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1. Introduction

Distributed lag models appear quite frequently in economics and a
popular way of estimating their coefficients is to specify a polynomial lag
structure., This specification is useful because any continuous lag struc-
ture can be accurately approximated by a polynomial, The Almon (1965)
technique, using Lagrangian interpolation, is often employed, although this
procedure gives identical results to those given by the simpler procedure
discussed by Dhrymes (1971) unless endpoint restrictions are imposed (Dhrymes
(1971), pp. 229-234)., However, even if no endpoint restrictions are employed,
the specification of a polynomial lag structure can lead to biased, incon-
sistent parameter estimates if the length of the lag and the degree of the
polynomial are incorrectly specified (e.g., Rowley (1971), Schmidt and
waud (1973), Frost (1975)).

The aim of this paper is to give a (unbiased) method of estimating

the bias in the coefficient estimates which results from misspecifying the

1 . . . -
We have benefited from conversations with W. Haessel but remaining
errors are ours alome,



length of the lag and/or the degree of the polynomial., The method can be
used to provide an unbiased estimate of the mean squared error of the tra-

ditional procedure,

2. Specification of the True Model

We write the true finite distributed lag model as

n
2.1) y, = I B,x__.+u
t o Lti t

where Xy is a value of the exogenous variable, n is the unknown length of
the lag and the Bi are unknown coefficients to be estimated. Our assumptions

about the random disturbance are:

A.1) u, ~ N(O,GZ) for all t and
(A.2) Ex _,u = 0 for all t and i,

that is the random disturbance is independent of all values of the exogenous

variable.2

If T observations are available on Ve and x, we can write the model

in matrix notation as

2.2) y =X8 +u
where:
E a1
yn-i-]-‘g !_un+1-] Ps
Yng2! Y2 By
y = . , u = . , B8 =1. and
y u B
Ut LT | |7

2If X, is random all expectations would be conditional on the sample



xn+.l xn xq xq-.l x_]
Xnt2 Xl 1 *q *2
Entp *ntp-1 ¥a+p  Tq+p-1 *p

| *7 Xpo1 *pq  Tr-q-1 *p-n |

Note that both the number of rows and the number of columns of X are affected
by the lag length n., We could partition X and 8 into

] where x2 contains columns 1 to q-1 of X

3
(2.3) X = [XIXZ]’ B = q§1j -(numbered from right to left), .
2

X1 contains columns q to ntl,
Bz has q-1 elements, ﬁ1 has n-q+2 elements.

Alternatively we could partition X as

X
(2.4) X = [XS where X3 has p rows and X4 has T-n-p rows.
L4

3., Specification of the Estimated Model

Before B can be estimated we must specify what we think n, the lag length,

is. There are, of course, two possible, mutually exclusive, errors,

a. Lag Length too Small

If s is our guess for the value of n and s < n then our estimating equa-

tion is

G.1) v, = BX H By oo HBX U

where e, = 5S+4 + ...+ ant-n +u .,

Xe-s-1 t

In matrix notation we have
(3.2) y, = X8, te

where:



rys+11
In
= . B4 . .
Ve = Y1l = [y*l] , vy is from the left side of (2.2),
|
B,
B
8, =|. = 631, a subvector of B from (2.3)
LBs_
xs+'| xs x'I .\
*n Xn-1 n-s
X, = X1 X n-s+1l ? letting q = n-s+1 in (2.3),
2 *nil Fnes2
| *r ¥p-1 *p-q
X*]
= \_X s X1 is a submatrix of X defined in (2.3),
1
and
& [ ey
e, = Mo with X, and 8, defined in (2.3).
i
E*ZJ LXZBZ 4+ u
Then we can rewrite (3.2) as two equations
(3.3) Va1 = X*1ﬁ‘l + ey and
(3.4) y = X1B1 + ey, = X1B1 + (Xzﬁ2 + u)




Equations (3.3) and (3.4) contain different observations on the same vari-
ables: a term analogous to Xzﬁz is contained in - As a simplification3
we will concentrate on equation (3.4) which is clearly a case of misspeci-
fication by the omission of variables, One way to estimate ﬁ] is to use

ordinary least squares (OLS) on (3.4) which gives
a8 = ! ) ’ -1,7
3.5) B, = XX Xy =8 + X)) X (X,8, +u).
Using (A.1), we find the sampling distribution of ﬁ1 to be
@.6) B ~ N8 + &x ) 1x/%,8,.07 &x) |
* 1 1 11 17272° ™

