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ON THE ESTIMATION OF THE COBB-DOUGLAS PRODUCTION
FUNCTION UNDER UNCERTAINTY

by

*
Aman Ullah, Raveendra N. Batra and Balvir Singh

1. INTRODUCTION

In the literature on econometric theory, the problem of specifying
and estimating a firm's production function has received some attention,
Marschak and Andrews [13], in a classic paper, have shown that under the as-
sumption of perfect competition and profit maximizing conditions the
Ordinary .Least Squares (OLS) method does not provide consistent estimates
of the parameters of the Cobb-Douglas production function. Hoch [8], Kmenta
111] and Mundlak [15] provided consistent estimators of the parameters under
the assumption that the '"technical" disturbance (in the production function)
and the "economic'" disturbances (in the profit maximizing equations) are un-
correlated., Further, in an important paper, Zellner, Kmenta and Dréze [24],
showed that under the assumption of perfect competition and expected profit
maximizing conditions OLS method does provide consistent and unbiased esti-
mates of the parameters. Thus, the literature concerning the estimation of
the firm's production function is based either on the notion that firms, in-
terested in maximizing profits, formulate input-output decisions under certainty
conditions or on the assumption that firms, encountéring uncertainty, are risk-
neutral and interested in maximizing expected profits, However, in the recent
developments concerning the theory of the firm facing uncertainty, it has been

emphasized that the firms in general evince aversion to risk. These developments
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have found expression in the contributions by Horowitz [9], Baron [2], Sandmo
[17], Leland [12] and Batra and Ullah [3,4,5] who all conclude, among other
things, that the optimal output of such a firm is smaller than the optimal
output of the firm operating in a certainty enviromment. All these develop-
ments clearly point out the need for a further specification and estimation
of the production function.

The aim of this paper is two-fold. Firstly, we analyze the exact sam-
pling distribution of the estimators of the parameters of the Cobb-Douglas
production function in the case of Marschak and Andrews model and Zellner et
al. model., This has been done in Sections 2 and 3, Also in Section 3 we sug-
gest an iterative method of estimating parameters under a more general assump-
tion that technical and economic disturbances are correlated, Secondly, in
view of the recent developments in the theory of firm under uncertainty, we at-
tempt to specify and estimate the model of a risk-averse competitive firm
under output uncertainty.] The situation of price uncertainty can be treated
similarly. The specified model turns out to be similar to Zellmer et al. This
has been analyzed in Section 4, An iterative method of estimating coefficient
of variation of the marginal utility from profit and of output of the firm has

also been suggested,

2, THE MARSCHAK-ANDREWS MODEL

We begin with a brief review of the famous Marschak-Andrews model of
estimation which stresses the simultaneous equation character of the estimation
procedure, Consider a competitive firm which seeks to maximize profit (m),
which is defined as2
) m=pX - wL - rK
where p = the price of the product, X = output, L = labor, K = capital,
w = wage rate, and r = price of capital. Facing a production function

X = £(L, K)
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and given product and input prices, the competitive firm chooses the optimal

quantities of inputs by setting on/0L and On/dK to zero, so that

(2) pr =w
and
3) pr =r

where fL = Jf/0L and fK = Of/OK. Since the choice of inputs is governed by

economic considerations, the estimation of the parameters of any production

function should be based not only on the form of the function but also on the

profit maximizing conditions, This is the logic behind the Marschak-Andrews

procedure that emphasizes the simultaneous equation character of the model.
If the production function is of the Cobb-Douglas type, then

(I..' 0,2
(4) X = £(L, K) = AL K

where A, % s and o, are some parameters, Differentiating equation (1) partially

2
with respect to L and K and substituting in equations (2) and (3) yields the

following optimality conditions:

X __w_
(5) L "
and

X __T
(6) X ",

When it comes to estimation, equations (4), (5) and (6) are modified by the in-
troduction of stochastic disturbances. This, along with the logarithms of equa-

tions (4), (5) and (6), furnishes the following system of equations:

