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Abstract

A key feature of the rank dependent model for decision making
under risk is that the weighting of an outcome depends on its relative
rank. This theory received numerous axiomatizations, however, all
these sets of axioms need to make an explicit reference to the ranking
of the outcomes. This situation is unsatisfactory, as it seems to be
desirable to get the ranking property of this model as a consequence
of the model, rather than as an assumption. Yaari [9] offered a special
version of this model (called dual theory), where the utility function is
linear. This paper offers a set of axioms implying a generalization of
Yaari’s dual theory, without making any reference to the order of the
outcomes. The main axiom is called dual betweenness, which, unlike
the usual case, is made on random variables rather than distribution
functions.
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1 Introduction

The rank dependent model for decision making under risk established itself
during the past two decades as a major alternative to expected utility theory.
Similarly to the latter model, it assumes that outcomes are evaluated by the
utility level the decision maker receives from them. But whereas the tradi-
tional theory evaluates lotteries with respect to the expected value of these
utilities, the rank dependent model takes the expected value of these utilities
with respect to a transformation of the distribution function. Formally, we
assume the existence of a continuous, increasing, and onto transformation
function g : [0,1] — [0, 1] such that

V(F) = [ u(2)dg(F(=))

where F' is a cumulative distribution function.

A key feature of this theory is that the weighting of an outcome de-
pends on its relative rank. This theory received numerous axiomatizations
(see Weymark [8], Quiggin [3], Chew and Epstein [1], Segal [6], Quiggin and
Wakker [4], or Wakker [7]). However, all these sets of axioms need to make
an explicit reference to the ranking of the outcomes. This situation is un-
satisfactory, as it seems to be desirable to get the ranking property of this
model as a consequence of the model, rather than as an assumption.

Yaari [9] offered a special version of this model (called dual theory), where
the utility function u is linear. In [5] we offered, among other things, a set
of axioms that imply a very restrictive version of Yaari’s model, where the
transformation function g is quadratic. In this paper we offer a different set
of axioms, implying the general form of Yaari’s dual theory, without making
any reference to the order of the outcomes. We present our axioms in the
next section, and the main results in section 3. Our main axiom is called dual
betweenness, and assumes the following. For every two random variables X
and Y that are equally attractive there are X’ and Y” such that X and X’
have the same distribution, as do Y and Y’, and such that for all a € [0, 1],
X" ~ aX'"+ (1 — a)Y’. Together with continuity, this axiom implies an
“implicit dual theory” functional, where for each indifference curve of the
preferences > over random variables there is a dual theory functional with
this indifference curve. However, the probability transformation function g
changes from one indifference curve to another. Adding constant (absolute
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or relative) risk aversion to the above axioms implies Yaari’s [9] dual theory.
Section4 concludes the paper with a simple application of the implicit dual
theory functional to insurance.

2 Dual Betweenness

Let 2 = (S,%, P) be a probability measure space and let X be the set of
real bounded random variables on it.! For X € X, let Fix be the distribu-
tion function of X. Denote by JF the set of distribution functions obtained
from elements of X. With a slight abuse of notations, we denote by a the
constant random variable with the value a, and its distribution function
by é,. Two random variables X and Y are comonotonic if for s;,s, € S,
[X(s1) — X(s2)][Y (51) — Y (s2)] > 0.

On X we assume the existence of a complete and transitive preference
relation . We assume throughout the paper that if Fx = Fy, then X ~ Y.
Therefore, > induces a preference relation on ¥, which we also denote >.
Assume further that - is continuous (with respect to the weak topology), and
monotonic (with respect to first order stochastic dominance). It then follows
that every X € X has a unique certainty equivalent ¢(X) € R, satisfying
X ~ ¢(X) (recall that for every F' € JF there exists z such that F(z) = 1).
For F € J,let 2(F) = {X € X : Fx = F} be the set of random variables
with distribution function F. For X,Y € X, let [X,Y] = {aX + (1 — )Y :
a € [0,1]}. Also, for X € X, let I(X) = {Y : Y ~ X} be the indifference
curve of > through X and let E(X) be the expected value of X.

Many axiomatizations of models for decision making under risk make
assumptions about mixtures of distribution function. For example, the inde-
pendence axiom states that F' = G iff Va € [0,1) and VH, oF + (1 — a)H >
aG+(1—a)H.2 A weaker version of this axiom, called betweenness, assumes
that F = G iff Va € [0,1], F > aF + (1 — a)G = G.