The bias and mean squared error of ﬁl are given by

RS -1
3.7) bias (8,) (xl'x1) X,%,8, and

Fad y ) -1 ’. =1, ¢ P =1
(3.8) MSE(IB]) ot (X X))+ (x1x1) x1x2ﬁ2632x2x1 X{x) -
Alternatively we may try to gain precision by restricting each element

By of ﬁ1 to be a polynomial of degree k in i, that is,

k .
(3.9) B, = Z ido, + p. for i=0,¢.-,s

i -0 j i

In (3.9) the aj are unknown coefficients and Py is an unknown remainder to
account for the possibility that this specification of the lag structure may

be only approximately correct. In matrix notation this specification is

(3.10) B1 =Ta + p

where:
1 0 0 0] o ] o]
1 1T 1 1 ot p1
T =1 2 4 2k , a=|"]|, =1
1 s s2 sk_ Lak_ \.ps_

3This amounts to ignoring n-s observations and, even though n-s may be
small, it is not something an applied econometrician would do. This omission
does not fundamentally alter the results but it allows us to present them
somewhat more clearly.



Then (3.4) becomes

3.11) y = XITa + X1P + (Xzﬁ2 +u) = Z.o + X1p + (XZEB2 + u).

Traditionally the last two terms in (3.11) are ignored and a is estimated
by
3.12 5= @'z zly =a+ 22 y 2/ X p + X8, + 1)
J2) &= (22 gy =at (Z22)) P T Sy U
and the restricted least squares (RLS) estimate of B] is

~ e 0, =1_1¢
(3.13) B1 =T¢ = Ta + F(Z1Z1) Z1(X1p + XZBZ + u).

The distribution of ET is
@14 B ~ NTa+ Tz y 2! 0 + %,8,),0°T22) 7' |
: 1 1“1 27272 11
so that its bias and MSE are
P SR 1, ~1_1 _
(3.15) blas(@l) = T(ZIZ1) Zl(X1p + Xzﬁz) p and

~ 2 ) -1_, ) -1
(3.16) MSE(;) = © r(z;2y) T+ [1“(2121) Z &0 + X,8,) - p]-

[1"(21'21)'121 (%, + X,8,) - p]' )

Whether 51 is, in fact, any more precise than ﬁl can be decided comparing
the MSE matrices in equations (3.8) and (3.16). The difference between these
two matrices depends upon the size of p which in turn depends upon how closely
(3.9) approximates the true lag structure. It is clear though that the pre-
cision of both ﬁ1 and ﬁ1 is overstated by their covariance matrices, However,
since X2 is unknowna'it is not possible to estimate the bias and MSE of ﬁ]
and 31.

0f course, the only reason X2 is unknown is that n is unknown. If n

were known X2 could be constructed in the same fashion as X is constructed.



b, Lag Length too Large

The other possible error we can make in specifying the lag length

is to set s > n, In this case we have

3.17) Ve = Boxt + B'lxt-T + oo + ant-n + Bn-l-'lxt-n-'l + oo + Bsxt-s + ut

where Bi =0 for i = nt+l,---,s, In matrix notation

(3.18) Yy = X*ﬁ* +u,
where
Fys+l
Vg = f . » the last T-s elements from y (similarly, u, is the
t?T last T-s elements from u),
-
o
i
By
: B3
®, = Bn = , the vector 3 with s-n zeros added,
0
0
0 |
rxs.'-‘l LR N ] x1 .E xm_p . e 0 x xp-1 ¢ o X1
X* = : =
xT LN ] xT-S T L 2 xT_n T-n-] s e 0 xT...s
I J
X vee X1

= [x4,x5] from (2.4) with p = s+1-n and X, =

Xrop-1 °°° xT-sJ
Then we can rewrite (3.18) as

(3.19) Ve = Xdﬁ + X0+ u = Xdﬁ +u,

5

where X4 is just X with the first s-n rows omitted; see (2.4).