*
) Xop T MFqq T S¥pg T At Vg
*
®) T PR B T
and
*x
® Xo1 " ¥o1 T MtV
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where the subscript i denotes the ith firm, i=1,*-*,N, x,. = log Xi’

0i

X and vqi (q=1,2) are stochastic

*
11 = log Li’ Xy = log Ki’ xo = log A, Vv

2

disturbances, and

0i

WR rR
*. 1 * 2
X1 g pa1 a XZ g paz

which are the same for all firms, because p, w, and r are assumed to be given

to competitive firms, The parameters R] and R2 are introduced to reflect

that firms may commit systematic errors; otherwise R1 =R,
It can be noted from the reduced form for Xgs Xy and x2 (using (7) to (9))

that %, and x2 are correlated with vo. Thus the OLS estimators for %y and @, in

(7) will be inconsistent, Under the assumption that vy and vy are uncorrelated

with Vg Hoch [8] provided a consistent estimator of the parameters % and @y in

(7) which, as shown by Kmenta [11], is indirect least squares estimator (ILS).

The ILS estimator of aq and @, can be written as4
~

b
=—£—— 'q=1,2

1+31+1§

“a
2

where ﬁ1 and 32 are OLS estimators of b1 and b2 in the reduced form equation for

in as below

X3 = Po F P&y - Fog) + Byl - %) + 4,
where
a v,
by =TT and 4, =y —
q % 2 1 % T %

It has been shown by Wu [23] and Ullah and Agarwal [20] that the exact sampling
distribution of &q is a ratio of t distributions. Further, the moments of any

order of &q do not exist.5

ta



3; THE ZELLNER-KMENTA-DRéZE MODEL
Zellner, Kmenta and Dréze modify the Marschak-Andrews model on the grounds
that the random term Voi makes the production function stochastic, so that first
profit-maximization is not possible, because profits become random due to the
randomness of the production function, and second, the entrepreneurial choice of

the labor and capital inputs i.e,, x,. and Xpis is not independent of Vo1 s0o

11
that the classical least-squares estimates of the production function parameters
are, in general, biased and inconsistent,

Zellner, et al., then propose an alternative model where the stochastic
terms Vo1 enters directly in the production function and where firms are interested

in maximizing expected profits, That is, the production is given by

(10) g =AL1K% 0 =xec0
and
() E(m) = pE[X*] - wL - rK
where
(12) E[X*]= A L P, s
Goo is the variance of the production function disturbance Y5 and where
am,
Ele 0] = e oR

assuming that Yo is nmormally distributed with mean zero.

Expected profit maximization leads to

(1/2)
(13) ag£”] =e 50 a1-§-%=0
and

(]/2)6
(14) Bgéﬂl = 00 a, % _ % -0
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Equations (12), (13) and (14) in logarithms are written as:

as) Xoi ~ %F1i T %%23 T %t Voi
(e Xo1 " %11 S K1 Vos t 14
an XOi - XZi = k2 + vOi 4+ VZi
wR.| 1 rR2 1
where oy = log A, k1 = logésa;) -3 Uoo’ k2 = logGEE;) -3 Goo
*

and v_., v,, and v, are, as before, the disturbance terms, Further x . = log X,

0i” 11 21 (458 i
and x_ ., and x__ are as defined in Section 2,

1i 21

An important implication of this model is that inputs no longer depend
on the disturbance term in the production function. This can be seen by solving

for the three variables in, x,., and x_. in the three equations (15)-(17), to

11 21
obtain
. - Ty - a1k1 - a2k2 + (I'GW-QQ)VOi - q1ﬁlibf a,2v2i
0i. 1 - a - e,
. = [ag + @@y = ajk, + (@)=1)vy; = ayvy,]
11 1 - o:.1 - a2
and
. - ay - a,.lk1 + (m1-1)k2 - AV + (a1-1)v2i
2i 1 - a - ot,2

and it is clear that VO' in no way enters into the determination of %14 and %94
1 .

