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Correlated equilibria and communication equilibria in all-pay

auctions∗

Gregory Pavlov†

University of Western Ontario

May 13, 2013

Abstract

We study cheap-talk pre-play communication in the static all-pay auctions. For the case

of two bidders, all correlated and communication equilibria are payoff equivalent to the Nash

equilibrium if there is no reserve price, or if it is commonly known that one bidder has a strictly

higher value. Hence, in such environments the Nash equilibrium predictions are robust to pre-

play communication between the bidders. If there are three or more symmetric bidders, or two

symmetric bidders and a positive reserve price, then there may exist correlated and commu-

nication equilibria such that the bidders’ payoffs are higher than in the Nash equilibrium. In

these cases, pre-play cheap talk may affect the outcomes of the game, since the bidders have an

incentive to coordinate on such equilibria.

JEL classification: C72; D44; D82; D83; L41

Keywords: Communication; Collusion; All-pay auctions

1 Introduction

An all-pay auction is a model of contest in which the participants expend resources trying to win a

prize, and the prize goes to whoever spends the most. This model is important for studying various
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economic phenomena, especially lobbying and other rent-seeking activities (Hillman and Samet,

1987; Baye, Kovenock and de Vries, 1993). It is typically assumed that in the all-pay auction the

bidders choose how much to bid without any prior contact with each other. Yet, in many situations

it is difficult or impossible to prevent the bidders from engaging in cheap talk before the auction.

Thus it is important to understand whether and how pre-play cheap-talk communication affects the

outcomes of the all-pay auctions.

Competition in the all-pay auctions is typically intense. For example, if it is commonly known

that the value of the good is the same for all bidders, then complete rent dissipation occurs in

all Nash equilibria, i.e. the total expected payments of the bidders are equal to the value of the

good, and each bidder gets a zero expected payoff. Thus, if pre-play communication is allowed,

the bidders may want to try to coordinate their bidding in order to avoid cut-throat competition.

However, because of the antagonistic nature of the all-pay auction it is unclear whether informative

communication is possible. A bidder may not want to communicate his bidding intentions or

privately known value truthfully to the opponents because this information could be used against

him. Instead, each bidder, regardless of his value, might want to misguide the opponents into

bidding less aggressively. We show that in some environments pre-play communication is indeed

completely powerless, and the equilibrium outcomes of the game with communication are payoff

equivalent to the equilibrium outcomes of the all-pay auction without communication. Perhaps

more surprisingly, we also show that there are situations when pre-play communication helps the

bidders to coordinate their behavior so that the intensity of bidding is reduced, and the bidders get

higher payoffs than in the all-pay auction without communication.

To study the all-pay auction with pre-play communication in the environments with complete

information we use the solution concept of correlated equilibrium (Aumann, 1974; 1987), and in

the environments with incomplete information — communication equilibrium (Myerson, 1982). Ac-

cording to the revelation principle for games with communication, which is discussed in Section 2,

the correlated and communication equilibria describe all possible outcomes that can be potentially

achieved with the help of communication in a self-enforcing way.1 In the all-pay auction models

1There are also other reasons to use correlated equilibrium as a solution concept. Correlated equilibrium has

arguably more compelling epistemic foundations than Nash equilibrium (Aumann, 1987); it is easier for boundedly

rational players to learn to play correlated equilibrium than Nash equilibrium (Hart and Mas-Colell, 2013). Commu-

nication equilibrium is one of the most popular ways of extending the concept of correlated equilibrium to the games

with incomplete information (Forges, 1993; Bergemann and Morris, 2013).
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that we study there is either a unique Nash equilibrium, or all Nash equilibria result in the same

payoffs for the bidders. If it happens that in a given environment all correlated (communication)

equilibria are payoff equivalent to the Nash equilibrium, then we can say that the Nash equilib-

rium prediction is robust to pre-play communication between the bidders. However, if there exist

correlated (communication) equilibria that are not payoff equivalent to the Nash equilibrium, then

pre-play communication may affect the outcomes of the game. In particular, if in such correlated

(communication) equilibria the bidders get higher payoffs than in the Nash equilibrium, then they

have an incentive to coordinate on the former. Different ways of organizing communication between

the bidders to realize the outcomes of the correlated and communication equilibria are discussed in

Section 5.

In Section 3 we study correlated equilibria in the all-pay auctions with complete information. We

show that with two bidders the correlated equilibria are payoff equivalent to the Nash equilibrium

when there is no reserve price, or if the bidders are asymmetric (Proposition 2). In such cases the

all-pay auction is “strategically equivalent” to a particular zero-sum game, and for the two-player

zero-sum games the correlated and Nash equilibria are known to be payoff equivalent (Moulin and

Vial, 1978). It turns out that this strategic equivalence does not hold when there is a reserve

price and the bidders are symmetric. For this case we construct correlated equilibria that are more

profitable for the bidders than the Nash equilibrium (Example 1 and Proposition 3). When there

are three or more symmetric bidders, such profitable correlated equilibria exist even when there is

no reserve price (Example 2 and Proposition 4). The idea of the constructions is to introduce some

imperfect negative correlation in the distribution of the bids. Say, when one of the bidders bids

aggressively, then with a certain probability his opponents are “suggested” to bid zero, and thus

save the cost of their bids.

In Section 4 we study communication equilibria in the all-pay auctions with independent pri-

vate values. Similarly to the case of complete information, we show that with two bidders the

communication equilibria are payoff equivalent to the Nash equilibrium when there is no reserve

price (Proposition 6). That is, neither self-enforcing sharing of private information, nor correlation

of play is possible in this case. However, in other cases there exist communication equilibria that

are more profitable for the bidders than the Nash equilibrium. This is demonstrated for the case of

two bidders and a positive reserve price (Example 3 and Proposition 7), and for the case of three
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or more bidders and no reserve price (Proposition 9). The constructions involve correlating the

bidders’ play in a way that is similar to the correlated equilibria in Section 3. The bidders also

share some private information, but only to a limited extent because it is important to maintain

enough uncertainty about the opponents’ values and play for the construction to work.

Pre-play communication in auctions and contests is typically studied in context of collusion. For

example, most of the studies of collusion in static auctions focus on a scenario when the bidders

organize an explicit cartel that allows them to communicate, enforces coordinated behavior of the

bidders in the auction, and facilitates exchange of side payments between the bidders.2 The bidders’

collusion that is self-enforcing is for the most part considered in the context of repeated auctions.3

In such models the enforcement of the desired bidders’ behavior is provided by the expectations of

the future reaction of the opponents.

Only a few papers study collusion in static auctions when the behavior of the bidders in the

auction cannot be directly controlled. Marshall and Marx (2007, 2009), and Lopomo, Marx and Sun

(2011) study collusion in the first-price, second-price, and ascending-bid auctions under the following

scenario. The bidders make reports to a “center”; based on these reports, the center privately

recommends a bid to be made by each bidder, and requires payments from the bidders.4 If we

drop the possibility to exchange side payments before the auction, then such a model of collusion is

equivalent to assuming that the bidders play some particular communication equilibrium. Lopomo,

Marx and Sun (2011) show that in the first-price auction with discrete bids such a collusion is

completely ineffective: all collusive equilibria are payoff equivalent to the unique Nash equilibrium.5

However, Marshall and Marx (2007) show that in the second-price auction such a collusion works

equally well as collusion in a model where the bidders behavior can be controlled by the cartel. In

fact, in the second-price auctions viable collusion is possible even when the bidders cannot exchange

side payments, i.e. there exist communication equilibria that are different from the Nash equilibria,

and are more profitable for the bidders (Marshall and Marx, 2009).

In some cases it is reasonable to assume that the bidders can disclose private information about

2For example, Graham and Marshall (1987) study collusion in second-price auctions, and McAfee and McMillan

(1992) study collusion in first-price auctions.
3For example, Aoyagi (2003) studies self-enforcing collusion with pre-play communication in repeated auctions.
4Lopomo, Marshall and Marx (2005) and Garratt, Tröger and Zheng (2009) study self-enforcing collusion without

pre-auction side payments, but with a possibility of resale.
5See also Azacis and Vida (2010) for related results for the first-price auction with a continuum of bids.
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their valuations in a verifiable way. Benoit and Dubra (2006), Hernando-Veciana and Tröge (2011),

and Tan (2013) study the bidders’ individual decisions to disclose information in winner-pay auc-

tions. Kovenok, Morath and Münster (2010) and Szech (2011) study this problem in the all-pay

auctions. The relation of such an approach to our approach is discussed in Section 4.1.

