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Targeting the Wrong Teachers:

Estimating Teacher Quality for Use in Accountability

Regimes

Nirav Mehta
University of Western Ontario ∗

July 10, 2014

Abstract

This paper compares the performance of popular estimators of teacher quality, which serve
as inputs into teacher incentive schemes. I model an administrator tasked with categorizing
teachers with respect to an exogenous cutoff, showing that the preferred estimator depends
on the relationship between teacher quality and class size. I then use data from Los Angeles
to show that the simpler fixed effects estimator would outperform the more popular empirical
Bayes estimator, meaning that the administrator would prefer to use it to either reward high-
performing teachers or sanction low-performing ones. The preferred estimator would create
200 fewer classification errors.

∗nirav.mehta@uwo.ca I thank Tim Conley, Steven Glazerman, Lance Lochner, Rachel Margolis, Henry May,
and Todd Stinebrickner for useful discussions pertaining to this paper, and the SSHRC Insight Development Grant
program for funding.
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The design and introduction of incentive pay schemes for teachers is a linchpin of education
policy reform. The vast majority of teacher remuneration is based on their experience and creden-
tials (Podgursky and Springer (2006, 2011)), but the fact that only a small amount of variation
in student achievement is explained by experience and credentials (Hanushek (1986), Goldhaber
and Brewer (1997), Rivkin et al. (2005)) has spurred a debate towards introducing incentive pay
for teachers. Recently, this debate has moved from theory into actual education policies affecting
large numbers of students and teachers, such as President Obama’s Race to the Top initiative
(McGuinn (2012)), or the TAP program, which has introduced performance-based bonuses to over
20,000 teachers serving over 200,000 students across the US.1

Correctly providing incentives in an environment where teachers may vary in both inherent
effectiveness and unobserved effort is a difficult contracting problem, which has caused existing
schemes to adopt several simplifications. First, student test score gains are assumed to separately
depend on teacher quality and other inputs, resulting in a value-added (VA) model (Hanushek
(1979)). Second, high-stakes schemes often take the form of cutoff rules that reward (punish)
teachers with estimated VA above (below) some cutoff. For example, Glazerman et al. (2011)
document that about half of the performance-based schemes drawing on the Teacher Improvement
Fund are based on cutoff rules.2 Finally, to create tractable schemes that can be implemented using
standard statistical software, decisions are typically based on either fixed effects (FE) estimates
of teacher VA or posterior means of teacher quality (“empirical Bayes” estimates (EB)). The EB
estimator is a weighted average of the FE estimator and the average quality amongst teachers being
compared under the incentive scheme (such as those in a school district or state), and is derived
by first positing a population distribution of teacher quality, which serves as a prior belief about
teacher quality, and then updating this prior with student achievement data using Bayes’ rule. In
one extreme, when no observations are associated with a particular teacher the posterior mean
is the same as the population mean (i.e. the mean of the prior distribution of teacher quality).
On the other hand, when an arbitrarily large amount of data is available for a teacher, the EB
estimator converges to the FE estimator and the prior receives no weight.3

Inferences about teacher quality that are based on finite samples are inherently noisy. Prac-
titioners often find the noisiness of such estimators unattractive, especially when they are used
to make high-stakes decisions like retention, promotion, or bonuses, because there may be a non-
negligible probability of making an error based on an estimator of teacher quality. For example,
American Federation of Teachers President Randi Weingarten said in a 2012 interview about re-
leasing VA scores to the public: “I fought against it because we knew value-added was based on a
series of assumptions and not ready for prime-time. But back then, we didn’t realize the error rates
could be as high as 50 percent!” (Goldstein (2012)). EB estimators are favored by many prac-
titioners and education researchers because they minimize the mean squared error; that is, they
reduce the variance in estimated teacher quality by putting positive weight on the more precisely
estimated mean of teacher VA for the relevant set of teachers, at the cost of introducing statistical
bias. McCaffrey et al. (2003) write “Early [value-added model] applications (for instance, Murnane,
1975, and Hanushek, 1972) primarily used fixed effects, while more recent applications (including
the TVAAS layered model) have used random effects almost exclusively” (McCaffrey et al. (2003),
page 64). Economics researchers (e.g. Rockoff (2004), Kane et al. (2008)) also routinely use EB
estimators in studies of teacher quality. However, there has been little guidance to date about

1http://www.tapsystem.org/
2More generally, Stiglitz (1991) and Ferrall and Shearer (1999) note that real world incentive schemes are often

simple in shape.
3The EB estimator is equivalent to a “random effects” model of teacher VA.
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which estimator policymakers should use.4

This paper compares the performance of FE and EB estimators, within the context of how they
are typically used in education policy. Remarkably, most existing comparisons of these estimators
adopt a statistical, not economic approach (see Section 1). Therefore, I first formalize an objective
function for an administrator, such as an education policymaker or school district superintendent,
tasked with identifying teachers above or below a certain level in the teacher quality distribution.5

This approximates the discrete nature of many pay-for-performance schemes as well as more austere
policies, such as firing teachers below some quality threshold. I assume the administrator is risk-
neutral and chooses a cutoff policy for each estimator to minimize a weighted sum of expected
Type I and Type II errors. Intuitively, her expected utility is equal to the expected probability
of correct classifications, making it natural to compare the estimators based on their expected
number of mistakes.6 Because FE and EB estimators differ only by how much they weigh teacher
fixed effects, where the weights depend on how many students are assigned to teachers, I compare
the performance of FE and EB estimators, allowing the administrator to choose a cutoff policy
to maximize her expected objective. Endogenous cutoff policies are important because it seems
reasonable to allow the administrator to choose a threshold based on the distribution of estimates.7

