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Regression Models With a Lagged Dependent Variable

R. A. L. Carter and Aman Ullah
University of Western Ontario

1. Introduction

Economists often produce models which are stated as regression
equations with the lagged value of the dependent variable on the right side.
The coefficients of such models are estimated by either ordinary least squares
(0LS), on the assumption that the disturbances are serially independent, or
instrumental variables (IV) if it is felt that the disturbances are auto-
correlated. This paper presents exact small sample properties of these two
estimators in the case that the disturbances follow a specific, easily justi-
fied, autoregressive scheme.

To obtain the exact moments of the OLS estimator we require the

.moments of the noncentral chi-square distribution and its partial derivatives

with respect to its qgncentfﬁ}iEY“pgzémetar. These have been given in
Appendix B. The method is straightforward and can be useful in obtaining
moments in a wide class of situations. The exact and approximate distribution
of the IV estimator have been analysed by using the results of Fieller (1932)
ggQ‘Cartgr (1976).

The main results of the paper can be summarized as follows. First,
the relative bias of the OLS estimator, for a given sample size, lies between
-1 and 0. Also, the absolute value of the relative bias is a decreasing

function of one of the parameters of the distribution and the mean squared

error is a monotonically decreasing function of the same parameter. Further,



the OLS estimator converges to the true value of the parameter if the
noncentrality parameter of the distribution increases indefinitely. With regard
to the IV estimator we note that its exact moments, to any order, do not
exist. An approximation to the exact distribution has been obtained which
is centered on the true parameter.

Thus in section 2 we present the model and its assumptions. Then in
section 3 we analyse the exact and approximate moments of the OLS estimator.

Finally, in section &4 we analyse the exact distribution of the IV estimator.

2. The Model

We begin with the assumption that the values of y, are independent

drawings from normal populations with constant variances but varying means. -
' 2
(2.]) yt ~ N(p,t,O' ) fO]‘.' t= 1’000’T

Next, we assume that “t is determined by a linear function analogous to a regres-

sion equation
4
(2.2) I-bt =Y e + XtB

where Xé is a non-random 1xK vector, B is a Kxl vector of unknowm coéfficients, Y
is an unknown scalar coefficient, and My and Wy are unknown means of Ve and Vi1
To ensure that the process described by (2.2) is stable we assume

(2.3) ly| < 1.

Now y, can be written as

— '
(2.4) Y =k, N =vp, 4 +XB+ LR

Yo g + M) +XB+HT - ¥ N

YV, q* xés +E.,  t=2,...,T,

e !

L
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where Ct = nt -y nt-l and nt is an independent drawing from N(O,c )., Therefore,

(2.5) EE, = 0 and

(2.6)  var€) =E(M, -y NP7 = A +y)o

To see whether St is independent of Cs(s < t) consider

(2.7) E(St’gs) E(Tlt - Y nt-l) (ns =Y nS-l)

1]

2

{- vyo ifs=¢t -1

0 ifs<t-1
Therefore, St has first order autocorrelation only, Furthermore, the coefficient

of autocorrelation is

E€_€,__,) -
2.8)  rE, £, = —E5 - S
o T+y

We can also view Ct as the result of an autoregessive process
t

, 2 _ j
(2.9) e =M ¥ Mg = -¥8 g =Y M, 0 = -;i1Y Eog + Mo
The autoregressive process (2,9) may seem to be unduly arbitrary.,
However, it is solely the result of assumptions (2,1) and (2.2), and (2.2)
can be obtained in at least two appealing ways. First, consider a Koyck (1954)

type distributed lag model which has been specified in terms of by (instead

of in terms of the random yt)

' 2
(2,10) W, =0 +opz oz o)z + oeee

t t£-2
This model says that the mean response, My is a function of the present
value and all past values of an exogenous variable, z, s where Q& and ),

0 < A <1, are unknown coefficients. Then, applying the Koyck transformation

we have



(2.11) B = Ap g+ Loz ] [ (A-Noy
1
which is of the form (2.2) with y = ), xé = [1z.] and g = |(1-Na,
9

A second justification for (2,2) is an adaptive expectations type of

model,
(2.12) = *
. We =@+ QP
* * %
(2.13)  p . -p._;=8(p,_; P ) O0<é=s1l

which says that the mean response, by s depends on expectations about the future,
%
P> and that these expectations are adjusted by some fraction of the extent to

which past expectations were in error. By substitution and transformation, this

model can be reduced to

(2.14) Wy = (l-é)ut_l + I1 pt_l] o8

alé

which is of the form of (2.2) with y = (1-5), Xé = [1 pt_1] andp = |o 8| .
alﬁ

3. Least Squares Estimation

It is convenient, at this point, to rewrite equation (2.4) in matrix

notation

(3.1) y=vyy,,+tXp+¢

where y is an nxl vector of independent random variables Y ~ N(u.t 02), n=T-1,

y_1 is an nxl vector of independent random variables y N ,02), X is

£-1 " " -1
an nxK matrix with non-random rows Xé, and £ is an nxl vector of auto-

regressive disturbances, The OLS estimates of y and B are obtained by sol-

ving the equations

va

Vo



(3.2) eyly;+y Xb=yly

(3.3) cX'y_; +XX b =X’y
OLS will not be consistent in this application because

(3.4) FIE=-¥ Tlfl’ﬂ_l -y ”':1 e+ W

(where B_p» T and "-1 are nxl vectors of elements By 12 nt and nt-l) and we
- ’
cannot reasonably expect to have plim n 1"-1”-1 = 0, Nevertheless, we will
consider the OLS estimator of y, c, and present its exact moments,
Equation (3,3) can be solved for b which can then be substituted into

