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I. Consumer Behaviour With Imperfect Knowledge

of the Price Distribution

In a previous paper [7] it was assumed that the consumer was aware
(or believed to be aware) of the price distribution. This is, no doubt,
a very strong assumption--not only because it‘implies the possession of an
amount of information that no consumer would believe to have, but because
it was taken to mean that once the consumer accepts a distribution of prices
he sticks to it no matter what are the values of the prices observed in
successive searches. Instead, we would prefer to imagine a consumer with
some initial idea about the price distribution that is modified as he
keeps visiting different stores and observes the prices quoted. As before,
the consumer confronts the dilemma of stopping or continuing the search
after a price has been observed. But now, the "stopping states" T are
more difficult to characterize since each new observation brings additional
information about the price distribution. This means that the utility
gain of searching for another price has to include not only the potential
gain of buying at a lower price but also a measure indicating the benefits
of having a more complete knowledge of how prices are distributed. It also
means that, in general, after each search, the beliefs of the consumers on
the price distribution will be modified. This, in our formulation, is
represented by a new "prior" distribution which originates in the incidence
of the particular price observed on the previous prior beliefs. To take
into account this new dimension is not an easy task and it appears that a
general treatment of the decision problem arises serious analytical

difficulties. To proceed further on, it seems, therefore, convenient to
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restrict the breadth of the treatment. Consequently we make the following

assumptions.

%
Assumption 1. Prices are distributed lognormally, P ~A (M, r*), where
M* and r* are respectively the mean and precision of the random variable

log P which is normally distributed.

Assumption 2. The consumer knows that prices are distributed lognormally,
has only an uncertain knowledge of the mean of the distribution ¢, and

behaves as if he knew r* with certainty.

Assumption 3. Specifically, the consumer believes at stage i (i=0,1,...)

that the mean of the price distribution a ~ A(uﬁ, fi) .

Assumption 4. The consumer has an indirect utility function V(?,Y) = V(P) + W(Y)
where V(P) = log a-b log P, b>0.
To give an idea of the appropriateness of the results obtained under these
assumptions, a double checking is indispensable. On the one hand we have to
question the empirical adequateness of the assumptions made. On the other
hand, since the first question will only be answered in a casual way, we
have to consider how sensitive are the conclusions obtained to a change in
the assumptions. This is the question of the robustness of the analysis.
How far-fetched is the assumption of a lognormal distribution of prices?
First of all we have to be convinced that there are no a priori grounds for
rejecting this hypothesis. A delicate feature of the lognormal distribution
is that the aggregation of two random variables which are lognormally dis-
tributed is a random variable which is not lognormally distributed. There-
fore the assumption of lognormality seems more plausible if we interpret
"the price'" quoted by a store, say a car dealer, not as the average price
charged for a car but the price for a very specific model with specific

'
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features. This point clarified it is obvious that, ultimately, the answer

to our question has to come from a study of price data. Still it might be

said that the fact that a lognormal distribution allows only for positive prices
is an appealing feature of such a distribution, while, on the other hand,

its long tail might be a disturbing factor. With respect to its appropriateness
to fit price data not much can be said, mainly because no thorough analysis

of nonspeculative prices has been, to my knowledge, undertaken. Still there

are some data available. For durable goods, the most oft-quoted appear in

the work of A. F. Jung [25], [26], and refer to the prices of cars in Chicago
and other cities. A quick look at those prices seem to suggest that a log-
normal distribution would give a good fit. The price histograms have a bell
shaped form with mean and median generally not coinciding. Similarly a

look at price histograms of some durable goods for the Minneapolis-St. Paul
area2 suggest again a normal or lognormal fit. Although admitting that the
factors that play a role in the evolution of séeculative price might be

quite different from those that determine a cross-section of nonspeculative
prices, both, the markets for speculative goods and nonspeculative goods
(especially if the market for nonspeculative goods has many participants

not well aware of the behaviour of each other), have in common that the
determination of prices involve a large number of independent variables. It

is then not completely idle to mention, in the context of this ;esearch, that

an important sector of the profession likes to treat the prices in speculative
markets as if they were lognormally distributed (see, e.g., M.F.M. Osborne [35],
S5.S. Alexander [2], P. Clark [13]).3 Let me now comment briefly on assumption 2.
It is assumed in it that although the consumer does not know the mean of the price
distribution with certainty, he believes as certain his knowledge of the

precision r*. That is, who can doubt it, an empirically unwarranted assumption.
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But a simple comparison of lemmas 4 and 5 will show that the simplifications
resulting from this hypothesis are indeed very substantial. One is therefore
tempted to say, using an expression attributed to Robert Solow,[F "I know
that the wheel is crooked, but there is no other game in town."

The next assumption refers to the a priori beliefs of the consumer
about the price mean distribution. The assumption is that he believes that
the price mean is distributed lognormally. There is no especial reason to
pick this distribution in preference to any other continuous distribution
with the property that Pr(P <0)=0. The election has been done on the
basis of analytical convenience. It is important, therefore, to discuss
the sensitivity of the results to a modification of this assumption. It
appears to be suggestive at this point to bring for consideration the work
of Edwards, Lindman and Savage [19] and what they denominate the principle
of stable estimation. They show that under a rather mild set of assump-
tions, "two people with widely divergent prior opinions but reasonably open
minds will be forced into arbitrary close agreement about future observa-
tions by a sufficient amount of data." This statement, which in our context
we might prefer to call the dominance of the likelihood principle,5 holds
whenever, loosely speaking, ''the prior density changes gently in the region
favoured by the data and not itself too strongly favours other regions.,"

(For a more rigourous statement see the article quoted.) Therefore if
we accept that the consumer is not too wrong about where the mean is, a
few observations may render the assumption of lognormality rather innocent.