There are also many experimental studies of the effect pre-play communication in games. While

we are unaware of any research that studies exactly our setting, there is some related work. For

example, Harbring (2006) considers the effect of communication in a repeated all-pay auction with

a cap on the maximal possible bids. Though there were only finitely many rounds, the bidders’s

behavior resembled collusive play in an infinitely repeated game, and the possibility of communi-

cation lead to lower bids and higher payoffs.6 More generally, experimental research has revealed

that pre-play communication often increases cooperation between the players beyond what is pre-

dicted by standard game-theoretic models, and this effect is attributed to a combination of norms,

empathy, nonverbal cues, etc. (Camerer, 2003).

The rest of the paper is organized as follows. The model and the definitions of correlated and

communication equilibria are in Section 2. The all-pay auctions with complete information and

incomplete information are studied in Sections 3 and 4, respectively. Discussion is in Section 5. The

proofs are relegated to the Appendix unless stated otherwise.

2 Model

There are  ≥ 2 bidders. Bidder  chooses a bid  from a set of possible bids . If there is no

reserve price, then  = [0∞). If there is a reserve price   0, then  = {0}∪ [∞), i.e., bidder
 can either submit a “null” bid  = 0, or an “active” bid  ≥ .7 If bidder  bids , and the other

bidders bid −, then bidder  wins the good with probability  ( −). If there is no reserve price,

then

 ( −) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

1

1
#{: =}

if

if

if

  max 6= 

  max 6= 

 = max 6= 

6For a survey of other experimental research on contests see Dechenaux, Kovenok and Sheremeta (2012).
7Alternatively one can keep the action set  = [0∞), but this will result in an unnecessary multiplicity of

equilibria because there will be multiple possible “inactive” bids.
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If there is a reserve price   0, then

 ( −) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

1

1
#{: =}

if

if

if

 = 0 or { ≥  and   max 6= }
 ≥  and   max 6= 

 ≥  and  = max 6= 

We consider both complete and incomplete information environments.

Complete information. Bidder  has a valuation   0 for the good, and the bidders’ values

(1  ) are commonly known. If bidder  bids , and the other bidders bid −, then his payoff

is  ( −) =  ( −)− .

In the complete information case we study correlated equilibria and Nash equilibria. To define

a correlated equilibrium suppose there is a neutral trustworthy mediator who makes non-binding

private recommendations (possibly stochastic) to each bidder of which bid to submit. The recom-

mendations are made according to a correlation rule , which is a probability measure over the

set of all possible bid profiles  =
Q

=1 .
8 Each bidder then decides which bid to submit as a

function of the mediator’s recommendation. Thus a pure strategy of bidder  is b :  → .

Definition 1 A correlation rule  is a correlated equilibrium if each bidder finds it optimal to obey

the mediator’s recommendations:

Z


 ()() ≥
Z




³b ()  −´() for every  and b (·) .
The significance of the correlated equilibrium for studying all-pay auctions with communication

is due to the revelation principle.9 According to it, for any Nash equilibrium of a game that consists

of some communication protocol followed by the all-pay auction, there exists an outcome equivalent

correlated equilibrium of the all-pay auction. There is no loss of generality in requiring that for

each player it is optimal to obey the mediator’s recommendations.

8All considered sets and functions are Borel measurable; all considered probability measures are Borel, with

topology of weak convergence.
9See Aumann (1974, 1987) and Myerson (1982). Cotter (1989) provides the revelation principle for the settings

with large action and type spaces.
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Let  be the marginal probability measure of  on :

 () =

Z
×−

() for every  ⊆ .

A Nash equilibrium is a correlated equilibrium ∗ such that each bidder’s behavior is independent

from the actions of the opponents, i.e., ∗ is a product of its marginals
Q

=1 
∗
 . Hence, both

Nash and correlated equilibria are joint plans of actions that are individually self-enforcing, but

correlated equilibrium allows for additional coordination by correlating recommendations to the

bidders. When we encounter a Nash equilibrium, we write it as a profile of the individual mixed

actions (∗1  
∗
).

Incomplete information. Bidder  privately observes own value  ∈  = [ ] ⊂ R+.

The value of bidder  is distributed according to a probability measure  on , independently

from the valuations of the other bidders. This information structure is assumed to be common

knowledge. The payoff of bidder  with value , who bids , while the other bidders bid −, is

 ( −; ) =  ( −) − . Denote  =
Q

=1  , and let  be a product measure
Q

=1  ,

and − =
Q

 6=  .

In the incomplete information case we study communication equilibria and Nash equilibria.

To define a communication equilibrium suppose the bidders first privately report their values to

a neutral trustworthy mediator, who then makes non-binding private recommendations (possibly

stochastic) to each bidder of which bid to submit. The recommendations are made according to

a communication rule , which is a family of probability measures {(·|)}∈ . That is, for each
profile of type reports  submitted to the mediator, (·|) is a probability measure over the set of
all possible bid profiles . Each bidder decides which type to report, and which bid to submit as a

function of the mediator’s recommendation. Thus a pure strategy of bidder  with value  specifiesb ∈ , the value to be reported, and b :  → , the rule for translating recommendations into

bids.

Definition 2 A communication rule  is a communication equilibrium if -a.e. type of each
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bidder finds it optimal to report the true type and obey the mediator’s recommendations:

Z
−

µZ


 (; )(|)
¶
− (−) ≥

Z
−

µZ




³b ()  −; ´(|b −)¶− (−)

for every , -a.e. , every b, and b (·) .
Similarly to the case of correlated equilibrium, the significance of communication equilibrium

for studying all-pay auctions with communication in a setting with nonverfiable information is due

to the revelation principle. For any Nash equilibrium of a game that consists of some communi-

cation protocol followed by the all-pay auction, there exists an outcome equivalent communication

equilibrium of the all-pay auction. There is no loss of generality in requiring that for each player

reporting the true type and obeying the mediator’s recommendation is optimal.

Let  (·|) be the marginal probability measure of  on  conditional on :

 (|) =
Z
−

ÃZ
×−

(| −)
!
− (−) for every  ⊆ .

A Nash equilibrium is a communication equilibrium ∗ such that each bidder’s behavior is indepen-

dent from the opponents’ reports and actions, i.e., for every  = (1  ), 
∗ (·|) is a product of

marginals
Q

=1 
∗
 (·|). Thus, relative to the Nash equilibrium, communication equilibrium allows

for self-enforcing sharing of private information between the bidders, as well as for coordination

via correlation of the recommended bids. When we encounter a Nash equilibrium, we write it as a

profile (∗1  
∗
), where 

∗
 is {∗ (·|)}∈ for every .

3 All-pay auctions with complete information

3.1 Two bidders

In this section we study and compare Nash equilibria and correlated equilibria of the all-pay auction

under complete information. The Nash equilibria of this game are well understood, and we simply

summarize the existing results. We are not aware, however, of any characterizations of the set of

correlated equilibria of the all-pay auction.

In games with finite number of actions the set of correlated equilibria is defined by finitely
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many linear inequalities: if player  has || possible actions, then there are || (||− 1) obedience
constraints that ensure that he has no incentive to deviate from the recommended actions. It is thus

straightforward to describe the extreme points of this set and to find the set of the players’ payoffs

achievable by the correlated equilibria. However, if each player has a continuum of possible actions,

then there is a double continuum of obedience constraints, which is difficult to work with.10 One

possible approach is to discretize the action spaces and to use the linear programming tools. This

path is pursued, for example, in Lopomo, Marx and Sun (2011) in their study of collusive schemes

in the first price auction. In this paper we take a different route. For some cases we characterize

correlated equilibria by exploiting a connection between the all-pay auction and a certain class of

zero-sum games, and in other cases we construct correlated equilibria directly.

We begin with the case of two bidders. Denote the difference in the bidders’ valuations by

∆ = 1 − 2, and without loss of generality assume ∆ ≥ 0. To avoid uninteresting cases we

assume that the valuations of both bidders are strictly above the reserve price  ≥ 0.

Proposition 1 In a complete information environment with two bidders:

(i) If  = 0, there is a unique Nash equilibrium. Bidder 1 bids uniformly on [0 2]; bidder 2

bids 0 with probability ∆
1
, and bids uniformly on [0 2] otherwise. The bidders’ payoffs are

1 = ∆, 2 = 0.

(ii) If 1  2    0, there is a unique Nash equilibrium. Bidder 1 bids  with probability 
2
, and

bids uniformly on ( 2] otherwise; bidder 2 bids 0 with probability
∆+
1
, and bids uniformly

on ( 2] otherwise. The bidders’ payoffs are 1 = ∆, 2 = 0.

