show that increases in o decrease the perceived return to saving and thereby

decrease the saving rate when preferences are elastic (that is, when p € (0, 1)) and increase
the saving rate when preferences are inelastic (that is, when p € (1, +00)).

In the second case (Section 3.2), we assume that higher states are not only as-
sociated with higher returns, but also with more favourable transition probabilities. In
this case, we find a particularly tractable finite-dimensional iteration which derives the
parameters of the solution, and again show that uncertainty aversion leads to an decrease
in saving in elastic problems and an increase in saving in inelastic problems.

The third case (Section 3.3) imposes no restriction on the transition probabilities.
Here we find a finite-dimensional but somewhat less tractable iteration which derives the

parameters of the solution.

All lemmas, proofs, and numbered definitions are collected in the Appendix. The

L

8
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proofs are based upon the dynamic programming techniques in Ozaki and Streufert (1996),
which is hereafter referred to as OS.

2. Framework
2.1. Dynamic Problems with Uncertainty Aversion

Let § = {1,2,...,#S} be a finite state space, and suppose that the state s € S
evolves exogenously over time according to the transition matrix P > 0.! The matrix
element p, +|s in the s -th row and s-th column is the probability that tomorrow’s state
is s given that today's state is s. Accordingly, the s-th column D, gives the probability
vector over tomorrow’s states given that today’s state is s.

We have three preference parameters: dynamic inelasticity p € (0,1) U (1, +00),
the discount factor 8 > 0, and uncertainty aversion a > 0.

When p € (0,1), define the utility function U : [[y5o RS — R4 by? 3

Uslo) = Jim &™*/(1 = p)+ B [ /(1= p) +--- [a* 10— p)ape--dpz, ()

where P, is the probability measure derived from the s-th column of the transition matrix
P, and an arbitrary consumption process gc = (co,c1,€2,...) consistsof cg € Ry, ¢1 € R,
c; € RY,... . U is well-defined because the above sequence of nonnegative numbers is

weakly increasing. For example, if = 1,

U,(oC)
= Jm /(=) +B [ /(- p)+-B [ /(1 - p)dP - aP,
= Jm&/A=p)+8 [/ -paPit-f [ [ [/~ paP---dP,

1Weakening P > o to (3t) P* > o is like weakening 8 > 0 to § > 0: its only consequence is to admit
the possibility of optimal processes which do not obey the true policy function K™.

?In order to understand the text’s use of the Choquet integral, it suffices to understand the first
two equalities in the introduction. Meanwhile, the proofs in the Appendix employ the definition of
the Choquet integral and a number of additional concepts which are expiained in Definition 1. The
introduction’s equalities hold by Lemmas 3 and 5.

3This utility function satisfies the introduction’s recurrence relation over the relevant commodity space.
This fact is established as U4 in OS Theorems D and E, and each of this paper’s theorems is proven by
applying one of those two theorems.




= Jim g:oﬁ*E,c:"’/(l - )
00
= Y BEci™/(1-p)

=0
where the first, third, and fourth equalities are definitions and the second holds because
a=1.

When p € (1, +00), define the utility function U : [J,5o RS’ — R_ by (1). In this
instance, U is defined by a weakly decreasing sequence of nonpositive numbers. Again,
Us(oc) reduces 32, BE,c;~"/(1 — p) when o = 1.

Finally, let R € (0,+00)® give the gross return to saving as a function of the
state. We assume without loss of generality that R is weakly increasing in the sense
that B < R < --- < Ryg. Accordingly, tomorrow’s income Y+ € Ry is derived from
tomorrow’s state s, € S and today’s saving z € R, by y, = R, z. A consumption
process qc is feasible from y if there exists a corresponding saving process o2 € ngo&f
such that

co=y—z9 and (Vt>1) ¢; = Rz, ; — ;.

In summary, we have the parameters S, P, p, B, a, and R. The problem is
to maximize the utility function U, given some initial state s, over the collection of
consumption processes which are feasible from some initial income y. It is of particular

interest to see the way in which the problem’s solution is affected by the parameter a.

2.2. Solutions

We solve such a problem by constructing its true value function J* : Sx R, - R
defined by

J2 () = max{U,(oc) | oc is feasible from y};

by constructing its true policy function K* : S x R, — R defined by

Ki() = argmex { (- 2)1~*/(1- ) + 8 [ I, (Ru,2)P(do) |z € 0}

(s



and by showing that K* characterizes optimality in the sense that?

argmax{ U, (oc) | oc is feasible from y }
= {oc|(Joz) 7o € K;(y) and co = y — zo;
(Vt > 1) T € K‘(Rﬂ:t_l) and ¢; = Rzy_; — .'L‘g}.

2.3. Examples

Suppose that S = {1,2}, that (Vs,s,) Psyjs = .5, and that R, < R, (a weak
inequality is always assumed). If o = 1, tomorrow’s utilities are aggregated by the
expectation operator fudP = .5u; + .5us, and Theorems At and A~ establish that
optimality is characterized by

Ki(y) = {k*y}, where k* = [B(.5R,™" + .5R}™")]',

provided that k* < 1. On the other hand, if o = 2, tomorrow’s utilities are aggregated
with uncertainty aversion by [ udP? = .75 min{uy, up} + .25 max{u;, vz}, and the same
propositions establish that optimality is characterized by

Ki(y) = {k'y}, where k* = [B(.7T5R;™ + .25R}™")|V*,

provided that §(.25R)™+.75R} ™) < 1 when p € (0,1) and that k* < 1 when p € (1, +00)
[the first inequality implies k* < 1 when p €(0,1)].

This k* can be interpreted as the saving rate. As might be anticipated from prior
knowledge of discounted expected utility models (that is, the case @ = 1), the saving
rate increases in §, is ambiguously affected by p. increases with R when p € (0,1) and
decreases with R when p € (1,+00). It is of particular interest here to see how k* changes
when a changes from 1 to 2. Since R, < R,, We see that k* decreases when p € (0,1)
and increases when p € (1, +c0). Intuitively, uncertainty aversion causes the consumer to

place less weight on the higher state, and thus, to perceive less return on her investment.

4The proofs use further dynamic programming concepts such as Bellman’s equation. These are given
in Definition 9.



6

This causes her to save less if her preferences are dynamically elastic and to save more if

her preferences are dynamically inelastic.

3. Theorems
3.1. Transition Matrices with Identical Columns

Given a probability vector p € #3 and an exponent & € (0, 4+00), define

P = {3 p)* = (9o

820 8>
where }-,, 45 is set equal to zero. For example, if § = {1,2} and p = (.5,.5), then
P = (1 -(.5)%,(.5)%), and in particular, p* = (.75,.25). Thus it seems that increases
in ¢ push more probability weight down from higher states and into lower states. This
intuition corresponds to our use of the symbol (-).