Why assumption 4? Clearly for anmalytical convenience. But can we
justify it otherwise? We do not think there are any grounds for defending
it. We can only invoke its wide use and maybe, being pedantic, Weber-Fechner
law that response is proportional to the logarithm of the stimulus. Clearly,
the main drawback of this choice is its unboundedness, since although a

Bernouilli utility function might be a good approximation for prices in



tm

(&

-5
the intermediate range, it is difficult to take seriously (to quote Savage
45 1) over extreme ranges.6 Concerning specifically the consumer's decision
problem, the most bothering trouble is created by the existence of long
tails in the distribution of utilities. (Note that by virtue of our assump-
tions utilities are distributed normally.) 1In particular, a utility fumc-
tion that takes large values for small prices will multiply the effect of
low aberrant observations (outliers) and therefore increase the number of
searches. Let us observe, though, that this would be a much more serious
problem in the non-adaptative case than in the learning model that we have
used. It is unfortunate, anyway, that there appears to be little work done
on the robustness of the decision rule to a change in the utility function.
(On this matter see Lindley [301.)

Summing up, we assume that the consumer believes that P ~A(D¥, * ),
and that at stage i of the search the price mean o is distributed in the
following way: o ~ A(wi,Ti). With this information the consumer will
decide whether he continues the search, paying a cost Ciyy? OF whether he
stops it. As before, in Chapter III, we can describe the consumer knowl-
edge and behaviour in terms of the distribution of utilities. And so we will
say that the consumer believes that V(P) ~ N(Ql,r) and that at stage i of

the search the utility mean 1! is distributed in the following way:
1

b"er
(See Aitchison and Brown [1], Thm. 2.1.) Therefore,

V(P) = log a-b log P ~ N@, r), where

ﬂ)l=a-l’iUl* and r =

Now, since Q = exp(im*+—]- Yy ~ A(p.*, ™), then
* i’ i

2r
% 1 % *
log o =M +—;~N(u"i‘,'r"£) and M ~N(p’i"-L*, Ti).
2r 2r

- = 4 bk - =
Therefore M N(p.i, Ti), where b, = a b(p.i 21.*) and TS .

m~ N(u.i, Ti)' This is so since, if P ~A(*, r*), then aP"b ~ A(a - bx, —é—: ).
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As in Chapter III, we shall specify whether recall is
allowed, and whether the cost of search is constant or
increasing from period to period. The consumer knowledge at period i,
i=0,1,2,..., wil]l be summarized by the parameters Wy and oo the mean and the
precision,respectively,of the distribution of the utility mean which, like
the distribution of theutility, is normal. The decision of the consumer will,
in addition, take into account the cost of further search and the value
of the last price observed Py if no recall is allowed, or, alternatively,
the sequence of values of the prices previously observed p.l,...,pi s, if recall

is allowed. We will first consider the case of no recall.

No Recall

We assume, again, that given the initial income y, and being
the cost of search c; >0, 1i=1,2,404, an optimal stopping rule exists
and the expected utility of following the optimal rule is finite, Without
recall, the relevant information for the consumer's decision at stage i is
described by the triple (V(pi), By Ti), where Ky and L summarize the past
history of searches and the prior beliefs, in a way that will be made clear
in the following discussion adapted from De Groot [15], section 13.6.

Suppose that the consumer believes at some stage 0, that N ~ N(u.o, TO).
If he now decides to go into another store and he observes the price P.l = Py»
by lemma 4, the posterior distribution of M will be N(p.], ™ ), where

p,O 'ro+ rV(pl)

M =
1 'l‘0+r

[13]

T.+r. [14]

3
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In general, if he visits i additional stores, the posterior distribution

of mwill be N(ui, Ti)’ where

T
_ 0 ir o
“i TO-Fir p'0 To-fir vip)

a linear combination of Fo and V(p) , which is precisely a weighted average of

the mean of the prior distribution of I and the value of the sample mean V(p).

Note that the weights of Ko and V(p) are proportional, respectively,to the

precision of the prior distribution of T, To? and the precision of the sample

mean, ir. As the sample size increases the weight given to the sample mean

increases, and the weight given to the prior decreases. On the other hand

Ti = T + ir ,
and so the precision of the posterior distribution of IN| increases with each
observation by the amount r, regardless of the prices observed. At stage O,
the marginal distribution of the utility of the next price is, by lemma 6,

Tof

V(B) ~ N(k,, 'r0_+r) 5
and the marginal distribution of the utility of the price observed i periods
later is

i-1 )

V(P-) ~ N(”’- ’
. i-1 Til+r

Suppose that the consumer has just observed a price Pi = P; and that
this observation, coupled with his previous information,leads him to believe
that M ~ N(pi,Ti). The triple (V(pi), ui,Ti) describes the position of
the consumer. Let us call M(V<pi)’ ui,Ti) the expected utility, exclusive

of the cost of previous search, from following the optimal procedure when
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the consumer has just observed Pi =P, By an approach identical to the
one taken when the consumer knew with certainty the price distribution, we
can observe that
M(V(pi)’ “‘13 Ti) = max{v(pi)’ E[M(V(Pi_'_])’ u’i_*_]’ Ti+1) = ci"‘]]} i':]’z””
[15]

Clearly, then, if we call

E[M(V (P c @, , i=1,2,... [16]

1412 i T )] T i 7 %
The optimal rule is to stop whenever V(Pi) 2 Ui and to continue otherwise.
Or, equivalently, to stop the search if P; < pi » Wwhere

¥ = v . [17]

Note, again, that @ is the expected utility, at stage i, of taking one more
observation by paying the search cost, and following the optimal rule afterwards.

Combining [15] and [16] we obtain

@ = Elmax{V(P, ), @ 31 - )

Therefore, from lemma 1, we obtain

-~ O
%7 % Ty V@) - 1 FIVE L D] - cyy 5 [18]
i+1
o
and, calling g(ai+]) = - [V(Pi+1) - ui+1] dF[V(Pi+1)] , by lemma 2, it is clear that
i+

the sequence (Qi) is determined once one of its elements is known.