Similar axioms can be made with respect to random variables. For ex-
ample, we can assume the following dual version of the independence ax-

1This does not imply that all random variables are uniformally bounded. In section 4
we explicitly use the fact that if X € X, then for every a, X +a € X.

2Note that for a distribution function F', oF is the function F multiplied by the number
. This function is not a distribution function (unless & = 1). For a random variable X,
aX is a random variable, which is obtained from X by multiplying its outcomes by a.



iom: X = Y iff Va € [0,1) and VZ, aX + (1 — @)Z = oY + (1 — a)Z.
Clearly this axiom implies expected value maximization (see below). Simi-
larly, the dual version of the betweenness axiom is: X > Y iff Va € [0,1],
X > aX +(1-a)Y =Y. This axiom too implies expected value maximiza-
tion. (To see why, let P(s;) = ---P(sp) = L. Then (1,51;...;%n,8n) ~
(T2,815+ -3 Tny Sn=13T1,82) ~ *++ ~ (Tp,81; %1, 825 ...} Tn-1,52). The sum of
these random variables, multiplied by 2, is their expected value. Hence,
(1,815} %TnySn) ~ L ;) The fact that the unrestricted version of the
dual independence axiom implies expected value maximization lead Yaari to
restrict it to comonotonic random variables [9, Axiom A5].3

As stated above, dual independence (or betweenness) without restrictions
is too strong, and in our view, comonotonicity assumes too much of the
desired properties of the rank dependent functional. The following axiom
seems to be a natural compromise between the two approaches.

Dual Betweenness X ~ Y implies the existence of X’ € X(Fx) and Y’ €
X(Fy) such that [ X', Y’] C I(X).

Alternatively, this axiom states that G ~ H implies the existence of X
and Y such that Fx = G and Fy = H, and Va € [0,1], Foxia-ay ~ G.
3 Representation Theorems

Theorem 1 If > satisfies dual betweenness, then for each certain outcome
a, there exists a probability transformation function g, such that X ~ a iff

/ zdga(Fx) = a (1)

In other words, each indifference curve of > coincides with an indifference
curve of a Yaari’s [9] dual theory preference relation. This functional was
suggested by Chew and Epstein [1] under the name “implicit rank-dependent

3Formally speaking, Yaari does not assume comonotonicity. His dual independence
axiom relates to mixtures of the inverses of the cumulative distribution functions. In
terms of random variables, this operation is equivalent to mixtures of comonotonic random
variables.



mean value.” Their axioms are restricted to comonotonic random variables.

Proof We restrict attention first to random variables of the form (z, s;;. . .;
Tn,Sn) such that P(s;) = --- = P(sy) = L. Denote this set X,. Let II
be the set of permutations on {1,...,n}. For X € X, and = € II, let
T(X) = (Tx(1)s 515+ - - ; Tu(n)» Sn)-

Fact 1
I.Vrelland X €X,,, Fx = F,,(X).
2. If for X,Y € X, Fx = Fy, then 3r € II such that Y = n(X).

Claim 1 VX,Y € X, such that X ~ Y there exists # € Il such that
[Y, =(X)] C I(Y).

Proof From Fact 1 it follows that there are # and 7 such that [#(Y), #(X)] C
I(Y). Define = = #~'7. n

Fact 2 [X,c¢(X)] C I(X).
Denote e = (1,...,1).

Claim 2 Let I be an indifference curve of =, and let L be a ray of the form
L={)&+ke: )20} forsomez € R* and k € R. Then IN L is either
empty, or L, or a singleton.

Proof Let X,Y € INL such that X # Y, and let a = ¢(X) = ¢(Y). By
Fact 2, [X,a] C I and [a,Y] C I. If X,Y,a are not on one ray (that is, if
a ¢ L), then for some a;,a; € [0,1], and for some 6 # 0, sy X + (1 — ey )a =
ozY + (1 — az)a + be. A violation of monotonicity, since vy X + (1 — a;)a ~
aY + (1 — ag)a ~ a.

Let W be a point on the ray through X and Y, so W is also on the ray
through X and a. By monotonicity, 36* such that W + §*e € I. The two
chords [X, a] and [W + 6*e, a] belong to the same indifference curve I. Since
W, X, and a are on the same ray, these observations violate monotonicity,
unless 6* =0 and W € I. [ ]



For X,Y € X, define
X, Y)={rell: [X,=n(Y)] C I(Y)}

and let N(X,Y) = #(®(X,Y)) be the size of the set #(X,Y). Note that if
X ~Y, then by dual betweenness ®(X,Y) # @. Also, (¥, X)={r"':7 €
®(X,Y)}, hence N(X,Y) = N(Y, X). By the continuity of >, we obtain:

Fact 3

1. ® is upper-hemi continvous. That is, if Xy — X and Vi, — Y, and if
Vk, € ®(Xi,Yi), then 7 € ®(X,Y).