(3.2) to obtain:

7 /
y. My z . Mz y
(3.5) c = 1 =zl where z, = t
4 ’
YoMy, zyMz

3
and M=1 - X(X'X)-IX', an idempotent matrix of rank L = n - K,
At this point we simplify the model (3.1) by lettingl X = 0, Then,
(3.1) becomes
(3.6) y=yy_+te€
and the OLS estimator of y can then be written as

y, Y_l z Z_l

(3.7) c=

? 4
Ya¥a % .1%3

1
where z =37 and z_j =57 .1 and both vectors have T - 1 elements, Also,

I
using (2.1), we have

z, "~ N(ut/cr, 1) , t=1,...,T,
so that 2112-1 has a noncentral chi-squaredistribution with T - 1 degrees

of freedom and a nonccntrality parameter



p!ow
3.8 9=—L-l
20

which is of order T in magnitude.,

We can now write (3.7) as

T
Xz z .
t°t-1 T-1 z 2z Z, 7z
2 _ tot-~1 T°7-1

3.9) c = W -);(W )+W
where

T 5
(3.10) W=ZXz .

9 t-1

Then, taking expectations on both sides and using the results (C.10) and (Cc.12)

_ B
(for z, = }E and r=1) given in Appendix C we obtain
T-1 2z, .z z
(3.11) E c=5 ECEEL) 4 2L gLl
2 W o W
7
1k Eg Hobpog I
=7 [ 2 f127 2 (E,1 7 £,

where

(3.12) f‘5 v = %%——:—:—Sg— e'e 1Fl(n/2 + 8§, n/2 + v;0),

115‘1 ( . ) represents the confluent'hypergeometric function (see Appendix A)
andn =T - 1,
If we use (2.2) (with Xt' = 0) and the recurrence relations (A.3) and

(A.4) in Appendix A it can be verified that
2

1
(3.13)  E(c-y) =<§ ( £ ., -nf ),

. 2
For given n, we note that

ta. ]

(X O
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(3.14) lim E(c-y) = 0
g0

and

(3.15) lim E(c-y) = -y

60

Thus, we conclude that the relative bias of the OLS estimator lies between 0
and -1 for given n, i.e.,
(3.16) -1 < E(Eil) < 0.

Using the asymptotic expansion of the confluent hypergeometric functions

involved in (3.13), for given n and large3 8, we obtain

2

r 2- Ppo1 1 2

(.17 E(ey) = vz + BER - I T 01/6%)
48 207 ©

where 0(1/92) means terms of smaller order than 1/92.
We can conclude from (3.17) that the absolute value of the relative

bias, up to order 1/g, is a decreasing function of the noncentrality parameter 6.
Now, using the asymptotic expansion of the confluent hypergeometric

functions for large n and large4 8 we can write (3.13) as

8 0 2
(3.18) E(c-y) = - ;%5[1 - Sy 1 + o(l/n)

where o(1/n) rcoresents terms of smaller order than 1/n, It follows from (3.18)

that

. .9
(3,19) lim E(c-y) = - T:%E’ where q = lim o

n-xo n—<o
which is the well known asymptotic bias of the OLS estimator,

To obtain the second moment of ¢ we write the square of (3.,9) as



T-1 2
Sz.2 22
tt-1 z_ 2z T-1lz 2z
(3.20) c2 (2 > ) 4T g 1.2 ZoZm 1 r & ;-1 .
W W 2 w
Then
T-1

2 | é ztz.t'l) 2 Zqzr-l T-2 2n 1221 Zi-lzrlz
(3.21) Ec” =E > + EzT E(—§-) + 2EzT = E(—T—) + E(———T—) .
W

W 2 W

Now the first term on the right side of (3.21) is:

T-1 2
bN z, z 2 2 2
-1 T-1 z z T-2 2z 2z
(2 ) t-1 % -1%t+1
(3.22) E 5 =3 h( i_..) +23 E(_____i____g
- W 2 W 2 W
T-3 T-1-j =z, 2 .2 ,.2 .
+2 E( t7t-1 §+] t-ltl)

-2
+ 2 2 Zt-lth} £1.3

- B
where z, = -(-f— and (C.14), (C.18) and (C.20) have been used with r=2,

t
term on the right side of (3.2l) is, using (C.11),
2
2
(3.23) Ez ( R R Co SO S

and the third term is

2
AT-2 2z zZ z T-1
- - -1 - -
(3.24) ZEZI{§ E(_E_lEE_E_l) + E(JE_EJE_Z{} =.% [{ZT-lZT 5
W 2

W

T-1_ _ 2 1o 2
(5 2,2,) £y 4+ @DE 5+ { 2 G+ o)

The second

fo..

(L

-

Zy ~1}f13+zz'rzoz] .