(iii) If 1 = 2 =     0, there is a continuum of Nash equilibria. Bidder  bids 0 and  with

probabilities  

and (1− ) 


(where  ∈ [0 1]), respectively, and bids uniformly on ( ]

otherwise; bidder  bids 0 with probability 

, and bids uniformly on ( ] otherwise. The

bidders’ payoffs are 1 = 2 = 0.

Proof. Part (i) follows from Proposition 2 in Hillman and Riley (1989), part (ii) from Proposition

1 in Bertoletti (2008), and part (iii) from Proposition 3 in Siegel (2012).

10The principal-agent literature often uses a first-order approach for describing an agent’s best response. This

approach is not going to work here because a bidder’s expected payoff is typically discontinuous in own bid.
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The Nash equilibria of the complete information all-pay auctions exhibit “rent dissipation”. The

bidder with the lower valuation gets a zero payoff, while the bidder with the higher valuation gets a

payoff equal to the difference in the valuations. In the case of symmetric bidders the rents are fully

dissipated: the total payments of the bidders are equal to the value of the good, and each bidder

gets a zero payoff.

In general the set of correlated equilibrium payoffs is at least as large as the convex hull of the

payoffs of Nash equilibria: the players can use a public randomization device (or replicate it by a

jointly controlled lottery) to coordinate on different Nash equilibria with different probabilities.11

In the all-pay auction, however, this observation is not useful, because either the Nash equilibrium

is unique, or all Nash equilibria yield the same payoffs for the bidders. In certain games (like “the

chicken game”) there exist correlated equilibrium payoffs outside of the convex hull of the Nash

equilibrium payoffs, but the circumstances when this happens are not well understood.

It is known that the sets of correlated equilibrium payoffs and Nash equilibrium payoffs coincide

in the two-player zero-sum games (Rosenthal, 1974). Regardless of whether we consider Nash or

correlated equilibrium, each player has a strategy that guarantees him an expected payoff at least as

large as his value of the game. Hence, by the minmax theorem, the players’ expected payoffs must

be equal to their respective values under either solution concept. While the all-pay auction game

is not a zero-sum game, in some cases it turns out to be “strategically equivalent” to a particular

zero-sum game (in a sense of Moulin and Vial, 1978). The next result takes advantage of this

observation and shows that the bidders’ correlated equilibrium payoffs are the same as under Nash

equilibrium.12

Proposition 2 In a complete information environment with two bidders, such that  = 0 or 1 

2, every correlated equilibrium is payoff equivalent to the Nash equilibrium.

Proof. Consider an auxiliary game with the same players and the same action spaces as in the

all-pay auction, and with the payoffs derived from the all-pay auction payoffs for every ( ) ∈ 

11For example, in the second-price auction without the reserve price there are many Nash equilibria: the truthful

equilibrium, and infinitely many equilibria involving weakly dominated strategies (Blume and Heidhues, 2004). If

the bidders correlate their play, then it is possible to sustain the following collusive scheme. Before the auction

a designated winner is randomly chosen; during the auction the bidders coordinate on the equilibrium where the

designated winner obtains the good for free by submitting a very high bid while the other bidders submit zero bids.

See Section V.A in the working paper version of Marshall and Marx (2009).
12The result in Proposition 2 for the case  = 0 follows from a more general result, Proposition 6 in Section 4.1,

that allows for incomplete information. However, the proof here is different and more intuitive.
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as follows:

 ( ) =
1


 ( ) +

1


 − 1

2
=  ( )−

1


 +

1


 − 1

2
(1)

Note that 1

is strictly positive and 1


− 1

2
is independent of . This implies that the best response

of each bidder in the auxiliary game is the same as in the all-pay auction, and thus the two games

have the same Nash equilibria and the same correlated equilibria.

Next we show that the auxiliary game is zero-sum when  = 0 or 1  2. If  = 0, thenP2
=1  () = 1 for every  ∈ , and thus

P2
=1 () =

P2
=1  () − 1 = 0 for every  ∈ .

If   0, then
P2

=1  () = 1 for every , except for  = (0 0). Note, however, that bid 0 is

not rationalizable for bidder 1 when 1  2. This is because no rational bidder bids above his

value, and thus bidder 1 strictly prefers to bid slightly above 2 to bidding 0. Hence, although the

auxiliary game is not zero-sum, it can be turned into a zero-sum game by removing bid 0 for bidder

1. This operation will not disturb the Nash equilibria or correlated equilibria because bidding 0 is

not rationalizable for player 1, and is thus not played in either equilibrium.

We will use the following two properties of the zero-sum games: (i) the players’ expected payoffs

from any correlated equilibrium and from any Nash equilibrium of a zero-sum game are equal to

their respective values of the game; (ii) if  is a correlated equilibrium of a zero-sum game, then

the pair of its marginals (1 2) is a Nash equilibrium. These properties have been established for

finite games (Lemma 1 and Corollary 1 in Rosenthal, 1974), but it is straightforward to show that

they also hold for zero-sum games with infinite strategy sets which have a Nash equilibrium.

Let (∗1 
∗
2) be the Nash equilibrium strategy profile, and ( ∗

1 
∗
2 ) be the Nash equilibrium

bidders’ payoffs in the auxiliary zero-sum game. This Nash equilibrium is unique when  = 0 or

1  2 (Proposition 1). Then the expected payoff of player  from any correlated equilibrium  in

the all-pay auction is

Z


 ()() = 

µZ


 ()()− 1



Z


() +
1

2

¶
= 

Ã
 ∗

 −
1



Z



∗
() +

1

2

!

where the first equality uses the definition of  (·) in (1); the second equality is true becauseR

 ()() =  ∗

 by property (i) mentioned above, (1 2) is a Nash equilibrium by property

(ii), and (1 2) = (∗1 
∗
2) by the uniqueness of the Nash equilibrium. Hence, every correlated
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equilibrium of the all-pay auction is payoff equivalent to the Nash equilibrium.13

One may conjecture that the payoff equivalence of Nash and correlated equilibria has something

to do with the fact that the Nash equilibrium is unique when  = 0 or 1  2. While there may be

some connection, the uniqueness of Nash equilibrium in general does not imply payoff equivalence

of Nash and correlated equilibria.14

Lopomo, Marx and Sun (2011) provide a result of a similar kind for the first-price auction

with two symmetric bidders and incomplete information. They show that collusion based on bid

recommendations and pre-auction side payments is completely ineffective: every such collusive

scheme is payoff equivalent to the unique Nash equilibrium of the auction. This implies that in the

setting of Lopomo, Marx and Sun (2011) the correlated equilibria are also payoff equivalent to the

unique Nash equilibrium. The first-price auction is not strategically equivalent to a zero-sum game,

and the proof in Lopomo, Marx and Sun (2011) seems to rely on very different ideas.15

The case when 1 = 2 =  and   0 is distinct. The proof of Proposition 2 cannot be extended

to cover this case: though the all-pay auction can still be shown to be strategically equivalent to

the auxiliary game, this game is no longer a zero-sum game because the bid profile (1 2) = (0 0)

cannot be ruled out. (Indeed, in some Nash equilibria both bidders submit null bids with positive

probability.) Next, we show that in this case there exist correlated equilibria that are not payoff

equivalent to the Nash equilibrium. Paradoxically, the presence of the reserve price may help the

bidders to avoid complete rent dissipation and thus be to the bidders’ advantage.

Example 1 Let 1 = 2 = 1, and  ∈ (0 1). The bidders are given recommendations according to
13An alternative way to finish the proof is to use Theorem 3 from Moulin and Vial (1978), which shows that for

any game that is strategically equilvalent to a zero-sum game there exist no “correlation scheme” that improves upon

all Nash equilibrium payoffs for both players. The class of “correlation schemes” in Moulin and Vial (1978) includes

correlated equilibria, as well as some other joint action plans that require certain commitment on the part of the

players.
14See example on p.204 in Moulin and Vial (1978).
15Specifically, they formulate the collusive problem as a linear programming problem, and, by discretizing the bid

spaces, manage to derive some properties of the dual problem which imply the result.
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the following probability distribution, where “bid above ” means “bid uniformly on ( 1]”:

1’s bid \ 2’s bid bid 0 bid above 

bid 0 0  (1− )

bid  2 0

bid above  (1− )  (1− )2

If bidder 1 is suggested to bid 0, then he knows that the opponent bids aggressively, and thus he is

content to submit a null bid. If bidder 1 is suggested to bid , then he knows that the opponent bids

0, and thus his best response is to bid . If bidder 1 is suggested to bid above , then his probability

distribution over the opponent’s bids is the same as in one of the Nash equilibria, and thus he is

indifferent between all bids not higher than 1. Whether bidder 2 is suggested to bid 0 or to bid above

, he is indifferent between all bids not higher than 1.

