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1. Introduction

A recent literature attempts to estimate the labor market effects of college quality,

focusing on the wage effects of attending a higher quality college.  The literature measures

quality either in terms of inputs, such as expenditures per student or faculty salaries, or in terms

of peer quality (or selectivity), such as the average SAT score of the entering class.  Recent

papers in this literature include Black, Daniel, and Smith (2003a,b), Brand (2002), Brewer, Eide,

and Ehrenberg (1999), Dale and Krueger (2002), Light and Strayer (2000) and Turner (1998).

The basic finding is that college quality matters for later labor market outcomes.1

The key econometric difficulty in this literature results from the non-random selection of

students into colleges of varying qualities.  Better students sort into better quality colleges (see,

e.g., Hoxby, 1997). With a few exceptions, the literature relies on an assumption of what

Heckman and Robb (1985) call “selection on observables” to identify the effects of college

quality in the presence of non-random selection. Under this assumption, bias resulting from the

differential selection of more able, more motivated, and otherwise better students into better

colleges is removed by conditioning on pre-determined observable characteristics of the students.

Standard practice in this literature, as in many others, consists of entering each characteristic in

levels (with perhaps a squared term for age) in a linear outcome model such as a wage equation.

In this paper, we address two related weaknesses of this identification strategy.  The first

weakness arises from the fact that the linearity assumption can hide the failure of the “common

support” condition.  To illustrate the problem, consider the case in which only high test score

students attend high-quality colleges and only low test score students attend low-quality colleges.

The counterfactual outcome – what high test score students experience when attending low-

quality colleges – is not non-parametrically identified.  Instead, the linear functional form

assumption identifies the counterfactual outcome.  Even if the support problem does not prevent

estimation of college quality effects, the assumption that linearly conditioning on the observables
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suffices to take account of selection bias remains problematic.  This is the second weakness of

the standard approach in the literature on the labor market effects of college quality.  Given that

theory does not suggest specific functional forms for outcome equations, and given the evidence

in, e.g., Tobias (2003) on the importance of non-linearities in ability in returns to schooling,

reliance on the linear functional form seems heroic.

Matching methods allow us to address both the support issue and the linear conditioning

issue in a convenient way.  Similar concerns motivate the matching analyses in Dearden, Ferri

and Meghir (2002), who examine the effects of secondary school quality in Britain, and Brand

(2000), who estimates the impacts of college selectivity using data on Wisconsin high school

graduates from 1957.  Matching methods represent, depending on the particular method

employed, either a semi-parametric or non-parametric alternative to linear regression.2  While

matching does not solve the support problem, it does highlight the problem in a way that the

linear regression model does not.  In order to reduce the dimensionality of our matching

problem, we employ propensity score matching methods, in which we match on the predicted

probability of attending a high-quality university, which is a function of observed X, rather than

matching directly on X.3  Once we have the distributions of estimated propensity scores for

sample members in high- and low-quality universities, we can compare the two densities to get a

clear sense of the extent of the common support problem.

Matching directly addresses the issue of conditioning only linearly on the X.  The semi-

parametric propensity score matching methods we adopt combine a flexible parametric logit

specification for the propensity scores with non-parametric matching on the estimated scores.

Untreated observations similar to each treated observation in terms of the probability of

                                                                                                                                                      
1 Brewer and Ehrenberg (1996) ably survey the earlier literature.
2 See the discussions in Heckman, Ichimura, and Todd (1997,1998), Heckman, Ichimura, Smith, and Todd (1998),
Heckman, LaLonde, and Smith (1999), Dehejia and Wahba (1999,2002), and Smith and Todd (2003).  Current matching
methods require binary (or multinomial) treatments. Thus, in our context, the treatment consists of attendance at a
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participation, ( )P X , serve as counterfactuals.  By constructing an observation-specific

counterfactual for each treated observation, matching methods avoid bias due to misspecification

of the functional form in a linear model.4

 Using the data from the 1979 cohort of the National Longitudinal Survey of Youth

(NLSY), we examine how students of different abilities, as measured by the first principal

component of the ten tests that comprise the Armed Services Vocational Aptitude Battery

(ASVAB), sort into colleges of different qualities.  For reasons discussed in Hoxby (1997), this

sorting is of interest in its own right, and also informs our analysis of the support condition. We

then estimate the probability that a student attends a college in the top quartile of the quality

distribution in our sample, conditional on attending a college in either the top quartile or the

lowest quartile.  The predicted probabilities from this choice equation form the propensity scores

we use to produce our matching estimates; we examine the common support condition using

these estimated scores.  We select the particular matching estimator we employ and the

associated bandwidth using cross-validation methods, and then compare the estimates from

propensity score matching to estimates of the same parameter based on the standard linear

regression specification in the literature.

We reach five important empirical conclusions.  First, we quantify the extent of sorting of

students by ability into colleges of different qualities.  There is less sorting in a random sample

than in the non-random sample of high-end schools examined in Bowen and Bok (1998), and

less than suggested by Herrnstein and Murray (1994).  In addition, we find that the sorting is

asymmetric: there are more high-ability students in low-quality colleges than low-ability students

                                                                                                                                                      
high quality university rather than a low-quality university, where high and low refer to quartiles of the quality
distribution in our sample. See Imbens (2000) and Lechner (2001) for the generalization to multiple treatments.
3 Section 5 discusses the matching methods we employ in detail.
4 Other alternatives to the standard practice of entering each conditioning variable in levels in a linear regression
include non-parametric regression and more flexible parametric regression models containing many higher order
terms.  Our aim here is to contrast the usual practice in the literature, which does not adopt these alternatives, with
propensity score matching methods.
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in high-quality colleges.  Second, unlike the findings of Heckman and Vytlacil (2001) in their

study of the returns to years of schooling, we find that sorting on ability is not sufficiently strong

to cause the support condition to fail in our sample.  Using our estimated propensity scores,

however, we find that the support condition only weakly holds for persons with a high

probability of attending a high-quality college.  A small number of high-ability individuals at

low-quality schools provide the counterfactual for a much larger number of high-ability

individuals at high-quality schools.  As a result, our matching estimates have larger standard

errors than the corresponding OLS estimates.  Third, although they are imprecisely estimated,

our matching estimates for women differ substantially from the corresponding linear regression

estimates, but the OLS and matching estimates for men are quite similar.  Fourth, we find larger

estimated effects in the “thick support” region defined by ˆ0.33 ( ) 0.67P X< < .  Larger effects in

this region can result from heterogeneous treatment effects.  They can also result from either

measurement error in college quality or residual selection on unobservables, both of which

should matter less in this region than in the tails of the propensity score distribution.  This

finding suggests that standard estimates may understate the labor market effect of college

quality.  Finally, we match on an alternative set of propensity scores containing only a small

number of variables selected via cross-validation.  We obtain larger estimated effects with much

smaller standard errors, indicating a potential trade-off in finite samples between the plausibility

of the conditional independence assumption and the variance of the estimates.

The remainder of the paper proceeds as follows.  Section 2 describes the NLSY data we

use in our analysis.  Section 3 describes our measures of college quality and the construction of

our college quality index.  Section 4 examines the strength of the relationship between our

measure of ability and the quality of college a student attends.  Section 5 defines our parameter

of interest and lays out the identifying assumptions on which we rely.  Section 6 describes our

propensity score estimates and examines the support problem. Section 7 presents standard linear
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regression estimates of the effect of college quality on wages using the NLSY data.  Section 8

outlines the matching methods we use and Section 9 presents the corresponding estimated wage

effects.  Section 10 presents estimates based on an alternative specification of the propensity

score. Section 11 concludes.