Thus, if we assume that v i is independent of v,  and Vos? then the ordinary least-

0 11i
square estimates of equation (15) will no longer be inconsistent and biased,

This is the important result derived by Zellner,et al., who also show that
under the normality assumption of disturbances the maximum likelihood estimators

are the same as OLS estimates of the parameters a, amd a, in (15). We shall analyze

1 2
below the sampling distribution of the OLS (Maximum Likelihood) estimators of a4 and

0.2.
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3.1 The Exact Sampling Distribution of the Maximm Likelihood Estimator

Let us write the equations (15)-(17) as

X - o, X - Q,X = ao + v

0i 111 2721 0i

(18) @5-1)x1i + a2x2i k1 = ay + Vi
GXy g @ Dxy, =ky = ap + vy

where we assume that

Evps = EVqy = EVvyy =0
Ev2 =0 LE v2 =0 and E v, .v,, =0 =1,2
0i = %00°E VYqi T Ygq 11721 = 12 0 10
(19
Ev .V ., = = =0 for i# j ; and

0105 = F Yqi'qj T E V11V2;
= 0 for both j=i and j#i , i,j=1,°¢,N .

g
<

In the matrix notation we can write it as

xo = ab + Xo + vo
(20)
XA =V+K
where
o a, =1 o,
@1) a=|oa=l ! Uy
) % 2
and
(22) X =[x %], =1 vl s K= [(kymap)t (kz""o)"]

are each N x 2 matrices; x's and v's being each N x 1 vectors and ¢ is a N x 1

vector of unit elements, Further xo and vo are each N x 1 vectors. It should

be noted from (19) that under the assumption of the normality of disturbances
the vector

[v v,.] ;3 i=l,««+,N

oi Vii Voi

is multivariate normal with a common mean vector 0 and covariance matrix



%0 ° M %12
(23) I = 5 = .
0 11 al %91 %22

Further, using (20), we can show that (in,x1i,x21) are independently distributed

as multivariate normal with a common mean vector and covariance matrix

0‘* B'S..Ba
% 00 11 * -1
(24) = , 0 =0 +c:z.'B'Z1 Ba , B=A
«’'B’S..B B'S,. B oo oo L

11 11

The OLS estimator of @, and o can now be written as6

&= x'cx) 'x’c X,
(25) a 1T o
a =5 L (xO-ch.)
where
LL !
(26) c=1- -~

is an indempotent matrix of rank N-1.

Using (20), we can write7

@7 &= A(V'CV)-1V'C vo t @

Since C is an indempotent matrix of rank N-1 we note that the matrix

! ’
xOCXO XOCX
(28)
X 'Cxo x'cx

follows a central Wishart distribution with parameter set (3, Z¥, N-T). Thus,

using Theorem 1 given in [21, p. 243], & is distributed as bivariate student t,

. 8
lne.’

(29) &~ t{a, B'Z”B,croo, N-2,2} .

The density function of & can be written as
N

(30) £@ = alo + @a) 'B'Z B @) 2



where
nyizl -1
= T B, X4
@31) a= iB'zllBI (coo) [q21 B(zs 2 ﬂ >

B( ), represents beta function. Also, the mean vector and covariance matrix of
4 are
E& =

(32)

A ven vt oo 1 ' -1 __1 =1 ¢
E(G-a) (G-a) " = o °(B ZHIB) = %% coo A ZH1 A

V@) N-& "o

Further using Wegge [21], an unbiased estimator of the covariance matrix

of & is given by

N,
ay o 1 ' toq=1
(33) V@ =13 [x0 M x0][X cx]
where
(34) M = C[I - x(x'cxf'x']c .
3.2 Estimation of o when Yo is Correlated with V3 and v,