Bidder 1 gets a payoff of 1− when he is suggested to bid , and a zero expected payoff otherwise.
Hence, his ex ante payoff is 2 (1− ). The expected payoff of bidder 2 is zero.

Let us compare the above correlated equilibrium with a Nash equilibrium for some  ∈ [0 1]
(described in part (iii) of Proposition 1). Under the Nash equilibrium bid profiles (0 0) and ( 0)

are played with probabilities 2 and (1− ) 2, respectively, while under the correlated equilib-

rium (0 0) is never played, and ( 0) is played with probability 2. Hence, under the correlated

equilibrium the probability weight is shifted away from an unfortunate event (where both bidders

bid zero and no one wins the good) to a nice event (where bidder 1 wins the good at a low price

). Next, under the Nash equilibrium the event when bidder 1 bids 0 and bidder 2 bids above

 takes place with probability  (1− ), and the event when bidder 1 bids  and bidder 2 bids

above  takes place with probability (1− )  (1− ). Under the correlated equilibrium the former

event takes place with probability  (1− ) and the latter event does not happen. Hence, under

the correlated equilibrium the probability weight is shifted away from an unprofitable event (where

bidder 1’s bid  is wasted because bidder 2 bids above ) to a more profitable event (where bidder 1

bids 0 instead). Thus, the correlated equilibrium results in positive profits for bidder 1, while every

Nash equilibrium features full rent dissipation.
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The next result describes some other payoffs that can be achieved with correlated equilibria.16

Note that for a given reserve price  the sum of the bidders’ payoffs is constrained above by  − ,

and thus the result implies that the bidders can approximate “ideal collusion” as reserve price 

approaches .

Proposition 3 In a complete information environment with two bidders, such that  =  for

 = 1 2 and     0, for every (1 2) ∈ R2+ such that⎧⎪⎨⎪⎩ 1 +
2

2
2 ≤ 2(−)

2

2

2
1 + 2 ≤ 2(−)

2

there exists a correlated equilibrium that gives bidder  payoff .

3.2 Three or more bidders

Here we consider the case of three or more bidders, and we restrict attention to the situations when

the bidders are symmetric. Suppose each bidder has a valuation  that it is strictly above the

reserve price  ≥ 0. It is known that in this case there are many Nash equilibria, in every one of
them complete rent dissipation takes place, and each bidder gets a zero payoff.17

Unlike in the case of two players, a connection between the all-pay auction and a certain class

of zero-sum games is not going to allow us to obtain an analog of Proposition 2. In the zero-

sum games with three or more players there is no minmax theorem to rely upon, and the sets

of correlated equilibrium payoffs and Nash equilibrium payoffs no longer coincide. Hence, even

though in the case of no reserve price it is possible to construct an auxiliary zero-sum game that

is strategically equivalent to the all-pay auction, this does not imply that the correlated equilibria

and Nash equilibria are payoff equivalent. Indeed, in the next example we describe a correlated

equilibrium where the bidders get positive payoffs.

Example 2 Let  = 3,  = 1, and  = 0. Consider the following symmetric correlation rule. First,

a pair of bidders is randomly chosen, with each pair being equally likely to be chosen. Next, the

16We conjecture that no other payoffs can be achieved by correlated equilibria, but we have not managed to prove

this because of the technical difficulties outlined in the beginning of this section.
17This follows from Proposition 8 in Section 4.2. For a characterization of Nash equilibria in the asymmetric cases

when there is no reserve price see Baye, Kovenock and de Vries (1996).

14



bidders receive private bid recommendations without being told whether they have been chosen. The

bidder who is not chosen is recommended to bid 0, and the chosen bidders are given recommendations

according to the following probability distribution, where “bid low” means “bid uniformly on
¡
0 1
2

¤
”,

and “bid high” means “bid uniformly on
¡
1
2
 1
¤
”:

’s bid \ ’s bid bid 0 bid low bid high

bid 0 0 2
26

0

bid low 2
26

7
26

5
26

bid high 0 5
26

5
26

If a bidder is suggested to bid high, then he knows that he competes against one chosen opponent

who is equally likely to bid low or high. The probability of winning with bid  ∈ [0 1] is equal to ,

and thus the payoff from any such bid is 0.

If a bidder is suggested to bid low, then he knows that he competes against one chosen opponent

who either bids 0, bids low, or bids high, with probabilities 1
7
, 1
2
, and 5

14
, respectively. The probability

of winning with bid   0 is equal to min
©
+ 1

7
 5
7
+ 2

7

ª
, and thus the payoff from any  ∈ ¡0 1

2

¤
is 1

7
, and the payoff from any  ∈ ¡1

2
 1
¤
is below 1

7
.

If a bidder is suggested to bid 0, then he knows that either he was not chosen and thus faces

two potentially active opponents, or that he was chosen but only his opponent was suggested to

bid above 0. It is possible to show that the probability of winning with bid   0 is equal to

min
©
14
15
2 + 8

15
 2
3
2 + 1

3

ª
, and thus the payoff from any   0 is nonpositive.

In each case the bidder is willing to comply with the recommendation. Each chosen bidder gets

an expected payoff of 1
7
when he is suggested to bid low (which happens with probability 7

13
), and a

zero expected payoff otherwise. Each pair of bidders is equally likely to be chosen, and thus each

bidder’s ex ante payoff is 2
39
.

This bid rotation correlation scheme holds together due to careful management of the amount

of information revealed to each player. To see the basic idea, note first that there exists a Nash

equilibrium such that two bidders bid uniformly on (0 1], and the third bidder bids 0. Second,

suppose that in advance a mediator randomly chooses two bidders who are to take active roles in

the above Nash equilibrium, and each bidder is privately informed of his role. Finally, suppose that
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with a small probability a mediator “cheats” one of the chosen bidders, and, instead of informing

him that he is to take an active role, tells him to bid 0. If the probability of such “cheating” is

sufficiently small, then the bidders will still be content to comply whenever they are recommended

to bid 0. This “cheating” reduces the intensity of bidding, and thus raises the bidders’ payoffs.18

The next result describes some other payoffs that can be obtained in symmetric correlated

equilibria for any given reserve price  and any number of bidders  ≥ 3.19 In particular, the

result implies that in the correlated equilibrium the bidders can avoid full rent dissipation. Even

in the limit, as the number of bidders increases without bound, the sum of the bidders’ expected

payoffs does not have to go to zero (e.g., when  = 0, in the best constructed correlated equilibrium

 → 2
9
 as →∞).

Proposition 4 In a complete information environment with  ≥ 3 symmetric bidders, such that
 =  for every  and    ≥ 0, for every  ∈

h
0
2(−)


(−2)2+(−2)+22

(9−14)2+(6−8)+(+6)2
i
there exists a

correlated equilibrium that gives each player payoff  .

4 All-pay auctions with incomplete information

4.1 Two bidders

In this section we study and compare Nash equilibria and communication equilibria of the all-pay

auction under incomplete information. The communication equilibrium solution concept is similar

to the correlated equilibrium in that it allows for coordination between the players via correlation of

the recommended actions. In addition, communication equilibrium gives the players possibilities to

talk about their private information. Like in the case of complete information, we would like to know

under what circumstances there exist communication equilibria that are not payoff equivalent to the

Nash equilibrium, and, whenever such communication equilibria exist, we would like to understand

how they work.

Characterizing communication equilibria in games with large action spaces is challenging, in

18The actual correlated equilibrium in Example 2 is slightly more involved: the active bidders are in addition

recommended whether to bid high or low, and the probabilities of the mediator’s profiles of recommendations are

adjusted to ensure incentive compatibility.
19 It is possible to construct correlated equilibria with asymmetric payoffs, but we do not present them here. We

do not claim that the upper bound on the payoff in the presented symmetric correlated equilibria is the highest one

could achieve.
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much of the same way as characterizing correlated equilibria is, because one has to deal with many

obedience incentive constraints. In addition, the players must be given incentives to report their

types truthfully, and one has to worry about compound deviations when a player first misreports

his type and then disobeys the recommended actions. For a class of environments we manage to

demonstrate payoff equivalence between Nash equilibria and communication equilibria using an

approach similar to that under complete information (Proposition 2 in Section 3). For another

class of environments we build on the results on correlated equilibria from Section 3 and construct

communication equilibria that are distinct from Nash equilibria.

First, we summarize some of the existing results on Nash equilibria with two bidders that we

will refer to in this section.20

Proposition 5 In an incomplete information environment with two bidders:

(i) Let  = 0, bidder ’s value be continuously distributed on [0 1] with density that is continuously

differentiable and positive on (0 1), independently of the opponent’s value. There is a unique

Nash equilibrium, this equilibrium is in pure strategies, and it is strictly monotonic.