2. The NLSY Data

Our primary data source is the National Longitudinal Survey of Youth (NLSY), a panel

data set based on annual surveys of a sample of men and women who were 14 to 21 years old on

January 1, 1979.  Respondents were first interviewed in 1979 and an attempt has been made to

re-interview them annually (biannually since 1994) since then.  Of the five sub-samples that

comprise the NLSY, we use only the representative cross-section and the minority over-samples.

Table 1 presents basic descriptive statistics for our sample.  The top panel gives (unweighted)

statistics for the full sample, while the bottom panel gives statistics for the representative cross

section only.  The sample includes only persons who had attended college at some point prior to

the 1998 survey.5

The NLSY suits our purpose well for several reasons.  First, the timing means that we

have information on wages for a relatively recent cohort of college graduates that is old enough

that the vast majority of those who will attend college have already done so.  Furthermore, those

who will attend graduate school have largely completed doing so as well.  Second, the NLSY

confidential files provide information on individual colleges attended, which allows us to match

up information on specific colleges from external sources.  Third, the NLSY allows us to

construct a compelling “ability” measure using the ASVAB, which was administered to over 90

                                               
5 For men (women) we start with 4,100 (4,299) observations in the 1998 cross-section.  We drop 196 (156)
observations with missing ASVAB scores, 512 (442) observations not completing high school, 1,451 (1,335)
observations that complete high school but never attend college, 3 (1) observations with a missing value for race or
ethnicity, 306 (516) observations with missing or zero wages and 922 (1157) observations with missing values for
the variables in our college quality index.
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percent of the sample.6  Fourth, the NLSY is rich enough in other covariates to make the

assumption that conditioning on observable characteristics alone solves the problem of non-

random sorting into colleges of varying qualities plausible.  These covariates include detailed

information on family background, home environment and high school characteristics.

Table 2 describes the set of covariates included in the log wage regressions and in the

propensity score models. For the region of birth, a dummy variable was created if the region

could not be determined. For the family and high school variables if a particular measure could

not be constructed because of missing data or invalid responses, we set the measure to zero and

generated a dummy variable indicating that the data are missing.  Our ability controls were

created in two steps.  First, we created age-adjusted ASVAB scores by regressing the scores

from each of the ten ASVAB components on age dummy variables.  The residuals from these

regressions are the age-adjusted scores.  The first two principal components of the age-adjusted

scores (and their squares) are the ability variables used throughout the paper.7

3. Measuring College Quality

We matched data on a large number of variables related to college quality to the NLSY

data using the information on college attended.8  We only matched data on four-year colleges;

roughly one-half of the people in our sample attended a four-year college, and many of the

quality variables are not available for two-year colleges.9

We make use of only three measures of college quality: average faculty salary in 1997,

the average Scholastic Aptitude Test (SAT) score of the entering class in 1990 and the average

                                               
6 Neal and Johnson (1996) describe the test in detail and discuss the issues of interpretation surrounding it.
7 We were concerned about the fact that some NLSY respondents complete the ASVAB after starting college.  To
determine the empirical importance of this issue, we examined the differential in ASVAB scores between persons in
the first and fourth quartiles of the college quality distribution as a function of their age at the time of the test and
found no relationship.
8 We obtained these variables from the Department of Education’s Integrated Post-secondary Education Data System
(IPEDS) for 1997 and the U.S. News and World Report’s (1991) Directory of Colleges and Universities.  These variables
change only very slowly, so utilizing values from a single point in time adds little measurement error.
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freshman retention rate in 1990.  The retention rate is the fraction of freshmen that return to the

same school in their sophomore year.  All three variables are presumptively positively related to

college quality, but each reflects a different aspect of it.  Faculty salaries represent a measure of

inputs, the average SAT score represents a measure of selectivity (or, alternatively, of peer

quality, which is a different sort of input), and the retention rate represents a “voting with your

feet” measure of quality as perceived by students and their parents.10  Descriptive statistics for

the three variables included in our index appear in Table 3.  The table documents substantial

variation in all three measures among the colleges attended by both male and female NLSY

respondents.

For reasons of parsimony, and also because we think that each of our individual quality

variables represents an error-ridden measure of underlying quality, we combine the three

variables into an index.  In particular, we take the first principal component of our three variables

as our index of college quality.  We have examined the resulting ranking and find that it accords

with a priori notions of quality.  For example, the top five colleges in the data set according to

this index are Stanford, MIT, Yale, Princeton, and the University of Pennsylvania.

4. The Relationship between Ability and College Quality

In this section we examine the relationship between ability and college quality.  This

analysis provides a first pass at the support condition, as we expect substantial sorting on ability

into colleges of different qualities.  That sorting may suffice to cause the support condition to

fail, even before conditioning on other variables.  An examination of the extent and nature of

sorting on ability holds interest in its own right as well.  Existing studies such as Bowen and Bok

(1998), Herrnstein and Murray (1994), and Cook and Frank (1993) examine primarily elite

                                                                                                                                                      
9 Our sample includes persons who went on to graduate study. The college quality variable refers to the most recent
college attended as an undergraduate in all cases.
10 We use only three quality measures in constructing the index because we do not observe each measure for all colleges,
so that adding additional measures to the index reduces the sample size.  We can construct the index utilized in this paper
for 81.36 percent of the women who attended a four-year college and 81.70 percent of the men.  Black, Daniel and Smith
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colleges near the top of the quality distribution.  Hoxby (1997, Table 3) presents estimates of

variation in mean student test scores among universities of varying qualities over time and

estimates of the within-university variation in test scores over time, but does not look at the full

joint distribution.  Light and Strayer (2000) present similar evidence from the NLSY but using

the selectivity of the first college attended rather than the quality of the last college attended.

Table 4 presents the joint density of student ability and college quality separately for men

and women.  In each panel, rows represent quintiles of the college quality distribution and

columns represent quintiles of the ability distribution, where ability consists of the first principal

component of the ASVAB scores.  Each cell contains three numbers, the row percentage, the

column percentage, and the cell percentage.  Thus, in the upper left corner of Table 4 for men,

we find that 6.48 percent of the sample is in both the first quintile of the ability distribution and

the first quintile of the college quality distribution.  As there are 25 cells and we are using

quintiles, random sorting would yield roughly 4 percent in each cell, so this cell is substantially

over-represented in the data.

Three main findings emerge from Table 4.  First, there is substantial sorting based on

ability.  For both men and women, the fraction of observations on the diagonals, and the fraction

on either the diagonal or the surrounding bands (persons with a difference of one between the

two quintile rankings) exceed what would be expected from random sorting at the 5 percent level

or better.  For example, the percentages of observations on the diagonal are 24.76 and 27.17 for

men and women, respectively, compared to the 20 percent expected in the absence of sorting.