This paper contains theoretical and quantitative findings that are relevant for administrators,
education policymakers, and researchers wishing to correctly categorize teachers with respect to a
threshold. The theoretical finding is that the relative performance of the FE and EB estimators
depends on both the desired cutoff and the relationship between teacher quality and class size.
The estimators perform equally well when class size is independent of teacher quality, because the
EB estimator shrinks all teachers towards the population mean by the same proportion, which
preserves the rankings of teachers. However, if principals would like to shift students away from
the lowest quality teachers or assign the highest quality teachers to teach small classes of gifted
students then class size may depend on teacher quality (e.g. Lazear (2001)), causing the relative
performance of FE and EB estimators to diverge. To see why, consider a comparison between
two teachers who are both of below-average quality. If higher quality teachers are assigned more
students, EB estimators will put more weight on their students’ test score gains and less weight on
the population mean of teacher quality, relative to low-quality teachers assigned fewer students.
In the extreme scenario where all but one student in a large school are assigned to a high quality
teacher, both estimators for that teacher converge to the true value while the EB estimator for a
low-quality teacher will likely be close to the population mean of teacher quality. Therefore, the EB
estimator is likely to determine that the low-quality teacher is better. I show that the performance
of FE and EB estimators differs most at the tails of the distribution of teacher quality under
several plausible scenarios. This divergence is important if we seek to identify either very low- or
high-performing teachers, even in the case where only a small number of teachers reside in the

4It is important to note that the estimators considered here may already have conditioned on variables such as
class size; the key difference between the FE and EB estimators is not on how to calculate the sample mean of
a teacher’s student achievement growth (FE) that feeds into the estimate, but rather on how much to weigh the
sample mean versus population information about teacher quality.

5I refer to “quality” and VA interchangeably.
6Risk-neutrality is a useful benchmark for several additional reasons. First, it may be a priori reasonable to

assume risk-neutrality for an administrator classifying an extremely large number of teachers because there would
not be a large degree of sampling variation in the administrator’s objective. Second, I do not know of any work
estimating the degree of risk-aversion for an administrator tasked with a similar problem in the same context, so
there is no guidance as to what to use. Third, seminal theoretical work (e.g. Lazear and Rosen (1981) and Green
and Stokey (1983)) assumes that the principal is risk-neutral. Finally, though the EB estimator would be preferred
by an administrator with a quadratic loss function, there is no reason to believe this appropriately characterizes her
degree of risk aversion, even were her loss function continuous.

7As I show later, in some cases this may allow her to obtain the same objective value under both estimators.
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tails.8

I then use the developed model to quantify the prospective performance of the estimators in
the Los Angeles Unified School District, the second-largest school district in the US, and a district
with a large degree of diversity and variation in both student achievement and class size. Because
the model highlights the importance of the relationship between teacher quality and class size,
first I make another contribution by documenting this relationship, using teacher VA estimates
provided by the LA Times (Buddin (2011)). I then solve the model to examine the relative
performance of FE and EB estimators using values calibrated from Schochet and Chiang (2012)
and the relationship I document between teacher quality and class size. I do this by solving for
optimal policy cutoffs under both FE and EB estimators over the entire population of teachers, to
approximate the objective of an administrator considering implementing a district-wide incentive
pay scheme for a wide range of desired cutoffs. Student achievement for the average teacher in
LA is about equal parts signal and noise, making it difficult for the administrator to categorize
teachers with respect to an exogenous cutoff. The key finding is that the FE estimator performs
better than the EB estimator for almost every desired cutoff. That is, the FE estimator would
be preferred by an administrator wishing to minimize mistakes in rewarding high-quality teachers
with bonuses or sanctioning low-quality teachers. In particular, I find that the administrator would
make at least 200 fewer classification errors by switching from the empirical Bayes to the fixed
effects estimator to categorize teachers as being in the bottom or top 1% in Reading in the Los
Angeles Unified School District. Though this may represent a small fraction of teachers in Los
Angeles, the recent public outcry about a case where VA scores was incorrectly calculated for 40
teachers in Washington DC, which resulted in at least one firing (Strauss (2013)), suggests that
the public would also be concerned about misclassifying an even larger number of teachers in LA.

Motivated by the quantitative results showing the choice of estimator is an important compo-
nent of an incentive scheme, I review existing incentive schemes and find that it is often difficult
to discern the methodology used. Appendix A summarizes 15 existing teacher incentive schemes
that are based in part on VA. Most of the schemes use cutoff rules to assign bonuses. More than
half of the schemes base bonuses on VA models of student achievement, and almost 90% of those
use EB estimators in their calculation of teacher VA. Strikingly, about one fifth of the schemes
do not even specify how student achievement is mapped into teacher bonuses. A corollary of the
quantitative result is that, because the choice of estimator matters, teacher incentive pay programs
should indicate exactly how student achievement enters bonus assignment or personnel decisions.

1 Related Literature

VA models are the workhorse of existing teacher incentive schemes and education research. Due
to their pervasiveness, I take the use of VA models as given, and examine how the most commonly
used estimators of VA perform when the underlying technology is consistent with a VA model.
Therefore, the focus of this paper differs from that of the wide body of research studying how
effectively VA models measure teacher quality. Baker and Barton (2010), Guarino et al. (2012a),
Glazerman et al. (2010), and McCaffrey et al. (2003) highlight general problems with VA estimation
and the use of VA estimates in policy. Value-added models are a restricted form of a more general
production technology for cognitive achievement (Todd and Wolpin (2003)), and many authors
have tested these restrictions to determine whether they are good measures of teacher quality,
with mixed results. First, some authors have compared estimates of teacher VA with and without
random assignment of students to teachers (Kane and Staiger (2008)) or with subjective ratings of
teacher effectiveness (Jacob and Lefgren (2005)), surmising that VA models do a reasonably good

8In 2010, the former Washington D.C. Schools Chancellor Michelle Rhee fired 241 teachers based on performance
measures (Turque (2010)). Hanushek (2011) quantifies how replacing teachers at the bottom of the estimated quality
distribution would affect student achievement and, ultimately, economic output.
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job of measuring teacher quality. Second, there is also concern that VA models do not condition
on sufficiently rich information about household or other inputs (Rothstein (2009, 2010), Andrabi
et al. (2011)), though evidence is mixed here as well (Kinsler (2012), Chetty et al. (2013)). Bond
and Lang (2013) question whether VA should be ascribed any cardinal meaning at all, noting that
monotonic transformations of test scores can eliminate growth in the black-white reading test score
gap. This paper does not contribute to this literature. Rather, because existing schemes make
such extensive use of them, I take as given the underlying assumptions of the VA framework and
study the much less understood question of which estimator to use within the VA framework.