It may be noted that both the indirect least squares and OLS estimators
of the parameters of the Cobb-Douglas production function are obtained under the
assumption that the "technical" disturbance v  is uncorrelated with "economic"

0
disturbances v and v_. While serial independence among the various disturbances

2
is not a great problem, since it could be ensured by means of the well-known
mechanical devices,lo the independence of technical and economic disturbances is
hard to reconcile, particularly when the profit maximizing conditions are ob-
tained subject to the technical relationship--the production function.
In this section, therefore, we propose an iterative method of estimating

when the "technical" and "economic" disturbances are correlated. Thus, let us

specify the relationship between the technical and economic disturbances as
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(35) v.. = 0.,V

0i = Vi ¥ 8V * ey

and between the two economic disturbances as,

(36) Voi T 8Vpg t ey
where we assume that €01’ for i=1,+.-,N are independently distributed with mean 0
and variance Ug and it is also distributed independently of MT v21 and e

Further e,y for i=1,---,N are independently distributed with mean 0 and variance

2
02 and it is also distributed independently of v1i.

Under the above specification we can write the equation (15) as

37) X

ay + o X, . + a, X : + 61v1i + eZin + e

0i 0 1714 22 0i

Gy + XXy F Xy + (9]+962)v1i +ens
We have to estimate now three additional parameters: 6, 61 and 92 which will
create the identification problem., In fact this problem was overcome by Zellner
et al, [24] by assuming v, to be uncorrelated with v, and v, and then estimating
a's with OLS which is consistent, However, in the above equation a simple appli-
cation of OLS would not provide estimates of a's and 0's, We shall, therefore,

estimate it in different steps as outlined below,

3.3 The Estimation Procedure

First, applying OLS (Maximum Likelihood) to equation (15) we obtain con-

sistent and unbiased estimators of Qgs Oy and @, as given by Zellner et al. and

presented in (25). This will then provide consistent and unbiased estimates

of x.. and v.., viz,, ®_.'and'¥..,. To know the estimates of individual parameters
0i 0i 01 0i

in (37) we may proceed with the iterative estimation technique as below.

Step 1: We begin with the estimates %91 andwv0i as obtained above. This may be

treated as an initial proxy for x_. which may amoéunt to using 61 =0

0i

their corresponding proxies. Given this we may write from (16)

9 = ] =.0 as
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(38) X3 = - k1 + (xoi-voi) + vy -

From equation (38), we can then obtain a consistent estimate of Vi4e SaYs Gli

by OLS.

Step II: Given GTi we can write (17) by using (36) as

(39) -k, + X

L T ) 0i Voi 2i °

We can again apply OLS and obtain the estimates for x

) + 9v1i + e

and § as %, and 6.

2i 21

Step ITI: Given R G'i from (38) and ﬁZi’ 8 from (39) we can write (37) as

11> 1
(40) Xog = % + R+ 0,k . + 0,9, 5 + 8,9, + ey

Thus, applying OLS to (40) we can obtain estimates of a,, CQys Gy and 61
and 62. Since this provides second round estimates of X1 and Yoy Ve can
switch back and forth between these steps until the estimates converge to some
stable values,

4, SPECIFICATION AND ESTIMATION OF THE MODEL
FOR RISK-AVERSE FIRM

Uncertainty in the deterministic competitive model of the firm as discussed
in Section 2 may be incorporated in a variety of plausible ways., The firm may
be uncertain about the price at which it will be able to sell its product or there
may be uncertainty in the production function where the supply of the finished
product may be sensitive to factors beyond the firm's control, and so on. In the
following, we develop a two-input model of the competitive firm which regards
the level of its finished product to be stochastic., Results are qualitatively
unmodified, if the firm is uncertain about the product price. We assume that the
firms are (1) risk-averse (2) they base their current input-output decisions on

the given input prices and a probability distribution of X* and (3) they are

interested in maximizing the expected utility from profits and their attitude
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towards risk can be described by a Von Neumann-Morgenstern utility function.1]
Let U stand for utility from profits, The firm's utility function is
given by
U =U(m) = U[p X* - wL - rK]
where U’ (m) = dU(m)/dn > 0 and U’ () = du’(m)/dn $ 0, depending on whether the
firm is risk-averse, risk-neutral, or a risk-preferrer and