This sorting appears slightly stronger for women than for men.  Second, a comparison of the off-

diagonal corner cells suggests an asymmetry to the sorting, with more high-quality students at

low-quality schools than the reverse.  Light and Strayer (2000) find a much stronger asymmetry

than we do when using the first, rather than the last, college attended.  This difference suggests

                                                                                                                                                      
(2003a,b) note that additional quality measures beyond the third (or, indeed, alternative sets of three quality measures) do
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that high ability students who start their academic careers at low quality colleges often move to

higher quality colleges over the course of their academic careers.  Third, at the level of quartiles

and quintiles, the sorting by ability alone does not threaten the validity of the support condition.

Yet there is sufficient sorting to suggest that when looking at the support condition more finely,

and with additional conditioning variables, troubles could arise.  We return to the support issue

in Section 6; in the next section we make precise our parameter of interest and the identifying

assumptions underlying our estimates.

5. The Parameter of Interest and Our Identifying Assumptions

Let 1Y  be the outcome in the “treated” state and 0Y  be the outcome in the “untreated”

state.  In our application, both groups receive a treatment in the literal sense.  Thus, 1Y

corresponds to the potential outcome associated with attending a high-quality college (one in the

upper quartile of our sample) and 0Y  corresponds to the potential outcome associated with

attending a low-quality college (one in the lower quartile of our sample).  We call these potential

outcomes because we observe only one of 1 0( , )Y Y  for each person.  Let 1D =  indicate that a

person attended a high-quality college and 0D =  indicate that a person attended a low-quality

college.  Finally, let X be a vector of observed covariates affecting both the choice of college

quality and economic outcomes.

Our parameter of interest – the impact of treatment on the treated – is the mean effect of

attending a high-quality college rather than a low-quality college on the persons who chose to

attend a high-quality college.  In terms of our notation, the parameter of interest is:

1 0( | 1)TT E Y Y D∆ = − = .    (1)

If impacts are heterogeneous, this parameter may differ from the mean impact of attending a

high-quality college on those persons currently attending a low-quality college and from the

                                                                                                                                                      
little to change the index (or the findings, in a regression context).
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mean impact of attending a high-quality college on a randomly selected person.  Our parameter,

combined with information on the differential costs incurred by persons attending a high-quality

college, provides evidence on the extent of any economic returns to those additional costs.

Both cross-sectional matching methods and standard linear regression analyses estimate

the impact of a “treatment” under the assumption of selection on observables.  That is, both

approaches assume that conditioning on an available set of covariates removes all systematic

differences in outcomes in the “untreated” state between high- and low-quality college attendees.

The literature formalizes the selection on observables assumption that justifies matching as the

Conditional Independence Assumption (CIA), given by:

0( ) |Y D X⊥ . (CIA)

This assumption states that the outcome in the base state (your wage if you attend a low-quality

college) is independent of the treatment (attending a high-quality college), conditional on some

set of observed covariates X.  Put differently, within subgroups defined by X, attendance at a

high-quality college is unrelated to what your outcome would be if you attended a low-quality

college.11  It is important to emphasize that the CIA is just that, an assumption.  In any given

context, it need not hold for any particular set of X available in the data, and it may not hold for

any set of X variables in the available data.  Moreover, cross-sectional matching does nothing to

account for selection on unobservables, and can even act to increase the bias relative to not

matching for certain configurations of the unobservables; see Heckman and Siegelman, (1993).12

The key difference between matching and linear regression is that regression makes the

additional assumption that simply conditioning linearly on X suffices to eliminate selection bias.

Of course, with sufficient higher order terms, the linear model can approximate a given non-

                                               
11 As noted in Heckman, Ichimura, Smith, and Todd (1998), this version of the CIA is stronger than we actually require.
Mean independence conditional on the propensity scores 0 0( | ( ), 1) ( | ( ), 0)E Y P X D E Y P X D= = =  suffices to identify

our parameter of interest, and even this condition need only hold for respondents attending colleges in the two quartiles of
the college quality distribution being compared in a given set of estimates.
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linear function of the X arbitrarily well.  Most of the linear regression models in the college

quality literature, however, include no higher order terms other than perhaps squared terms in

age or experience.  For such models, the linearity assumption potentially has real empirical bite.

Moreover, matching methods, but not linear regression, rely on the “common support”

assumption, which can be expressed as:

Pr( 1| ) 1 for all .D X X= < (2)

The support condition states that, for each X satisfying the CIA, there must be some individuals

who do not get treated; in our context, for each X, there must be some individuals who attend a

low-quality college.  If there are X for which everyone attends a high quality college, then there

is no way in a matching context to construct the counterfactual outcome for these observations.

Matching on X when X is of high dimension, as in our application, raises the problem of

empty cells – the so-called curse of dimensionality.  With high dimensional X, the number of

distinct vector values becomes very large, and many (even all in some contexts) of the treated

persons will have no corresponding untreated person with exactly the same values of X.  One

response to this is to reduce the dimension of X by reducing the number of matching variables,

but this will reduce the plausibility of the CIA.  Instead, Rosenbaum and Rubin (1983) show that

the assumptions that justify matching on X also justify matching on the probability of treatment,

Pr( 1| )D X= , which the literature calls the “propensity score.”  The intuition behind propensity

score matching is that subgroups with values of X that imply the same probability of treatment

can be combined because they will always appear in the treatment and (matched) comparison

groups in the same proportion.  As a result, any differences between subgroups with different X

but the same propensity score balance out when constructing the estimates.13

                                                                                                                                                      
12 Difference-in-differences matching methods allow for selection on time-invariant unobservables.  See the
discussions in  Heckman, Ichimura, Smith, and Todd (1998) and Smith and Todd (2003).
13 The curse of dimensionality reappears when estimating the propensity scores unless a parametric model, such as a
logit or probit, is employed to do so.   The literature suggests gains from being non-parametric on outcomes
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Our estimates constitute partial equilibrium estimates, and can be thought of as indicating

the effect of changing college quality for one student at the margin.  In formal terms, we make

the Stable Unit Treatment Value Assumption (SUTVA), which states that 1 0( , )Y Y  does not

depend on who attends what college or on how many attend each type of college.  A general

equilibrium analysis of this question would allow for the endogeneity of the college quality

measures in response to large changes in student choices.

6. Propensity Scores and the Common Support Condition

We estimate propensity scores for men and women using a logit model and the NLSY

data.  The propensity score specification for each group includes age, age squared, race/ethnicity,

region of birth dummies, the first two principal components of the ten ASVAB test scores and

their squares, and characteristics of the respondent’s high school, the respondent’s parents, and

the respondent’s home environment as a child.  They pass (men) or almost pass (women)

standard balancing tests such as those described in Smith and Todd (2003) for ·( ) 0.75P X < .  We

had trouble obtaining balance for high propensity scores due to the small number of 0D =

observations available.

We select our X variables to include factors expected to affect both the college quality a

respondent selects as well as outcomes in the baseline, low college quality state.  The only

potentially controversial variable included in some of our estimated scores is years of schooling.

This variable poses conceptual problems in this literature, as years of schooling depend in part on

college quality, yet they also have a separate, exogenous effect on outcomes.  Including years of

schooling, whether in a linear regression context or in a matching context, understates the effect

of college quality, as that part of the college quality effect that works through increasing years

attended gets netted out in the conditioning.  On the other hand, not including years of schooling

                                                                                                                                                      
(typically continuous) but parametric on participation (a binary variable), compared to utilizing a parametric model
for outcomes, particularly when a flexible specification is employed in estimating the propensity scores.
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risks assigning to college quality the effects of other factors that affect years of college attended

and whether or not the student completes a degree.  In the linear regression estimates presented

in Section 7 we follow Dearden, Ferri and Meghir (2002) and do it both ways; as in their paper,

we find that it makes a difference to the estimates.  As a result, we also report the matching

estimates with and without including years of education in the propensity score specification.