2. N is upper-semi continuous.

Claim 3 Let I be an indifference set of = in X,,, and let X,Y € I. For
every open (relative to I) neighborhoods V(X) of X and V(Y) of Y, there
are X € V(X) and Y € V(Y) and open neighborhoods V(X) C V(X),
V(Y) C V(Y) such that ® is constant on V(X) x V(Y).

Proof By Fact 3, for each X,Y € I, there are neighborhoods V(X),V(Y) C
I such that (X", Y’) C ®(X,Y), for all X’ € V(X) and Y’ € V(Y). The
claim follows from the fact that ®(X,Y) is finite. [

Claim 4 Let V; and V, be open neighborhoods in I. If ® = II* C II con-
stantly on V; x V3, then there are hyperplanes Hy and H, in R™ such that
V; is the intersection of H; with an open set in R™, i = 1,2. Moreover, for
every « € II*, the convez hull of Vi U n(V2) is contained in H,.

Proof We prove that if X;, X, € W, then [X;, X;] C V4. Suppose not. Then
37 € Vi, W € [X1, Xa], and 6 # 0 such that Z = W + e (see Fig. 1). Choose
7 € II"and Y € V] := 7(V2). By definition, [X1,Y],[X,,Y],[Z,Y] C I.
Choose Y’ € [X,,Y|N VY, Y' # Y, and obtain that [X;,Y’] C I. Define
W' = [W,Y] N [X;1,Y"], and let § # O such that 2’ = W’ 4 §'e € [Z,Y].
Since W', Z' € I, we obtain a violation of monotonicity, hence [X;, X;] C V.
Since V; is convex, it follows once more by monotonicity that it is contained
in a hyperplane. By monotonicity and continuity it follows that V; is not
contained in any lower dimensional plane. Therefore, V; is the intersection



Figure 1: Proof of Claim 4

of a hyperplane with an open set in R™ By construction it follows that
7(V2) C Hy. The proof for V; is similar. O

Summarizing, let I be an indifference set of >. For every X,Y € I and
for every open (relative to I) neighborhoods V; of X and V4 of Y, there are
nonempty open (relative to I) sets V! C Vi, 1 = 1,2, a hyperplane H, and a
permutation 7, such that the convex hull of V] U 7(V]) is the intersection of
H with an open set in R™.

For any permutation 7 € II, let R} = {z € R* : z,(q) < -+ < Bl F

Claim 5 Let H be a hyperplane in R™ that does not contain the main diag-
onal D = {ke : k € R"}, and let V and V' be open neighborhoods in H such
that V C Int(R?) and V' C Int(R?%) for some w # n'. Then there are X € V
and X' € V' such that every Y = (y1,...,yn) € [X, X'] has at most one pair
of equal co-ordinates.

Proof Let X and X’ be as in the statement of claim, and assume that for
some Y € [X,X'], y; = y; and yx = y¢ (j may equal k, but then i # £).
The linear subspace J = {Z € R": z; = z; and 2z, = z} is of dimension
n — 2, and it contains the main diagonal D. Since H does not contain D, the
intersection of J and H is of dimension n — 3. Therefore there are V; C V
and V{ C V' such that for every X; € Vi and X] € V/, for all Y € [X;, X!],
if y; = y; then yi # y¢, and vice versa.
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The claim now follows by repeating the argument a finite number of
times. |

Claim 6 For every = € II and for every indifference set I, INR? is contained
in a hyperplane.

Proof Let I be an indifference set, and let V' C R? be an open neighborhood
in I that is contained in a hyperplane H. Let X € I NR?, and suppose that
X ¢ H. By the above discussion, there is a neighborhood V'’ C I NR” close
to X that is contained in a hyperplane H' # H, and there is a permutation
7’ such that #/(V’) C H (see Fig. 2). We show next that ='(V) C H.

VI

cmmmecccccce e ———————ebn

checcrcnccrecncncnccncncaa
RS
~

/< ) L om@ i 2 < >/H
() B B v
:'w § ; R:ﬂr é /"' R:

Figure 2: Proof of Claim 6

As was argued above, the convex hull of VU #’(V’) is contained in HN I,
and its dimension is n — 1. Denote this set C. By monotonicity, D ¢ H.