To be precise, one probability vector pE€E Rf. is stochastically lower than another
probability vector g € Ry if (Vo > 1) 2s>0 Ps < Ly>e gs- Note that P is stochastically
lower than $* whenever o’ > . Also note that if p is stochastically lower than g, and if
x € R is weakly increasing (resp. decreasing), then ¥, z,p, < (resp. >) T, Z,4,.

One assumption in Theorem A+ requires a symmetric concept. Given a probability
vector p € R7 and an exponent a € (0, +00), define

= ((z Ps)* — (Z Ps)%)e

a<o a<o
where },., is set equal to zero. For example, if § = {1,2} and p = (.5,.5), then
P” = ((.5)%,1-(.5)*), and in particular, p* = (.25, .75). This operation pushes probability
weights up from lower states and into higher states in the sense that p” is stochastically
higher than $* whenever o/ > a. Note both ! and #' equal p.

Theorem A*: Assume that p € (0,1) and that all the columns of P are identical
to some probability vector p € RS. Let k* = (8 PO R}:”ﬁ;)”’, and assume
~either o €(0,1] and k* <1

or a€ll,+o0) and T, RPpZ <f7t.



Then (by Theorem Bt),

J; () =(1-k")"*y=?/(1-p) and
K;(y) = {k*y} characterizes optimality.

(Proof 16.)

Theorem A~: Assume that p € (1,+00) and that the columns of P are identical,
Let k* = (BL,, RI;#p2 )"/?. Then (by Theorem B-), if k* < 1,

Jiy) =1 —-k)Py*/(1 - p) and

K;(y) = {k*y} characterizes optimality;
and, if k* > 1, J*(y) = —co and any feasible process is optimal. (Proof 19.)

Once again, it is of particular interest to see how the saving rate
k=L R

varies with the exponent a. If o > a, then $* is stochastically lower than $*. Conse-
quently, ¥, Ri~Pp2 y < Lo, Ri?92 when p € (0,1) and the opposite when p € (1, +00).
This is because R'~* is weakly increasing when p € (0,1) and is weakly decreasing when
p € (1,+00). Hence, the saving rate weakly decreases with o when p € (0,1) and weakly
increases with & when p € (1, +00). Once again, uncertainty aversion causes the consumer
to place less weight on higher states, and thus, to perceive less return on her investment.
This causes her to save less if her preferences are dynamically elastic and to save more if
her preferences are dynamically inelastic.

As might be anticipated, the above solutions are contingent upon assumptions
requiring that impatience exceed some measure of growth. In most instances, this is
handled by k* < 1, which is algebraically equivalent to 3, + Ba7PP3, < B~1. However,
in the instance p € (0,1) and & € [1, +00), the theorem requires ¥, R}-#52, < 67,
which is at least as strong as the former inequality because R is weakly increasing
when p € (0, 1) and because $° is stochastically higher than $* when a € [1, +o0o).



3.2. Transition Matrices with Stochastically Ordered Columns

The columns of P are said to be stochastically ordered if (Vs < #5) P,, is stochas-
tically lower than P.s+1- Because R was assumed to be weakly increasing, lower states
are already associated with lower returns. If P is stochastically ordered, lower states are
also associated with less fortunate transition probabilities.

Unfortunately, the following theorems do not derive closed-form solutions. Rather,
they compute coefficients for the true value function by means of an iteration in Rf_ This
iteration is defined by means of the function b : ®5 — RS specified by

(bg)s = (1+ (8 L B Y-
[b7 is weakly increasing in j, weakly increasing in R when p € (0, 1), and weakly decreas-
ing in R when p € (1, +00).]

Like the preceding theorems, all results are contingent upon assumptions requiring
that impatience exceed some measure of growth. When p € (0,1) and « € (0, 1], this is
done by A(I'"'?P®) < 8-1, where I''™* is the diagonal matrix whose s4-th element is
Rl-¢, P" is the matrix whose s-th column is P5,, and X(-) yields the dominant eigenvalue
(Luenberger, 1979, p. 191) of the enclosed matrix. When p €(0,1) and « € [1,+00), this
is done by 1\(1‘1"’Pa) < B! where P® is the matrix whose s-th column is Pj,- When
p € (1,+00), this is done by requiring that the limit of the iterative process is finite (or

equivalently, that the. saving rate in every state is less than unity).

Theorem B*: Assume that p € (0,1), that the columns of P are stochastically
ordered, and that

either € (0,1] and A(IM—*P%) < g1
or a€ll,+00) and ,\(Pl"’Pu) <pt.

Then j* = limn s b"0 € R and §* = 2/[I — BT**P"-' € RS are well-defined (and
hence finite), 5* = lim,,_o, "5+, 5* is the only weakly increasing solution to j = bj which
satisfies 0 < j < j*,

Jo(¥) = 534'*/(1 - p), and

(e



K3(y) = {[((G)"? — 1)/(52)?)y } characterizes optimality.
(Proof 15.)

Theorem B~: Assume that p € (1,+00) and that the columns of P are stochasti-
cally ordered. Then (by Theorem C-) j* = limpoo b"0 € RS is well-defined; if 5° € RS,
then

J5(W) = j;y*~*/(1 - p) and
Ki(y) = {[((GH)Y° - 1)/(52)"?)y } characterizes optimality;

and, if (3s) j; = +oo, then (Vs) J*(y) = —oc0 and any feasible process is optimal. (Proof
18.)

Once again, increases in o decrease the saving rate when p € (0,1) and increase
the saving rate when p € (1,+00). When p € (0,1), both R'~* and every b"j are weakly
increasing. Thus, the definition of b suggests that an increase in o forces probability
weight down to lower states and thereby decreases every 5”5 (full details are in Lemma
13). Hence, an increase in o decreases J* and thereby decreases the saving rate. On the
other hand, when p € (1, +o0), both R!” and every b"j are weakly decreasing. As a

result, an increase in o has the reverse effect.

3.3. The General Case

Like the preceding pair of theorems, the following pair of theorems compute co-
efficients for the true value function by means of an iteration in ®3. In this case, the
iteration is defined by means of the function b : R3 — R specified by

(b3), = (1+( / Jar Ry PP(dsy )) ")p when p € (0,1)

and by ,
- (bg)s = (1 + (,B / JMRl-pP‘?’(ds.,.))l/p) when p € (1,+00)
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Theorem C*: Suppose that p € (0,1) and that

either o€ (0,1] and (3z € (0,0)) (a/(a- 2))ANI'*-P/2pP): < g-1
or a€[l,+00) and aA(I"*P) < g-1.
Then 5* = lim,_,o, b"0 € RS is well-defined (and hence finite),
J5(y) =3y**/(1—p), and
K;(y) = {[((53)"/? = 1)/(53)/*ly } characterizes optimality.
(Proof 14.)