In Figure 1, we examine the support condition using the propensity scores that include

years of education by plotting histograms of the estimated scores for both men and women.  The

graphs for the scores excluding years of education show a similar pattern.  For each group, the

top histogram corresponds to respondents who attended high-quality colleges (the 1D =  group),

while the bottom histogram corresponds to respondents who attended low-quality colleges

(the 0D =  group).  The horizontal axis defines intervals of the propensity score and the height

(or depth) of each bar on the vertical axis indicates the fraction of the relevant sample with

scores in the corresponding interval.

Figure 1 illustrates that, when looking more finely than the quartiles and quintiles

examined in Section 4, and when considering propensity scores that incorporate additional

covariates beyond ability, the support condition gets stretched even thinner.  For both men and

women, nearly 42 percent of the comparison group lies below the 5th percentile of the treatment

group, and nearly 52 percent of the treatment group lies above the 95th percentile of the

comparison group.  Indeed, the mean propensity score given 1D =  is about 0.70 while the mean

for 0D =  is about 0.30.

In Table 5, we provide an alternative way of examining the intensity with which the

upper tail of the comparison group gets used in constructing the estimated counterfactual mean

by presenting the deciles of the distribution of the relative weights from matching estimates

presented in Section 9 based on an Epanechnikov kernel.  The weights are normalized by the

mean of the distribution so that a number less than one lies below the mean and a number greater
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than one lies above the mean.  We see that the comparison group observations around the 80th

percentile get used over 4.5 times more heavily than those around the 20th percentile, with the

mean of the data at about the 65th percentile. Thus, while the support condition does not fail in

our data, we are skating on thin ice in terms of identification for high values of the probability of

participation.  Comparing the comparable in these data means using only a small number of

comparison observations to construct the counterfactual for a large number of treated

observations.

To examine how much difference the thin support in the upper tail makes to the

estimates, we present separate estimates for the “thick support” region, defined as

ˆ0.33 ( ) 0.67P X< < .  Two concerns motivate these estimates.  First, following Hausman,

Abrevaya, and Scott-Morton (1998), we worry that high ˆ( )P X  respondents observed at low-

quality schools may actually represent high ˆ( )P X  respondents with measurement error in their

college attended variable.

Second, we remain concerned about any lingering selection on unobservables, which will

have its largest effects on bias for values of the propensity score in the tails of the distribution.

To see this, suppose that you believe that earnings are given by

0 1 0 0 1 0( ) ( ( ) ( )) ( )Y g X D g X g X Dε ε ε= + − + + − ,      (3)

where 0 ( )g X  is the deterministic portion of the wage when in the comparison group, 1( )g X  is

the deterministic portion of the wage when in the treatment group, and 0 1( , )ε ε are the

corresponding error terms.  Treatment is determined by the latent variable * ( )D h X u= −  with

*1if 0D D= > and 0D = otherwise, and *Pr( 0 | ) ( )D X P X> ≡ .  With the propensity score

matching estimator, we want 0 0( | 1, ( )) ( | 0, ( ))E Y D P X E Y D P X= = = , but if there is any
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residual selection bias after conditioning on ( )P X and we assume that 0( , )u ε are jointly normal,

we will have the bias

( )0

* *
0 0( ( )) ( | 0, ( )) ( | 0, ( ))

( ( ))
.

( ( ))[1 ( )]

B P X E D h X E D h X

h X

h X h Xε

ε ε
φ

ρ σ

= > − ≤

=
Φ − Φ

     (4)

This bias is minimized about ( ) 0h X =  or ( ) 1/ 2P X = .  Indeed, if we take the distribution of

estimated propensity scores as the true ( )P X , assume the error terms are normal, and assume

that we can exactly match each individual in the treatment group with individuals having exactly

the same ( )P X , the selection bias from using the entire treatment group sample is 7.77 times

larger than the bias if we limit our sample to ( ) (0.33,0.67)P X ∈ .  While this analytic result

obviously relies on the joint normality, the intuition underlying the result does not depend on

distributions: when the probability of being in the treatment group is high, unobservable factors

on average play a larger role than for probabilities near 0.5.  Thus, when matching estimators

must rely on the right tail of the distribution of propensity scores in the comparison group, the

selection bias may be considerable even when u and 0ε  are only weakly correlated.

7. Regression Estimates of the Impact of College Quality

In this section we present standard regression-based estimates of the impact of college

quality on wages.  In particular, Table 6 presents evidence from 16 linear regression models,

eight for men and eight for women.  The dependent variable is the natural log of the respondent’s

real wage in 1998.14  In addition to the conditioning variables, we include indicator variables for

having attended a college in the second, third, and fourth quartile of the quality distribution in

                                               
14 In particular, the dependent variable is the log of the average real wage (in 1982 dollars) over all jobs held in 1998. Two
variables are used to construct wages: total income from wages and salary in the past calendar year and number of hours
worked in the past calendar year. The wage variable equals the log of total wage income divided by total hours worked.
Persons with no jobs in 1998 are excluded from the sample.  We exclude 9.86 percent of the male respondents and 16.0
percent of the female respondents due to zero earnings.  To determine the sensitivity of our results to this exclusion, we
constructed estimates using earnings levels as the dependent variable both including and excluding the zeros and found
that it made little substantive difference to the results.
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our sample, as measured by the college quality index described in Section 3, and for having a

missing value of the quality index.  The first quartile of the quality distribution is the omitted

group and, therefore, the implicit counterfactual.  The columns vary the set of conditioning

variables included in the model.  Table 2 describes the individual conditioning variables and the

notes to Table 6 define the blocks of variables included in each column.  The top panel for each

group omits the years of education variable, while the bottom panel includes it.

The regression results embody five patterns of interest.  First, as shown in Black, Daniel,

and Smith (2003a,b), conditioning on ability makes a big difference to the estimates; in

particular, it reduces the estimated effect by about one-quarter.  This is consistent with the

sorting shown in Section 4.  Second, including additional individual characteristics other than

ability, such as race, age, and region of birth, again reduces the estimated effects.  Third,

including the years of schooling variable reduces the estimated effects by about a third relative to

the corresponding specification without years of schooling.  Fourth, for men, but not for women,

the estimated effects increase monotonically as college quality increases regardless of the set of

included covariates.  Finally, if we look at the two specifications that correspond to our

propensity scores, we find that attending a high-quality college rather than a low-quality college

increases wages by 11 or 12 percent for men and by about 7.5 percent for women.  These

findings are broadly consistent with the regression-based literature.

8. Matching Methods

A variety of different methods exist for implementing matching.  These methods differ in

the specific weights assigned to each comparison group observation.  All matching estimators

have the generic form

0 0
1

ˆ ˆ ˆ ˆ( | ( )) ( ( ), ( ))
J

i i j j
j

E Y P X w P X P X Y
=

= ∑ (5)
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for the individual counterfactual for treated observation i.  In this equation, 1,...,j J=  indexes

the untreated comparison group observations.  All matching estimators construct an estimate of

the expected unobserved counterfactual for each treated observation by taking a weighted

average of the outcomes of the untreated observations.  What differs among the various matching

estimators is the specific form of the weights.