Using OLS on (3.18) gives

A ? -1 ¢ ! =1+
(3.20) B, = (X.X,) Xy, =8, + XX) Xu,
The distribution of 63* is

@21y 8, - e, wx)]

so that this estimator is unbiased with an MSE equal to its covariance matrix.
Specification of a polynomial lag structure of degree k implies impo-

sition of the restrictions (3.9) which now take the form 63* = Ta + p. Note

that even if Bo to Bn follow the polynomial specification exactly, so that

Po to p, are zero, to ps will be non-zero because of the error in set-

Pr1
ting s > n,

Combining (3.10) and (3.18) gives
(3.22) V, =X Jo+X,0+u, =Za+Xp0+u,
The traditional estimation procedure produces
o 0, =1_1 0 =1
(3.23) a = (Z*Z*) 2y, =a+ (Z*Z"*) Z*(X*p + u*)
and the RLS estimator of B, is
¥4 -
(3.26) B =T&=To+ I(2,2) 2 (X0 + w.
The distribution of 0"5* is

3.2 B ~NTa+ rez/z)"

! 2 ) -1
2,X,0,0 T(2,2,) r']
so its bias and MSE are

N -1 .
(3.26)  bias(B,) = [r(z;z*) Z,X, - Ip and

- - - 1
@2y msE®) = T,z T+ [1- Tz 2%, o {1 - Xz, 2207 T



The biased estimator, ﬁ*, may be preferred to the unbiased estimator,
é*, if the difference between their MSE matrices is positive semi-definite.

This difference is

(3.28) MSE(B,) - MSE®,) = 02[(x;x*)“ - r(z;z*)'1r’]

-[x- rz,z,) " 2,%, oo {1 - x;z*(z;z*)qr']
The first term on the right side of (3.28) is positive semi-definite (Dhrymes
(1971), p. 226) and so is the second term, (The reason this matrix is not
positive definite is discussed in the next section.) For a given X, and T,
the difference depends upon the size of 02. For large enough values of 02
the difference is positive semi-definite and ﬁ* is preferred on grounds of
smaller MSE. TIf 0> is small enough the difference is megative semi-definite
and ﬁ& is preferred. For a range of 02 values between the two extremes the
difference will be indefinite. For a given X, and 02 the difference depends
on p. Minor specification errors give small p values which can leave the

difference positive semi-definite, Large errors can lead to this difference

being negative definite while for some errors the difference is indeterminate.

4, Estimating the Bias and MSE of ﬁ*

We continue to consider the case in which s > n. In order to esti-
mate the bias and MSE of &, we must derive an estimate of p. We begin by

writing

(4.1)  y28 =My =Xp+u + 2@~ 8

’ -1 ¢
X,.p+u, - z,(z,z,) Z,(X,.p + u,), from (3.23),

= sz*p + Mzu,

A -1 ¢
where & is from (3.23) and M, = T - z,(z/z.) 'z,. Since EMu = 0 and
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EMZu'uMZ = GZMZ, we follow the generalized least squares procedure to write

the normal equations for § as

4 +. ~ I +
M =
(4.2) K MMM X B =X MMMy,
- ! X A /
= X*Mz 5P X*sz*

where MZ is the generalized inverse of the symmetric indempotent matrix MZ.

Before attempting to solve (4.2) we must ascertain the rank of the (s+1) order

square, symmetric matrix X;MZX*.

. 11 ' o =1_,.1
(4.3) X*sz* = XX, - X*X*F(Z*Z*) XXy

= X.X [1 - rr'xx D rxx ] = XX
B Y [ ¥R * % XX, = X *PH .
Assume r(x;x*) = s+l = the order of X;X*. Since M1 is indempotent

- -1 y
rer) = tr I, - e TO'RXDTTRX, | = s - el (xE DT TRET |

s+l - (k+1) < s+1. Therefore, r(XM X) < s+1 and (4.2)

cannot be solved using the regular inverse of X;MZX*. We, therefore, use the

generalized inverse to obtain (Greville (1959))

~ ! +,,
(4.4) p = (X*MZX*) X*sz +v

+ =11
M](x*x*) X*sz + v (Deutsch (1965), pp. 84, 85),

where MT is the generalized inverse of the nonsymmetric indempotent matrix M]
and v is any nonzero (s+1) order Qector such that:xﬁn Xv=0, We will im-
pose two additional criteria on v: v must contain only observable quantities
and Ev= 0, Since M1F = 0, any vector of the form v = [w, where w is (ktl1)

by 1, will satisfy the first criterion, The second criterion is met by set-
ting w = (Ik+1,0)Mxy where M = IT-s - X*(X;X*)-]X; and the matrix O has k+l

rows and T-s-k-1 columns. Then our estimator of p becomes
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(4.5)

[MT(X;X*)'lx;Mz + T(L,00, Jy,

o+ [MFax ) TRM + £(T, )M, Ju,

whose distribution is

@.6) 8~ Mo, ®xMxOY + r(z,0m (3:) o}

[ 4+, ! + ’ + ) A
using (X*MZX*) (X*MZX*)(X*MZX*) = (X*MZX*) and X*MZMX = 0, Note that o

is unbiased.