Theorem C-: Assume that p € (1,+00). Then j* = lim,_.,, b™0 € RS is well-
defined; if §* € RS,

Jo®) =39""/(1-p) and
K3(y) = {{(()Y? — 1)/(52)"*ly } characterizes optimality;

and, if (3s) j; = +oo, then (Vs) J*(y) = —co and every feasible process is optimal. (Proof
17)

APPENDIX

No definition, lemma, or proof appears after it has been used (how boring).

Definition 1: Let P(S) denote the set of all subsets of a finite set S. A probability
capacity is a function 8 : P(S) — [0, 1) which satisfies §(¢) = 0, 8(S) = 1, and (VA, B) A C
B => 0(A) < 8(B). The Choguet integral of a nonnegative vector u € R with respect to
a probability capacity € is defined by

/ u,0(ds) = /:m 6({s|u, > y})dy,

where the right-hand-side is an improper Riemann integral which must be well-defined
(but not necessarily finite) because its integrand weakly decreases with y. The conjugate
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of a probability capacity @ is the function ¢’ : P(S) — [0,1] defined by (VA) ¢'(A) =
1 —6(~ A), where ~ A denotes the complement of 4 in S. The Choguet integral of a
nonpositive vector u € RS with respect to 4 is [ u,0(ds) = — [ —u,6' (ds). A probability

capacity is concave (resp. convez) if
(VA,BC S) 6(AUB)+6(AN B) < (resp. >) 6(A) + 9(B).

(A probability measure is a probability capacity which is additive, that is, both concave

and convex.) The next three lemmas follow immediately from these definitions.
Lemma 2: Suppose 0 is a probability capacity. Then

(Vu € RS)(Va, b € R,) /(a+lm)do=a+b/ude.

Lemma 3: Suppose P is a probability measure. Then P* is concave when a €

(0,1] and P* is convez when a € (1, +c0).

Lemma 4: Suppose 6 is o probability capacity. Then 8 is concave (resp. convez)

if and only if @' is convex (resp. concave).
Lemma 5: If 6 is a concave probability capacity, then
(Vu € %5 URS) /udﬂ:max{/udQ. (VA C 5) Q(A) so(A)} .
If 8 is a convez probability capacity, then
(Vu € RS URS) /udO:min{/udQI (VA C 5) Q(A) 20(,4)} .

Proof: Schmeidler (1986, Proposition 3) derives both results when u € ®3. Now

suppose u € 5. If 6 is concave, then
/udo
= —/-udo'
- —min{/-udQl(VACS)Q(A)ZO’(A)}
= max{ fudQ|(vAcH) QU 20(4))
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= max{/udQ (VAC.S’)I—Q(~A)21-0(~A)}
- max{fudQ (VACS)Q(~A)$0(~A)}
= max{/udQ (VACS)Q(A)_<_9(A)},

where the first equality holds by Definition 1, the second holds by Schmeidler’s result for
—u € RS since ¢’ is convex (Lemma 4), and the fourth holds by Definition 1 and the fact

that @ is a probability measure. A symmetric argument can be made when 6 is convex.
o

Lemma 6 (Schmeidler, 1986, Proposition 3): If 8 is a concave probability capacity,
then

(Vu,v € R3) /(u+v)d0$/ud0+/vd9.

If 0 is a convez probability capacity, then
(Vu,v € ®]) /(u.+'v)d0 > /ud0+/vd0.
Lemma 7: Suppose 6 is a convez probability capacity. Then
(Vu,v € ®]) f(u+v)d0—/ud9 sfvda’.
Proof: We argue

/w+ww-jum
= min{ [(u+v)d@| (14) Q(4) 2 0(4) } ~ min{ [wiQ| (v4) Q) 2 004))
f (u+ v)dQ* — / udQ*
/de‘
max{ [vdQ| (V) Q) 2 6(4) )
max{ [vdQ| (v4) Q(~ 4200~ 4)}
= max{ [vdQ| () 1- Qv 4) S 1-0(~ 4)}
= max{ [vd| v4) Q<o (4)}

= /vdB’.

A

IA
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The first equality holds by Lemma 5 and the convexity of 6, and the first inequality holds
by defining Q* as the minimizer in the problem for [ df. The second equality holds by
the linearity of an integral defined with respect to a probability measure, and the second
inequality holds because Q* is in the feasible set (since it’s the same feasible set as earlier).
The penultimate equality holds because @ is a measure and because of the definition of
the conjugate §'. The final equality ho'lds by Lemma 5 and the concavity of &' (which

follows from Lemma 4 and the convexity of §). O

Lemma 8: Let A € (0,+00)" be a positive matriz and M(A) its dominant eigen-
value. Then (Yy,x € RI)(Vm > A(A))(Fk € R,)(Vt > 1) v/ Alz < kmt.

Proof: Take any y,z € R and any m such that A(A) < m. By the genericity
of distinct eigenvalues and the continuity of A(-), there exists a matrix B with distinct
eigenvalues such that A < B and A(B) < m. Further, since B has distinct eigenvalues,
there exist an eigenvector matrix M and a diagonal matrix A of eigenvalues such that
B = MAM™. Consequently,

v Az
< yB'z
= yMAM 'z
= 2 (W'M) (M 'x),
< Za:l/\f,ll(y’M).,(M‘lw),l
< NBY Tl M-
< mk,

where (y'M), is the s-th element of the row vector y’M, (M ~z), is the s-th element
of the column vector M 'z, and k = ¥, |(y'M),(M 'z),|. O

Definition 9: A function J : § x R, — R is an admissible value function if it
is upper semicontinuous, weakly increasing in its second argument, and satisfies J~ <

J<J "", where J7(y) = U, (o) is an extremely pessimistic value function and J;}(y) =
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Us(y, Ry, R%y,...) is an extremely optimistic value function. Define Bellman’s operator
B from the set of admissible value functions into itself by

(¥)¥9) BIY) = max{ (y=2)'#/(1- )+ B [ o, (Ru2)PE(dss) | s € 0,41}
Finally, J solves Bellman’s equation if J = BJ.

Lemma 10: Let J and j € R be such that J,, (y4) = o, 4's°/(1 — p). Then

max { (y = 2)'"#/(1 = p) + B[ Jo, (Ro,2)P2(dsy) | = € [0,5] }
= (b3)s*~*/(1- p), and
argmax { (y = £)'"¢/(1 = p) + B[ Jo, (Re, Z)P2(dss) | = € [0,4] }
= {[((®5)¥/> - 1)/(bg)¥?ly } .

The first equality is equivalent to (BJ),(y) = (b3)sy"*/(1 - p) when J is admissible (see
Definition 9).