Although many studies test the statistical validity of VA models, none compare how different
estimators of VA perform from the perspective of a utility-maximizing administrator. This paper
contributes to this literature by showing when different estimators would be preferred by an ad-
ministrator, and computing the preferred estimator using an existing dataset for a large US school
district. Comparing these estimators is crucial, given the dominant role VA models and these
estimators play in policy. This paper is most closely related to Schochet and Chiang (2012), which
calculates error rates for FE and EB estimators of teacher quality, assuming the same cutoff policy
for both estimators. There are two salient contributions of this paper, relative to Schochet and
Chiang (2012). First, I embed the analysis within an economic decision problem, as opposed to
the hypothesis-testing framework used in Schochet and Chiang (2012), and Second, I allow class
sizes to depend on teacher quality, which as demonstrated later can drive a wedge between the
performance of the FE and EB estimators. Tate (2004) notes that ranks formed by FE and EB
estimates may differ, depending on class size, but does not embed the analysis within a decision
problem. In contrast, this paper offers guidance about which estimator would be preferred by a
utility-maximizing decision maker, and computes the preferred estimator using an existing dataset.
In a paper with a different focus, Guarino et al. (2012b) compare the performance of FE and EB
estimators, with a focus on how they perform when students are not randomly assigned to teachers.
Guarino et al. (2012a) compare the performance of FE and other estimators of VA, but do not
consider EB estimators because they assume all teachers have the same class sizes (implying that
EB estimates are FE estimates times a constant). This paper’s contributions relative to Guarino
et al. (2012a) is first showing in Section 2.1 that the estimators perform equally well when all
teachers have the same class size, and then demonstrating how the relationship between teacher
quality and class size can affect the relative performance of the estimators.

Finally, this paper also relates to the literature viewing teacher payment as a contracting prob-
lem, where the administrator chooses the contract that induces the most effort given that she
observes only a noisy measure of output (such as scores on standardized tests). Lazear and Rosen
(1981) and Green and Stokey (1983) study optimal incentive schemes when worker effort is noisy
and there may be aggregate shocks, finding that tournaments can provide proper incentives to
workers. Hölmstrom and Milgrom (1991) focuses on providing incentives when an agent may split
his effort on two types of tasks, only one of which admits a measure. Barlevy and Neal (2012)
combines the earlier literature on tournaments and the multitask problem of Hölmstrom and Mil-
grom (1991) to specifically study the context of making comparisons between teachers. In contrast,
in order to most closely match existing incentive schemes this paper assumes the administrator is
following a cutoff rule, without proving that such a contract is optimal.9 Therefore, this paper com-
plements this literature by taking the distribution of teacher quality and choice of incentive scheme
as given, and instead asks how commonly used estimators meet the administrator’s objectives.

9Teacher risk-aversion will likely shape optimal incentive schemes based on high-stakes tests (Nadler and Wiswall
(2011)), which the assumption of identifying teachers in a critical region likely rules out.
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2 Model

A large body of empirical work evaluates VA models and compares the statistical properties of
FE and EB estimators. However, determining which would be the preferred estimator for making
decisions about rewarding or punishing teaches requires an economic model that posits an objective
function for a decision maker, in this case, a school district administrator. To this end, I develop
a simple model of the administrator’s problem in this section.

The model formalizes the objective of a school-district administrator for one year; characterizes
her optimal cutoff policy; and shows the relationship among i) how class size varies with teacher
quality, ii) her choice of estimator, and iii) her expected utility. To most closely match observed
bonus and/or retention policies, she takes as given an exogenous desired cutoff κ (for example, she
is told to give bonuses to the top 5% quality teachers or to fire the lowest 1% quality teachers in
the district) and chooses a cutoff policy, which varies by estimator type, to maximize her expected
objective over all teachers in the district. My assumption that the administrator chooses estimator-
specific cutoff policies differs from that in Schochet and Chiang (2012), who assume a fixed cutoff
common to both estimators. The administrator receives utility from correctly rewarding a teacher
with true quality equal to or higher than desired cutoff κ (not making a Type I error) and not
rewarding a teacher with a true quality below κ (not making a Type II error). The administrator’s

utility from using the estimator θ̂ and cutoff policy c on a teacher of true quality θ is:

u(θ, θ̂; c, κ) = α1{θ̂ ≥ c ∩ θ ≥ κ}︸ ︷︷ ︸
Not making Type I error

+(1− α) 1{θ̂ < c ∩ θ < κ}︸ ︷︷ ︸
Not making Type II error

,

where α, (1− α) are her weights on not making Type I and II errors, respectively.
Teacher quality is distributed according to θi ∼ F = N

(
0, σ2

θ

)
, where F is known.10 The

number of students assigned to teacher i, ni, may depend on the teacher’s quality. For example, a
school principal may want to assign more students to a better teacher, or may assign the highest
quality teachers to teach small groups of gifted students. For simplicity, I assume that class size is
only a function of θ, where I sometimes explicitly denote this dependence by writing n(θ).11 If class
size were instead a noisy signal of teacher quality, the model solution would be more complicated,
while not affecting which estimator the administrator would prefer. Moreover, I do not have data
on the strength of principals’ signals of teacher quality.

The test score gain for student j assigned to teacher i is yji = θi + εji, where measurement
error εji ∼ N

(
0, σ2

ε

)
and εji ⊥⊥ θi. I only adopt this simple technology for exposition in the current

section; the VA estimates used in the quantitative portion of this paper control for many other
characteristics. The fixed-effects (FE) estimator of θi is the sample mean, i.e., θ̂FEi =

∑
j
yji
ni

=

θi + εi, and is distributed according to θ̂FEi ∼ N
(
θi,

σ2
ε

ni

)
. The empirical Bayes (EB) estimator of

teacher VA updates the prior (i.e. population) distribution of θi with data {yji}j . Because both
the prior distribution and measurement errors are assumed normal, the posterior distribution is

also normal, giving θ̂EBi = λiθ̂
FE
i + (1−λi) E [θ]︸︷︷︸

0

= λiθ̂
FE
i = λi(θi+ εi), where λi =

σ2
θ

σ2
θ+σ2

ε/ni
is the

ratio of the true variation in teacher quality (the signal) relative to the estimated variation using

10I follow the standard assumptions that teacher quality is normally distributed in the population, and that E [θ]
is normalized to 0 and estimated with infinite precision.