=

using (C.14) and (C.15), Then (3.21) can be writtenas the sum of (3.22), (3.23) and

(3.24) which is 2 2 2
. b W v
2 _1.2 T-1,2 . T-1 2 1-1
(3.25) Ec” =7 Y (26 - 5 ) f2,4 + {n-1 + 5 G +vy > )}fo,Z
o g (o}
2 p.z 2
2t .
vy’ The g las s’ ey Shee -——% z”T 1}f13
0' g

Using the asymptotic expansion, for large @ given n, of the confluent
hypergeometric functions in (3.25) we obtain the mean squared error of ¢, to

order 12, as
e

2
(3.26) E(c - y) —2g~+ 3—— [n(n+s) + 6z
40°

2
T-l]

2
Since dEgg_ ) < 0 because of (2.3), E(c-y)2 is amonotonically decreasing function of 6.

Now holding n constant, using (3.17) and (3.26),

(3.27) lim Ec = vy
B

(3.28)  lim Ec> = y°

[
so that ¢ converges to y as § grows large, even though c is not consistent.
That is, as p.:lu_l - @ or 0'2 -0, c->vy,

The first two moments of c in the general case, when M # I, are given
in Appendix D. A conclusion of that Appendix is that (3.27) and (3.28) hold
so that, in general, ¢ » y as 6 »> =,

Our findings about the distribution of c¢ allow us to derive the

moments of b, Using (3.3) we have

(3.29) b = (x'x)'lx’y - c(X'X)'lx'y_lo
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Since (X’X) K= 0, (X'X) -lx'y_l is independent of both the numerator

and denominator of ¢ as given in (3.5). Therefore, ¢ and (X 'X)-lx' are
Y1

independent and
(3.30)  Bb = &%) X (u - Ec w_p).

Of course, b is biased because c is biased.

The sampling error of b is given by

(3.31) b -8 @%@y - Y1 -V FYW_,+E)

&€ - (¢ - VY.

. Now
1‘1"“Y2 —Y 0 . .ooT
: 2
, 2., Yl o) 2
(3.32) EEE’' = © ‘ . =0V,
] 9 o —'Y
: . 2
0 L] * 0 - 1
I AL

2
(3.33) Egy!; = 0 (J - ¥I)

0O 1 O0.. 0"

where J = " o 1, and
SRR
lo o o0.. 0]

: 4 ’ 2
(3.34) E Y_]_Y_l - |J'_1LL_1 + ol

Therefore, the mean squared error of b is given by

(3.35)  MSE(b) = E(b-8)(b-p) = 0/AVA' - GAUA’ E(c-y)

+u_plAl + o@D B

where A = (X ’X)-lx' and

(a
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U. 1 -ZY‘ 1. .

0 l ® 1

0. .. Ol -2y

When 8 » =, with n constant, ¢ - y and the distribution of b-g, in (3.31),

approach that of Af so that

(3.36) (b-B) » (X'X) “lyrg ~ N[O, cz(x’X)"lx'vx(x'x)'l].

That is, for large values of © b is approximately normal and unbiased.

4, Consistent Estimation of y

Liviatan (1963) has proposed two consistent estimators for models like
(2.4). The simplest of them uses a lagged exogenous variable,5 W, as an

instrument to produce the normal equations

133

»n

4.1) 9w’y_] +w'XB =w'y
(4.2) Y Xy_, + XX = X'y
from which

ToWMy _uw
(4'3) Y = W,My - u

-1 1
’ 2 , - 2 - P 2 - 2
where u ~ N(w/My, o0 w/Mw) = N(u, @), u, N(w M”’-l’c w/Mw) = N(u1, w') and
- RN 2 2 . . e .
E(u -~ u) (u1 -ul) =ocw/ MIJMw = pw where p is coefficient of correlation between
u and u. Under (2.1), this ratio has been shown (Carter (1976)) to have a
distribution of the type described by Fieller (1932) which has no moments of any
order. However, if _-w_ < 1/3 the distribution of ¥ can be approximated by
u
(Geary (1930), Fieller (1932)).
- = a 2
- (u- u]Y)
2
(

- [(ip-8,) + (@ 0 -0y

(4.4) £(y) 2

[ 2 a2 3 erL w y“z 2yp+ }
~ - 74
j2m[w (Q -2yp + 1)] 2 yo+1)
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We can use the results given by Merrill (1928) to approximate the mean

and variance of (4.4) as *

3 2 62 2 4 6
@n xied [ -0 52 (D) )]

1

and

-2
u . 4 6

(4.6) o2y = 2§ +<:“’—) (51 +3) +<:‘”—> (541 +15) +<§L) (591A+105)J
1 u] u.I u_l

- -2 2
(u-pup) w -2 -- =2
where A== — and 6§ =55 (W -2puy + u]). The shape
u -2puuy, +u uu,

1 1

of the distribution is given by the skewness coefficient
- 3 2 4
2 - 1
(4.7) /B = [ — ] [36 - L—‘”—] (12) - 540) +4[:‘—”] (-146h2+4soh+1917)]2
u u u
1 1 1
and the kurtosis coefficient
w 2 W 4 2
(4.8) By =3+3 [—_——] (20) +4) + [7 ] (- 140° + 404X + 42).
u u
1 1
The matrix form of (2.2) is

(4.9) =Y ug +XB
from which we find, using (4.3), that

(4.10) y = ML_ u

which is approximately equal to E(§) when the approximation (4.4) is justified; that

w 1 . - - 2 u .
is, Yy is nearly unbiased when — < 3- Further, since u, u;s and w are O(n), —is0(1)
u Y

-

[}

[{]
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2
w - ~
and = is O(n 1) so that the bias of y becomes even smaller as n grows. Also §
%
is O(n-]), so that the 0'2 (;) shrinks as n grows. These same effects could be
achieved for fixed, small, n if :(g_ - 0; which would also serve to make approximation
u
1
(4.4) better. To obtain this result it would be sufficient to have 0'2 - 0. This

is analogous to the result (3.27) and (3.28) on the OLS estimator. Furthermore,

W

as 7~ -+ 0 we see from (4.7) and (4.8) that the distribution of ; approaches
u

normality,

To analyze the moments of é we use (4.2) to obtain
@A) B= @WK -y P=Ay- YAy 5 A= @B X

Because AM=0, Ay__1 is independent of both the numerator and denominator of (4.3)

so it is, therefore, independent of y. Then in the special, case (4.4) we find
(412) BB EAp-EVAu, SAQW-Y k) =B

so that B is, approximately, unbiased.