¥ = %y T (¥ ) meyg

i=1,2,.0. [19]
Since
T.*Tr T, T

i . i -
V(Pi+1) N(ui,Ti_|_r ) , calling T T Hi,
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g(di+1) = Hi -ui)] , by lemma 3 and the definition of Y given

1
2
Y (@

in Chapter TIII.
Therefore

_ cE oy orE . .
@ = O PIOSYIIS( ey ) - epy

Using lemma 7,

i
o, = I.°
1 1

1

2 - -
L5 Gy =@ )] ¥ By =iy - [20]
Little can be said about ai . The a priori mean Wy enters the right hand
side of the above equality as an argument of Y and in ai+1 . But, at least

it can be verified that the entire sequence (ai) is determined recursively

from any of its elements. This is so since ¥ can be inverted to yield

1
Uipp =W T

-1 %_

Suppose now that present and future utilities are reduced by an amount k.
Since the utility of the presently observed price is reduced by k, the
utility of stopping the process of search now is reduced by k. Similarly,

since the utility of every future observed price is reduced by k, the utility

from continuing the process is reduced by k. Therefore,
M[v(pi)’ “‘i’ Ti] - k = M[V(pi) ’k, p‘i -k’ Ti] .

Or, in particular,

It can be shown now that

M(zi, 0, Ti) = max{zi, E[Yi+1’ 0, Ti+1 1 —ci_H} [22]

= - = +
where z, V(pi) o T T, T,

i’ i+l
T.T T.r
yA and Z ~ N(O, T—l- ), and

i+1 Ti+'l i+1 i+ i+1
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therefore
i+1
Yi+1 N(o, T, T ) -
i
Calling v, = E[M(Yiﬂ , 0, Tie1 )] “Ciyq o [23]

it follows that the optimal rule for a consumer who has just observed Pi =P,

and therefore believes that [N ~ N(ui,Ti), is to buy at this price whenever

and to look for another price otherwise.
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In that way the expected utility of searching optimally for another price
can be expressed as the sum of ui and another term Y; independent of Ti.
From [22] and [23]

vy T Elmax{Y s v 3 -epy,

Proceeding as before for di,”
Yi T Yy P eV mCiy

and therefore,

1
T, -2 . T, -3
Yy T Yot T YL Yypq [ Cyeq s
i i+1 - Ti+1 r_ Ti+1 r i+1 i+1
or
1 1
- T, -3 — T, - =5 - -
i -1 i
Y. = - ‘y Y.+C. }o
i+l . Ti&i r J L Ti+] ro o i r+1J,

And we see that the whole sequence of (yi) can be obtained from any of its
elements.
Note that in the present case, when the consumer does not know with certainty
the price distribution, no simplification is gained by assuming that the cost
of search is constant from period to period.

Before proceeding, it seems convenient to have a closer look at the
optimal rule obtained. How can this result be interpreted? The consumer
is comparing the utility of buying at the last observed pric; with an expres-
sion which is the sum of the expected utility mean and Yy Y is in
itself the algebraic sum of two terms. The cost of search and another term

8
E{M®Y 0, Ti+])}, which can be interpreted in the following way.

i+1°

Suppose that an individual is sampling without recall and observes a sequence

of independent but not identically distributed utility random variables
T.+r

Y1,Y2,..., where Yi+1 ~ N(O, 7%?? ), i=0,1,2,... . Suppose that at some
i
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stage i, Yi =y, is observed. Then the distribution of the next observation

Y is precisely that of Yi+1 in [22]. And so, we can call E{M(Yi+], 0, Ti+r)}

i+l

= Cin

at stage i, one more observation should be taken in the auxiliary search

the optimal expected utility among the procedures that specify that

problem described.

We can say, therefore, that the optimal procedure for the consumer
is to buy if the observed utility minus the expected utility mean is greater
than the optimal expected utility of searching at least once more in the
auxiliary problem.

What kind of results are we interested in? On the one hand we want
to take advantage of the analytical framework constructed above to do some
comparative statics. 1In particular we want to know how the optimal behaviour
of the consumer is affected by changes in his prior beliefs about the para-
meters of the distributions and by changes in the cost of search. On the
other hand our main interest consists in paving the way for an eventual
description of the evolution of the prices in the market, once the sellers'
decisions have been taken into consideration. To this end we would like to
determine (a) what sort of market demand function results from the consumers
behaving optimally, (b) whether there are any grounds for anticipating any
monotonicity in the evolution of the reservation prices, as in Chapter III,
and, as we also found in that chapter, (c) whether we have a 'stabilizing"
property of the sort that the larger being the price '"dispersion," the larger
will be the expected number of searches.

An answer can be given right away to question (a). It is quite clear
that at any period the demand function will be well behaved, the expected
demand being a non-increasing function of the price charged by the seller.

This is so since we have what Rothschild calls the reservation price property,
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that for every state of information there is a unique reservation price.

But in the adaptative case it is also clear that the seller cannot be certain
that an increase in price will reduce the probability of a sale or that a
reduction in price will increase it, due to the fact that as the state of
information changes from period to period so does the reservation price.
Turning now to comparative statics, the first question that we want
to ask is whether we can observe a consumer's preference for concentration
or dispersion of the price distribution. That is, whether the expected
utility when following the optimal rule is greater or lower as prices are

more "dispersed.”" The following proposition answers this question.

Proposition 4.1

At any stage of the search i, a utility-mean preserving increase
in the price dispersion, that is, a decrease in B, with an unchanged dis-
tribution of 1, decreases the expected utility of following the optimal

rule and increases the reservation price.