We consider three alternative matching estimators in our empirical work: the nearest

neighbor estimator, the Gaussian kernel estimator, and the Epanechnikov kernel estimator.

Asymptotically, all the different matching estimators produce the same estimate, because in an

arbitrarily large sample, they all compare only exact matches.  In finite samples, different

matching estimators produce different estimates because of systematic differences between them

in which observations they assign positive weight, how much weight they assign them, and how

they handle (implicitly) the support problem.

Given the large number of competing estimators, we immediately face a problem of

which estimator to use.  Following Racine and Li (2003), we use a leave-one-out validation

mechanism to choose among the nearest neighbor, Gaussian kernel, and Epanechnikov kernel

estimators and to pick the bandwidth for the two kernel estimators.  Recall that the estimation

problem we face is to estimate the missing counterfactual 0Y  for those who attend colleges in the

highest quality quartile.  Unfortunately, we have no observations of 0Y for the treatment group,

but we do, of course, have observations on 0Y  in the comparison group.  Leave-one-out

validation uses these observations to determine which of the competing models best fit the data.

As the name implies, leave-one-out validation drops the jth observation in the comparison

group and uses the remaining 1N − observations in the comparison group to form an estimate of

0 jY , which may be denoted 0 ,
ˆ

j jY − .  The associated forecast error is given by , 0 0 ,
ˆ

j j j j je Y Y− −= − .

As the estimation does not include the jth observation, it represents an “out-of-sample” forecast,
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and, because the estimation sample is of size 1N −  (rather than N), it presumably does a good

job of replicating the essential features of the estimation problem.  Repeating the process for the

remaining 1N − observations allows comparisons of the mean squared error or root mean squared

error of the forecasts associated with different matching estimators (or bandwidths, when

selecting a bandwidth) to guide the choice of estimator (or bandwidth).

The use of the leave-one-out validation mechanism yields three interesting results.  First,

the nearest neighbor estimator performs worse than either the Gaussian kernel or the

Epanechnikov kernel estimator.  This is consistent with the findings in Frölich’s (2001) Monte

Carlo analysis of the performance of alternative matching methods.  Second, the Epanechnikov

kernel estimator performs modestly better than the Gaussian kernel almost independent of the

bandwidth selected.  Third, the performance of the estimators is relatively insensitive to the

bandwidth selected until one gets to very small bandwidths.  Given these results, we rely on the

Epanechnikov kernel to construct the matching estimates presented in the remaining sections.  In

addition to its superior performance in our cross-validation exercise, the Epanechnikov kernel

converges faster than the Gaussian kernel because it has only a limited support and, for the same

reason, it implicitly imposes the support condition through the choice of the bandwidth.

9. Matching Estimates of the Impact of College Quality

Our matching estimates of the impact on wages of attending a high-quality rather than a

low-quality college appear in Table 7.  As described in Section 8, we present matching estimates

using the Epanechnikov kernel with leave-one-out cross-validated bandwidths.  In each case, we

present two alternative estimates: one that uses education in the estimation of the propensity

score and one that excludes education from the propensity score.  We also indicate, for each

estimate, the number of treated observations for which an estimated counterfactual could be

constructed using that particular estimator.  Bootstrap standard errors based on 2,000 replications

appear in parentheses below each estimate.  Each bootstrap includes re-estimation of the
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propensity scores used in the matching on the bootstrap sample.  In the second row, we present

the OLS estimates of the parameter of interest.  These estimates differ from those in Table 6

because the sample includes only persons who attended a college in the first or fourth quartile of

the quality distribution.  This sample corresponds to that used for the matching estimates.  The

differences in the estimates that result from changing the sample signal the potential importance

of relaxing the linear functional form assumption through matching.

In the third row, we present estimated impacts for the “thick support” region, defined in

Section 6 as the region with ˆ0.33 ( ) 0.67P X< < .  In this region, there are substantial numbers of

observations in both the treatment and comparison groups.  The final row of the table presents

OLS estimates of the impact of treatment for observations in the “thick support” region.15

For men, the OLS estimates indicate a 13 to 17 percent increase in wages as the effect of

moving from a college in the first quartile of the quality distribution to one in the fourth quartile.

Both OLS estimates are statistically significant at the five percent level.  In contrast, the

matching estimates range from 0.120 to 0.139, suggesting modestly smaller impacts.  The

estimates are a bit smaller when we condition on education than when we do not.  Neither of the

matching estimates is statistically significant at conventional levels; relaxing the linear functional

form assumption has a price.

The estimates tell a similar story for women.  Here the OLS estimates indicate a wage

effect of 12 to 17 percent associated with attending a high-quality college.  Both are significant

at the five percent level.  The full sample matching estimates range from 0.067 to 0.078, but are

less than their corresponding standard errors.

                                               
15 We also formed estimators using the trimming mechanism suggested by Heckman, Ichimura, Smith, and  Todd (1998)
and Heckman, Ichimura, and Todd (1998).  Their scheme defines the region of common support in terms of estimates of
the densities of the propensity score in the 1D = and 0D = samples.  When we apply a low cutoff value for the densities,
we obtain estimates similar to the estimates for the full sample in Table 7.  When we apply a high cutoff value for the
densities, and drop around 40 percent of the sample, we obtain estimates similar to our thick support estimates in Table 7.
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In contrast to the full sample estimates, the matching estimates that consider only the

“thick support” region are almost all higher than the corresponding OLS estimates, sometimes

substantially so.   For men, these estimates equal 0.199 to 0.250 with and without conditioning

on years of education, respectively.  The corresponding estimates for women equal 0.124 and

0.157.  Following the discussion in Section 6, higher estimates in the common support can have

one of three sources.  First, there may be heterogeneous treatment effects, with higher impacts

for middle values of the propensity score (something somewhat difficult to reconcile with an

economic model of college quality choice).  Second, they may result from measurement error in

college quality in the tails of the distribution.  Third, they may result from lingering selection on

unobservables, which has a larger effect for values of ( )P X outside the thick support region.

Table 8 presents matching and OLS estimates of the effect of “treatment on the treated”

for attending a college in the third quality quartile rather than the first quartile and of attending a

college in the second quality quartile rather than the first quartile.  To ease the comparison, we

also replicate the corresponding estimates from Table 6.  Several patterns emerge.  First, for

men, the matching estimates are always smaller than the corresponding OLS estimates.  Second,

for both men and women, the OLS estimates are monotonically increasing as one moves to

higher quartiles of college quality, and for men, the same is true of the matching estimator.  For

women, however, the matching estimator monotonically declines with increases in the quartile of

college quality, although we cannot reject the null hypothesis that all of the estimates are the

same.  Fourth, the estimated standard errors for the matching estimates always exceed those for

the OLS estimates.  Thus, while the estimates do not tell a strong story about bias in the OLS

estimates, they do tell an important story about the support problem in this context.  The support

condition does not fail here, but it holds so weakly that the matching estimates end up having

high variances.
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Taken together, the estimates in Tables 7 and 8, along with the frequency of use analysis

for the comparison group observations in Table 5, teach two related lessons.  First, substantively,

our point estimates provide some reason for concern about college quality effect estimates based

on OLS regressions that control only linearly for covariates.  Second, in commonly used data

sets similar in sample size to the NLSY, and covering persons who have attended college during

years where there is substantial sorting based on ability and other characteristics, it is likely that

the support condition barely holds, with the result that the data lack sufficient information for

strong inference regarding the wage effects of college quality without the imposition of

functional form assumptions.