(ii) Let   0, bidder ’s value is 0 or  (such that   ) with probabilities  and 1 − ,

independently of the opponent’s value. Nash equilibrium exists. In every Nash equilibrium

type 0 of each bidder gets a zero payoff, type  of each bidder gets a payoff of max { −  0},
where  = max {1 2}.

Proof. Part (i) follows from Theorem 1 in Amann and Leininger (1996). See Appendix for the

proof of part (ii).

Our first result on communication equilibria is about the case of no reserve price. Note that it

involves rather mild restrictions on the distributions of the players valuations. Part (i) of Proposition

5 describes one set of sufficient conditions for existence of the unique Nash equilibrium, but there

are also others.21 Note that Nash equilibrium often fails to exist in the all-pay auction with no

20There exist other results on Nash equilibria of the all-pay auction with incomplete information, but many of them

are about the case of interdependent valuations which is not covered in this paper. See, for example, Krishna and

Morgan (1997), Lizzeri and Persico (2000), Siegel (2012).
21For example, the results of Siegel (2012) imply that the Nash equilibrium exists and is unique when there are

finitely many strictly positive values for every bidder.
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reserve price when the bidders’ values are equal to zero with positive probability, and so ruling out

such distributions does not seem very restrictive.

Proposition 6 Consider an incomplete information environment with two bidders and no reserve

price such that the values of the bidders are strictly positive with probability one, and there exists a

unique Nash equilibrium. Then every communication equilibrium is interim payoff equivalent to the

Nash equilibrium.

The idea behind the result can be understood with the help of the connection between the

all-pay auction and the auxiliary zero-sum game introduced in the proof of Proposition 2. Since

the payoffs of the two games are related according to formula (1), it is easy to see that the best

responses for each type of each bidder for the two games coincide, even when there is uncertainty

about the opponent’s value. Suppose, first, that the bidders are not allowed to communicate about

their private information. Then we can consider the all-pay auction as a strategic form game, and,

in a similar way as in Proposition 2, we can show that using correlated recommendations does not

help to achieve payoffs different from the Nash equilibrium payoffs.

Next, suppose that the bidders are allowed to communicate about their private information.

One would expect that in a zero-sum game the players are not too keen on truthfully revealing

their private information because it may be used against them by the opponents. This is indeed

confirmed by Proposition 6 that says that no payoff-consequential voluntary sharing of private in-

formation is possible, and this result can be viewed as a version of the “no trade” result (Milgrom

and Stokey, 1982). Note that in any communication equilibrium a bidder can play the following

strategy: (i) regardless of own type randomize over the type reports according to the prior prob-

ability distribution; (ii) regardless of the mediator’s recommendations choose the same bids as in

the Nash equilibrium. It turns out that in our auxiliary zero-sum game each player can guarantee

himself at least his Nash equilibrium payoff by playing such a strategy. The no trade result then

follows from the facts that the players have common prior, and that every allocation, including the

Nash equilibrium outcome, is ex ante Pareto efficient (because the game is zero-sum).

Similarly to the case of complete information, a result analogous to Proposition 6 is likely to

hold in some environments with strictly positive reserve price if we can rule out the case when both

bidders choose null bids. This, for example, happens when there is no overlap in the supports of

18



the bidders’ valuations, say, 2  1, and the reserve price is low enough, 1  . Then bid 0 is

not rationalizable for bidder 1 for any beliefs over the opponent’s types, because he prefers to bid

slightly above 2 to bidding 0. It remains an open question whether results analogous to Proposition

6 hold when the bidders have correlated or interdependent values.22

There exist some related results for the first-price auction under incomplete information. As

mentioned in the previous section, Lopomo, Marx and Sun (2011) study a model of collusion

with pre-auction communication, side payments and bid recommendations in the first-price auction

with two bidders. They show that in a symmetric environment with two possible types (with or

without reserve) and discrete bid spaces the collusive equilibria (and thus communication equilibria)

are payoff equivalent to the unique Nash equilibrium.23 Azacis and Vida (2010) study a similar

environment in a model with continuum of bids. They show that several restricted versions of

communication equilibrium are payoff equivalent to the Nash equilibrium, and they conjecture that

the same is true for the canonical communication equilibrium.24

Kovenok, Morath and Münster (2010) consider the incentives of the bidders in the all-pay

auction to share their private information which is assumed to be verifiable. First, each bidder

decides whether to disclose his value to the opponent, after that the bidders play the all-pay auction

according to Nash equilibrium given their updated beliefs. In the case when the bidders’ disclosure

decisions take place after they observe the realizations of their values there exist equilibria with

full information disclosure as well as equilibria without any information sharing. In the model of

Kovenok, Morath and Münster (2010) the bidders can hide their information but cannot lie about

it, and this makes it is easier to achieve information revelation than in our setting. On the other

hand, our model is more conducive to sustaining information revelation in the following respect.

In Kovenok, Morath and Münster (2010) the bidders’ payoffs following any disclosure decision are

determined by the unique continuation Nash equilibria given the beliefs, but in our setting there

22 If bidder  is uncertain about his valuation , then a transformation of his payoff according to formula (1) is likely

to change his best response, because in general  [1] 6= 1 []. For the case of correlated values it is unclear how
part (i) of the deviational strategy described in the previous paragraph has to be adjusted in order to guarantee a

bidder his Nash equilibrium payoff.
23Lopomo, Marx and Sun (2011) check the robustness of the result by studying numerically other environments

with two bidders.
24Azacis and Vida (2010) also present several results on the optimal collusive schemes in the first-price auction with

omniscient mediator who is assumed to know the bidders values. In such a model the bidders can generally do better

than in the Nash equilibrium without communication: the mediator selectively reveals information on the bidders’

values to induce asymmetric beliefs which lead to less aggressive bidding. Bergemann, Brooks and Morris (2012) also

study related constructions.

19



may be multiple continuation correlated equilibria, and thus the bidders’ payoffs are not necessarily

uniquely determined by the beliefs. We demonstrate in the next example how this feature allows

to provide incentives for information revelation.

Example 3 Let  ∈ (0 1), bidder 1’s value is 0 or 1 with probabilities 1 and 1 − 1, bidder 2’s

value is 1 with probability 1. By part (ii) of Proposition 5 the Nash equilibrium payoff of each bidder

with value 1 is max {1 −  0}.
Consider the following scenario with pre-auction communication. Bidder 1 sends a cheap talk

message to bidder 2, and then the bidders play the all-pay auction according to Nash equilibrium

given the updated beliefs. It is easy to see that there is no cheap-talk equilibrium where bidder 1

truthfully reveals his type. If bidder 2 believes the announcement, then, after learning that 1 = 0,

bidder 2 bids  and expects to win with probability 1; after learning that 1 = 1, the bidders play

the Nash equilibrium that yields a zero payoff to each bidder. But then bidder 1 of type 1 can do

better by reporting type 0, and then bidding slightly above . This observation can be generalized to

show that there are no cheap talk equilibria that result in payoffs that are different from the Nash

equilibrium payoffs of the game without communication.25

This is no longer true if after a cheap talk announcement the bidders can correlate their play.

Let 1 ∈ (0 ), so that the Nash equilibrium payoffs of the game without communication are zero

for either type of bidder 1. Suppose type 0 of bidder 1 sends message , and type 1 randomizes

between messages  and 0, so that the posterior beliefs that bidder 1’s type is 0 following these

two messages are  + 2 (1− ) and 0, respectively. After message  the bidders play according to

the Nash equilibrium, and after message 0 according to the correlated equilibrium from Example 1.

Type 0 of bidder 1 has no incentive to deviate because he is not interested in bidding anything other

than 0. Type 1 of bidder 1 is willing to randomize between the messages because his expected payoff

in either case is 2 (1− ).

Next we show that in the situations with two sided uncertainty there also exist communication

25Here is a sketch of the argument. If following every message the posterior probability that bidder 1 is of type

0 is not higher than , then after every message either type of bidder 1 gets zero payoff in the continuation Nash

equilibrium. The prior belief 1 must also be not higher than , and hence the Nash equilibrium payoffs of the game

without communication are the same. If the posterior beliefs following some messages are above , then it is optimal

for bidder 1 of type 1 to send messages that induce the highest possible belief that bidder 1’s type is 0. However, since

the equilibrium posterior beliefs must reflect the strategy of bidder 1, the highest posterior belief cannot be greater

than the prior 1. Hence, the posterior beliefs after every message must be equal to the prior, which implies payoff

equivalence with the Nash equilibrium of the game without communication.
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equilibria that result in the bidders’ payoffs that are higher than in the Nash equilibrium. The

behavior of the bidders of type  is coordinated in a way that is similar to the correlated equilibria

in the complete information case, and when  = 0 the construction is identical to that in the proof

of Proposition 3 for the case of symmetric payoffs.