&, V v
= AL 1K 2e 0. Xe 0

as given in (10), The expected utility from profit is given by

E[U(m)] = E[U{px* - wL - rK}]

The first-order conditions for expected-utility maximization are given by

v
@) SEIOI - gry’(my & = B’ M (peLe © - w1 = 0
and

A\
42) EUM] = gy’ (m) S = B’ () (pge * - £)] = 0

Since w and f are non-random, equations (41) and (42) yield

(43) ——n;i—?——-E[U e~ gp=w

E(U'(m]
and
E(u’ (e )
4 B[07m] K T
If the firms are risk-neutral, so that U’ = 0, then the expression E[U'Cn)evol/

v
E[U’ (7)) reduces to E e 0, in which case the equations (43) and (44) reduce to

equations (13) and (14) of Zellner, et al. model.
However, in the general case of risk-averse behavior of the firm, it can
be shown that

V
(45) E[U'(Tr)e 1= 1—E[U (mx*]

"‘N

<S[EU Cn)E X* + cov(U ', x%)]

:><

"
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where cov(U’,X*) is the covariance between U’(r) and X*, For risk-averse firms,
this covariance is negative.12

In view of (45), (43) and (44) can be written as.I3

P cov(U’,X*
- * =
“e) X2+ ST |t T
P cov(u’,x*
- L3 =
&7 XLEX + W fK r
and with cov(U’,X*) < 0 and E[U'()] > 0, it is clear that
1
2 Goof >
pe L>v
and
1o
P e2 0 fK >r

In other words, the risk-averse competitive firm hires inputs in such a way that
the expected marginal value product of each factor exceeds the given input price,

On the other hand, a risk-neutral firm, for which the covariance is zero, behaves
1

like a firm operating under certainty conditions in that p e2

1
=0
] e2 °°fK = r, Clearly then the optimal input choice in the presence of risk-

aversion is not governed by the same principles as in the risk-neutrality or the

OOf

L=wand

certainty case. This in turn has repercussions for the firm's optimal output.

4.1 Estimation of the Model

Let us rewrite the complete model by using (46) and (47) as

(48) X* = AL 'k 2e 0%
1
4 E%OXT _
(49) paog e Tl +pp8l=w
1
2%0x
(50) - pa, e [T +pp ol =x

where

e
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1
0.’ g -0 o ag
=_U __ Xk _ 200 J/ 00, 00 _
(51) B =%g ° 6 = xE - © e (e 1)
and
(52) p = cov(U',x*)/cU,Ux*

such that - 1 S p < 0 under the assumption of risk-averse firm, Further § and &
may be defined as the coefficient of variation in the marginal utility and output

of the firm, respectively.

Using (51) and (52) in (49) and (50) we have

1
a -" a, -—— o‘
1 2 _ w 2 o0
(53) AL K*“ = T+ 08 5 e
cx.1 c2-1 r -% o
(54) AL 'K 0o

= Pa, (T + P &) ©

Taking logarithms of (48), (53) and (54) we have

(5) Xop " MqFqg T %¥py TA Vo
(56 Xo1 = ¥11 = M F Vo1 T Yy
7 Xoi " X3 T Mt Vo Vs
where Xg; = log x:, X3 log Li’ and xZi = log Ki’ and
(58) M = 108 T om) 3 o0
1
9) Ay = log paz(ir-u- 55 " 7 %oo

The system of equations (55) through (57) takes the same form as the
Zellner-Kmenta-Drédze model does. Therefore, it can be easily shown that X4 and

x.. are independent of V. i in which case application of OLS will yield consistent

21 0
and unbiased estimates of o and Qy o Further the sampling distribution of 61