10.  A Minimal Specification

The matching estimates presented in Section 9 relied on a matching estimator and

associated bandwidth selected via leave-one-out cross-validation.  In this section, we also rely on

leave-one-out cross-validation to choose the set of variables included in the propensity score.  In

conceptual terms, this amounts to choosing the propensity score model based on goodness-of-fit

considerations rather than based on theory and evidence about the set of variables related to both

college quality choice and labor market outcomes.  We implemented the model selection

procedure by starting with a model containing only the first two principal components of the

ASVAB scores (and their squares) and indicators for whether the respondent was black or

Hispanic.  We then successively added blocks of additional variables, such as the individual

characteristics, the home environment variables, the parental characteristics variables and the

high school characteristics variables, and compared the resulting mean squared errors.  To our

considerable surprise, the minimal specification we started with out-performed the full

specification and every other competing specification we examined.  Not surprisingly given the

small number of conditioning variables, satisfying the common support condition poses much

less of a problem with the minimal specification, as the conditional mean of the estimated
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propensity scores equals 0.60 for 1D =  and 0.40 for 0D = .  Perhaps as a result, the cross-

validation selects a narrower bandwidth for women and a much narrower bandwidth for men.

We present estimates for the parameter 41 4 1i iY Y∆ = −  based on the minimal specification

(and without conditioning on years of education) in Table 9.  For both men and women, the

minimal specification yields larger point estimates than the full specification.  In addition, the

standard errors get much smaller, so that both estimates are statistically significant at

conventional levels.  We also present OLS estimates using the same minimal set of conditioning

variables; these prove quite similar to the corresponding matching estimates.

While it is tempting to claim that this minimal specification is indeed the correct

specification, we do not accept this interpretation. Too many studies have documented the

important role of family background for both labor market outcomes and college quality choices

to simply dismiss them from the analysis.  Why then does the fit of the model get worse when we

include such variables in the propensity score estimation?  We believe the answer lies in the

common support problem.  With the full specification, the treatment and comparison groups

have much more distinct distributions of propensity scores than with the minimal specification.

As a result, the cross-validation selects somewhat larger bandwidths for women and much larger

bandwidths for men with the full specification.  As is well known, increases in the bandwidth

induce more bias as observations less similar to each treated observation receive greater weight

in constructing the estimated counterfactuals.  Thus, we suspect that our minimal specification

reduces the bias resulting from the relatively wide bandwidths employed in the full specification.

The cost of this reduction in the bias from smoothing appears to consist of additional selection

bias resulting from the failure of the minimal specification to condition on all of the covariates

required for the CIA to plausibly hold in the data.
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11.  Conclusions

In this paper, we have investigated two potential weaknesses in the most commonly used

econometric approach in the literature that estimates the labor market effects of college quality.

These weaknesses are failure to attend to the support condition, which may be problematic in this

context due to the sorting of highly qualified students into higher quality colleges, and the failure

to condition non-linearly on important covariates such as ability.  We have five main findings.

First, there is substantial sorting based on ability into colleges of differing qualities for

both men and women in the NLSY.  Higher ability students disproportionately attend higher

quality colleges.  We find some evidence of an asymmetry in this sorting, with more high-ability

students at low-quality colleges than low-ability students at high-quality colleges.  Sorting on

ability alone, however, does not break the support condition.

Second, using our estimated propensity scores, which include ability as well as numerous

other background variables, we show that the support condition, while it does not fail, holds only

weakly in our data.  In particular, our data include only a handful of individuals who attend low-

quality colleges but have characteristics that give them a high probability of attending a high-

quality college.  As a result, we end up with large standard errors.  This is not a problem with the

matching estimator; rather, it is a problem with the data.  Running linear regressions hides the

problem by implicitly borrowing strength from comparison observations with lower probabilities

of attending a high-quality college.

Third, our estimates raise some concerns regarding the conventional practice of using

linear selection on observables models to investigate the labor market effects of college quality.

Although the point estimates from our matching estimators are imprecise, they sometimes differ

substantially from the corresponding OLS estimates.  In all cases, however, the matching

estimates support the overall finding of the regression-based literature that college quality

matters for labor market outcomes.
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Fourth, our estimates based only on the “thick support” region of propensity scores

around 0.5 consistently turn out larger than those constructed using the full sample.  This

difference could arise from genuinely larger impacts in this region, though we think this unlikely

on theoretical grounds.  More likely, it results from either measurement error in college quality

or lingering selection on unobservables, both of which play a bigger role outside the thick

support region than within it.

Fifth, a comparison of our full propensity score specification, which includes a rich set of

covariates affecting both college quality choice and labor market outcomes, with the minimal

specification selected by cross-validation on the basis of goodness-of-fit reveals an interesting and

empirically important tradeoff.  In our full specification bias arises from selecting a wide bandwidth

in response to the weakness of the common support.  In the minimal specification, selection bias

arises from leaving out many of the variables whose presence makes the CIA plausible and hence

justifies matching (and regression) in our data.  This tradeoff also affects the estimated standard

errors, which are much smaller for the minimal specification wherein the support condition poses

much less of a problem.
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Table 1: NLSY Descriptive Statistics, 1998

Full sample Men Women

age 36.7 36.8
black 0.239 0.280
Hispanic 0.166 0.167
years of education 14.91 14.79
Associate degree 0.116 0.156
Bachelor’s degree 0.411 0.363
Master’s degree 0.148 0.157

N 1504 1695

Representative sample Men Women

Age 36.7 36.8
Black 0.083 0.106
Hispanic 0.057 0.070
years of education 15.15 14.92
Associate degree 0.101 0.149
Bachelor’s degree 0.481 0.413
Master’s degree 0.175 0.182

N 1012 1136

Notes:  Authors’ calculations using unweighted NLSY data.  The full sample includes all respondents while the representative sample excludes
the minority and military over-samples.  Both samples include only those respondents who attend college before the 1998 interview.



Table 2:  Variables for Propensity Score and Wage Equations

log wage Log of average real wage (1982 dollars) on
all jobs held during the year

Basic Characteristics:
region of birth a vector of 10 dummy variables indicating

region in which respondent was born
age respondent's age at the interview, quadratic

in age is used
years of education highest grade or year of school the

respondent completed as of the 1998
interview.  Only those who attended a
college are in the sample

black dummy variable indicating the respondent
is black

Hispanic dummy variable indicating the respondent
is Hispanic  (black & Hispanic are
mutually exclusive)

ASVAB test scores Scores on the ten components of the
Armed Services Vocational Aptitude
Battery, administered in 1980.  We use the
first two principal components of the age-
adjusted scores.

Home Characteristics:
magazine “When you were about 14 years old, did

you or anyone else living with you get
magazines regularly?”

newspaper “When you were about 14 years old, did
you or anyone else living with you get a
newspaper regularly?”

library card “When you were about 14 years old, did
you or anyone else living with you have a
library card?”

mom education Highest grade or year of school completed
by respondent’s mother.

mom living Was the respondent’s mother living at the
1979 interview (when respondents were
between 14 and 22 years old)?

mom age At the 1987 interview.
dad education Highest grade or year of school completed

by respondent’s father
dad living Was the respondent’s father living at the

1979 interview?