11If the number of students assigned to a teacher is a deterministic and strictly increasing function of teacher
quality, teacher rankings could be recovered perfectly by comparing class sizes. Therefore, I assume that the
administrator cannot perfectly recover quality rankings through class size rankings. In addition to complicating the
scheme, which may reduce its attractiveness to policymakers, including n(θ) in the estimator would provide school
principals with a direct incentive to manipulate class size, outside any effects of class size on total output.
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the FE estimator (the signal plus noise).12 Hereafter, I express the dependence of the weights on
class size by writing λ(n(θ)), λ(ni), or λ(θ), depending on which is more convenient. Note that
how much the EB estimator is shifted towards the population mean depends on ni; λ(ni)→ 1 as
the number of students observed for a teacher ni increases, causing all the weight is shifted to the
FE estimator. Also note that, though the EB estimate for a particular teacher’s quality is biased

(E
[
θ̂i
EB
]

= λ(θ)θi 6= θi), the EB estimator for population teacher quality is unconditionally

unbiased (Eθ

[
θ̂i
EB
]

= Eθ [θi] = 0).

Expected utility under the fixed effect estimator and cutoff policy cFE integrates the adminis-
trator’s objective over the distributions of teacher quality and measurement error:

Eθ,ε

[
u(θ, θ̂FE ; cFE , κ)

]
= αPr{θ̂FE ≥ cFE ∩ θ ≥ κ}+ (1− α) Pr{θ̂FE < cFE ∩ θ < κ}

= αPr{θ + ε ≥ cFE ∩ θ ≥ κ}+ (1− α) Pr{θ + ε < cFE ∩ θ < κ}

= α

∫ ∞
κ

1− Φ

(
cFE − θ
σε(n(θ))

)
dF (θ|θ ≥ κ) + (1− α)

∫ κ

−∞
Φ

(
cFE − θ
σε(n(θ)

)
dF (θ|θ < κ), (1)

where σε(n(θ)) ≡ σε√
n(θ)

and F (θ|θ ≥ κ) = φ(θ/σθ)
σθ(1−Φ(κ/σθ)) and F (θ|θ < κ) = φ(θ/σθ)

σθΦ(κ/σθ) are the

distribution functions for θ, truncated below and above κ, respectively. Expected utility under the
empirical Bayes estimator and cutoff policy cEB is

Eθ,ε

[
u(θ, θ̂EB ; cEB , κ)

]
= αPr{θ̂EB ≥ cEB ∩ θ ≥ κ}+ (1− α) Pr{θ̂EB < cEB ∩ θ < κ}

= αPr{λ(n(θ))θ̂FE ≥ cEB ∩ θ ≥ κ}+ (1− α) Pr{λ(n(θ))θ̂FE < cEB ∩ θ < κ}

= α

∫ ∞
κ

1− Φ

 cEB

λ(n(θ))
− θ

σε(n(θ))

 dF (θ|θ ≥ κ) + (1− α)

∫ κ

−∞
Φ

 cEB

λ(n(θ))
− θ

σε(n(θ))

 dF (θ|θ < κ).

(2)

For either estimator, an increase in the cutoff policy c decreases the probability of correctly
identifying a teacher with true quality above κ and increases the probability of correctly identifying
a teacher with true quality below κ. The optimal cutoff solution equates the marginal increase in
the probability of committing a Type I error (marginal cost) with the marginal decrease in the
probability of committing a Type II error (marginal benefit). That is, c∗EB solves

α

∫ ∞
κ

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
dF (θ|θ ≥ κ)

= (1− α)

∫ κ

−∞

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
dF (θ|θ < κ). (3)

The optimal cutoff for the FE estimator c∗FE solves (3), where λ(θ) = 1,∀θ. Denote the
value to the administrator of using the optimal cutoff policies c∗FE and c∗EB as vFE(κ) =

Eθ,ε

[
u(θ, θ̂FE ; c∗FE , κ)

]
and vEB(κ) = Eθ,ε

[
u(θ, θ̂EB ; c∗EB , κ)

]
, respectively. The administra-

tor’s value for both estimators is increasing in the signal to noise ratio σθ/σε: as the variance of
the measurement error tends to 0, σε → 0, and all teachers will be correctly categorized, giving
vFE(κ) = vEB(κ) = 1,∀κ (see Appendix B for the proof).

12McCaffrey et al. (2003) discusses the differences between FE and EB estimators. The EB estimator is pervasive
in part because it minimizes mean squared error, i.e. it would be preferred by an administrator with a quadratic
loss function. However, it is not clear that this is exactly how risk aversion should be modeled in this context.
First, the administrator’s loss function is not continuous in the model. Second, the administrator may be tasked
with classifying an extremely large number of teachers, meaning that sampling variation in her classification errors
may plausibly average out due to the weak law of large numbers. Finally, if there were only a small number of
teachers being considered the population mean E [θ] itself would not be precisely estimated, reducing the difference
in variances between the FE and EB estimators.
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2.1 Theoretical Results

I now characterize the administrator’s value of using each estimator as a function of the relationship
between teacher quality and class size. Proposition 1 shows that if there is no relationship between
teacher quality and class size, the administrator’s expected value is the same under both estimators.
Next, I consider the case where class size depends on teacher quality. Proposition 2 shows that,
in general, the administrator’s expected value of the two estimators depends on the relationship
between class size and teacher quality.

Proposition 1. The administrator receives the same value from both estimators for any desired
cutoff when class size is constant.

Proof. If all classes are the same size then λ(n(θ)) = λ ∈ (0, 1),∀θ. Let c∗FE satisfy the ad-
ministrator’s first-order condition (3) when λ = 1. Because λ is constant, then c∗EB = c∗FEλ
also solves (3), and returns the same value (vFE(κ) = vEB(κ)); i.e. the maximized value of the
administrator’s objective is the same for both the FE and EB estimators.