Proof
Recall first that %g > 0 and that %i? >0. There-

4, T constant

fore we will prove the vroposition if we can show that a decrease in r, with
p and T constant, leads to a decrease in the expected utility of following
the optimal rule. Consider now two different precisions rA and rB, such
that rA > rB. When the precision is rA, the maximum expected utility is
(from [24]) Ko + yg where yg = E[M(Yl, o0, T?) ] - < (from [23]) and

TA =T + rA . Similarly the maximum expected utility when the dispersion

1 0
. B, B B _ B B B _
is r” is W, + Yg 2 where Y, = E{M(Y,, O, 71) ] ¢ and 1= o +r .
We want to show, therefore that YA > YB . If the distribution of the random

variable Y3 j=A,B, did not change in subsequent periods in the auxiliary

H
L s T0+rj
search problem described above, that is, if Y% ~ N(0, —— ), j=A,B, i=1,2,..., then,
B To+rA Totr TotT
since r >r , A < 3
To'T To'F



And so, by proposition 3.8, we could say that the expected utility of searching

optimally when the random variable is Y?==Y?, i=1,2,..., GA, is greater than
the expected utility of searching optimally when the random variable is Y?==Y? ’

i=1,2,... , &®. That is ® > o®. But the distribution of Y] i=1,2,..., j=A,B,

is different for different i's according to the rules established above, or,

specifically, the precision of Yi i=1,2,..., j=A,B, is larger, the larger is

Y Py .

i according to Ti+1 = Ti + rJ, i=0,1,..., j=A,B. Also, the following inequality
Tl} + rA 'T]? + rB
will be satisfied for all i, i=0,1,...: z 7 < ; B That is, at any
' T, + T T, o 1
i i
stage i, the precision of Y? will be greater than the precision of Y? .
'rl? + rB T{k + rA TI,; + rB T{\ + rA
In addition = - = > i1 - -1
> B B A B B A A 7
T, *Y T, ¥ T, o ¥ T, ¥
i i i i

Therefore, a fortiori, yA > yb.
This result is in flagrant opposition to the one obtained when the
search did not provide with additional information on the price distribution.

It indicates that the case of no learning is not, at least under our assump-

tions and consequently not in general, a good approximation to the case on

. . .. . . . 1
which search involves in itself an updating process of the previous beliefs.

That this result obtains, depends on the fact that, in the Bayesian adapta-
tive rule postulated, the degree of dispersion of the price distribution
affects the rate at which the degree of uncertainty about the utility mean
distribution changes from period to peric’d.]3

To statisticians, a natural way of specifying a lognormal distribu-
tion is by means of the parameters p* and 7%, the mean and precision respec-
tively of the associated normal distribution. We might be interested, then,
in the relation between the consumer's search behaviour and a change in
those parameters. The following proposition answers the case in which T

is constant but p* changes.



Proposition 4.2
Suppose that at some stage of the search i, two consumers A and B
have the same beliefs about the distribution of utilities except that A
believes that the expected utility mean is u? and B believes that the
expected utility mean is ug s Where u? < u? . If both follow the optimal
procedure, the expected utility of pursuing the search optimally is smaller
for consumer A than for consumer B, or, equivalently, the reservation price
is larger for consumer A than for consumer B. But the subjective estimate

o
of the average number of additional searches is the same for both consumers.

Proof
The expected utility of continuing searching at least one more time
is yi + ug j=A,B, and therefore the result is immediate. On the other hand,
©

- r 3
E(N.) =V | wherev = _ _ded[v(e,, )], 3i=A,B.
i J+Mj i+1
- ¥YiTRy

From our point of view, it seems, anyway, more interesting to charac-
terize the price distribution by its own mean and precision. Therefore,
we would like to establish a result analogous to the previous one, for two
consumers who believe that the price mean distribution has the same precision
but different mean. Unfortunately this does not seem to be possible without
further constraints or, at least, wiﬁhout a more complete characterization of
function y. This is so since if the means are different but the degree of
uncertainty with which they are known is equal, then My < W but TA > TB .14
We can still show that for "similar" price mean distributions (and
the same price distribution), different beliefs about the expected price mean
yie}d unequivocally different search patterns. By "similar" in this context

we mean lognormal distributions with the same degree of skewness. Skewness

is a measure of non-symmetry which is defined by the ratio of the third moment



=16
about the mean and the third power of the standard deviation. In the case

of the distribution A(p*, 1), the coefficient of skewness A = n3 + 37

vhere N = exp{1/7%}-1.

Proposition 4.3

Suppose that two consumers A and B have the same utility function,
the same beliefs about the price distribution, and believe that the dis-
tribution of the price mean has the same degree of skewness, but consumer A
believes that the expected price mean is E(aA) while consumer B believes
that the expected price mean is E(ap), where EGXA) > E(aB). Then, if both
follow the optimal procedure, the expected utility of searching at least
once more is smaller for consumer A than for consumer B or, equivalently,

the reservation price is larger for consumer A than for consumer B.

Proof

E(aA) = exp{u*A +

1 B B
i }, E@) = exp{p* + 1B 1.
27* 21*

Since both A and B believe that the price mean distribution has the same

degree of skewmess, T*A = T*B and TA = TB . Then E(aA) > E(aB) =

= u*A > u*B = ﬁA > QB and therefore YA + pA < yB + pp .

So far we have discussed the effect on searching of changes in the
consumer's beliefs. A different question refers to how searching is affected
by a change not in the beliefs themselves, but in the degree of certainty with

which these beliefs are held. The following proposition tries to answer this

question.

Proposition 4.4

A decrease of the consumer's degree of uncertainty about the utility
mean, that is, an increase in T, leads, with the utility mean unchanged,
to an increase in the expected utility of pursuing the search (and equiv-

15
alently to a lower reservation price).



-17-

Proof

Following the same procedure that in the proof of proposition 4.1
we can show that y increases with T. And then, from [24], the result

follows.

This result can be referred as the consumer's preference for

certaintx.16

In the same context we can show that a consumer who searches the
market for a low price will prefer, other things being equal, to have a
certain knowledge of the price distribution. The following proposition

makes this statement precise.

Proposition 4.5

Let A and B be two consumers who decide to search without recall the

market, have the same logarithmic utility function and incur in the same
search costs. But consumer A knows with certainty that P ~ A(n*,r*) while
consumer B believes that P ~ A(m%,r*) and, not knowing with certainty ﬂf,
believes that m*~ AW*, 1), where ¥ <o, 0 < r*¥ <o, 0< T <o, Let
us call UA consumer A's expected utility of following the optional stopping
rule and UB consumer B's expected utility of following the optional stopping

rule. Then UA > UB .