Now from (3.26) we have
(4.7)  bias(B,) = - M 0
so we estimate this bias by

M1p

+ 0 =1
= M.l[M](X*X*) x;MZ- F(I,O)M*]y*

! -1 ¢
= - (X X,) X*sz*

N\~
(4.8) bias(g,)

! -1 ! [ -—1 I 4
=-[1- ez 2% o + xR My,

= bias(B*) + (X;X*)'1X¥Mzu* .

Our estimator of bias(ﬁ*) is unbiased and has a normal distribution with a co-

variance matrix of the form:

TN _ 2,0 =1 r. (-1
4.9 v( 1as([3*)) =g (X*X*) X*MZX*(X*X*)

-1 -1
o () - T(z,2,)7 T

0 0
o P P (Dhrymes (1971), p. 226)

0 Is-k

where P is a nonsingular matrix such that PP = (X;X*)-1. Since the last line

N~
of (4.9) is a positive semi-definite matrix, V(bias(B,)) is singular,

5This may also be the case for V(8). Marsaglia (1964) discusses multi-

variate normal distributions with singular covariance matrices,
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An estimate of MSE(B,) is

(4.10) MSE(B,) = &zr(z;z*)qr’ + M.lﬁﬁ ’M.'I

4
VM
T-s

’ -1 ? ! 1.2 ’ ! -1
r@z) T'+ X)) XMy yMX XX)
where 62 is the unbiased estimate of 02 provided by OLS.
The unbiased estimator é* ignores the restrictions (3.9). This makes

it tempting to try to amend E* to produce an unbiased estimator which ex-

plicitly accounts for these restrictions, Consider then

~ PS ~ "'1
Ga1) B+ MB =, + (X,X,) x;sz*

~ ? -1 4 -1
By + (X X) X;y* - I'(z,z,) z;y*

~

By + By - By = By

So our attempt to amend E* to make it unbiased leaves us with the OLS
estimator because our estimator of bias (E*) is simply the difference be-
tween the biased, restricted estimator E* and the unbiased unrestricted

estimator ﬁ*.

5. Autocorrelation of X, and Efficiency of 6*

The motivation for the introduction of the polynomial lag specifi-
cation was the increased efficiency of RLS., OLS is felt to suffer a loss
of efficiency, in part, because the autoregressive nature of a typical X,
tends to make the matrix X;X* i1l conditioned., To illustrate this point

we make the simplifying assumption that x_ mimics a first order autoregres-

t

sive process in that it obeys

.1 X, = rx

. e FEL S |r] < 1, where
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T-s

(5.2) ii es-j+i = 0 for j=0,+--,s

(5.3) 21 ES"j'I'] Xs_£+1 = 0 for j,£=0,...,s
t=
T-s 2

(5.4) hX Xokai = Vk, a constant scalar,

i=1

Using these relations we have

Xl Fo2 770 Fp [[Fs1 T X
, X5 Fsrl Freaf[Fse2 Terr T2
(505) X*x* = 3 ) . . Y .
*1 *2 o gl Pt Fre1 000 ¥
(1 r 2 .., 5 ]
o 1 T rs-1
=V r2 r 1 .
x
x® 1
Then the covariance of ﬁ* is
1 -r 0 0]
-T 1+r2 -r
5.6 sy -2k =2 |0 -r
(5.6) V() =0 (X*X*) =37
x T+r -
L0 -r 1 |

1f x,_ was not autocorrelated at all r would be zero and V(ﬁ*) would be a dia-
gonal matrix with 0'2/Vx in each position, If, at the other extreme, |r| =1
the variances of éo and ﬁs, the first and last elements of ﬁ*, would be unchanged

but the variances of all other Ei in ﬁ* would double,
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Under more general schemes (higher orders of autocorrelation, etc.)
we might find that the introduction of autocorrelation in x had an even
more drastic effect on V(ﬁ*). However, the difference (X;X*)-1 - F(Z;Z*)-IF
remains positive semi-definite so long as (X.):X*)"1 exists. although the

difference V(ﬁ*) - MSE(E*) may or may not be positive semi-definite depend-

ing on the size of p.