Figure 1 illustrates Proposition 1 by plotting the expected utility of the objective under the
FE estimator (solid red line) and the EB estimator (dotted blue line) as a function of the cutoff
policy for each estimator (x-axis), assuming the same class size for all teachers. Each curve traces
out the administrator’s expected utility as a function of cutoff policies, given an exogenous desired
cutoff quality κ. The left panel corresponds to a desired cutoff of the first percentile teacher, i.e.
κ = F−1(0.01), the middle panel corresponds to a desired cutoff of median teacher quality, i.e. κ =
F−1(0.50) and the right panel corresponds to a desired cutoff of the 95th percentile teacher, i.e. κ =
F−1(0.95). Extremely low or very high cutoff policies cause both estimators to misclassify either
all low- or high-performing teachers, respectively, which is why the administrator’s expected utility
is 1/2 at either extreme. The utility-maximizing cutoff policy for each estimator is indicated by a
vertical line c∗estimator(κ), where the administrator’s value from using that estimator, v∗estimator(κ)
is the maximum of each curve. Because the curves for both estimators obtain the same maximum
height in each panel, we can see that these are equal when class size does not vary by teacher
quality (i.e. λ(n(θ)) is constant). The utility-maximizing cutoff policy adjusts to take into account

the larger variance of administrator utility under the FE estimator. This is because if c∗FE = c∗FE

1
solves (3), |c∗EB | must be smaller than |c∗FE | to satisfy equation (3) if λ < 1 for the EB estimator.
In the case where class size is constant, the optimal cutoff policies for both estimators are at the
same quantiles of the estimator distributions, that is, the same share of teachers are rewarded
under both estimators. For example, when the desired cutoff is the 1st percentile quality teacher,
the cutoff policy that maximizes expected administrator utility when FE are used for inference
is further to the left than when EB are used (Figure 1a). Alternatively, when the administrator
desires to separate the top 5% (95th percentile) from the rest of teachers, the optimal cutoff policy
under the FE estimator is higher than that under the EB estimator, again due to the larger
variance of the FE estimator for teacher quality (Figure 1c). This higher variance does not affect
the maximal value of the administrator’s objective (maximum height of each curve), however,
because the administrator is risk neutral.

Proposition 2 considers the case where class size may depend on teacher quality.

Proposition 2. In general, the administrator’s preferred estimator depends on the relationship
between teacher quality and class size.

Proof. Because λ is increasing in n, to simplify the exposition I parametrize the EB weights λ
directly as a function of θ, and then see how changes in this function would affect the adminis-
trator’s utility from using the EB estimator. In particular, I assume there is one slope for the
relationship between teacher quality and weight below the population mean, and another slope

8



Figure 1: Administrator’s objective, assuming constant class size
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for the relationship above the population mean. Furthermore, I set σε = 1 for all teachers for the
proof of the current proposition, which does not affect the qualitative result.13 Let the reduced
form for the EB weight be

λ(θ) =

{
δ− + β−θ if θ < 0

δ+ + β+θ if θ ≥ 0.

Suppose κ < 0, which implies c∗EB < 0. The result holds if κ > 0, using analogous reasoning.
The administrator’s value function is∫ κ

−∞
Φ

(
c∗EB

δ− + β−θ
− θ
)
dF (θ|θ < κ)+

∫ 0

κ
Φ

(
θ −

c∗EB

δ− + β−θ

)
dF (θ|θ ≥ κ)+

∫ ∞
0

Φ

(
θ −

c∗EB

δ+ + β+θ

)
dF (θ|θ ≥ κ).

(4)

Differentiate with respect to β−:

∂v

∂β−
=

[∫ κ

−∞

−c∗EBθ
(δ− + β−θ)2

φ

(
c∗EB

δ− + β−θ
− θ
)
dF (θ|θ < κ)

]
+

[∫ 0

κ

c∗EBθ

(δ− + β−θ)2
φ

(
c∗EB

δ− + β−θ
− θ
)
dF (θ|θ ≥ κ)

]
,

where ∂c∗EB

∂β−
= 0 due to the Envelope Theorem. The first term is positive because −c∗EBθ < 0 for

θ < κ. Analogously, the second term is negative. Each term is the conditional mean of c∗EBθ
(δ−+β−θ)2

,

except weighted by the density φ
(

c∗EB

δ−+β−θ
− θ
)

. Typically, the first term dominates, because

it represents the conditional mean for the distribution of c∗EBθ
(δ−+β−θ)2

for the extreme part of the

distribution of θ, while the second term is the conditional mean for the distribution of θ that is
closer to the population mean of 0. If the first term dominates then the administrator’s value is
decreasing in β−, i.e. the stronger the increase in class size from teacher quality. Analogously,
by differentiating equation (4) with respect to β+, we can see that the administrator’s objective
is increasing in β+, meaning that increasing the weight associated with teacher fixed effects for
teachers above the population mean improves the administrator’s objective. Note that reducing
the slope of class size in teacher quality for below-average teachers and increasing the slope of
class size in teacher quality for above-average teachers improves the administrator’s utility from
using the EB estimator. In particular, if β− > 0 and β+ < 0, the FE estimator will provide the
administrator with higher expected utility.

13I allow σε to vary between teachers in the quantitative exercise.
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Figure 2: Administrator’s objective, assuming class size increasing in teacher quality
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Figure 2 illustrates Proposition 2. Analogously to Figure 1, it plots the administrator’s objective
under both estimators ((1) and (2)) against cutoff policies (x-axis), but now under the assumption
that class size is an increasing function of teacher quality. When class size is increasing in teacher
quality, lower quality teachers are weighted closer to the population mean than higher quality
teachers. If the administrator desires to separate the lowest quality teachers from the rest (Figure
2a), the re-weighting inherent in the EB estimator can actually reverse teacher rankings and lead to
a lower expected objective for the administrator than when the FE estimator is used. The opposite
is true for when the administrator wishes to separate the top teachers from the rest (Figure 2c)
– the peak of the EB curve is now higher than that under the FE estimator. Intuitively, the EB
estimator is now dilating the estimated teacher quality further than the FE estimator, reducing
the probability the administrator makes a ranking error. When the administrator only desires
to separate the upper and lower half quality teachers (Figure 2b), FE and EB both obtain the
same maximum height, i.e. they return the same expected objective. An increase in either δ·
corresponds to an increase in σθ/σε, i.e. an increase in the signal to noise ratio. Intuitively, an
increase in the signal provided by student test scores increases λ, reducing the dependence of the
weight on teacher quality.