Proof
From [11%%] u® =, + 7
From [24] UB =qpu, ty
’ i i’

From lemma 8

lim vy, = vy, ,
T>o 1

and since y is strictly increasing in T by Proposition 4.4 and (1% <®) & (T < &),

the inequality is strict.
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From the optimal stopping rule given in [24] it is clear that if vy is
sufficientlyhigh, priceswhose utility is greater than the expected utility mean
minus the cost of search can be rejected. And, more surprisingly, that the
consumer may prefer to visit at least one additional store (and, thereby,
pay the additional cost of search) to buying at a price whose utility is
greater than the expected utility mean. That this is a possibility is made
clear in the next lemma. But this can only happen for a cost of search
sufficiently low and then the result is after all not that strange. To keep
searching allows the consumer to try his luck. He might hit a very low
price and if a high price is observed he can always reject it. Therefore
this lack of symmetry in his attitude towards high and low prices may be
considered an inducement for further search. And, one should not forget,
in addition, that to keep searching brings a further benefit in terms of
additional information.

What might appear as extremely intriguing is the fact that the
more accurate are the consumer's beliefs about the price mean (the larger T)
the greater is the expected utility of search (see proposition 4.4). And
especially since after the results of the last chapter, we have come to
expect that a higher expected utility is associated with a longer expected
search. But, then, what is the sense of maintaining that the more accurate
the consumer's beliéfs the greater is the expected number of searches?
Because with greater accuracy, the lower is the subjective probability of
finding a very low price with further search. In addition, if we think of
the value of information as the difference between the expected utility when
the consumer is perfectly informed about the price distribution and the expected
utility when he is not perfectly informed, we are facing a case in which the

. . 17
value of information decreases as the uncertainty diminishes. Therefore the
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claim that the expected number of searches increase with more accurate
information seems utterly nonsensical. What has gone wrong? One may
conjecture that for the case of an unknown distribution a higher expected
utility of optimal search is not associated with a greater expected number of
searches. But this is not true in general, and there are situations, as the
following discussion shows, in which a higher expected utility implies a
greater expected number of searches. Suppose two alternative cases:

B

= A _ i i
(4) T, = 7; and (®) T, = T;» where T, > T,

Then in case (A) the expected utility is pi + yi and in case (B) “1 + Y?,

where, by proposition 4.4, y? > y? « In case (A) the marginal disgribution

T, e T
of the utility of the next price is by lemma 6: V(P, .) ~ N(p,, — ),
i+l i TAi-r
B i
LPIL 4
while in case (B) V(P.,.) ~ N(p., == ). The expected number of searches
i+1 i TB+r
i
. .y e A .
in case (A) is VvV, , where v, = | dF[V(P.,,)] and in case (B)
A A J i+1
p’i+y‘}
~ @ B i
vB , where vB = J B dF [V(Pi+1)] . Since the precision of the distribu-

MYy
tion of V(Pi+1) is greater in case (A) than in case (B), then if y? >0,
Vv <Vv.. Since Y is a positive function, it is clear that for sufficiently

A B
low Ci*]’ Yi can be made positive. This being the case we have

to acknowledge our puzzlement and we will exorcise the result to less
threatening grounds by calling it a paradox.

We have seen that it is conceivable that a consumer observing a price
whose utility is above the a priori expected utility mean will consider that
his chances of finding an even lower price are enhanced.]8 But this, as we

show in the following proposition, can only happen for costs of search

sufficiently low.
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Proposition 4.7

At any stage i, a necessary condition for continuing the search when
the utility associated with the price observed is equal or greater than the

expected utility mean is that the cost of one additional observation €t

o[-

satisfies c,
i+

then, any price whose utility is equal or greater than the expected price

- L
1 < (2mr) . Or, contraposing the statement, if ci—H 2 (2mr) ?’-,

mean will be taken.

To prove the proposition we first state the following lemma.

Lemma

Y will be negative for all 0 < r <o, 0 < T <o if

-3
c].__H 2 (21 r) .

Proof of the Lemma

In the non-adaptive case with constant cost of search ¢,

-3 -1, %
F=p+r " ¥ [er®], (see [11]).
-3 -1 -3 -1
Now Y¥(0) = (2m) * and, therefore, Y [(2m) °] = 0, and since ¥ = is a monotone

decreasing function,

L -
r’c 2 (2m)

ol
ofi=

1
or ° ¥Yecr’] <0.

If we suppose now that costs of search increase from period to period, and

= = = * = v
we make ci+] c, by p and Ti T, then afi <w wherea'i By + Y, »

L by
i.e., ?i <r ® VYier'].
Therefore

-3
2 A
it (21 rx) = yi< 0.

_1
From Proposition 4.5, ?i > Y, for T < ». Therefore CiH 2 (2mr) ? = Y <0.
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Proof of the Proposition
-1
3 = > > .
If ¢ 2 (2m1) and V(pi) Wy s then V(pi) A + Wy Therefore Py
will be accepted.
We are familiar by now with the concept of a reservation price which,
defined for each state of information, is used in determining the optimal

search behavior of the consumer. One can anticipate that the evolution

from period to period of the consumer's reservation prices will be crucial

to the market prices' dynamics. We should be, therefore, interested in
establishing under what conditions we can claim definite evolutive patterns
for the reservation prices. In particular we want to verify the monoton-
icity of the evolution of the reservation prices. Diamond [17], for instance,
assumes that the reservation prices of the consumers staying in the market
increase, obtaining, not surprisingly, that the market prices converge to
a monopoly price. But his assumption is, in general, unwarranted.
Suppose, for instance that at stage i the consumer observes a price Pi =Py
such that V(pi) > Byqe Then, from [13], by > i On the other hand,
from lemma 8,yi > Yiq - (ci+1 -ci). Therefore, unless the increase in the
cost of search from one period to another is sufficiently high we will have
pi = V-][yii-ui] <‘V-1[yi_1+-ui_1] = p?_1. In particular, this inequality
is clearly satisfied if the cost of search is constant. On the other hand,
to have a monotonically decreasing sequence of reservation prices, the fol-
lowing necessary and sufficient condition must be satisfied at every stage i
of the search:

“V(Pi) ’

- > —I -
Yi T Yia T Pie

obtained from \ PR 7. + By and [13].
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If the cost of search increases from period to period, then Yy does
not have to be necessarily greater than Yi41® Therefore if the difference
between c; and it is sufficiently large, the left hand side will become nega-
tive. Now, given that the probability of the right hand side being negative
is .5, since V(Pi) ~ N(ui_],'°), the probability of having a monotonically
decreasing sequence of reservation prices becomes very small as the number

of searches increase, the convergence to zero being faster the larger is the

difference between the cost of search from period to period. Only in the
most favourable case of constant cost of search, the probability of having
a monotonically decreasing sequence of reservation prices could be high for
a certain number of periods, but would eventually become very small if the
number of searches increased sufficiently.

We are forced therefore to end this section with a pessimistic note.
It does not seem that an optimal behaviour of the consumer brings about a

discernible pattern of the reservation prices evolution.

Recall

When the price distribution was known, we observed that, with recall, we
were in what is called the monotone case, and the optimal rule was easily
found. Unfortunately, when the search brings new information that is used to
update the consumer's beliefs, this is not necessarily the case. It may be
remembered that in Chapter III, section 2, we defined @, as the unique solution
of E{max[V(Pi+]) “%s 01} = Cir Since, in addition, {VPi)} was a sequence of

iid random variables ,we were entitled to say that c¢ = ¢ = @, < o,

-1°?

and from this and the fact that m, = m,_pve could infer that we were in the

i+1

monotone case. But now, since V(Pi) and V(P ) are differently distributed

i+1

it will not be true, in general, that c; 2c, 2o, U Still, it can

+1 i i i-1°

be shown (see De Groot [15], section 13.7, lemma 3) that for costs of search
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greater than a specific value (which depends on the precision of the mean
distribution), we are in the monotone case. If this is so, the optimal rule
will be to stop at stage N, where N is the first i = 1 such that

X, 2 E(X ).19 Following the same steps as is Chapter II section 2, it

i+1
can be shown that the optimal rule says to stop at the first i at which P < p’{ ,

i=1,2,..., where pi is the unique soluticn of g[V(pi)] = Cine Now, taking

into account the assumptions made in this chapter about the price distribution and the
utility function, we canwrite an equation analogous to [11*] except for the fact

that the precision of the utility distribution is r and the mean and precision
of the utility mean distribution are A and T (defined from Ho and To by

the rules stated in [13] and [14]). This equation is

V(PF) = p, + 6-% Y-1[6%-c ] [25]
i i i i “in
'ri-r
where 61 = Ti+r .

Given [25] we can perform the same sort of "comparative analysis" as we did
before. We will not spend any time in it, though, except to show that with

recall, the principle of preference for certainty does not hold. To this

end we do not need to assume that search costs are at each stage above the
minimum that guarantees that we are dealing with the monotone case. In this
broader context, we know that the optimal rule will be, at stage i, to con-
) nothing

tinue searching if X, < EX But, of course, if X, 2 E(X

i+1) ‘ i+1

. . Y
can be said about the optimal decision. It is clear therefore, that at
any stage i, the expected utility of continuing the search will be at least

as large as E(Xi+'l) or, equivalently, that
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-1, ,.-%

-3
[6;%-cjpql -

i ¥ [26]

x
V(pi) zp, +6

Now we can establish the following proposition.,

Proposition 5.1

Let A and B be two consumers who decide to search with recall the
market, and have the same loglinear wutility function and incur in the same
search costs., But consumer A—knows with certainty that P**A(ﬂ*,r*) while
consumer B believes that P"Aﬂn*,r*) and, not knowing with certainty m?,
believes that M* ~ A(W*, 7% ), where p* <=, 0 < ™ <®, 0 <r* <o, Let us
call UA consumer A's expected utility of following the optimal rule, and

UB consumer B's expected utility of following the optimal stopping rule.

Then
o< o®
Proof
From [11%] vd = B+ r-%.Y-1[r% el
B Aoq 2
From [26] U =2 p+ 68 % ¥ [6% °c1] .

TY
T+r

The fact that § = <r, and Y-l is strictly decreasing, completes the

proof.
This result is in sharp contrast with the one obtained when recall

was not allowed. And yet both results seem to be plausible. We do not have
to part company with our intuition to believe that the consumer will prefer

to have a more accurate information unless he has a way to get insured against
misconceptions. Such insurance does not exist when recall is not allowed.
When a price is rejected the consumer cannot go back to it even if further
observations convince him that he is very unlikely to find a price as goéd

as the one not accepted. But, when recall is allowed, if the consumer becomes
convinced that he was too optimistic when he rejected a price, he can always
go back to the store that quoted it and buy at the previously rejected price.

He is therefore protected against missing a good opportunity and he is more
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willing to pay the cost of further search and bet for a better price. Note
though that this does not mean that the consumer prefers to be kept in the
dark, or, to put it another way, that the consumer is willing to pay for not
receiving additional information. It has to be understood as indicating
that the consumer always prefers to get information suggesting that he is

wide off the mark to information pointing at the precision of his beliefs.

In the no recall case we talked of a consumer's preference for certainty.