The sampling error of B is

4.13) B -p=ale- (¥-y)y_,]

so that

(46.14)  MSE(B) £ o AVA’ + o AUA’ E(Y-Y) + (Ap_ b A" +c? @0 IEG - v

Ile

o® AVAY + [Ak_ uf AT+ 07 @D ] oP (@)

since § is approximately unbiased.
If _:w_ -0, :( ~ Y and the distribution of é- B approaches that of A¢ which is the
u, N
same as that of the OLS estimator b given in (3.36). We note that the conditions

) .l ,
for — = 0 are the same as the conditions for g - ® in the OLS case.
u
1
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5. Conclusion

The coefficients of a regression equation containing the lagged dependent
variables on the right side can be estimated by least squares or by instrumental

variables., This paper presents some exact properties of these estimators in the

case that the disturbance follows a certain autoregressive scheme,

The results in (3.27), and (3.28) indicate that the OLS estimator of
the coefficient of the lagged dependent variable possesses desirable properties
as 0, a noncentrality parameter of the distribution, grows large. Also the
OLS estimator of the coefficient of the exogenous variables. approaches normality
and unbiasedness as g grows. Equations (4.5) to (4.11) show that all the
IV coefficient estimators become normal and unbiased as one of the parameters,

-, of its distribution approaches zero. It is noteworthy that the conditions
u
1

w

under which — approach zero are the same as the conditions under which @ grows
u
1

large and that as this happens the two estimators of the coefficients of the

exogenous variables take on the same distribution.

N

(o

AR
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APPENDIX

A. Confluent Hypergeometric Functions

A confluent hypergeometric function is defined as

(A.1) ] I'(e) z C(a+n) .x_n

F. (a; ¢c; x) = T
171 I'(a) 2=0 F'(c+n) n!

and it is an "absolutely convergent'" series for all values of a, ¢ and x
excluding ¢ = 0, -1, -2,... [See Slater (1960, p. 2)].
Since 1F1 (a; c¢; x) is absolutely convergent we can differentiate the

right hand side of (A.1) term by term. Thus

s
ds[e
dx

-X

(A.2) ]F1(a; c; x)] =

sl(c-a+s) I(c)  -x
I'(c -a) I'(c+s)

= (-1) ]Fl(a; c+s;  X)

for s =1,2,3,... . [Cf. Slater (1960, p. 15)].

The following recurrence relations should be noted:
(A.3) c[1F1 (a; c¢; x) - ]F1 (a-1; ¢c; x)] =x 1F](a; c+l; x),
(A.b) (1+a-c¢c) 1F1(a; c; x) + (c=-1) ]F1 (a; c=1; x)
= a ]F](a+1; c; X),
(A.5) (1+a-c)(a-¢) |F,(a; cH; x) +2(1 +a - c)ec 1F (a3 ¢; x)

+ c(c=1) 1F] (as; c=1; x) = a(a+l) 1F1 (at2; c+l; %),
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(A.6) (1+a-c)ya-c)(a-c = 1)1F](a; c+2; x) +

+3(0 +a-c)(a=~-c)(c+ 1)1F (a; cHl; x) +

1
+3(0 +a-c¢)(c+ 1)c]F1 (a; ¢3 x) +

+ (c+1) c(c = 1) ]F1 (a; c-1; x)

a(a +1)(a + 2) 1F (a+3; c+2;5 x),

1

A.7) (l+a-c)(a-c)(a~c=-1)(a=c =2) 1F1 (a; c+3; x)

+4(1 +a-c)(a-c)(a~c = 1)(cH2) 1F] (a; c42; x)
+6(1 +a=c)(a=c)(c+ 2)(ct+) ]F] (a; c+l; x)

+ 4(1'+ a-c)(ec+ 2)(c + 1)ch1 (a; c¢; x)
+ (c+2)(c+1)c (c-1) 1F] (a; c=1; x)

=a(a+ 1)(a+ 2)(a + 3) ]F (a+4; c+3; x).

1

The relations (A.3) and (A.4) are given in Slater (1960), p. 19--equations
(2.2.4) and (2.2.3), respectively. The relations (A.5) - (A.7) can be verified
by substituting relevant confluent hypergeometric series and equating coefficients

of x*/n! on both sides of the respective relations.

B. Expectation of the Noncentral Chi-Square and its Partial Derivatives

Let ZiseeesZ be independent normal variates with

(B.1) Ez = Ei and Var z, = 1 i=1,...,n.