6. Examples

Two artificial populations were created to illustrate the findings
of the previous sections. The first population, Model 1, has a polynomial

lag structure of length three and degree two., It is described by

6.1) Y, = | X, + o5 X9 + .5 X._o+ .1 X, _3 +u,
and
6.2y g={.1]=[1 0 0][.1]=Ta.
5 | 11 1 .6
.5 | 1 2 4| |-.2
A 1 3 9

If we set s=3=n and k=2 then p=0, since we have made no error in specifying
the lag structure. 1In this case RLS is unbiased and has smaller MSE than OLS.
This is illustrated in Case 1 of Table 1, The columns of this table headed

OLS MSE and RLS MSE are the main diagonal elements of the matrices on the right
of equations (3.21) and (3.27), respectively, where the X, matrix has 20 rows
and k columns derived from an x series whose coefficient of first order auto-

correlation was .8096, In each case R2 shows the goodness of fit for the popu-
1.1
B'X,X,8

lation given X*; that is, R* = 5 -
B'XXB+TC



1

5

Table 1

Effect of Misspecifying Lag Structure: Model 1

Y, = .1xt + .5xt_1 + .5xt_2 + .1xt_3 + u,
.1 1 0 0 .1
.5 1 1 1 .6 _
.5 12 4|]-2| =Te
.1 1 3 9
Case 1 Case 2 Case 3
s=3 k=2 s=3 k=1 s=3 k=1
2 2 2 2 2 2
o =.001 R =.986 o =.001 R =.986 o =.0001 R =.9986
OLS RLS RLS OLS RLS RLS OLS RLS RLS
B MSE Bias MSE MSE Bias MSE MSE Bias MSE
. .0607 0 .0428 .0607 .183 .0632 .00607 .183 .0364
5 .0624 0 .0196 0624 -.206 .0456 .00624 -,206 .0428
.5 .0631 0 .0188 .0631 -.195 .0421 .00631 -.195 .0386
.1 .0707 0 .0506 .0707 .216 .0790 .00707 216 .0498
Case 4 Case 5 Case 6
s=6 k= 2 s=6 k=2 s=6 k= 2
o%=.001 R>=.986 6%=.0005 R>=.994 02=.00001 R>=.99988
oLS RLS RLS OLS RLS RLS OLS RLS RLS
B MSE Bias MSE MSE Bias MSE MSE Bias MSE
.1 .0680 118 .0624 .0340 .118 .0382 .000680 .118 0145
.5 .0847 -.212 .0514 0424 -.212 .0482 .000847 -.212 0450
.5 .0925 -.193 0574 .0462 -.193 0474 .000925 -.193 .0376
.1 .186 74 .0588 .0928 174 0445 .00186 74 .0305
0 .225 .190 .0518 127 .190 .0440 .00255 .190 .0363
0 .237 .0551 0116 119 .0551 .00730 .00237 .0551 .00313
0 164 -.131 .0954 .821 -.131 .0563 .00164 -.131 .0179
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For any polynomial lag structure a correct specification of s and a
specification of k which is too large results in p=0 and RLS being unbiased.
On the other hand, specifying k too small will bias RLS so that the MSE of
RLS for some (Case 2) or all (Case 3) of the coefficients can be larger
than those of OLS. If s is too large but k is correct the MSE of RLS may
be smaller (Case 4) or larger (Case 6) than those of OLS for all coefficients
or smaller for some and larger for others (Case 5). Note that in order for
OLS to have smaller MSE for all coefficients it was necessary to set R2 very
close to one. This may be typical.

The second model does not have a polynomial lag structure, It is de-

fined as

+ u

(6.3) Ve = x4+ .2 % 3 t

« - + .08 X,

2 + .02 xt_

For any choice of s and k the polynomial which approximates this lag structure
most closely can be obtained by using least squares to find the value of o

s+1
which minimizes p’p given I Py = 0. This procedure yields

i=1

(6.4) a = (F'F)-IF'B and

8 -Ta=[(I-TCT '8

(6.5) P
The values of o and p obtained for several combinations of s and k are shown
in Table 2, The p values shown in Table 2 were combined with the same X, ma-
trices as were used in Model 1 to produce the values of OLS MSE, RLS bias and
RLS MSE shown in Table 3. For given values of s and k increasing R2 has the
effect of reducing the OLS MSE until they are below those of RLS, compare
Cases 1 and 2. Naturally, reducing k serves to increase RLS MSE above those
for OLS, compare Cases 3 and 1, If we want to increase k in order to approxi-

mate the lag structure more closely we must also increase s to emsure s > k.
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Table 2