Proof: First suppose p € (0,1). For notational ease, fix s and set

w= (8 [ i Ri7P2(ds)) " .

max{ (v~ 2'~*/(1= )+ B [ 1o, (B, )P dss) | z € [0,
= max{ (1= 2"/ = )+ 8 [ iy (Rer2)' /(1 = )PE(das) | 2 € 04
= max{ =2/ = ) + B [ i, R PE o) (1= )| 2 € 0,0}
= max{(y - 2)'"*/(1~ p) + w’z'~*/(1 - p) |z € 0,5}
= (W—wy/(L+w))'*/(1- p) + wiwy/(1+ w))**/(1 - p)
= W+ 0)/(1 = p) + w(wy/(1+w)~/(1 - p)
= [+ wP@) A1/ +w))=Py#/(1 - p)
= R+u](1/(1+w))Pyt~r/(1 - p)
= (1+wry~/(1-p)
= ba/(1-p),




15

where the second equality holds by Lemma 2 and the nonnegativity of z1~#/(1 — p), the

maximization operator is resolved by the first-order condition
(y—2z)?(-1)+wz?=0
W = (y— )"
w(y — 7)P = z°
wy-wr=g
wy/(l+w)==z
and the last equality follows from the identity (bj), = (1 + w)?. The same first-order

condition and identity determines the argmax as

{wy/(1+w)}
= {[(1+w)-1)/0+w)y}
= {l((6)Y* - 1)/(b5) 71y}

Second suppose p € (1,+00). For notational ease, fix s and set

w= (B [ du B P (des))

Then

W=/~ )+ B [ 1 (R 0)P2(ds) | 2 € 0,91}
=21/ ) + 8 [ o, (R )™/ - )Pi(ds) | 2 € 03]}
=2/ =) = B [ ~jus (Roy2)'~*/(1 ~ p)PS"(ds) | 2 € [0,0] ]
=2/~ p) = B [ 5, BT P2 (o)) (1= p) | = € 0,41 }
W=/~ )+ B [ 1, B P o)/ (1= )| 2 € 03]
= max{(y ~2)"#/(L - p) + wz*/(1 - )| € 0,9] },

max

Il
8

,—A_‘,—JH,-—&\,—A_\PJ\—\

ax

= max

= max

where the éecond equality follows from the definition of the Choquet integral over non-
positive integrands and the third equality holds by Lemma 2 and the nonnegativity of
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[~2'~?/(1 - p)]. The remainder of this case is proven by following the remainder of the

preceding paragraph verbatim (the only difference is that w has been defined differently
here). O

Lemma 11: Suppose that P is the probability measure corresponding to the prob-
ability vector p, and that o > 0. Then, for any u € ®3,

if u is weakly increasing, / u,P*(ds) = Y u,p% and / u,P*'(ds) = 3 u,p7;
3 4

if u is weakly decreasing, / u, P*(ds) = Zu, p; and / u,P*'(ds) = ;"s Ps
Proof: Suppose u is weakly increasing. Then by the definition of the Choquet
integral,
Ju.Pe(as)
L Pl 2 hay

fo Pl oDy + T [ otz phy+ [ PG 2 sy
= | P2 i+ T [ P((ss L #5Ddy+ [ Py
=y (EP.)“ + D (u, - u-1)(Q_p)* +0

a>] Yle~=1
>1 2

= Z‘ua(Zps) - ua (X m)°

28 >1 i>s

= ups(pas)™+ X w(Xp)*— Y w(Xop)®

a<#S s a<H#S >
= ups(pes)® + 3 4 [T p)* - (X p)?

s<HS 28 >s
var
PIX -
)

and by the definition of the conjugate (P=)/,

[ usPoy(ds)
+00
= /0 1= P*({i|w < y})dy
= [P Prilu<aDd+ X [T 1- PG < oy

8>] Va1

+ 1-P({i|w < y})dy
ugsg

w

(8.4
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= / 1-P°(¢)dy+z/° 1-P*({1,2,...,5s — 1})dy

8>] YUe—1

+[  1-P*{1,2,...,#5))dy

ugs
= u; + zll'u., - u,_l][l - (EP;')"] +0
= uy+ Zus[l - (Zp‘l a] - zlua-l[l - (ZP:)"']
i<s > i<s
= Zuau - (p)] - 2wl = ()
= ups(l— (2 P+ X w[(Xp)e — ()]
<#S <#S i<s <o
= Z U, “a

A symmetric argument holds when u is weakly decreasing. O

Lemma 12: Suppose that the columns of P are identical, and let

B =L RIH)

f k* <1, (V5) limyeo(b"0), = (1 — k*)~* < +00,
and if k* >1, (Vs) limy_o(b"0), = +00.
Proof: Define b: R, — Ry by b(j) = (1 + k*j/?)*. This paragraph shows that
(Vn > 1)(Vs) (5"0), = ™(0) by induction on n > 1. At n = 1, we have (Vs) (bo), = b(0)
since both equal 1. Then, at any n > 2,
(Vs)  (b"0),
= A+BTE 0 R Y
(1+(8 Zb"-‘ (O)R,*52,1,) /°)
(1+ (b"“(O))”"(ﬁZ R2P5,1.) eY
= @)y
= b("(0))
= (0),

I
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where the first five equalities follow from the definition of b, the inductive hypothesis,
algebra, the definition of k*, and the definition of b.
Since (Vn) b*(0) = (1 + k*b™1(0)}/#)? by the definition of b,
(Yn) B™(0)? =1+ k*b™2(0)V/7.

Hence (b"(0)!/7),, obeys a linear difference equation.
If k* <1, Luenberger (1979, Theorem 1, p. 157) shows that lim,_,. b"(0)/7 = z*,
where z* € R, is the unique solution to 2* = 1 + k*2z*. Hence z* = (1 — k*)~! and

lim,, .o, *(0) = (1—k*)~*. Therefore, by the proof’s first paragraph, (Vs) lim,_(b"0), =

(1-%).

On the other hand, if k* > 1, the difference equation shows that lim,_,, b"(0)/? =
+00, and hence, that lim, . 5*(0) = +oco0. Therefore, by the proof’s first paragraph,
(Vs) lim,_,o0(b"0), = +00. O

Lemma 13: Suppose that the columns of P are stochastically ordered. Define b,
as b witha > 0 explicit rather than implicit. Suppose o' > a. Then (Vn) b0 < b.0
when p € (0,1), and (VYn) b0 > b.o when p € (1, +00).