Proposition 7 Suppose there are two bidders and   0. Each bidder’s value is 0 or  (such that

  ) with probabilities  and 1−, independently of the opponent’s value. Then for every  ∈ £0 


¢
there exists a communication equilibrium that gives each bidder of type  a positive payoff.26

It is possible to show that in this environment all Nash equilibria are inefficient in a sense that

the good sometimes remains unsold even though there is a bidder with value above the reserve

price. This is because at least one bidder with value above the reserve price submits a null bid with

positive probability.27 However, the constructed communication equilibrium is efficient. If only one

bidder has a value above the reserve price, then this bidder submits an active bid, and thus gets the

good, with probability one; if both bidders have values above the reserve price, then with positive

probability only one bidder submits an active bid.

Such a construction clearly involves some sharing of information about the values between the

bidders. However, to provide the right incentives it is also important to maintain enough uncertainty

about the opponents’ values. For example, if it was known that the bidders’ reports are revealed

to their opponents with high probability, then it is possible to show that bidder of type  has a

profitable deviation. The idea is similar to that in Example 3: reporting type 0 induces the opponent

to bid at the reserve price, and thus it is profitable to report type 0 and then bid slightly above

the reserve price. To make such a deviation unprofitable it is necessary that the bidders of type

 bid aggressively enough when the opponent has reported type 0, and this is achieved through

maintaining sufficient uncertainty about the opponent’s type.

26 It can be shown that an analogous result holds for the case when  ∈  

 1

and  is sufficiently high. The proof

is long, and thus not included in the paper.
27The inefficiency of Nash equilibrium is easy to observe when  ≈ 0 and  ≈ . Efficiency requires that each bidder

with value  submits an active bid, and thus the sum of the ex ante expected bids must be at least 2 (1− )  ≈ 2.
However, the bidders’ gross ex ante payoff is only 


1− 2

 ≈ , which gives an impossibilty.
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4.2 Three or more bidders

Here we continue to work with the symmetric independent case when each bidder’s valuation can

be either 0 or . The Nash equilibrium payoffs when there are three or more bidders are described

next.

Proposition 8 Suppose there are  ≥ 3 bidders and  ≥ 0. Each bidder’s value is 0 or  (such
that   ) with probabilities  and 1− , independently of the opponents’ values. Nash equilibrium

exists. In every Nash equilibrium type 0 of each bidder gets a payoff of zero, type  of each bidder

gets a payoff of max
©
−1 −  0

ª
.

Note that there can be no communication equilibrium such that some bidder gets a payoff below

his Nash equilibrium payoff. Bidding 0 guarantees a payoff of (at least) zero; bidding the reserve

price  leads to winning whenever all opponents have zero valuations, and thus guarantees a payoff

of (at least) −1 − .

The next result demonstrates that there exist communication equilibria such that each bidder

gets a payoff higher than in the Nash equilibrium. We focus on the case of no reserve price, but the

construction can be extended to the case of positive reserve price as well.

Proposition 9 In the environment described in Proposition 8, if  = 0, then for  sufficiently small

there exists a communication equilibrium such that each bidder of type  gets a strictly higher payoff

than in the Nash equilibrium.

5 Discussion

We have shown that in the case of two bidders all correlated and communication equilibria are payoff

equivalent to the Nash equilibrium if there is no reserve price, or if it is commonly known that one

bidder has a strictly higher value. Hence, by the revelation principle for games with communica-

tion, the Nash equilibrium predictions in such cases are robust to pre-play communication between

the bidders. Specifically, the bidders’ expected payoffs and expected payments are unaffected by

allowing them to communicate with each other prior to the auction using any mediated or unmedi-

ated communication protocol (the bidders’ statements about their types cannot be verified).28 It

28Another implication is that the Nash equilibrium prediction is robust to the bidders’ having arbitrary correlated

beliefs about payoff-irrelevant states of the world, as long as these beliefs are consistent with the common prior
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will be interesting to see if these payoff equivalence results hold beyond the incomplete information

environments with independent private values.

The results on payoff equivalence of Nash and correlated equilibria, and Nash and communication

equilibria can be extended to related two-player games such as all-pay auctions with general cost

functions (Siegel, 2009), as well as to models of contests where the determination of the winner

stochastically depends on the amount of resources committed by the participants.29 Using a payoff

transformation similar to (1) in Proposition 2 it is possible to show that many versions of such

models are strategically equivalent to particular zero-sum games; this strategic equivalence can

then be used to establish payoff equivalence of predictions under the different solution concepts.30

We have demonstrated that in several particular settings with three or more symmetric bidders,

and two symmetric bidders and a positive reserve price, there may exist correlated and communi-

cation equilibria that are not payoff equivalent to the Nash equilibrium payoffs. Specifically, the

bidders’ payoffs can be higher than in the Nash equilibrium, but never lower. This suggests that

allowing the bidders to communicate before bidding may improve their payoffs, and, in case the

bids represent socially unproductive expenses, communication may be unambiguously good for the

society. On the other hand, if the bids represent transfers to the seller or some socially productive

activities, then one should take into account that though communication may improve the bidders’

payoffs and efficiency of the allocation, it may also result in less intense bidding. A characterization

of all environments where there exist correlated and communication equilibria distinct from Nash

equilibrium remains an open question. It may also be interesting to compute the set of all payoffs

that can be achieved by the communication or correlated equilibria in such cases, and verify if it is

true in general that the payoff of any bidder cannot fall below his Nash equilibrium payoff.

The correlated and communication equilibria describe all possible outcomes that can be poten-

tially achieved with the help of communication in a self-enforcing way. It is important to know

how exactly communication between the bidders can be organized if one wants to implement the

outcome of some particular correlated or communication equilibrium. One natural approach is to

find an extra player who is able to play the role of a mediator as described in Section 2. The

(Aumann, 1974).
29Such models include rent-seeking contests and models of conflict (Tullock, 1980; Hirshleifer, 1989), tournaments

between workers (Lazear and Rosen, 1981), R&D contests (Baye and Hoppe, 2003), etc.
30The connection with zero-sum games may also be useful for obtaining more general results on existence, uniqueness,

and payoff characterization of Nash equilibria in such games.
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mediator should be able to communicate with each bidder privately, or, alternatively, he should be

able to communicate with each bidder by encrypted messages according to a previously agreed upon

code (Lehrer and Sorin, 1997). The mediator should also be able to commit to his communication

strategy, but if this is impossible, then in some situations “strategic mediators” can be used as

well.31

It may also be interesting to know if the outcomes of the correlated and communication equi-

libria can be implemented with a help of some unmediated communication procedure between the

bidders.32 Let us briefly discuss the case of two bidders. In our constructed correlated equilibria it

is essential that the bidders remain uncertain about the strategies that are recommended to their

opponents, and in the communication equilibria it is also important that the bidders are uncertain

about the values of the opponents. Thus it is unlikely that the outcomes of these correlated and com-

munication equilibria can be implemented by some simple unmediated communication procedure,

whereby the bidders directly communicate with each other, because such communication cannot

generate the desired correlated beliefs.33 This implies that successful unmediated communication

must use correlation devices and/or noisy communication channels.

To illustrate, here is one of many possible ways to implement the outcome of the correlated

equilibrium in Example 1. Bidder 2 with probability  announces to bidder 1 that he will bid 0,

and with probability 1 −  that he will bid above , and then bids in the auction according to

his announcement. The announcement is made in a foreign language such that bidder 1 is able

to understand it with probability , and the language ability of bidder 1 is known only to him. If

bidder 1 understands the announcement of bidder 2, then he optimally responds to it, i.e. bids 

if bidder 2 says he will bid 0, and bids 0 if bidder 2 says he will bid above . If bidder 1 does not

understand the announcement of bidder 2, he bids above .34

31For example, Ivanov (2010) investigates how strategic mediators can be used in sender-receiver games.
32One can use the existing results on implementation of correlated and communication equilibria without a mediator

for general games. See Forges (2009) for a survey. The constructions in these papers are for finite sets of actions, but

they can be adapted to implement the correlated and communication equilibria constructed here.
33 It also seems unlikely that there may exist other interesting correlated and communication equilibria that can be

implemented by direct unnmediated communication before the all-pay auction. In the environment with complete

information such pre-play communication only allows to achieve payoffs that are in the convex hull of the Nash

equilibrium payoffs of the game without communication (Forges, 1990). We conjecture that it is impossible to improve

upon the Nash equilibria using only such pre-play communication in the all-pay auction with incomplete information

as well.
34Blume and Board (2013) introduced the idea that instead of communication via a noisy communication channel

it is possible to use direct communication when there is uncertainty about the ability of the players to understand

some messages.
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6 Appendix

6.1 Proofs of Section 3

Proof of Proposition 3. Denote  =
1

− for  = 1 2, and fix (1 2) ∈ R2+ such that

2 + 2 ≤ 2. The bidders are given recommendations according to the following probability

distribution, where “bid above ” means “bid uniformly on ( ]”.35

1’s bid \ 2’s bid bid 0 bid  bid above 

bid 0 0 2


+
(1− 1 − 2)

bid  1 0 0

bid above  
+

(1− 1 − 2) 0 −
+

(1− 1 − 2)