Table 2:  Continued

dad age At the 1987 interview
living together Indicator for whether the respondent’s

mother and father lived in the same
household at the 1979 interview

mom occupation Occupation of job held longest by mother
or stepmother in 1978, represented by
dummy variables for each Census 1-digit
occupation

dad occupation Occupation of job held longest by father or
stepfather in 1978, represented by dummy
variables for each Census 1-digit
occupation.

High School Characteristics:
size of high school Asked of respondents’ high schools:  “As

of 10/1/79 [or nearest date] what was
[your] total enrollment?”

books Asked of respondents’ high schools:
“What is the approximate number of
catalogued volumes in the school library
(enter 0 if your school has no library).” [in
1979]

teacher salary Asked of respondents’ high schools:
“What is the first step on an annual salary
contract schedule for a beginning certified
teacher with a bachelor’s degree?” [in
1979]

disadvantaged Asked of respondents’ high schools:
“What percentage of the students in [the
respondent’s high school] are classified as
disadvantaged according to ESEA [or
other] guidelines?” [in 1979]



Table 3: College Quality Measures, NLSY 1998

Panel A: Men Mean 25th

percentile
50th

percentile
75th

percentile

Faculty salaries
(n=1,312)

$51,996 $43,646 $50,989 $59,284

Freshman retention rate
(n=757)

0.742 0.660 0.750 0.830

Average SAT score
(n=832)

935 835 927 1,030

Panel B: Women Mean 25th

percentile
50th

percentile
75th

percentile

Faculty salaries
(n=1,488)

$50,205 $42,305 $49,418 $57,683

Freshman retention rate
(n=739)

0.735 0.680 0.740 0.830

Average SAT score
(n=714)

921 835 900 1,005

Notes:  Authors’ calculations using NLSY data, US News and World Report’s Directory of Colleges and Universities data, and IPEDS data.
Means are for the last college attended as of the 1998 interview.



Table 4: Bivariate Distribution of Ability and College Quality
Measures, NLSY 1998

Panel A: Men Ability quintiles

Quality index quintiles First
quintile

Second
quintile

Third
quintile

Fourth
quintile

Fifth
quintile

Total

First quintile (32.38)
[32.38]
 6.48

(21.90)
[21.90]
 4.38

(16.19)
[16.19]
 3.24

(14.29 )
[14.29 ]

 2.86

(15.24)
[15.24]
 3.05

(100.0)
(N=105)

Second quintile (23.81)
[23.81]
 4.76

(20.95)
[20.95]
 4.19

(20.95)
[20.95]
 4.19

(20.95)
[20.95]
 4.19

(13.33)
[13.33]
 2.67

(100.0)
(N=105)

Third quintile (24.76)
[24.76]
 4.95

(15.24)
[15.24]
 3.05

(21.90)
[21.90]
 4.38

(17.14)
[17.14]
 3.43

(20.95)
[20.95]
 4.19

(100.0)
(N=105)

Fourth quintile (11.54)
[11.43]
 2.29

(18.27)
[18.10]
 3.62

(27.88)
[27.62]
 5.52

(20.19)
[20.00]
 4.00

(22.12)
[21.90]
 4.38

(100.0)
(N=104)

Fifth quintile (7.55)
[7.62]
1.52

(23.58)
[23.81]
 4.76

(13.21)
[13.33]
 2.67

(27.36)
[27.62]
 5.52

(28.30)
[28.57]
 5.71

(100.0)
(N=106)

Total [100.0]
[N = 105]

[100.0]
[N = 105]

[100.0]
[N =105]

[100.0]
[N = 105]

[100.0]
[N = 105]

100.0
N = 525

Panel B: Women Ability quintiles

Quality index quintiles First
quintile

Second
quintile

Third
quintile

Fourth
quintile

Fifth
quintile

Total

First quintile (31.07)
[31.07]
 6.21

(19.42)
[19.42]
 3.88

(20.39)
[20.39]
 4.08

(15.53)
[15.53]
 3.11

(13.59)
[13.59]
 2.72

(100.0)
(N=103)

Second quintile (22.22)
[21.36]
 4.27

(25.25)
[24.27]
 4.85

(26.26)
[25.24]
 5.05

(10.10)
 [9.71]
 1.94

(16.16)
[15.53]
 3.11

(100.0)
(N=99)

Third quintile (25.71)
[26.21]
 5.24

(19.05)
[19.42]
 3.88

(20.95)
[21.36]
 4.27

(19.05)
[19.42]
 3.88

(15.24)
[15.53]
 3.11

(100.0)
(N=105)

Fourth quintile (14.85)
[14.56]
 2.91

(21.78)
[21.36]
 4.27

(17.82)
[17.48]
 3.50

(24.75)
[24.27]
 4.85

(20.790
[20.39]
 4.08

(100.0)
(N=101)

Fifth quintile (6.54)
[6.80 ]
1.36

(14.95)
[15.53]
 3.11

(14.95)
[15.53]
 3.11

(29.91)
[31.07]
 6.21

(33.64)
[34.95]
 6.99

(100.0)
(N=107)

Total [100.0]
[N = 103]

[100.0]
[N = 103]

[100.0]
[N =103]

[100.0]
[N = 103]

[100.0]
[N = 103]

100.0
N = 515

Notes:  Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of Colleges and Universities data, and
IPEDS data.  The college quality measure is for the last college attended as an undergraduate as of the 1998 interview.  The ability measure is
the first principal component of the age-adjusted ASVAB scores.  Samples include only respondents who attend colleges for which we can
construct our college quality index.



Table 5: Distribution of Weights from Epanechnikov Kernel of the
Comparison Group, NLSY 1998

Deciles of the distributions of weights Weights relative to mean weight

10 percentile 0.33
20 percentile 0.39
30 percentile 0.46
40 percentile 0.57
50 percentile 0.70
60 percentile 0.88
70 percentile 1.21
80 percentile 1.76
90 percentile 2.32

N 172

Notes:  Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of Colleges and Universities data, and
IPEDS data.  College quality is for the last college attended as an undergraduate as of the 1998 interview.  The propensity scores are estimated
using a logit model and the specification includes quadratics in the first two principal components of the age-adjusted AFQT score, a black
indicator, a Hispanic indicator, age, age squared, region of birth indicators, and high school, parental, and home characteristics.  All matching
weights are divided by the mean matching weight.