We might now talk of the consumer's preference for uncertainty, or better

still, of the consumer's preference for insured uncertainty. It turns out,
therefore, that, in order to be able to make predictions about the consumer's
behavior when the price distribution is not known with certainty, it is
crucial to distinguish between the two polar cases of recall and no recall.
For example, from our results it follows that a better spread of informa-
tion will reduce the maximum expected utility if recall is allowed. But a
better spread of information in a market without recall will increase the
maximum expected utility. One has to conclude, therefore, that any state-
ment on optimal consumer behavior that fails to distinguish between those
two cases should be looked upon with extreme scepticism, if the consumer

is supposed to learn from the search. And since most practical cases fall
between the two extremes, one should be very cautious when applying the

results obtained in this chapter.
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II. Conclusion

Observing the work done under the prism of our ultimate interest in
describing the evolution of a market in which the agents have limited infor-
mation about some crucial parameters, we have to stress two results, both
ob tained when there is no learning on the part of the consumer(see[7ﬁ). O ne
indicates that as the price dispersion increases, the expected number of searches
increases, and this, one might anticipate, will reduce the price spread
through its impact on the price setters' decisions. The other result refers
to the monotone evolution of the reservation prices as the search proceeds.
Unfortunately, and this is quite impo;tant, the first result cannot be guar-
anteed, and the second can be shown to be false, when the consumer is not
certain about the price distribution and learns about it as he searches (the
adaptive case).

Not only do some results not carry over to the adaptive case, but the
exact opposites are obtained when we move from the non-adaptive to the adaptive
case. And so, for example, we observe how in the first case the consumer shows
a preference for price dispersion, while in the second he shows a preference
for price concentration. We cannot but conclude, therefore, that the non-
adaptive case is not in general a good approximation to the adaptive one.

And then, to give a last gloomy touch to the bleak panorama, we are
not even safe in the adaptive case. It appears that the distinction between
the situations with and without recall is in itself crucial. For example, we
observe that when recall is allowed the consumer has a preference for uncer-
tainty, while his preference is for certainty when recall is not allowed. But
then, one wonders how many real examples of clear cut cases of search with recall
or,for that matter, without recall can one think of, No matter how vivid
our imagination, we have to yield to the evidence that most real life instances are

impure migtures of the two cases, about which our results cannot shed much light!/

Caution, then, seems to be the password to enter the realms of the search problems.
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Lemicata

Lemma 1

e
(4]
.

Let X be a random variable with a d.f. F(x) for which the mean exist

Then, for any s e(-», @),

E[max(X, s)] = s + ] (x -s) dF(x) .
s
Proof
r-s n 0 rlco
E[max(X,s)] =s = dF(x) + ! ' x dF(x) = s[1 -] @]
- JS s
+ Jw x dF(x) = s + o (x -s) dF(x) ..
S s
Lemma 2

Let F be a distribution function on the real line for which a mean exists.

r o
Then g(s) = : (x=-s8) dF(x) -» <s <o, is a positive strictly decreasing

S

function of s, for any value of s such that g(s) # 0.

Proof

Using Leibniz' formula (see, e.g., Bartle [5] p. 307),
" @
g'(s) = - | dF® = -[F(]
s

which is negative as long as Pr(s < x < ») # 0, that is, as long as

g(s) #0.
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Lemma 3

Let F be the d.f.of a random variable x which is normally distributed with

mean p and precision T.
P oo 2 0O

Then (x=-8) dF(x) = T
‘s

nj=

- 1 .
(z=-7%(s -p)) ¥(2)dz, where z
TZ(s -1

is a standard normal random variable and ¢(z) is its p.d.f.

Proof

Applying the change of variable theorem for integral equations (see, e.g.,

Bartle [5] p.305)and the change of variable theorem for random variables

1
(see, e.g., Hoel [24], App. B) and calling z = (x - p)7?, the result is immediate.

Lemma 4

Let X1,...,Xn be a random sample from a normal distribution with an unknown
value of the mean I and a specified value of the precision r(r > 0). Suppose
that the prior distribution of M is a normal distribution with mean p and
Precision T such that - < p <o and T >0. Then the posterior distribu-

tion of I when Xi =x, (i=1,2,...,n) is a normal distribution with mean p’

and precision T + nr, where

p,’: M_;.

T+nr

See DeGroot [15], p. 167.

Lemma 5

Suppose that X.l,...,Xn is a random sample from a normal distribution with
an unknown value of the mean I and an unknown value of the precision R.
Suppose also that the prior joint distribution of Mand R is as follows:
The conditional distribution of M when R = r(r >0) is a normal distribution

with mean u and precision Tr such that -s < < ® and T > 0, and the
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marginal distribution of R is a gamma distribution with parameters & and B
such that @ >0 and B > 0. Then the posterior joint distribution of M|
and R when Xi =%, (i=1,...,n) is as follows: The conditional distribu-
tion of M when R = r is a normal distribution with mean p’ and precision
(T+n)r, where

: _ 'm+n';:

W T+n

and the marginal distribution of R is a gamma distribution with parameters

o+ (n/2) and B', where

To(x - u.)z

P , I
= L - .
P Pz, 2(T+n)

i=1 (xi -;)

See DeGroot [15] p. 169.

Lemma 6
Let X and Y be two random variables. Suppose that the d.f. of (X lYﬁr)
for - <y < @ is normal with mean y and precision 'r] and the marginal dis-

tribution of Y is normal with mean W and precision 'r2 . Then the marginal
T, T

distribution of X is normal with mean p and precision 'r: +21_2 .
Proof
Call o2 = 1/T, and 02 = 1/T
1 1 2 2
» N
EQO = EX|y) dFG) = 0y dFyG) =

On the other hand,
Var X = E(Var (X[Y) + var(E(X]Y)) (See, e.g., Lindgren [27] p. 119).

Therefore,

VarX=0’$+cr§ and Pre X = 1 2

To show that X is normal the appropriate integrals have to be computed.
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Lemma 7
p® ®

J (x+s) h(x) dx = s + J (x~s) h(x) dx for any - <3 < »,
-S s .

where h(<) is the p.d.f. of a standard normal distribution.