Figure 3 summarizes the theoretical results by comparing the performance of the estimators
by plotting the ratio in value functions for the administrator (vFE(κ)/vEB(κ)) as a function of
the desired cut percentile F (κ) (x-axis), for scenarios where class size is constant, increasing in
teacher quality, negative quadratic in teacher quality, and positive quadratic in teacher quality.14

For each κ, estimator, and class size scenario, I solve for the administrator’s optimal cutoff policy
and plug it into her objective, returning vestimator(κ). The vertical axis then plots vFE/vEB

corresponding to the desired cutoff associated with the desired cut percentile F (κ). As shown
before, when class size is constant (solid black line), the EB cutoff is just a scaled version of the
FE cutoff and the administrator’s value is the same under FE and EB estimators. When class
size is increasing in teacher quality (short-dashed red line), the FE estimator performs better than
the EB estimator when the administrator wishes to separate teachers of low quality from the rest
(Figure 2a), while the EB estimator performs better when the administrator wishes to isolate high-
quality teachers (Figure 2c). When class size has a negative quadratic relationship with teacher
quality (dot-dashed blue line, similar to the case in Proposition 2 where β− > 0 and β+ < 0), it is

14The population average class size is the same for all four scenarios.
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Figure 3: Difference between administrator’s objective under FE and EB, by class size scenario
and desired cut point
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increasing when teacher quality is low and decreasing when teacher quality is high; in the example
considered in Figure 3, the FE estimator outperforms the EB estimator at both the lowest and
highest desired cutoffs. Finally, when class size is a positive quadratic function of teacher quality
(long-dashed brown line), the opposite is true. Figure 3 also demonstrates that the difference
between the performance of FE and EB estimators decreases the closer the desired cut point is
to the population mean of 0. Intuitively, there is less of a difference between both the estimates
resulting from the FE and EB estimators and the estimator-specific optimal cutoff policies when
the administrator seeks to identify teachers as being on either side of the population mean (see
Appendix C for the proof).

3 Quantitative Results

In this section, I quantify the relative value the administrator would receive from using the FE vs.
EB estimators using data from the Los Angeles Unified School District, the second-largest school
district in the US.15 I assume the administrator wishes to categorize all teachers in the district with
respect to an array of desired cutoffs in the district-wide distribution of teacher quality. Although
such an incentive scheme is not currently in place in Los Angeles, this exercise serves as a useful
benchmark for how the FE and EB estimators might perform when used in a similar incentive pay
scheme.

The model shows that the difference in the administrator’s value depends on the variances of
teacher quality σ2

θ and the test score measurement error σ2
ε and the relationship between teacher

quality and class size, n(θ), implying that it is necessary to obtain values for these objects to
compare the performance of the estimators. Schochet and Chiang (2012) compile estimates of the

15Imberman and Lovenheim (2013) use these data in their study of the market’s valuation of VA results.
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variances from a large number of studies in their study of error rates in VA models, providing a
good source for typical values for σ2

θ and σ2
ε (see Appendix D). The parameter values indicate that

the variance of the measurement error is about 20 times the size of the variance of teacher quality,
implying that student achievement for the average teacher in LA is about equal parts signal and
noise. Therefore, it is difficult to correctly classify teachers. I obtain estimates of n(θ) from VA
estimates provided by the LA Times, described below.

In 2011, the LA Times published the results of a RAND Corporation study estimating VA
for 30,000 teachers serving almost 700,000 students (Buddin (2011)).16 The dataset contains esti-
mated VA for 3rd to 5th grade teachers in both reading and math and class sizes which condition
on several variables, including past performance of students, student characteristics such as race,
gender, English proficiency and parents education, and classroom composition (past performance
of classmates and their student characteristics as well).17 In addition to describing the relationship
between teacher quality and class size, which is critical to compare the performance of the estima-
tors, the distribution of VA estimates from the RAND study are comparable to those in Schochet
and Chiang (2012).18 The sample average class size is 22 students, with a standard deviation of 5
students.

Ideally, n(θ) would be known and fed into the administrator’s problem. In practice, only

estimates of n(θ), denoted by n̂(θ̂), are available from the RAND study. Because of the point of
this paper is to illustrate the difference in value when there is a very large number of teachers,
the noisiness in this relationship is not of concern. Unfortunately, it is not clear which estimator
was used in the data provided by the RAND study.19 If FE were used in the RAND study, the
shape (i.e. first and second derivatives) of the relationships between n(θ̂FE) and n(θ) would be
the same for all θ because the FE estimator is unbiased. However, it is potentially concerning if
the estimates were computed using an EB estimator, given that the point of this paper is that
differential shrinking may affect rankings of estimated VA, which may cause them to inaccurately
characterize the relationship between true teacher quality and class size. I am able to show that
the variation in class sizes in the data is not large enough to overturn the qualitative relationship
between teacher quality and class size, even if biased EB estimates of teacher quality were used
to recover it. Crucially, the calibrated values of error variances from Schochet and Chiang (2012)
imply that λi is not variable enough to overturn the relationship I estimate between teacher quality
and class size (see Appendix E for details).

The data show that, on average, teachers at either end of the distribution of reading VA have
the smallest class sizes, while those in the middle of the distribution have the largest class sizes.
20 This pattern can be seen in Figure 4, which plots non-parametric regressions (solid blue lines)
of class size on estimated teacher VA for reading (4a) and math (4b). Table 1 shows the results

16http://projects.latimes.com/value-added/
17The results do not qualitatively change when VA estimates from other specifications, which control for strict

subsets of the above characteristics, are used instead.
18The distribution of VA in the RAND data have means of 6.4E-11 and 1.3E-10 and variances of 0.038 and 0.083

for reading and math VA, respectively. Because the quantitative results combine data from the RAND study and
parameter values calibrated from other datasets, the fact that these parameters are similar across the two types of
sources lends validity to the quantitative results.

19Briggs and Domingue (2011) note that the methodology used to shrink VA estimates was not made clear in the
technical report.