Then we know that the distribution of

n
(B.2) W= X 2z,
i=1 *

is a 'noncentral chi-square' with n degrees of freedom and the parameter of

9
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noncentrality as

oo
(B.3) p=4%.2 z;.
i=1

The density function of W is given by

© 1(n42m)-1 -5W
-6 g W= e

(B.4) f(W) = e S —~ T

meo M+ E(mHMp (n+2m) /2]

sy 0= VW< o

Therefore, if n/2 > r
o]

(8.5) EW =[ W' £ aw

-r I - -
-y r.i;}_(/fl/T;le o [F, (/2= x5 0/2; p)

for r=1,2,...,[see Ullah (1974, p. 147)]. Then the partial derivatives of EW

in (B.5) with respect to Ei can be written as6

(B.6) —?—Ew-r=2-rr§. £ 4
oz 1T

i

where

_Im/2+6) -g : ,
(Bv7) f63\) r(n/2+v) e ]F-I (n/2+63 n/2 +\)’ e)

and writing 6=-r, =1, we get f-r 1° Further, we have
d

(B.8) —éz— EW = -2"F[¢( +1)'2 £
¢ - r zi -r,2 -r,]

) oy .
(B.9) EW =2 r(r+1)zizjf__r,2
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| 3
o) -r _-r - -2
(B.10) BE? =3 EW =2 r(riJ)zj [f-r,z - (r+2)z; f-r,3]
i3
> -r -r - - =
(B.11) —————EW = =2 " r(r+l)(r+2) z, z, Zk £ 3
: oz, 9z, sz 3 “T
j
12 —5-4—- EWT = 27T r(r4)(r42)5,2, [(x43)5> £ -3f ]
(®.12) =5~ = )22, 3)z; £, -r,3
i™]
(B.13) L EWT = 27T r(e41)[ (z42) (r43)225> £
. 32% 822 W = r(r ) (x )zizj 1,4
i ]
- (r42) G E L+ £ ]
i j "r,3 "'r,z
(B.14) ———-ai——Ew'r= 27T r(c41)(r42) 2.7, [(r43)7> £ -f ]
1 -2 - - %K i Ter,4 T Ter,3t
z, Z Zk
i3
(B.15) " EW . =277 r(x+) (x+2) (r43)z,2, .z, .2, ., £
. i%i-1%141%142 *or,4

dzi azj ézk sz

To use these results in the text we let j=i=1, k=i+1 and 4£=i+2 such

that i#j#k#0.

C. Evaluation of Certain Mathematical Expectations

7
First, we note that

= T -n/2 - -r n -2
(c.1n) E(zi-zi)w = (2m) I cee I (z;-2,) W exp{~-% ? (zi-zi) ].dz1,...,dzn
oz

where we require E W”r and its partial derivative with respect to Ei which is

given in (B.6).

te-

(e
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Similarly, we can obtain the following results in a straightforward

manner
2
(C.2) E(z; - Ei)2 W= (? >+ 1 EW,
azi
2
- - (=T _ ) -r
€3 By zi)(zj-zj)w 3z, o, o
177
3
(C.4) E (zi - Ei)z(z. -z.) w'o=s _2 — + ? EW "
i#j J J z, 0z, Oz,
i3 i
3
- - . - > -r
(C.5) E(z, - z.)(z. - 2.,)(2, - 2, )W = ——————— EW
l o Ik k oz, Oz, azk
4 2
(C.6) E (2 - Ei)3(z. -ZIW " = _2 — + 3 — 9 —\ ev’"
i#j I 3z dz, dz, oz,
i i
4 2 2
©D  E(-Ei)i -E) W = -2 — + ?2 + ?2 +1 EWT
i#j J ] / dz, 0z, dz, Jz,
' j i i
‘ 4 2
©8) B (3 - i) (2 - i) 5N = (3 : — =2 ) EW
i#j#k Bzi F azk azj azk
and
(C.9) E (z. - z.)(z -E)(z -z)(z, ~z) )W T = 2t EW ©
e e B A A 3%, %, %

The expectations required in Section 3 may now be stated as follows.

“r, _ ,"L =
(€.10)  E(z; W) =270z £



(C.11)

Next

2
E(z:.L

20

2

T, _ _ =2 - - SR -r
W) =E(z zi) W +221E(zi zi)w +ziEW

i

2
=(—5—2 +1) WY +23 Wt +32Ew"
- 1 i

oz, dz,
i i
-r =2 .
=2z £, ot E gl
similarly, for i#j,
(€.12)  E(z 2 W) =2 zpz, £, .
Further we have
3 ~r, _ ,r =3 T -
(C.13) E(Zi W) =2 z; f-r+3,3 +3x2 z; f-r+2,2 s
2 Ty _ ,~F 72 = it
(C.14) igj(zi zj W) =2 z; zj f-r+3,3 + 2 zj f-r+2,2
(C.15) E (2, z, 7 Wy =272 2,z
g L3 i) "k Ter43,3
4 _-r, _ ,-r =4 r =2 r
(C.16) E(zi W) =2 z; f-r+4,4 +6x2 zg f-r+3,3 +3x2 f-r+2,2
€1 E@z Wi =2TF23 f +3x27T 35 7. f
. 143 2; 2 - i %) T-r+4,b i%) "-r+3,3
2 2 _-r -r =2 =2 r -2 =2 r
(€.18) .E.(zi Zj W) =2 z; i f-r+4,4 + 2 (2, + zJ.) f_r+3’3 + 2
i#j
-r r =2 = = -r = =
(C.19) i#?*k(zl 25 W) =2 zpziz £ .t 2 %5t
(C.20) E (2, 2.2 z,W)=2"12 2 2 z, f
, i;gj#k# i73 7k L i "3 "k 4 -r+4,4

(e

(L]

(e
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D. The Evaluation of Useful Sums and Their Expectations