Proof
j (x+s) h(x) dx = j x h(x) dx + j s h(x) dx .
-8 -s -S

The first term of the sum is equal to

“xs n ',,(D

J._ % h(x) dx + J x h(x) dx = J x h(x) dx.
-8 s [}

The second term of the sum is equal to

0o -8 ] @©

s J h(x) dx = s h(x) dx = s1 - h(x) dx] = s - s h(x) dx .
T =8 - s’ s

Lemma &

E[M(Yi+1 , 0, Ti+ﬂl = vy + €1 i=0,15+40., is a continuous, strictly

increasing function of Ti+1? (Ti+13>0).

Furthermore

See DeGroot [15], p. 339 for an outline of the proof. Note that if the

i T, . . . e
cost of search is constant, since i+1 > Tl, then Y1+1 > Y1



Footnotes

1 * 1
Recall that a = exp(M +"—:;). B, the precision of the price
2r”

. . . . 1 2
distribution,is B = _E%E s where T = exp(l/r*) -1. See Aitchison and
(04

Brown [1]. Note that the certain knowledge of r* does not imply the certain
knowledge of B, the precision of the price distribution.

2 Data provided by Professor Scott Maynes. I should point out that
the statement in the text should be made with some caution since the price
data have not yet been, as Professor Scott Maynes made me observe, carefully
scrutinized. In any case, it is interesting to point out that they seem to
indicate that the spread between the minimum and maximum price observed is
much larger than suggested by Telser [46]. Let me add finally that a log-
normal fit seems adequate for the prices of life insurance policies as quoted
by Belth [6] in Tables 10 and 13.

Assuming that prices are distributed lognormally, we are accepting that prices
can conceivably be very close to zero. This is something that most empirical
data do not seem to grant. Therefore, one would prefer to constraint the
prices to be above some threshold £ > 0. This being so, a "three parameter
distribution" might be assumed where not the random variable p itself,
but the random variable p’ = p - €, is lognormally distributed. In a
similar vein, it would appear to be more realistic to constraint the prices
between two bounds £ <p <A, £ >0, 0<A<®, In that casea "four
parameter distribution' could be conveniently assumed, where the random
variable p” = p - €/ A - p would be distributed lognormally. (On these
matters see Aitchison and Brown [1].) Unfortunately by assuming that p!
or p”,is lognormally distributed many disturbing difficulties would arise,
since V(p) would not have an easily tractable distribution.

4'By a former MIT student.

3 This term has been used by Box and Tiao [8].

The unboundedness assumption is even more serious from purely logical
grounds. This is so since the expected utility hypothesis can be made only
if the utility function is bounded (see Arrow [4]). To bypass this difficulty
we can suppose that for the price of the i-th good there exists an ¢, >0
such that Pr(Pi < ei) =0, i=1,2,... m. But even simpler is to rule .

out St. Petersburg cases.
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7
DeGroot [15], pp. 337-38, gives the following proof. (The notation
has been changed to suit our needs.) From [13], [15] and [21] it follows that
2y )
TR L Ci4q]

M(zi, o, Ti) max[zi, E(M(Z

T.Z, rZ,
max[zi’ E(M(_l'._.lil i+l

T . ! - P ——— -
Ti+r > 1+]) 714-r ) Ci+1

)

and equation [22] follows.
This interpretation is taken from DeGroot [15], section 13.6.

9
We have no reason to call this property "stabilizing.'" And yet we
might presume that any convincing description of the market should yield
that increased search reduces the price dispersion.

10
On the so called "reservation price property" and its relation with

a downward sloping demand curve see Rothschild [40].

1-ltlot:hschild [41] has to make the assumption, and he shows his dissatis-
faction, that the seller cannot be certain of the effect of a change in the
price charged on the probability of a sale. But in the light of our results
this assumption is justified.

12For a different conclusion see Rothschild [40].

130r, using Rothschild [40] terminology, we can say that the "subjective
uncertainty" is related to the 'objective uncertainty" in a clearly determined
way. The smaller is the objective uncertainty, the greater is the decrease °
in the "subjective uncertainty" as the search proceeds.

lkLet the price mean for consumer A be oy - A(qz, TX) and for con-
sumer B be ~ AU, TR - = {u* 2 1 = {u¥* L
oy Mg » Tg) * E(@)= exp{y, +——} and E(ag) = exp{ug + =}
' ZTA ZTB

We assume that both consumers believe that the price mean distribution has
the same precision:

exp{-ZMK -1/T:} exp{-Zp; -1/T§}

Pre(aA) Pre(ah) =

exp[l/T:} -1 ) exp{1/T§} -1

1 1 1 . 1

E(0)) exp{l/TZ} -1 El@p exp{1/T§} -1
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Now,
E(x,) > E(a,) = 1* > 1* = 'r:>'r§.
A B exp{l/TA} -1 eXP{1/TB} -1
Since t, = /b2 (i=A,B) T, >T
i i H b H A B .
* %

* *
On the other hand TA>Tg T Wy >y,
s . _ * 1 .
since E(GA) > E(ah) , but since pi = g b(u.i E;;) (i=A,B) ,

p‘A<|J'Bo

Note that a result analogous to the one obtained in Chapter III would hold
if the price and price mean distributions were normal and the utility func-
tion linear on the price (see [7]).

5. .
It is not clear whether a decrease in the degree of uncertainty about the
Price mean leads, when the price mean does not change,to an increase in the
expected utility of the optimal search.

16
This result and the following should be contrasted with the proposition

obtained below where, allowing the consumer the recall privilege, he shows a
preference for uncertainty.

17
This is so since the expected utility, when information is complete, is

precisely the limit of the expected utility,with uncertainty of the price
distribution,when this uncertainty is reduced (see lemma 8). Note that it
is not always true, as one might be inclined to think, that a higher degree
of uncertainty implies that information has a higher value. On this matter
see Gould [221],

18
Diamond [17] points out the possibility of this behaviour, although

he observes that it is more likely in the early stages of search. But we
find precisely the opposite. A new side of the paradox?

19 See Chapter IIT, section 2.

20 See note 28.
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