Suppose bidder 1 is suggested to bid 0 and bids  ∈ ( ] instead.36 Then his payoff is
Ã

2

2 +


+
(1− 1 − 2)

+


+

(1− 1 − 2)

2 +


+
(1− 1 − 2)

µ
− 

 − 

¶!
 − 

=
21 + 22 − 2

(2 − 2)
³
2 +


+

(1− 1 − 2)
´ ( − ) ≤ 0

where the inequality follows from 21 + 22 ≤ 2. If bidder 1 is suggested to bid , then it is

clearly optimal to comply, since the opponent bids 0 in such case. If bidder 1 is suggested to bid

above , then he is indifferent between all bids since the payoff from bidding  ∈ [ ] is

µ



+
³
1− 



´µ − 

 − 

¶¶
 −  = 0

To summarize, bidder 1 gets a payoff of  −  when he is suggested to bid , and zero payoff

otherwise. Hence, his ex ante payoff is 1 ( − ) = 1. Using a similar argument for bidder 2, we

conclude that the considered correlation rule is a correlated equilibrium, and it achieves the desired

35 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative. The latter is

because

1 + 2 =


21 + 22


+

21 + 22


2 + 2

≤ 22

2 + 2
 1

where the first inequality follows from 2 + 2 ≤ 2.
36Bidding exactly  is dominated by bidding slightly above  if there is a positive probability that the opponent

bids .
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payoffs.

Proof of Proposition 4. Fix  ∈ £0 ¤, where  =
2(−)


(−2)2+(−2)+22

(9−14)2+(6−8)+(+6)2 . Consider

the following symmetric correlation rule. First, a pair of bidders is randomly chosen, with each pair

being equally likely to be chosen. Next, the bidders receive private bid recommendations without

being told whether they have been chosen. The bidders who are not chosen are recommended to

bid 0, and the chosen bidders are given recommendations according to the following probability

distribution, where “bid low” means “bid uniformly on
¡
 1
2
( + )

¤
”, and “bid high” means “bid

uniformly on
¡
1
2
( + )  

¤
”, and where  = 1

+

¡
−
4
− 3+



8

¢
.37

’s bid \ ’s bid bid 0 bid low bid high

bid 0 0  =
2
−+

+
−


2
  =

2
−

bid low  =
2
−+

+
−


2
  = + 

2
  = 

bid high  =
2
−  =   = 

If a bidder is suggested to bid 0, then he knows that either he was not chosen (which happens

with probability −2

), or that he was chosen but only his opponent was suggested to bid above 0

(which happens with probability 2

( + )).

If this bidder bids  ∈ ¡ 1
2
( + )

¤
instead, then he has a chance to win only if none of his

opponents bid high. In particular, bidder  could win if (i) he was not chosen, and one chosen bidder

bids low (which happens with probability −2

(2)); (ii) he was not chosen, and two chosen bidders

bid low (which happens with probability −2

); (iii) he was chosen, and his opponent bids low

(which happens with probability 2

). The expected payoff this bidder is then

⎛⎝ −2

(2) +

2



−2

+ 2


( + )

Ã
− 

1
2
( + )− 

!
+

−2



−2

+ 2


( + )

Ã
− 

1
2
( + )− 

!2⎞⎠  −  (2)

37 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative. The latter is

because
 − 

4
− 3 + 





8
 ≥  − 

4
− 3 + 





8
 =

( − )
2
( + ) ((3− 4)  + )

2 ((9− 14) 2 + (6− 8)  + (+ 6) 2) ≥ 0

where the equality is by definition of  .
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Note that (2) is equal to − if  = . If  = 1
2
( + ), then (2) becomes

−2

(2 + ) +

2



−2

+ 2


( + )

 − 1
2
( + ) =



8

(9− 14) 2 + (6− 8)  + (+ 6) 2
( − ) ((− 2)  +  + )

¡
 − 

¢ ≤ 0 (3)

where the inequality holds since  ≤  . Since (2) is convex in , this implies that it is nonpositive

for every  ∈ £ 1
2
( + )

¤
.

If this bidder bids  ∈ ¡1
2
( + )  

¤
instead, then he wins for sure if none of his opponents bid

high, and has a chance to win otherwise. In particular, bidder  wins for sure if (i) he was not

chosen, and none of the chosen bidders bid high (which happens with probability −2

(2 + ));

(ii) he was chosen, and his opponent does not bid high (which happens with probability 2

).

Also bidder  could win if (i) he was not chosen, and one chosen bidder bids high (which happens

with probability −2

(2 + 2)); (ii) he was not chosen, and two chosen bidders bid high (which

happens with probability −2

); (iii) he was chosen, and his opponent bids high (which happens

with probability 2

). The expected payoff of this bidder is then

Ã
−2

(2 + ) +

2



−2

+ 2


( + )

+
−2

(2 + 2) +

2



−2

+ 2


( + )

Ã
− 1

2
( + )

 − 1
2
( + )

!
+ (4)

+
−2



−2

+ 2


( + )

Ã
− 1

2
( + )

 − 1
2
( + )

!2⎞⎠  − 

Note that (4) is equal to (3) if  = 1
2
( + ), and (4) is equal to zero if  = . Since (4) is convex

in , this implies that it is nonpositive for every  ∈ ¡1
2
( + )  

¤
.

If a bidder is suggested to bid low, then he knows that he is chosen, and faces exactly one

chosen opponent. This opponent bids 0, low, or high with probabilities 
++

, 
++

, and


++

, respectively. The expected payoff of this bidder from bidding any  ∈ ¡ 1
2
( + )

¤
is

Ã


 +  + 
+



 +  + 

Ã
− 

1
2
( + )− 

!!
 −  =


2

( +  + )

≥ 0

27



If he bids  ∈ ¡1
2
( + )  

¤
instead, then his payoff is

Ã
 + 

 +  + 
+



 +  + 

Ã
− 1

2
( + )

 − 1
2
( + )

!!
 − 

=


2

( +  + )

2 ( − )

 − 



2

( +  + )

If a bidder is suggested to bid high, then he knows that he is chosen, and faces exactly one

chosen opponent. This opponent bids 0, low, or high with probabilities 
++

, 
++

, and


++

, respectively. The expected payoff of this bidder from bidding any  ∈ ¡1
2
( + )  1

2

¤
is

Ã
 + 

 +  + 
+



 +  + 

Ã
− 1

2
( + )

 − 1
2
( + )

!!
 − 

=

Ã
 + 

2
+

 − 



Ã
− 1

2
( + )

 − 

!!
 −  = 0

If he bids  ∈ ¡ 1
2
( + )

¤
instead, then his payoff is

Ã


 +  + 
+



 +  + 

Ã
− 

1
2
( + )− 

!!
 −  =

µ



+

 − 



µ
− 

 − 

¶¶
 −  = 0

Each bidder gets a payoff of 
2

(++)

when he is suggested to bid low, and zero payoff

otherwise. Hence, his ex ante payoff is  . Thus the considered correlation rule is a correlated

equilibrium, and it achieves the desired payoffs.

6.2 Proofs of Section 4

Proof of Proposition 5. (ii) In every Nash equilibrium, type 0 of each bidder bids 0 and gets a

zero payoff. Let us represent the equilibrium strategy of bidder  of type  as a distribution function

 : {0} ∪ [∞) → [0 1], let  and  be the infimum and the supremum of the support of his

equilibrium bids, and let  ≥ 0 be his equilibrium payoff.

Note that  ≤  − . Also note that bidder  of type  can secure a payoff arbitrarily close to

− by bidding slightly above . Thus  ≥ −. Reversing the roles of  and , and rearranging,
we get  =  =  .