In deriving the first two moments of ¢ we will find it necessary to

expand to the numerator of (3.5) and its square. To begin we write

z, T
— . Zq
? _ .
(Do]) z-] M z = [Z] ,22,...,Zn] [mij] :
z
n
Zn+1
n n B
= X X m, Z.Z, ..
i=1 j=1 ij i3+
where mifl is the ijth element of M, and
n n
(D.2) z/!/ Mz .= % I m.zz =W
1 1 i=1 j=1 ij "i%j
Since Z 4 does not appear in W,the denominator of (3.5), it is convenient to

separate terms involving z out of the sum (D.1). It is also convenient to

n+1

. . 2 . .
separate out terms involving Zg. These separations yield

n n n n 2
(0.3) z! Mz = £ S m .,z 2z,..+ Z m_z2z + = m, z,
1 j=1 g=1 1 E T LT i TiTed o ii-1 i
i#j+1
The numerator of the square c¢ is
2 ~n n-l1 - n 2
D4) (2! Mz)"=| X I m.z oz ] +iz Z n ]
1 i=1 =1 ij 71 Ti#H L n+l =1 in i
i#j+l
r n n n-1 n
Y m, ] +2z 2 m, z,2, i m_z,
Li=o i,i-1 1=1 j=1 ij "i7j+ j=p i 1
i#j+
n n-1 n 2
2z JE] ™3 %% D M1 B
ifj+l
n n 2
+2 z Z m, oz, & m . z,
n+1 ini;, i,i-1 1

i=]

The first term on the right of (D.4) can be written as
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r n n-1 _} n n-1 2
(D.5) S(S m, z2,.) (z m..z.z,)
Li=1 j=1 ij "iv 3+l i=1 \ =1 iji "ivj+H
i+ i3+

n n ,n-1

2 =
+ i=1 kEI < ij i -i)( i=1 ka % 2 “j+H

k<i, i#j+, k#J'H

‘a

We now expand the first term on the right of (D.5) keeping in mind that the z values

in this term have different subscripts. This expansion yields

n n-l 2 n n-1 2 9 2 n~-1 n-1 2
D.6 (2 m, z.z, = | & m,zz2,.+2 X X m, ]
(D.6) =1 (j=1 ij i J+1) =1k 3=1 mlJ i~ j+1 5=1 4=1 =7 %5 J+1 ,z+1
i#j+ i#j+l 4< i, if+

The second term on the right of (D.5) becomes

n n n-l n-1 n n _n-l *
(D.7) 2 5 £(Z m, 2z, ,)(Z m, y=2 % Z‘.[Zm z
P i & T A LA k%341 Mt it 3™k %171 3+1 .
kei, i#j+l, k#j+ k<i, i#j+l, k#j+H
n-1 n-1 -
+ z Z m, !
Paetie S SR N L
L#5s k#EjH
n n n-l 2
=2 Z I
i=1 k=1 J"l 1Jka i k j+
k<i, i#j+, k#jH
n-1 n=-1 2 n-1 n-]
+ X Z m, c 1 2 + X :l -
3=1 g=1 ij k,i-1T i J+1 x 3=1 !.-1 1Jmk,,(7, i J+1 2% 441
£#5, k#l+1, i=g+ A#5, kL, ifl+ .

where the second equation above accounts for the difference between cases where

i =4+ and i # g+1.
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We now expand the second term on the right of (D.4)

n g - D 2 2 n n
0.8) [z, I omy zi] Rl T T zizk]
i=1 i=] i=1 k=l
kei
Similarly, the third term in (D.4) is
n 2 n n n
(D.9) [Zm. = 22] = 3 m% . zlf +2 L Z om o, W z%zli
1=2 i,i- i =2 i,i=1 “i 122 k=2 i,i-1 ok=1 71
k<i
The fourth term in (D.4) is
n n-] n |_n n-1 9
(D.10) 2z Y 2 m,z.2z, Z m_ 2z, =2z I Z m,,m 2.z,
n+l i=1 j=1 ij "iv i+ jo1 in i n+l~_i= j=1 ij in Ti7jH
JH# JH#A

n n n-l

+ £ £ Z m.m z.Z, .2
i=1 4=1 j=I ij gn 1734 1,]

L#i, H#L, JHAL
The second sum on the right of (D.10) can be expanded to reflect the difference

between cases where g=j+1 and g#j+1. This expansion of (D.10) results in

n n=1 n n n-}

2
(0.11) 2z S (S m.zz,..) T m_z =22 % = m,.mn_zz,
n+l i=1 3= ij "iviH jop 01 n+l-_.i=1 i= ij in Ti7jH
JH#L jHI#L
n n n-l 2 n n n-l
+ X by 2 m,,m, 2Z.Z, + X z > m,.m 2.2 z].
i=1 =1 j=1 *J In LTI 2=1 j=1 I 4n "1+ 4
L#i, j# #i: £=j+ Z#ia j‘H#is £¥j+l

In order to expand the fifth term on the right of (D.4) we must first

separate the first sum in that product into two components, the second of which

has a subscript running from 2 to n.

n n~l n 9 |_ n-1

(D.12) 2 £ X m,.zz, T om o, .2z, =2 I . 2.2,
i=1 j=1 ij "i7j#H i=2 i,i-1 "1 L =1 mlJ 175+
i#j+ j#2

n n-l n 9

+ = Z:m.z.z.:lZm..z.
i=2 =1 ij "iv 3+ =0 i,i~1 "1
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n-1 n 9
B TR T I R

j#2

n n-1 n 2
+2 X Z m,z, z z z

. m, . .
i=2 j=1 ij i i+ 1=2 i,i-1 i
i#j+

Then the first term on the right of (D.12) is

n-1 n 2 n n-1 9 - .
(0.13) 2 ji] ™5 21254 122 Wi %72 2 j‘Z M Me,i-1 %1%i% 54
j#2 j#2

and the second term on the right of (D.12) can be expanded as

n n-l n 2 n n-1
=2
014 2 2 jil Mg i B MLie BT 0 B J.f] ™5 M,i-1 %1 g
JH# jH1#i

n n n-l

3
2 X £ X m ., m z, 2
A PR B VR I S T

L#i, jHI#, 4=jH )

n n n-l
+2 = Z
i=2 g=2 j=1

L#L, JHI#L, #3534

[{]