Proof: Suppose p € (0,1). We prove by induction on n > 1 that (1) (Vo) b0 <
b.o and (2) (Vn) b0 is weakly increasing. Both statements hold at n = 1 since 5,1,,0 =
5,1,0 =1. Then, at any n > 2,

(5%0),
= (1+(8 Z:(bz“o),+R‘-'f»;..)"")'
< (1+(8 Z(b';“o),+R‘-’ﬁ:‘,,.,)*")’
< (1+(8 2(6"“o),+Rl-ﬂp,.,.,)"ﬂ)’
= (bz0), |

by the definition of b, by inductive hypothesis (2) and the fact that R!~* is weakly
increasing, by inductive hypothesis (1), and by the definition of b,. Finally, at any n > 2,

(byo), = (1+ (8 ;:(bz"o),,,R‘-'ﬁﬁ. )i/eye

[Cd

.

Ve
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is weakly increasing by inductive hypothesis (2), the fact that R'~* is weakly increasing,
and the stochastic ordering of P.

When p € (1, +00), a similar inductive argument can be used to prove that (1)
(Vn) b0 > b.o and (2) (Vn) b0 is weakly decreasing. O

Proof 14 (for Theorem C*+): First we establish that

J* exists and is the unique admissible solution to Bellman’s equation, (2)
J* = lim,_,,, B"J~, and 3)
arg max{ U, (oc) | oc is feasible from v} (4)

D {oc|(30%) zo € K:(y) and ¢y = y — zo;

(Vt > 1) z; € K‘(R.’Bg_l) and ¢; = Rz, —27:}

(see Definition 9 and note that all limits are pointwise). We do this by applying OS
Theorems B and D: set 8, 6, €, (,, and v, there equal to 8, B, 1 — p, 0, and R, here, and
define N as follows in the theorem'’s two cases.

First consider a € (0,1]. Let z € (0,a) be such that (a/(a — 2))MI'*-/=p)= <
B~!. For notational ease, let w = o/ (@ — z). Define N by Nyu = fudP2. All the OS
assumptions are immediate except for N4 and N5 which follow from Lemma. 6 because P

is concave (Definition 1) by Lemma 3 (note N = M in OS), and N9 which follows from

sup lim (g7)*/*

t—o00

IA

SI:p tlilg],o(wt[1'(1‘(1-P)/3P)t18]z) 1/t

IA

3 t $1z\1/¢
sup lim (w*[k,m;]")

sup wm?
w[(wB)~/?)?
= ﬁ_l = 6-1 .

A

where the weak inequality bounding g! is derived in the following paragraph (1 is a
vector of ones and 1, is a unit vector with a 1 in the s-th position); (Vs) k, and

m, € (MI'U-P/zp), (wB)~Y*) exist to satisfy the first strict inequality because of
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Lemma 8 and because A\(I"*~?/?P) < (wB)~Y/* is equivalent to the assumption (a/(a —
2))NI'*-P/2P)z < B-1. the second strict inequality holds because (Vs) m, < (wg)~V/>,
and the last equality holds because § was set equal to 3.

As promised, the above bound on g¢ holds because

g

t
= N(I%)
=1

= [ /1 HR""P::.,wso P3_,(dser) -+ P(dsy)

z

IA
g

[ ¢ z/z z
/ T [/ w [/ H(R:: °)V=P, 8t-1 (dSt):l P,_, (dst—l)} - Y= P, »(ds1)

= w wt-l / / / H R(l—p)/z P,,_,(ds¢)P,,_(dse—1) -+ Py( dsl)]
[ / / f 1'[ Ru-p)/z P,,_,(ds;)P,,_,(dss_,) - - p(au,‘l)]z

'[Z Z 2 H R(:—p)/zpulaz-xpee-xlu-z *+ Payfo)”

S=1 a2 ¢=1
t[:l.'( Iw(l-p)/z P)tla]z .

IA

The first equality is the definition of g! (see OS Assumption N8), and the second follows
from the definitions of N, 4, and €. The first inequality is derived in the following
paragraph, and the second inequality holds because w > 1 and z < 1. The algebra
behind the last equality is similar to that of (5) below.

As promised, the first weak inequality above holds because

/udP"‘

L TP(s v 2 yDIray

b+ [ VIPslu 2 y DIy

< 1/z 1/z]a
< b+ L [/u dP/y dy

b+ /:Q [6¥/%/y*/=)dy

IA

(L3

-
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= b+b [ " yategy

b
b+ 572 [—b"/2 /(1 — a/2)]
e/ (e~ 2)}b

= w [/ul/‘dp]z ,

where b = (fu!/2dP)= is employed for notational ease. The second inequality follows

from the observation that y"/*P({s|u, > y}) < Jisluzy) ¥/*dP < [u/*dP (a version

of the Chebyshev inequality). The integral is evaluated in the fourth equality using the
assumption z < q.

Second consider a € [1, +00). Define N by Nyu = fudP¥. All the OS assump-
tions are immediate except for N4 which follows from Lemma 7 because P2 is convex by
Lemma 3; N5 which follows from Lemma 6 because (P7) is concave by Lemmas 3 and 4;
and N9 which follows from

sup lim (;)"/*
. t 1/ Pl-p D\t 1/t
sup Jim (o'2/(I**PY'a,)

sup lim (a‘k,m;)"/*

IA A

I

sup am,
8

< ph=067,
where the weak inequality bounding g}, is derived below; (Vs) k, and
m, € (A(rl—pp), (aﬂ)-l)

exist to satisfy the first strict inequality because of Lemma 8 and the assumption aA(I"'*P) <
B~1; the second strict inequality holds because (Vs) m, < (2B)!; and the last equality
holds because § was set equal to .

As promised, the above bound on g} holds because

g (5)
.
= Nf(Hl*rfq)
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= ///H Rl-pp::il(dst) P! (dsy_y) -+ P*'(dsy)

< afafafl] ﬁ Ri7?P,_,(ds)Po_a(dser) - Puldsy)
= ot Z E z: H Raq Pstjoe—1Poe1lae—3 ** *Psyjo

St—1 & q=1

= atz...zz

8 St—1 ot

St—=1

1-
paz loe—1 ag-lpat-llac-z R pﬂlo

& T s ST P R Pt B P
&5 WPy Rl

- a*(:'(_r'l-ﬂp)*),

= /(" P)t1,

The first equality is the definition of g; (see OS assumption N8), and the second follows
from the definitions of N, «, and e. The weak inequality follows from a € [1,+00)
because (VA C 5) P*/(4) = 1— P*(~ A) = 1 - (1 — P(A))® < aP(A) (the first equality
is the definition of the conjugate capacity and the inequality holds for any number such
as P(A) € [0,1] because a € [1, +00)). The remainder is algebra.

We now derive the theorem’s conclusions. By 3),

theorem’s definition of j*,

J~ =0, Lemma 10, and the

J: () ©)
(Jim B"J-1,(s)

(Jim B"0],(y)

[Jim 50uy'*/(1 - p)

sy ?/(1—p).