~

and &2 will be bivariate student t as discussed in Section 3. Once aﬁ and @, are
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known, the other parameters, namely p, B and § involved nonlinearly in )\1
and }\2 can be obtained as follows:

Let the estimates of M and A be given by
(60) )\1=x0-x1,)\2=x0-x2.
Further, as given in [24], the maximm likelihood estimate of 0., Can be obtained

14
as

N
~ 1 A2
(61) %0 =N z 0i

Then using (58) and (59) we may write

(62) 6={;&—:§- 1}3‘3

and
) f={F%- 1}—‘;
P, Ay 8o
~k ~k A 1 A N T & .
where )\1 and )‘2 are antilog of )\1 +3 9, and )\2 +50 > respectively.

Since w, r and p are known constants (because of the assumption of perfect
competition) and § may be estimated by using (61) we may estimate p and B iter-
atively from equations (62) and (63). Starting with p = -1 as the initial proxy
for p we may estimate p from (63) and estimate p using the value of B so obtained.
Thus we may switch back and forth between (62) and (63) until the estimates
converge to a "fixed point", say {5,%} which is unique and invariant to the ini-

tial conditioms.
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Footnotes

*The authors are, respectively, at University of Western Ontario, Southern
Methodist University and University of Northern Illinois. They are grateful to
William R. Russell and R, A, L, Carter for stimulating discussions on the subject
matter of this paper.

1Feldstein [7] does in passing mention the case of the risk-averse behavior,
but his formulation is not based on entrepreneurial choice-or decision-making, but
on the decision-making of a non-profit making organization such as a hospital, etc,
Consequently his model is different from ours,

Marschak and Andrews examined the case of imperfect competition, However,
over the years, attention has been restricted to the case of a competitive model.
See, for example, Zellner et al, and Kmenta [11],

3The rationale behind the disturbance terms has been eloquently provided
by Zellner et al,, among others,

4Ullah and Agarwal [20] have generalized Hoch's estimator for Q inputs and have

shown that it is identical with the indirect least squares estimator,

W [23] has analyzed the approximate distribution of &h and discussed the

test for constant returns to scale,

Sce. Theil [19, p. 39].

7The expressions for ai and &2 from this can be shown to be identical with
those of Kmenta [11].

8 . ‘o s
Note that 222.1 in Wegge's is equal to %o in our case.

glt was earlier shown by Zellner et al. [24] that & is unbiased. However,
the expression for variance was not obtained., Further, they had indicated that the
posterior distribution of & will be student t,

050 16, 10, 18, 22].

11Postulation of this utility function implies the postulation of the axioms

underlying the Neumann-Morgenstern utility function. Among other things, these
axioms require that the decision-making is done by one individual or a group of
individuals with identical attitudes. This is perhaps a serious weakness of this
utility function, but it is central to much of the recent work on the theory of the
firm under uncertainty. The reason perhaps lies in the fact that this utility
function enables one to characterize the decision-maker's risk-attitude in a simple
manner, Also see Arrow [l] and Pratt [l6].
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12 %
The covariance between U'(n) and X 1is negative if the firms are risk-
averse, because

¢
sign ﬂg_iﬂl dn

*
S P

*
sign Cov [U'(M), X ]

sign U”(n) Qﬂ;
dx
%
and mth*U” (m) <,0 and dn/ax" > 0. With Cov [U’(m), X1 <0, it is clear that
E[U/(mX 1 < E[U’(m) JEX*.

1315 uncertainty is because output price is a random variable with Ep = p and
o, C

X = AL 1'K 2 then we will have

[“*% (:;] e, =v

cov(U’.p)7 = r.
[“’"’ B0 m1) KT

*
One can easily obtain the above two equations in the case where both p and X are
random variables,

14An unbiased estimate of %0 can be written as
P S
%0 N-3 xOMXO

by using Wegge [21, p. 243], where M is defined in (34).
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