20I use annual data for class sizes, which is consistent with the view that a teacher’s quality may change over
the course of his/her career. Some authors have suggested using multiple years of student achievement growth to
measure teacher VA (e.g. Kane and Staiger (2008), McCaffrey et al. (2009), Koedel and Betts (2011)). Although
this would increase precision if teacher quality were unchanging, this would rule out any role of merit pay schemes
to affect the productivity of current teachers, and further implies that changes in teacher quality can only be
implemented by affecting sorting into and out of the profession of teaching. Even if it were appropriate to use data
from multiple years, these simulation results apply to education systems that have only recently begun to collect
and make available administrative data on student achievement. President Obama’s Race to the Top education
reform package incentivizes states to collect and make available results from standardized test scores.
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Figure 4: The relationship between class size and teacher quality
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of regressions of teacher class size on teacher quality and teacher quality squared. The first two
columns are for reading and the second two are for math. The dotted black lines on Figure 4 shows
the regression line fit for models in columns (1) and (3). Columns (2) and (4) are the same as
regressions in (1) and (3), respectively, but exclude teachers whose estimated quality is more than
two standard deviations from the population mean. The results from this table indicate that class
sizes are indeed increasing in VA in the lowest part of the distribution and decreasing in VA in the
highest part of the distribution. The relationship is not as clear for math VA, but the regression
shows that class size first increases and then decreases for reading VA, with a negative quadratic
term for math VA. The results from this table indicate that class sizes are indeed increasing in VA
in the lowest part of the distribution and decreasing in VA in the highest part of the distribution
in most of the regressions. Strikingly, the observed relationship between teacher quality and class
size is the worst case scenario for the EB estimator, as outlined by Proposition 2.

Figure 5 plots the ratio of the administrator’s maximized expected objective under the FE
and EB estimators for Reading (solid black line) and Math (dotted red line), using the calibrated
parameter values and estimated relationship between teacher quality and class size. The left
panel (5a) plots the gain in expected value (vFE(κ)/vEB(κ)) to switching from the EB to the
FE estimator, for cutoff percentiles ranging from the lowest to the highest teacher qualities. The
right panel (5b) plots how many more expected mistakes the EB estimator would make than
the FE estimator, assuming the Los Angeles school district employed 30,000 teachers.21 We can
see that the quadratic nature of the association between teacher quality and class size affects
the relative performance of the FE and EB estimators in the way demonstrated by Proposition
2. The stronger negative quadratic relationship between teacher quality and class size in the
Reading test causes the larger divergence between the expected value of using FE rather than EB
estimators. The administrator’s value function is higher almost everywhere when she uses the FE
estimator of teacher VA, and the relative performance of the EB estimator is the worst at the
extremes of the distribution of teacher quality, where using FE gives the administrator 1% higher
expected objective, corresponding to the EB estimator making over 200 more mistakes than the FE
estimator when Reading scores are used. The administrator’s expected values from using the FE
and EB estimators are comparable as the desired cutoff approaches the center of the distribution
of teacher quality, as was the case in Figure 2, where class size was increasing in teacher quality. In

21The Los Angeles school district is the second-largest in the US. Though the VA data I am using cover 30,000
teachers, more than 45,000 worked in the district in 2007 (http://en.wikipedia.org/wiki/Los_Angeles_Unified_
School_District).
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Table 1: Regressions of class size on teacher quality

Dependent variable: Class size

(1) (2) (3) (4)

Reading 0.618∗∗∗ 0.650∗∗∗

quality (0.139) (0.167)

Sq. Reading −6.801∗∗∗ −11.180∗∗∗

quality (0.368) (0.834)

Math 0.060 −0.008
quality (0.092) (0.109)

Sq. Math −1.014∗∗∗ −1.527∗∗∗

quality (0.212) (0.370)

Constant 22.609∗∗∗ 22.736∗∗∗ 22.434∗∗∗ 22.467∗∗∗

(0.030) (0.035) (0.032) (0.035)

Observations 36,125 34,407 36,125 34,372
R2 0.009 0.006 0.001 0.0005
F Statistic 170.442∗∗∗ 99.271∗∗∗ 11.442∗∗∗ 8.535∗∗∗

(df = 2; 36122) (df = 2; 34404) (df = 2; 36122) (df = 2; 34369)

∗∗∗p<0.01
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Figure 5: Administrator’s value from using FE and EB, using n(θ) from RAND study
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sum, the performance of the FE and EB estimators most greatly diverges precisely where policies
that sanction very low performing teachers or reward very high performance teachers would bite
the most, and the FE estimator returns higher expected utility (i.e. makes fewer mistakes, in
expectation) under almost every desired cutoff.

4 Conclusion

Society must use an economic, not statistical, rationale when forming education policy. At the
same time, measurement issues are important when considering how estimators based on data
from finite samples would perform when part of actual educational policies. Empirical Bayes
estimators of teacher value-added are used by many education researchers and practitioners to
make inferences about teacher quality, which may serve as inputs to high-stakes decisions like
bonus assignments or teacher personnel decisions. In this paper, I show that the value of EB vs
FE estimators depends critically on the relationship between class size and teacher quality. My
theoretical findings suggest that an inverted U-shaped relationship between teacher quality and
class size leads the FE estimator to outperform the EB estimator, because the latter re-weights
teachers with quality at either extreme closer to the average quality in the population, making
it difficult to identify them relative to other teachers. Finally, I show that class size and teacher
quality are inverted-U shaped in the Los Angeles Unified School District, the second largest school
district in the US. For almost every desired cutoff an administrator might choose in a prospective
incentive scheme, this would cause the FE estimator to outperform the EB estimator. At the
extremes, the EB estimator would make more than 200 more classification mistakes than the FE
estimator when classifying teachers based on their students’ Reading test scores.

Although this paper characterizes when the FE estimator should be preferred by a risk-neutral
administrator and quantifies their performance in an extremely large school district that has re-
cently received much policy interest (such as that created by the LA Times release of RAND VA
estimates used here), a more comprehensive study of when and where FE estimators should be
preferred to EB estimators would require data from the relevant geography and information about
the administrator’s preferences. Additionally, this paper is silent about the use of VA as a mea-
sure of teacher quality, which means that even though the FE estimator may outperform the EB
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estimator within the class of VA models, neither may perform very well if the true technology were
not consistent with a VA model. That being said, this paper demonstrates the importance of spec-
ifying an economic model of policymaker utility, which provides guidance about which estimator
would be preferred.
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B Infinite precision

We want to prove that as the variance of the measurement error tends to 0 (which implies σε → 0)
all teachers will be correctly categorized, giving vFE = vEB = 1. First consider the FE estimator.