Since the utility function U is finite-valued by OS Theorem D, J* is finite-valued, and
thus, the above equality implies that j* is finite. Finally,

K@)

= a.rgmax{ (y—z)'*/(1-p) +ﬁ/ oy (Roy Z) Py (dsy) I z € [0, 3/]}

(L]

ILd

\.



= {[((65");? - 1)/(b5*)¥/*]y }

= {[(G)Y? - 1)/ ey}
by the definition of K*, by (6) and Lemma 10, and by the fact that (b3*)s = 7 (this holds
because (b5%)sy~*/(1 = p) = (BJ*)(y) = J;(y) = 334"~*/(1 — p) by (6) and Lemma 10,
(2), and (6) again). The converse of (4) holds because 8 > 0 and P > o. This and (4)
itself imply that K* characterizes optimality. O

Proof 15 (for Theorem B+): First we establish that

J* exists and is the unique admissible solution to Bellman’s equation, (7
J* = lim, o, B*Jt, (8)

J* = lim, o, B*J~, and 9

arg max{ U, (oc) | oc is feasible from y } (10)

D {oc|(Foz) 20 € K}(y) and cg = y — 2o
(V¢ > 1) z; € K*(Rz;,) and ¢; = Rzy_y — 1, }

(see Definition 9 and note that all limits are pointwise). We do this by applying OS
Theorems B and D: set 5, 4, €, ¢,, and v, there equal to 8, 8,1 —p, 0, and R, here, and
define NV as follows in the theorem’s two cases.

First consider o € (0,1]. Define N by N,u = fudP® All the OS assumptions
are immediate except for N4 and N5 which follow from Lemma 6 because P? is concave

(Definition 1) by Lemma 3 (note N = M in OS), and N9 which follows from
sup lim (g;)"/*
= sup Jim (2/ (=P Pty )t
< sup fim (kymt)
= SI:p m,
< Bl=461,

where the ﬁi’st equality is derived below (1 is a vector of ones and 1, is a unit vector with
2 1in the s-th position); (Vs) k, and m, € (M(I'**P"), ') exist to satisfy the first



24

strict inequality because of Lemma 8 and the assumption A(I''~?P%) < B-1; the second

strict inequality holds because (Vs) m, < 8-!; and the last equality holds because § was

set equal to 5. As promised, the above equality for g: holds because

T

gt

N:(fllv:',)

o / _/ ﬁl R,7PPy_ (ds) P2, (dse1)--- P(dsy)
[

- [ [ R P (s Rz Py (dses) -~ Ao Po(dsy)
o [ C R R PS (dseoy) - REPPR(dsy)
a

St=-1" N2

oo [@'TP%),, Rl P2 (dsy.) - REPPo(dsy)

St—-1"" 8t-2

-+ 2 (@' I'PP%),_ R 5 -« BT PR (dsy)

—1Pa1foe-3
81

@'Yy, - RITPPR(dsy)

@'(r'-*pP%Y,
(- P%h,.

The first equality is the definition of g (see OS assumption N8), the second follows from
the definitions of N, +, and ¢, and the third follows from Lemma 2. Since R!-? weakly
increases in s;, Lemma 11 derives the sum over 8; and stochastic ordering implies that it

weakly increases with s;_;. This sum is written more easily as (1'T'~?P%),,_,. Since both

(1’1"1"P°),,_, and R;* weakly increase in 8;_;, Lemma 11 derives the sum over 841

and stochastic ordering implies that it weakly increases with s;_;. This sum is written

more easily as (1'(I''~*P%)?), .. Repeat this process to sum over 8;_, 843, .. -, 81-
Second consider & € (1, +00). Define N by N,u = J udP{’. All the OS assump-
tions are immediate except for N4 which follows from Lemma 7 because Pg is convex by

Lemma 3; N5 which follows from Lemma 6 because P¢’ is concave by Lemmas 3 and 4;

.o

(.

la
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and N9 which follows from

: t\1/¢
sup lim (g;)
= sup tl-iglo(ll(-r 1P c!)t'-'--s)llt
3
: t\1/t
< sup lim (k,m,)
= B8upm,
8

< ﬂ_l = 6-1a

where the first equality is derived below; (Vs) k, and m, € (I\(Pl“"f’a),ﬂ‘l) exist to
satisfy the first strict inequality because of Lemma 8 and the assumption )«(I"l"'f-"a) <
B~ the second strict inequality holds by (Vs) m, < B~!; and the last equality holds

because § was set equal to 8. As promised, the above equation for g¢ holds because

t

9,

N:(fll ”)

t
/ / 1 Ri#P2! (ds)) P2, (dss—y) - - - P!(dsy)
=1

- [ [ RioPat (ds RiA P (dsyoy) - R P (dsy)

8t=1" -2

8t—~1" 8t-2

[ S R0y RAPS (dsra) - R P (dsy)
13

.- /(llpl_ppu),‘_lRl—P pe! (dst_l) s R:;PP:’((L?})

St—1" 82=3
2 ('TPP%), RiPp . ... RA-PPS(dg)
-}

.. (ll(rl—ppa)2)“-2 v R:;’P,“'(dsl)

@' (r—rp%y,
(M- py,.

The first equality is the definition of g¢ (OS assumption N8), the second follows from
the definitions of N » 7, and g, and the third follows from Lemma 2. Since R;* weakly

increases in s;, Lemma 11 derives the sum over s and stochastic ordering implies that
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it weakly increases with s;_;. This sum is written more easily as (1’P"’f’°),,_,. Since
both (1’1"1"’13’“),,,_l and R!™% weakly increase in s;_;, Lemma 11 derives the sum over
s¢-1 and stochastic ordering implies that it increases with s,_5. This sum is written more
conveniently as (1 (I‘l""f’a)z),,_,. Repeat this process to sum over s;_3, 543, ..., ;.
Before deriving the theorem’s conclusions, we show by induction on n > 0, that,

if j is weakly increasing, then (Vn) b™j is weakly increasing and
(Yn) b"j=0"5. (11)
Both statements hold at n = 0 (b° and b° denote the identity map). Next consider any
n 2 1. Note that
(0" )es R?
is weakly increasing in s, because (b"~'j),, weakly increases in s, by the inductive

hypothesis and because Rl“’ also weakly increases in sy. So, the definition of b, Lemma

11 and the weak increase of (b"~15),, R ::P, the inductive hypothesis, and the definition

of b imply
"5,
1/p\?

= (1+(pfo a2, Bis7P2s) )

= QB e R

= (1+(ﬁz(b""a>.+R‘-'ﬁ:+.,)‘/")P

= (E"j)a .
Furthermore, the weak increase of (b"‘lg)q_Rl"" in s and stochastic ordering together
imply that (b"7), is weakly increasing in s.