Therefore, by Claim 5, we can assume, without loss of generality, that =’ =
T * * * M1, Such that

1. For every k, 7 permutates only two numbers; and

2. Forevery X; € V and X € n'(V’), the chord [ X1, X]] goes sequentially
through the sections R?, R? .,R? R? = RZ%,.

mrr° Tm—=1"""MIT) " Ty M T

We now show by induction that 7y --- 71 (V) C H. We prove the case of
k = 1, the other steps are similarly proved. Let H = {Y :a-Y = ¢}. Then
(V) C m(H) = {Y : m(a)-Y = ¢}. Denote a’ = m1(a) and assume, for
simplicity, that m1(1) = 2 and m,(2) = 1. Then a} = a, @} = a, and a; = a!
fori=3,...,n. Pick Z € CNR} close to the common boundary of R" and
R7 » such that m(Z) + ée € C for some § € R. Since m1(Z) € I, it follows
by monotonicity that § = 0. Hence m(Z) € H, and it follows that a; = a,.
Therefore, 7,(V) C H, and, by induction, ='(V) C H.

Since 7/(V') and #'(V’) are both in H, V and V' are contained in the
same hyperplane. Since V C H, so is V’. A contradiction, hence X € H. W

It now follows that for all 7, I N R? is the intersection of a hyperplane
H = {X:a-X = c} with R}. By monotonicity, a € R?,. Let 7 be
the identity permutation, then on R?, there is a strictly increasing function
g7 : [0,1] — [0,1] such that I = {X : [zdg}(Fx) = u?} for some u}. The
function g} must satisfy ¢7(0) = 0, and

i) _ L=
D

n
gz(n

;}=1 aj
and is chosen to be linear on [%, 1%], 7 =0,...,n—1. From the fact that for

every X and w, m(X) ~ X it follows that X € I N X, iff  zdg}(Fx) = u}.
For each n there exists such a function g7, and for every j, n, and &,

kn l — n(]_)
o () =4

For every = € [0,1] there is a sequence j,, /2™ T z. Define
g m [ Jm
g1(z) = lim g; (2—m)
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Since each X can be approached by a sequence X,, where for every n, X, €
X, the theorem follows by the continuity of >. |

Theorem 2 If > satisfies dual betweenness and either constant absolute risk
aversion or constant relative risk aversion, then > can be represented by a
Yaari’s [9] dual theory functional [ zdg(Fx).

Proof Since absolute risk aversion relates any two indifference sets, it follows
that all gy are the same. For the case of relative risk aversion, we observe
that any two indifference sets that are better than 0 can be compared by
this condition, as can any two indifference sets that are worse than zero.
The argument follows by continuity at the common limit of these two sets,
namely the indifference curve through zero. [ |

4 Insurance

In this section we present a simple application of the functional form of
eq. (1). It is based on the assumption that the domain of preferences is
unbounded. In that case, since indifference curves do not intersect, higher
indifference curves should have a smaller set of subgradients at their inter-
section with the certainty line.

Theorem 3 Under the assumptions of Theorem 1,

1. If a > &/, then for every p, g.(p) 2 9a:(p)-
2. VX, p(X,a) := E(X + &) — ¢(X + a) is a non-decreasing function of

«.

Proof 1. Let a > @/, and suppose that for some p € (0,1), g.(p) < ga'(p).
Consider the set of lotteries {(z1,1 — p;z2,p) : 22 < 21} C I(a). For such
lotteries,

2294(p) + 1[l — ga(p)] = @
Similarly, for lotteries in {(z1,1 — p; z2,p) : z2 < 1} C I(d'),
z20a(p) + 21[1 — gu(p)] = o'

9



If the pair (z;, z;) solves these two equations, then

a —a

N ga(p) _ga’(p) >0

ry — 22

Hence, the certainty equivalent of (z1, (1 — p); z2,p) is both a and a’, a con-
tradiction.

2. Let a(a) = ¢(X + a). By eq. (1),

p(X,a) = / zdFy o — / 2d9a(a)(FX+a) =
[(@+e)dFx - [(z + a)dgaa)(Fx) =
/ zdFy — / zdga(o)(Fx)
For o > o we obtain
p(X,a) — p(X,d') = /xdga(a:)(Fx) - /$dya(a)(Fx) 20

where the last inequality follows from the first part of the theorem and from
Yaari [9]. [ |

The maximal insurance premium a decision maker is willing to pay to
entirely avoid the risk X is the difference between the expected value of X
and his certainty equivalent of X, which we denoted p(X,0). The second part
of Theorem 3 implies that as income goes up, decision makers are willing to
pay higher premium for full insurance (of a given risk X).
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