2
M5 Te,e-1 %1 %gn %y

The technique used to expand the fifth term in (D.4) is used again to

expand the sixth term in (D.4)

n n 2 — n 2
(@.13) 2z, 121 in % 2 MiLi-1 %1 T 22n+1Li§2 W Pie1 2 %
n n
2
+ S m_z T om . oz |
jop In 1., 1,1 T i}
The second term on the right of (D.15) is
n n 2 n 3 n n )}
(D.16) 152 m, 2z i§2 mogq % T 132 Moo ™ oie1 % + izz £§2 L W 2:2,
4#i

Finally we combine the results of (D.6) to (D.16) with (3.5) to obtain
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n n-l n-1 n-l
2 1 2 22
(D.17) c == X X m, z,z, +2 X
2 i=1 Lj=1 ij 1 j+ j=1 .6"'1 1j 1,@ i .6+1]
i#j+ £<j, i#e+1
: o n M n-1 9 n-1 n-l 2
+—= I 2[2 m, . . 2.2, Z, + Z X m, 2.2, .2
2 i=1 k=1 j=1 1] ka ik j+i j=] 2=1 ij mk,i 1 i J-I-] k
kei, i#j+l L#3, k#jH, i=gH
n-1 n-l
T o oo M1 ke P1%pa %S 441 ]

L#5, k¥, ifg+

zZ n n n-1
+ .n_-zH_ bH m? z? +2 X I m, z.zk]
W jop im0 1 i=] k=1 in kn i
kei
n n n-l
0 1 2 4 2 2
+ -—[ T m, . z, +2 T % m, Z.2 :I
NN I C e e 4 S 0 0 i
° - : k<i
2z n n-1 n n n-l
2
+-T21+—1[Z z mi'min Z§z.+1 + £ X Z mi'mzn z:l..z._'_1
wo oLi=1 j=1 M J i=1 4=1 j=1 3 J
jH #i Ei‘i’ 1 #is L=j+
n n n-l n n -1 2
+ X X 2 m ]+— i-1 z.2,
i=1 £4=1 J._-l ij !,n 1 J'H Z i=2 J__.l m-]j 1 i J+l
L#L, JH1#L, g#5H j#2
n n-1 3 n n n-l 3
+ 2 X m,.,m . zZ.2, + £ z Z m 2.2,
i=2 j=1 ij i,i-1 “ijH i=2 g=2 j=1 z,z -1 “i"j#
j'H#i L#1, j'H#i’ £=j+
n n n-l
n+1 2
) 2 J.E] M5 "2.e-1 1 % ,e,:] + [ 2 Mn M,i-1 B
L#i, 14, 4#5i4
,3 n n 2
+ z: 4+ X 2 m, zZ, 2z ]
122 in 1 i-1 1 i=2 =2 in 1,,,(7, -1 71 7g

L#i
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We can now find the first two moments of c. Using (C.10), (C.11), (C.12)

and (D.3) and recalling that z is independent of W, we have

+1

1 n n-1 . n
(D.18) Ec=—% X I m, Mosps £ +=% & m._ . £ .
20-2 i=1 j=1 ij "ikjH 1,2 20_2 i=1 in Pi¥n+1 70,1
i#j+
B :
20‘2 i=2 1’1-1 1 ],2 0,1
n n

T

£. )+ £ m,
20 i=1 1,2 i

in b bar Fo,1 " 1o isi- f0,1]

Using (C.11) to (C.20) and (D.17) we have

2 2 2 2
n n-l
. p,- “'.
.19 B’ =7 z[s m%-’}"‘z];ﬂfzt»“L(&;_*‘%]') Hat% 2}
i=tbj=1 o ? o o ? ?
i#j+
n-1 n~-1 2“‘ n .

- - s . [V -
+2 £ % om.om (—"——1}wa4+ '”2”'*‘ f13>]
g=1 g=1 o ’ ¢ g

£<j,ifd+ .
n n n-l o 2
- Mk 5 g :
+152 2l = m, (1—1‘231]— f24+~i2—k-f13)
i=1 k=ibj=p 4 *J o > - >
k<i, i#j+1, k#jH
n-1 n-1 uz
=1 n- i Mgl Bspg B
(ke e
i1 .o 13 Tk,i-l 4 2,4 2 1,3
ji=1 g=1 o o
243, k#b+1, i=g+41
n=-1 n~1 s Mo M
. i P41 Tk Bg41
+ 2 £ m, Cad iy ]
j=1 g=1 ij ) 04 2,4

L#3, k#g+1, ife+



1
4(14,

n n-]
+2 Z

i=1 k-'

k<i

n+1) [

n
+ %[ 2 mi P
i=2 2

n n-l

+2 X I m,

i=2 k=2
kei

1 IJ'n+1

2 o z

+ =

i,

n n=l
z
i=1 j=1

i=1

i-1 mk,k-

JH#AL

n n n-l
+ X £ X
i=1 g=1 j=1

p,.p. .
o, (_1___111_ £
ij zn

L, jH1#L, 4=3+

n n n-l
+ X Z X
i=1 g=1 j=l

m,

ij !,n

L, JHEL, 2EiH

n-]

2 [1-2 j=1 m]J L,1-1

j# 2

n n-l

4+ X X m,,

j=2 j=1 3

JH#L
n n n-1

+ £ = =
i=2 g=2 j=1

A#i, jHI#i,

l.