Table 6: Regression Estimates of the Wages Effects of College
Quality, NLSY 1998

Men

Without years of education College quality index --Men

Ability measures No Yes Yes Yes
Individual characteristics No No Yes Yes
Home, high school, and parental
characteristics

No No No Yes

Second quartile 0.080
(0.0501)

0.054
(0.0490)

0.031
(0.0491)

0.026
(0.0499)

Third quartile 0.170
(0.0472)

0.132
(0.0457)

0.095
(0.0459)

0.082
(0.0473)

Fourth quartile 0.280
(0.0480)

0.220
(0.0475)

0.177
(0.0490)

0.158
(0.0492)

With years of education

Second quartile 0.044
(0.0491)

0.033
(0.0486)

0.007
(0.0487)

0.005
(0.0497)

Third quartile 0.107
(0.0464)

0.094
(0.0457)

0.055
(0.456)

0.050
(0.0469)

Fourth quartile 0.192
(0.0469)

0.167
(0.0468)

0.123
(0.0481)

0.116
(0.0492)

Years of education 0.048
(0.0059)

0.038
(0.0063)

0.038
(0.0064)

0.032
(0.0062)



Table 6: Continued
Women

Without years of education College quality index --Women

Ability measures No Yes Yes Yes
Individual characteristics No No Yes Yes
Home, high school, and parental
characteristics

No No No Yes

Second quartile 0.144
(0.0385)

0.127
(0.0377)

0.105
(0.0377)

0.102
(0.0387)

Third quartile 0.135
(0.0401)

0.105
(0.0394)

0.075
(0.0402)

0.065
(0.0406)

Fourth quartile 0.205
(0.0418)

0.149
(0.0416)

0.124
(0.0418)

0.112
(0.0422)

With years of education

Second quartile 0.115
(0.0370)

0.105
(0.0366)

0.083
(0.0368)

0.082
(0.0378)

Third quartile 0.090
(0.0390)

0.074
(0.0386)

0.043
(0.0394)

0.039
(0.0398)

Fourth quartile 0.136
(0.0410)

0.107
(0.0412)

0.078
(0.0416)

0.074
(0.0421)

Years of education 0.054
(0.0050)

0.048
(0.0050)

0.047
(0.0050)

0.042
(0.0051)

Notes:  Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of Colleges and Universities data, and
IPEDS data.  College quality is for the last college attended as an undergraduate.  There are 1,632 observations for men and 1,849 for women.
Each model includes indicator variables for the 2nd, 3rd and 4th quartiles of the quality distribution and an indicator for missing college quality.
The ability measures consist of quadratics in the first two principal components of the age-adjusted AFQT scores.  The individual
characteristics include a black indicator, an Hispanic indicator, age, age squared, and Census region of birth indicators.  The high school,
parental, and home characteristics comprise the remaining variables listed in Table 2 other than years of education, which is included in the
model when indicated.  Huber-White standard errors are reported in parentheses.



Table 7: Propensity Score Estimates of the Effects of College Quality:
Fourth and First Quartiles, NLSY 1998

Men Women

41 4 1i iY Y∆ = − Using years of
education in
propensity

score
estimation

Not using
years of

education in
propensity

score
estimation

Using years of
education in
propensity

score
estimation

Not using
years of

education in
propensity

score
estimation

Epanechnikov kernel,
bandwidth 0.40 for
men and 0.30 for
women

0.120
(0.0867)
[n=158]

0.139
(0.0767)
[n=152]

0.067
(0.0862)
[n=145]

0.078
(0.0830)
[n=155]

OLS estimates 0.122
(0.0584)

0.159
(0.0584)

0.112
(0.0557)

0.155
(0.0552)

Thick support region 0.199
(0.1357)
[n=44]

0.250
(0.1181)
[n=44]

0.124
(0.1407)
[n=39]

0.157
(0.1418)
[n=39]

OLS estimates, thick
support region

0.121
(0.0639)

0.156
(0.0653)

0.144
(0.0724)

0.184
(0.0720)

Notes:  Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of Colleges and Universities data, and
IPEDS data.  College quality is for the last college attended.  There are 177 observations in comparison group and 176 in the treatment group
for men and 173 in both the treatment group and the comparison group for women. The propensity scores are estimated using a logit model and
the specification includes years of schooling (in columns 1 and 3 only), quadratics in the first two principal components of the age-adjusted
ASVAB scores, a black indicator, an Hispanic indicator, age, age squared, region of birth indicators, and high school, parental, and home
characteristics.  The OLS estimates use only the observations with college quality in the first or fourth quartile.  For the OLS estimates, Huber-
White standard errors are reported in parentheses.  Bandwidths are selected using a minimum root mean squared error criterion from leave-one-
out cross validations.  Bootstrap standard errors for the matching estimates are based on 2,000 replications.



Table 8: Propensity Score Estimates of the Effects of College Quality,
NLSY 1998

Men Women

41 4 1i iY Y∆ = − Not using years of
education in propensity

score estimation

Not using years of
education in propensity

score estimation

Epanechnikov kernel,
bandwidth 0.40 for men and
0.30 for women

0.139
(0.0767)
[n=152]

0.078
(0.0830)
[n=155]

OLS estimates 0.159
(0.0584)

0.155
(0.0552)

31 3 1i iY Y∆ = −

Epanechnikov kernel,
bandwidth 0.30 men and 0.50
women

0.056
(0.0695)
[n=166]

0.118
(0.0561)
[n=133]

OLS estimates 0.082
(0.0541)

0.104
(0.0498)

21 2 1i iY Y∆ = −

Epanechnikov kernel,
bandwidth 0.20 for men and
0.50 for women

0.006
(0.0863)
[n=147]

0.123
(0.506)
[n=159]

OLS estimates 0.072
(0.0584)

0.094
(0.0458)

Notes:  Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of Colleges and Universities data, and
IPEDS data.  College quality is for the last college attended.  There are 177 observations in comparison group for men and 173 in the
comparison group for women.  In the fourth quartile, there are 176 in the treatment group for men and 173 in the treatment group for women.
In the third quartile, there are 179 men and 171 women in the treatment group. In the second quartile there are 178 men and 175 women in the
treatment group.  The propensity scores are estimated using a logit model and the specification includes years of schooling (in columns 1 and 3
only), quadratics in the first two principal components of the age-adjusted ASVAB scores, a black indicator, an Hispanic indicator, age, age
squared, region of birth indicators, and high school, parental, and home characteristics.  OLS models are estimated separately for each quartile.
For the OLS estimates, Huber-White standard errors are reported in parentheses.  Bandwidths are selected using a minimum root mean squared
error criterion from leave-one-out cross validations.  Bootstrap standard errors for the matching estimates are based on 2,000 replications.



 Table 9: Propensity Score Estimates of the Effects of College Quality,
Cross-Validation Specification, NLSY 1998

Men Women

41 4 1i iY Y∆ = − Not using years of
education in propensity

score estimation

Not using years of
education in propensity

score estimation

Epanechnikov kernel,
bandwidth 0.20 for men and
0.25 for women

0.189
(0.0488)
[n=169]

0.159
(0.0490)
[n=171]

OLS estimates 0.204
(0.0477)

0.151
(0.0435)

Notes:  Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of Colleges and Universities data, and
IPEDS data.  College quality is for the last college attended.  There are 177 observations in comparison group and 176 in the treatment group
for men and 173 in both the treatment group and the comparison group for women. The propensity score specification includes only the first
two principal components of the age-adjusted ASVAB scores and their squares, a black indicator, and an Hispanic indicator.  The OLS
estimates use only the observations with college quality in the first or fourth quartile.  For the OLS estimates, Huber-White standard errors are
reported in parentheses.  Bandwidths are selected using a minimum root mean squared error criterion from leave-one-out cross validations.
The root mean squared error criterion indicates that the propensity score specification underlying the estimates in this table outperforms the
corresponding specification in Table 5.  Bootstrap standard errors for the matching estimates are based on 2,000 replications.



Figure 1
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