We will first prove the equality concerning J* and then go through the remaining

conclusions in the order in which they are stated. By (9), /- =0, Lemma 10, (11), and
the theorem’s definition of j*,

Ji(v) (12)

, @

"

Al
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= [lim B"J"],(y)

= [lim B"0],(y)

= [lim bol,y'~*/(1 - p)
= [lim 8"0),y'~*/(1 - p)

n—oo

= 5yr/(-p).

Since the utility function is finite-valued by OS Theorem D, J* is finite-valued, and thus,

the above equality also justifies the definition of J* € RS as a vector of nonnegative real

numbers.

Before demonstrating the well-definition of 7%, we establish in this paragraph that
o o O
3 B2 (I P P)), < +00. (13)
q=0

In the case a € (0,1],

o0

3> B (PP,
g=0
= ('Y pUIr'—rP%o),
=0
< 400,

where the inequality follows from the assumption M(I''~?P%) < B-! and Luenberger
(1979, p. 198). In the case o € (1, +00),

(o]
2B P%e),
=0
x ~ o
< 2 BRI P%),
=0
2 2
= (') BUI'*~*P%)),
=0
< <400,
where the first inequality follows from the statement (b) proven in the remainder of this

paragrapli,.and the second inequality follows from the assumption A(I''~?P%) < g-1
and Luenberger (1979, p. 198). The remainder of this paragraph proves by induction on



28

g 2 0 that (a) the row vector 1'(I""~?P)? is weakly increasing and (b) 2/(I''"?P%) <
1/(I''-*P%)4. Both are obviously true at g = 0 (where A® = I for any matrix A). Now

consider any g > 1. Note that the row vector
[2'(r'=?P%)1-1'~#] is weakly increasing (14)

since /(I P%)4-1 is a weakly increasing row vector by the inductive hypothesis (a),

and since I''~* is a weakly increasing diagonal matrix. Statement (a) follows from

1/(r-*p%)e
= ['(I'PP%)irt-n P,

(14), and stochastic ordering. Statement (b) follows from

/(-7 p°)e
= /(e p)irie)p°
< [(r-ep®ye-iri-e) p©
< R(IrP)iri- Pt
/(=P

Here, the first inequality holds by (14) and the fact that each column of P* is stochas-
tically lower than the corresponding column of P because « € [1, +00); and the second
inequality holds by inductive hypothesis (b).

(13) implies that $°32,(8I*~*P*)¢ is finite. Consequently, Luenberger (1979, first
paragraph of lemma’s proof) establishes that

00

2 (Br'=*P°) = I - pr'—sP°|. (15)

These two observations justify the definition of j+ as 1'[T — Br—*P%-1 ¢ gS.
~ Before establishing that j* = lim, b"j*, note that
Gy | (16)
= U(y,Ry,R%,...)

{4

)



29

t-1

= /=48 [(Ra) /0= p)+ B [(] RV /1 - p

t—o0

+8 (}j, Rogd)' /(1= p) P2, (ds)PS_, (dssv) -+ P(dsy)

lim y'~#/(1 - p) -

{1+6f(1+--8/ (1+8 [ Pz (ds) B P (o) ) Bip2(dsy)}
fim y'~#/(1 - p) -

{146 [ (148 [ 1+ pa'ri=oB%.,) Bt P2 (dsi) ) Bi (s}
= lim y'=*/(1-p).

{148 (4 pariops, 1 -y, ) R Pe(dsy))

lim y'=°/(1 - p) -

{1+ BG'T'P%), + - + B2/ (IP P, + BH(/(I2 P, }

V(L= P Y BB,

= y'*/(1- P)Z:EI = Br'*P%),

Y/ -p).

I

Il

The first three equalities hold by the definition of J*, the definition of U, and Lemma 2.
Since R,~* weakly increases in s;, Lemma 11 derives the fourth equality and stochastic
ordering implies that (1'I"~?P®), . weakly increases in s,_,. Since both R and
(@'Ir'-*p°%,,, weakly increase in s,_,, Lemma 11 derives the fifth equality and stochastic
ordering implies that both (1’ (r=,P%)?),, , and (1'T-*P%),,_, are weakly increasing in
8t-2. The sixth equality, and the fact that every term of the form (2'(I'*-7P%)9), weakly
increases in s, are obtained by repeating this process at t — 2, — 3,...,1. The final two
equalities hold by (15) and the theorem’s definition of j*. The final three equalities and
the monotonicity in s derived two sentences ago demonstrate that j* is weakly increasing.

By (12), by (8), by (16) and Lemma 10, and by (11),

Ly ?/(1-p)
= Jy(
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= [lim B"J*],()

= [lim b"5*y**/(1 - p)

= [lim 8"5*).y'*/(1 - p).
Hence j* = lim,_,, b"5+.

J* is weakly increasing because j* = lim,_q, b"0 by definition and lim,_.., 5"0
is weakly increasing by the sentence containing (11). j* satisfies 0 < J* < 3t by the
admissibility of J* derived in (7), by J= = 0, by (12), and by (16). j* satisfies

j* = bj* 17)
because 53~/(1 - p) = J3(y) = (BJ*),(3) = (b5 )ot™*/(1 = p) = (B5*)s~*/(1 = p)
by (12), (7), Lemma 10 and (12), and (11).

On the other hand, suppose j' is weakly increasing and satisfies both o < j' < j+
and j' = bj'. Define J(y) = jiy"~#/(1 — p). The first supposition about §' implies J' is
admissible because of J~ = 0 and (16). The second implies (BJ")s(y) = (bF")sy*—*/(1 -
p) = (b5)sy'~*/(1 = p) = jiy*~*/(1 ~ p) = Ji(3) by Lemma 10 and (11). Thus J' is
an admissible solution to Bellman’s equation, and hence, J' = J* since J* is the only
admissible solution to Bellman’s equation by (7). Consequently, j' = j* by the definition
of J' and (12).

Finally,

K:(y)
= wgmax{ (4= 2/ )+ 8 [ 21, (R 2)P2(d0,) | 2 € [0,
= {(®3")¥ - )/(b5")¥7ly}
= ([ - 1)/G)"ely}

by the definition of K*, by Lemma 10 and (12), and by (17). The converse of (10) holds

because 8 > 0 and P >> o. This and (10) itself imply that K* characterizes optimality.
()

Proof 16 (for Theorem A*) : This paragraph establishes Theorem B*'s assump-
tions. If @ € (0,1], NI'—*P%) = Y., R7P93, < B!, where the equality holds by

A4
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Luenberger (1979, last sentence of p. 194) and the assumption that the columns of P
are identical, and the inequality is algebraically equivalent to the assumption k* < 1.
Ifoce(l,+0), \(I'*P%) =¥, . Ri;PPS, < B!, where the equality again holds by
Luenberger (1979, p. 194) and the inequality has been assumed directly.