Values of a and p for Various Values of

r and k
Model 2
s= k= s= =2 s=6 k=1
& L o L o4 L
.574 .126 .684 .0160 419 .281
-.216 -.158 -.546 -.0480 -.0921 -.127
-.0620 110 .0480 -.155
.0940 .0160 -.123
-.0507
0414
134
s=6 k=2 s=6 =3
& L & £
.609 .0914 .679 .0214
-.319 -.127 -.553 -.0571
.0379 -.0414 .143 .0286
.0286 -.0117 .0286
.0629 -.00714
L0414 -.0286

-.0557 .0143



Effect of Misspecifying Lag Structure:
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Table 3

Model 2

Ve = .7xt +.2x _ + .08xt._2 + .02xt_3 +u
B=Ta+np
Case 1 Case 2 Case 3
s=3 k=2 s=3 k=2 s=3 k=1
o = .0001 R® = .998 0% = .000025 R%= .995 o = .0001 R® = .998
OLS RLS RLS OLS RLS RLS OLS RLS RLS
B MSE Bias MSE MSE Bias MSE MSE Bias MSE
o7 . 00607 -,0280 .00506 ,00152 -,0280 .00185 .00607 -.129 .0197
.2 .00624 .0433 .00384 .00156 .0433 .00237 .00624 .157 .0251
.08 1,00631 -, 0441 .00382 ,00158 -.0441 . 00241 .00631 .0639 .00448
.02 1,00707 .0298 .0059%4 .00177 .0298 .00215 .00707 .0896 .0113
Case &4 Case 5 Case 6
s=6 k=2 s=6 k= s=6 k=1
o = 0001 R® = .998 o = .0001 R% = .998 o® = .0001 R% = .998
OLS RLS RLS OLS RLS RLS OLS RLS RLS
g MSE Bias MSE MSE Bias MSE _ MSE Bias MSE
.7 .00680 -.0689 .00958 .00680 -.0323 .00623 ,00680 -,246 .0621
.2 .00847 .131 ,0179 ,00847 .0508 . 00491 .00847 149 .0229
.08 1,00925 .0337 ,00313 .00925 -,0265 .00364 ,00925 .165 .0274
.02 1.0186 -,0417 .00459 ,0186 -,0185 .00334 .0186 121 ,0146
0 .0255 -.0749 .00717 .0255 .0203 .00433 .0255 .0364 ,00155
.0237 -.0458 .00295 .0237 .0354 .00382 .0237 -,0679 .00541
0164 .0655 L0121 .0164 -,0275 .0108 .0164 -,172 ,0314
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The beneficial effect of increasing k, after an increase in s, is shown
in Cases 4, 5 and 6, These comparisons show that OLS has lower MSE than

RLS when k is low (Cases 3 and 6) and/or R2 is very high (Case 2).

7. Conclusions

When a distributed lag model is specified to have a polynomial lag
structure of length s and degree k several errors may have been committed.
The ?rue lag structure may be a polynomial of different length or degree
or it may not be a polynomial at all, However, since any continuous finite
lag structure can be accurately approximated by a polynomial this specifica-
tion is understandably popular., 1In this paper we derive the distribution
of the restricted least squares estimator, which explicitly embodies the
polynomial specification, and compare it to the ordinary least squares esti-
mator, which ignores this specification. We find that although RLS is, in
general, biased it may have smaller mean squared errors than OLS unless the
polynomial approximation is very bad and/or the variance of the disturbances
is very small, We present estimators for the bias and MSE of RLS in cases
where the specified length of the lag is greater than or equal to the true
length.

A good procedure for applied econometrics seems to be, first, set the
length of the lag slightly larger than what prior notions suggest; six
periods or more are suggested. Second, set the degree of the polynomial high
enough, at least three, so that it is a fairly accurate approximation, Third
compute the RLS estimate and estimate its bias and MSE using equations (4.7)
and (4.10). Hypotheses about the bias of RLS can be tested using the fact

that the estimator given in (4.7) is normally distributed with a covariance
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given in (4,9)., Such tests may lead to a second round of estimation with
a higher degree and, perhaps, a longer lag in an attempt to reduce esti-
mated bias. However, if the first round produces estimates with low esti-
mated bias the lag length should not be reduced in case it falls below
the true lag length. The precision of the estimates should be judged by
the estimated MSE, not the estimated variances: If the goodness of fit is
very high, above .99 say, it is worth computing OLS to see whether its

estimated MSE are less than those for RLS.
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