The administrator’s utility for a teacher with true quality θ under estimator θ̂ and cutoff policy c
is

u(θ, θ̂; c, κ) = α1{θ̂ ≥ c ∩ θ ≥ κ}+ (1− α)1{θ̂ < c ∩ θ < κ} p→ α1{θ ≥ c ∩ θ ≥ κ}+ (1− α)1{θ < c ∩ θ < κ},
(5)

which is maximized at c = κ. Note that the administrator’s utility from using EB estimator for
the same teacher is

plimσε→0u(θ, θ̂; c, κ) = α1{θ ≥ c ∩ θ ≥ κ}+ (1− α)1{θ < c ∩ θ < κ}
= α1{λ(θ)θ ≥ c ∩ θ ≥ κ}+ (1− α)1{λ(θ)θ < c ∩ θ < κ}, (6)

which is maximized at c = κ/λ(F−1(κ)).22 The probabilities of the events in both (5) and (6) are
all 1, giving an expected utility of 1 for all teacher qualities, which then integrates to a value of 1
for each estimator.

C Proof that FE and EB give equivalent expected utility
when the administrator’s problem is symmetric

Definition 1. The administrator’s problem is symmetric if n(θ) is symmetric around the popula-
tion mean of teacher quality and the administrator’s desired cutoff κ = 0.

Proposition 3. The administrator receives the same value from both estimators when the problem
is symmetric.

Proof. Because n(θ) is symmetric about θ = 0 and θi ∼ F = N
(
0, σ2

θ

)
, the distribution of θ is

symmetric around its population mean of 0. If κ = E [θ] = 0, and α = 1/2, the optimal c∗EB

solves∫ ∞
0

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
φ(θ/σθ)dθ =

∫ 0

−∞

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
φ(θ/σθ)dθ.

At c∗EB = 0, the expression becomes∫ ∞
0

1

λ(n(θ))σε(n(θ))
φ

(
−θ

σε(n(θ))

)
φ(θ/σθ)dθ =

∫ 0

−∞

1

λ(n(θ))σε(n(θ))
φ

(
−θ

σε(n(θ))

)
φ(θ/σθ)dθ,

which holds because of the symmetry of φ(), n(), and λ() (through its dependence on n, which is
symmetric). Therefore, c∗EB = 0 solves the administrator’s problem when EB is used. Because
λ(n(θ)) = 1, ∀θ when the FE estimator is used, c∗FE = 0 must also solve the administrator’s
problem when FE is used, and the administrator’s objective is equivalent under both estimators.

D Calibrated parameters

I calibrate σ2
θ and σ2

ε from Schochet and Chiang (2012), Table B-2. To most closely match a policy
where an administrator would like to rank teachers across an entire school district, I calibrate
σ2
θ = 0.046 by summing the average of school- and teacher-level variances in random effects. To

22Recall that θi ∼ F = N
(
0, σ2

θ

)
.
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most closely approximate an environment where both student and aggregate-level shocks may af-
fect student test scores, I calibrate σ2

ε = 0.953 by summing the average of class- and student-level
variances in random effects. Note that, due to the vastly greater student-level error variance,
the approximate sizes of σ2

θ and σ2
ε are approximately the same if school-level variances are ex-

cluded from σ2
θ or class-level variances are excluded from σ2

ε , lending robustness to the quantitative
findings.

E Proof that the relationship between teacher quality and
class size is robust to the (potential) use of EB estimators
in the RAND study

We observe n̂(θ̂) and want to make an inference about n(θ). Because I am focusing on the quali-
tative relationship between teacher quality and class size, I consider the derivative for various true
θ, and examine when the true and estimated relationships have the same sign.

Differentiate the observed class size at θ0:

∂n̂

∂θ
=
∂n(θ0)

∂θ
×
[
∂λ(n(θ0))

∂n

∂n(θ0)

∂θ
(θ0 + ε) + λ(n(θ0))

]
,

and take expectations with respect to the measurement error because we are interested in charac-
terizing the average relationship of class size given teacher quality:

∂n̂

∂θ︸︷︷︸
?

=
∂n(θ0)

∂θ︸ ︷︷ ︸
?

×

∂λ(n(θ0))

∂n︸ ︷︷ ︸
>0

∂n(θ0)

∂θ︸ ︷︷ ︸
?

θ0︸︷︷︸
<0∩≥0

+λ(n(θ0))︸ ︷︷ ︸
>0

 , (7)

which shows that n̂′ and n′ have the same sign as long as the term in square brackets is positive.

The FE estimator sets λi = 1, ∀i which means ∂λ(n(θ0))
∂n = 0,∀θ0. Therefore, n̂′ and n′ always have

the same sign if the FE estimator had been used. Table 3 outlines the four scenarios that arise
when using the EB estimator.

Table 3: Scenarios relating teacher quality and class size

Condition
n′(θ0) > 0 n′(θ0) < 0

θ0 > 0 I II
θ0 < 0 III IV

First, note that the signs of n̂′ and n′ match in scenarios I and IV. Algebraic manipulation
shows their signs also match in scenarios II and III so long as∣∣∣∣∂n(θ0)

∂θ

∣∣∣∣ < λ(n(θ0))
∂λ(n(θ0))

∂n × |θ0|
.

I use n = 11 (the smallest class size in the sample) as a conservative measure of n(θ0), because
the right hand side is increasing in n. Evaluating the expression for the 1st percentile teacher
quality, the left hand side must be smaller than 33.75, which is associated with a change of more
than 7 students when teacher quality moves by one standard deviation - well outside the range
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observed in the data for the average class size for an estimated teacher quality. Therefore, though
the fact that the estimates may be EB may attenuate the relationship between class size and
teacher quality that feeds into the model, we can be confident that the results of the empirical
portion of this paper are qualitatively correct.
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