3
0 Bi Pin
ij 4,4~

3

<”‘i H i+
1J Min

2 2

Hi Mk
%

2

o3

2

0‘3 1,3

3
o

2

/A
o

Bi B+ o
,i=1 4 2,4

a

L=+

4
o

it
f1,3 t fO,Z)

B )
+ o f0,.

By By B
i Pi+1 "4 f] 3]
?

(ﬂ] By K41 £ +|*"1 B i1 £ 3\)
1,

s
iMin
it h ,3>

l_j,. p,.
ik )
B at3 =3 3



If we gather together terms in (D.18) and (D.19) and use the equations M, = yMp,_1

and 6 =

1
(0.20)  Ec =vyof ,+ " [(“'nﬂ

and

(D.21)

20

Ec2

28

2
n n n-l Mg Waaq M By Mg
+3 % % om,mo, (——J——MZ‘ £, , £ 3)]
i=2 g=2 j=1 I 4° o ’ o ’
L1, JH14L, 4#34
u 2
1 Pni4l ot ML ol
2 % [.2 ™ mi,i-1< 3 5,375 fo,z)
i=2 o
. 3
By Mi
I MnMLiml 3 Bzt T,
n n 2
i My Bi )
+ Z £ m_m £ +—=f .
L#1

I'4

2 p,_1 M oy we obtain

hMs

n
Min ) Bg 15 ) + (2

.. f
i=2 m:l.,:.-l) 0,1]

B K n 2 n n-l
=yl , -2r (s oy ) + 2 2 oa,m wl us
2,6, 2L 2 \45; inhi o1 jmp L3 inbd j+
, JHAL
n n ne .
+ £ £ £ m.,nm T
121 421 o1 3 en M Fie R
4#i, jH#
n n 2 -
M P 2, Min by o i b | o
B P S U |
20 [2 PR & wi tgg) io1 5ot 4ot M5 Mig Bi41 FgH
i#j+1 i+, £<i, i#e+H
n n n-1
R s S I

kei, i#j+H, k#j+

(»

{0
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i

n n 2, 2 2
+ = m, {(3m.. + = "+ = }
122 i,i=1 1,i-1 7 0 mk,k-1)“'1 o2 e, k-1 HFk
ked k<i
-1 n
bpg 200
+— & I m.py,(m . L. FE m .
o2 jop jo1 L3 HiTin Bi B+ o 4n i+ Hg)
JH#L L#i
n n-1 n-1
+ Z m . (p, zZ T +3 X m. p,-)
jop EL-T T RERETY jop 1P HIH
jf2 A
n n n-] n
Fn4 2
+ X Z 2 m . m . + — : Z m
. - “‘ . o ? - .
i=2 4=2 =1 i 4,8-1 Hi Pja 0_2 Ma M jmp 1o 1 My
L#i, jH#A
Hn41 2 TR L
+2= T m_ . = om o, .:If ++4 = = m
m Sl e : ;
0_2 PEORE S S i,i-1 M1 1,3 " 4 i=1 §=1 ij
i#j+
uz n 2 n o, n n-]
n+l i} +32 m, ., . +2 2 T m .
+ (1 +=7 )(.‘E]‘“in U) oy s (o9 kg Lri=T UKokl
k<i
2 n n-1 n
Fn+
— £ Z m.(m ... F+p, Z m )
0_2 i=1 j= ij  in PjH LR 4n
JH AL L#1, 4=3+
2 n n n
Fn41 (
+ m m, . + Z R , I m, . £
0_2 1n 1 ) i,i=1 129 Min Mi =2m1,1-):' 0,2
2 n
_1_[‘( ”‘nﬂ) 2
tg\1*+*=32) % min] fa

If we use footnote 3 to analyze f and fo 12 We see that the second
b

1,2
term on the right of (D.20) vanishes as g—» and the first term tends to y; that
is, Ec»y as §—», Similarly, all terms of (D.,2l) beyond the first vanish as

g— and the first term tends to yz; that is, Ecz—'\(2 as g—,
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Footnotes

1Th:i.s simplification is not really a loss of generality since we give

the exact moments of the general case in Appendix D.

2The result in (3.14) follows from (3.17). To get 8 > 0 as in (3.15),
it is sufficient to have 02 - o,

31f @ >0 and a, ¢ > 0, then, using Sawa's (1972, p. 667) results, we have

"'(C a)[p -1 (C a)_l(l‘a)
s

e:0) = LS e -] -P
P (a;c36) = & 07 + 0(e™)) ],

0 will grow if u:&u_l > o or if 02 - 0, Kadane (1970), (1971) has analyzed

2
the behavior of estimators as ¢ - 0.

4For large a and b, with 6 > 0,

F,(asb;bx) = a1 - (o) patl) <l+x/ |1|2>
b

so long as (b-a) and x are bounded; Slater (1960, p. 66).

5Liviatan considered the case where X has only one column so the choice

of w was obvious,

6In deriving the result (B.6), we have used the result
s
as - - + 2-
@ w2t [EEL KA o0 (ay2-rin/24850)
de

from (A,2)., Further, it has been noted that

QT _ -
SN = <de az

2
S pry=T - L] 2
oM (deEW >(az J ¥ deEw > )

|
'-l.

and so on,

7See Baranchik (1973, p. 314) and Ullah (1974, p. 146).

LY

(w
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