When o € (0,1], ¥* < 1 is assumed. When o € [1,+00), the assumption
oy Ri7°92, < B! implies k* < 1 because Y. Ri;PB2 < T,, RITPP2 since p° is
stochastically lower than $* when o € [1,4+00). By Theorem B+’s definition of j* and
Lemma 12, (Vs) j; = (limy_e b"0), = (1 — k*)~*. Therefore Theorem B* allows us to
conclude that J3(y) = j33'~*/(1 - p) = (1 — k*)~y"~#/(1 — p) and that optimality is
characterized by K;(y) = { [((9)/% - 1)/(53)¥*ly} = {k*y}. O

Proof 17 (for Theorem C~) : OS Theorems A and E immediately imply that

J* exists and is the greatest admissible solution to Bellman’s equation, (18)
J* = limp_,o, B"J* , and (19)
arg max{ U,(oc) | oc is feasible from y } (20)
D {oc| (Foz) 70 € K;(y) and co = y — o;
(Vt > 1) 7, € K*(Rzy—1) and ¢; = Rz ) — 1 }

(see Definition 9 and note that all limits are pointwise).

Since bo > o, and since b is weakly incressing, it must be that (Vn > 1) b"o >
b". Thus (b"0)%,, is a weakly increasing sequence, and consequently, §* = lim,_, b"0
must exist in 8. Hence j* is well-defined.

In Definition 9, B is defined on the space of admissible value functions. In this
proof, extend the domain of B to include inadmissible value functions of the form J,(y) =
J3s¥**/(1 — p) for some j € RS (the well-definition of the extension follows from Lemma
10). Note that by Lemma 10 and the definition of 7,

[lim B0,(y) = [lim b"0l.y'~*/(1 - p) = jiy*~*/(1 - p). (21)

First, suppose that (3s) j; = +oo. This implies that (Vs) j¢ = +oo since P > o
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by assumption. Hence, by (19), by J* < 0, and by (21),

J5 ()

[Jim B"J*],(y)
[lim B"0],(y)
3y P/ (1 - p)

—00.

IA

Consequently, any feasible consumption process is optimal.

Second, suppose that j* € RS. By the definition of j*, the continuity of b, and
the definition of j* again,

bj* = b(lim %) = lim b(b"0) = j°. (22)

Also note that by (21) and Lemma 10, by (22), and by (21) again,

[B(lim B"0)],(y) (23)
= (b5*)sy' /(1 - p)
= Gy'™?/(1—p)
[lim B"0],(y).

Defne A: {J:Sx R, - R} = {J:SxR. - R_} by

(AD)s(w) =9**/(1~ )+ B [ Jo, (R, 9)PR(ds4),

and note that

Jim (A"0),(3)
lim (A(4™10)), (3)

=00

- Jim /(1= p) + B [(4710),,(Ryp) P2 (ds1)
Jim v*/(1 - p) + B [(A(A™20)),, (Royy) P2 (ds1)

Jim v"*/(1= p) + B [(Ruyz)*~*/(1 = p)

(™~
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+B [[(4%~20),(Ruy Ruyy) P (dso) P2(dsy)
= Jm v/~ )+ 8 [(Re) /(1= )+ B [(BuBt /(1= ) + -

n—0o0

n—1
8 f(A0)er_, (T Ruyt)PE_,(dsns) -+ P2 (dss) PE(ds1)
=1

= /(=) + B [(Bup)'*/(1 = )+ B [(ResReit) /(1= p) + -

n—00
n—1

8 JAUT Ruy)'™/0 = p) + 0} P2 (dsas) - P (dsp) PE(dsy)
=1

().

By (19), by J* < 0 and the monotonicity of B, by B(J) < A(J) for all J in the domain
of B, and by the preceding equation,

J‘
lim B"J+

n—oo

lim B™0

n—00

lim A™0

n=—00

Jt.

FAN |

IA

Thus J* < limp.e B*0 < J*. By applying B repeatedly to all three of these value
functions, and by encapsulating the two inequalities with equalities from (18) and (19),

we obtain

Jt

= lim B™J*
m—00

< lim B™(lim B"0)
M=—=+00 n—00

< lim B™J*
m—0o

= J*.

Thus J* = liMums0 B™(limy_,c B0). This, (23), and (21) imply

S ()
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= [lim B™(lim B"0)l,(y)
= [lim B"0].(y)
= 5y*/(1-p).
Finally, by the definition of K*, by the preceding equality and Lemma 10, and by
(22),
K;(y)
= agmax{ (y = 2)'*/(1-p)+ B [ I}, (Ru,2)P2(dss) |2 € 0.9}
= {l((65*);/? - 1)/(65°)/*ly }
= {UG)Y? - 1)/(3) "y}
The converse of (20) holds because 8 > 0 and P > o. This and (20) itself imply that K*

characterizes optimality. O

Proof 18 (for Theorem B~) : To apply Theorem C-, we only need that (Vn) b"0 =
b"0. We will use induction on 7 to show both this equality and the fact that (¥n) (b"0),

is weakly decreasing in s. Both hold at n = 1 because bo = bo = 1. Next consider any
n > 2. Note that ‘

(bn—l 0),_,_ Rl—p

is weakly decreasing in s, because (b" o), , is decreasing in s by the inductive hypoth-
esis and because R}:" is also decreasing in s, because p € (1,+0c0). Hence Lemma 11

and the inductive hypothesis imply
(b™0),

1/p\?
= (1+(8 [ 6o Ri7Pe(asy)) )
= (1+(8 Z(b“"O).+R“’ﬁ,+|.)"")”
= (1+(8 z(b““o),+R‘-Pz'>:+.,)‘/’)P
= " 0),.

Fhrthermore, the weak decrease of (b" o), + Rl“’ in s4 and the stochastic ordering of the
columns of P together imply that (b”0), is weakly decreasing in s. O

K,
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Proof 19 (for Theorem A~) : Suppose k* < 1. By Theorem B~’s definition of
J* and Lemma 12, (Vs) j¢ = (limp—qo b%0), = (1-k*)—* € ;. Therefore, Theorem
B~ implies that J}(y) = jiy*~*/(1-p) = (1 — k*)=Pyl=#/(1 - p) and that optimality is
characterized by K3 (y) = {[((72)/7 ~ 1)/(i2)¥"]y } = {k*y}.

On the other hand, suppose k* > 1. By Theorem B~’s definition of * and Lemma
12, (Vs) j; = (limp—oo b 0), = +00. Therefore, Theorem B~ implies that J!(y) = —oo

and any feasible process is optimal. O
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