Next, note that bidder  of type  can secure a payoff arbitrarily close to − by bidding slightly
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above , and thus winning when the opponent is of type 0. Hence,  ≥ max {1 −  2 −  0}.
If this inequality is strict, then neither bidder of type  bids 0 with positive probability, and thus

  ≥ . Moreover,   max {1 −  2 −  0} implies that each bidder of type  must be

winning with positive probability against the opponent of type . Then    is impossible, since

bidder  who bids below  always loses against the opponent of type . But  =  =  is impossible

either: the requirement of winning with positive probability against the opponent of type  implies

that both bidders bid  with positive probability, which cannot happen in equilibrium since each

bidder could profitably deviate to a slightly higher bid. Thus  = max {1 −  2 −  0}.
Let 1 ≤ 2. It is straightforward to check that the following is a Nash equilibrium. Types 0

of both bidders bid 0. Type  of bidder 1 bids 0 and  with probabilities
min{−20}
(1−1) and 2−1

1−1 ,

respectively, and bids uniformly on (min {(1− 2)  +  }] otherwise; type  of bidder 2 bids 0
with probability

min{−20}
(1−2) , and bids uniformly on (min {(1− 2)  +  }] otherwise.

Proof of Proposition 6. Denote by ∗ () the interim expected payoff of player  of type 

in the Nash equilibrium (∗1 
∗
2), and by  () the interim expected payoff of player  of type 

in the communication equilibrium . Let  (·|) be the marginal probability measure of  on 

conditional on  (defined in Section 2).

By the definition of Nash equilibrium, for every  and -a.e. , it is unprofitable to deviate to

any strategy e(·|):
∗ () = 

Z


ÃZ


Z


 ()
∗
 (|)∗ ( |)

!
 ()−

Z



∗
 (|) (5)

≥ 

Z


ÃZ


Z


 () e(|)∗( |)
!
 ()−

Z


e(|)
By the definition of communication equilibrium, for every  and -a.e. , it is unprofitable to de-

viate to the following strategy: first, randomize over the type reports according to , and then, re-
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gardless of the mediator’s recommendation, choose bids according to some bidding strategy e(·|):
 () = 

Z


µZ


 ()(| )
¶
 ()−

Z


(|) (6)

≥ 

Z


ÃZ


µZ




³b ´ e(b|)¶Z


(|b ) (b)! ()−
Z


be(b|)
= 

Z


ÃZ


Z




³b ´ e(b|)( |)
!
 ()−

Z


be(b|)
For every  and  6= 0, such that both (5) and (6) hold, perform the following operations. Take

(5) with e =  and (6) with e = ∗ , add the two resulting inequalities, and divide by . Then

for every  and -a.e.  we get

Z


ÃZ


Z


 ()
∗
 (|)∗ ( |) +

Z


 ()(| )
!
 () (7)

≥
Z


ÃZ


Z


 ()(|)∗ ( |) +
Z


Z


 ()
∗
 (|)( |)

!
 ()

Next, integrate (7) with respect to  over the set of types of bidder  for which inequality (7)

holds. Note that the resulting inequality continues to hold even if we integrate over  because (7)

is satisfied for -a.e. , and because we have assumed that  ({0}) = 0. Sum up the resulting

inequalities over :

Z


⎛⎝Z


Z


X
=12

 ()
∗
 (|)∗ ( |) +

Z


X
=12

 ()(| )
⎞⎠ () (8)

≥
Z


⎛⎝Z


Z


X
=12

 ()(|)∗ ( |) +
Z


Z


X
=12

 ()
∗
 (|)( |)

⎞⎠ ()

Since
P

=12  () = 1 for every , inequality (8) holds as an equality. This implies that the

following inequalities hold as equalities as well for -a.e. : inequality (5) when e = , and

inequality (6) when e = ∗ .
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Hence, for every , -a.e. , the following is true for any e(·|):
∗ () = 

Z


ÃZ


Z


 ()(|)∗ ( |)
!
 ()−

Z


(|)

≥ 

Z


ÃZ


Z


 () e(|)∗ ( |)
!
 ()−

Z


e(|)
and

 () = 

Z


ÃZ


Z


 ( )
∗
 (|)( |)

!
 ()−

Z



∗
 (|)

≥ 

Z


ÃZ


Z


 ( ) e(|)( |)
!
 ()−

Z


e(|)
This implies that

¡
∗  

¢
is a Nash equilibrium. In this equilibrium bidder  of type  gets

payoff  (), and bidder  of type  gets payoff ∗ (). Since by assumption the Nash equilibrium

is unique, for every  we have  = ∗ , and thus 
∗
 () =  () for every -a.e. .

38

Proof of Proposition 7. We show that for  ∈ £0 


¢
there exists a communication equilibrium

such that each bidder of type  gets a payoff of
(2−22)(−)
2+2−22 . Consider the following symmetric

communication rule. If a bidder reports type 0, then he is suggested to bid 0. If a bidder reports

type  and his opponent reports type 0, then this bidder is suggested to bid  or “bid above ”

(which means “bid uniformly on ( ]”), with probabilities b = (−)(+)
2+2−22 and 1− b, respectively.

If both bidders report type , then they are given recommendations according to the following

probability distribution.39

1’s bid \ 2’s bid bid 0 bid  bid above 

bid 0 0  =
(−)

2+2−22  =
(−)(−)
2+2−22

bid   =
(−)

2+2−22 0 0

bid above   =
(−)(−)
2+2−22 0  =

(−)2
2+2−22

38 If there are multiple Nash equilibria, then every communication equilibrium is interim payoff equivalent to some

Nash equilibrium. We do not include this observation in Proposition 6 because we are not aware of any examples of

multiple Nash equilibria in this setting.
39 It is straightforward to verify that  ∈ [0 1] and that the entries in table: (i) sum up to one; and (ii) are

nonnegative (since   ).
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We need to check the incentives to tell the truth and to comply with the recommendations only

for the bidders of type , since the bidders of type 0 have no incentive to lie or to disobey.

If a bidder of type  has reported  and is suggested to bid 0, then he knows that his opponent

must be of type  and bids  or above , with probabilities 
+

and 
+

, respectively. If this

bidder bids  ∈ ( ] instead, then his payoff is40

µ


 + 
+



 + 

µ
− 

 − 

¶¶
 −  =

µ



+

 − 



µ
− 

 − 

¶¶
 −  = 0

If a bidder of type  has reported  and is suggested to bid , then it is clearly optimal to comply,

since the opponent bids 0, regardless of the type, in such case.

If a bidder of type  has reported  and is suggested to bid above , then he knows that either

his opponent is of type 0 and thus bids 0, or his opponent is of type  and bids 0 or high, with

probabilities
(1−)

(1−)+(1−)(+) , (1−)
(1−)+(1−)(+) , and (1−)

(1−)+(1−)(+) , respectively. The
expected payoff of this bidder from bidding any  ∈ [ ] is

µ
 (1− b) + (1− )

 (1− b) + (1− ) ( + )
+

(1− )

 (1− b) + (1− ) ( + )

µ
− 

 − 

¶¶
 − 

=

µ



+

 − 



µ
− 

 − 

¶¶
 −  = 0

To summarize, if a bidder of type  truthfully reports his type and follows the recommendations,

then he gets a payoff of  −  when he is suggested to bid , and zero payoff otherwise. Hence, his

ex ante payoff is (b + (1− )) ( − ) =
(2−22)(−)
2+2−22 .

If a bidder of type  has reported 0, then he is suggested to bid 0. He knows that either his

opponent is of type 0 and thus bids 0, or his opponent is of type  and bids  or above , with

probabilities , (1− ) b, and (1− ) (1− b), respectively. If this bidder bids  ∈ ( ], then his
payoff is

µ
(+ (1− ) b) + (1− ) (1− b)µ − 

 − 

¶¶
− ≤ max {(+ (1− ) b)  −  0} =

¡
2 − 22

¢
( − )

2 + 2 − 22

where the inequality follows from the fact that payoff is a linear function of  and is thus maximized

40Bidding exactly  is dominated by bidding slightly above  if there is a positive probability that the opponent

bids .
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either at  =  or at  = .

Thus the considered communication rule is a communication equilibrium, and it achieves the

desired payoffs.

Proof of Proposition 8. The proof is similar to the proof of part (ii) of Proposition 5. In every

Nash equilibrium, type 0 of each bidder bids 0 and gets a zero payoff. Let the equilibrium strategy

of bidder  of type  be represented by distribution function  : {0} ∪ [∞)→ [0 1],  and  be

the infimum and the supremum of the support of his equilibrium bids, and  ≥ 0 be his equilibrium
payoff.

Note that  ≤
Q

 6=
¡
+ (1− )

¡

¢¢
 − . Also note that bidder  of type  can secure

a payoff arbitrarily close to
Q

 6=
¡
+ (1− )

¡

¢¢
 −  by bidding slightly above . Thus

 ≥ . Since this is true for every pair of  and , we have  =  for every .

Next, note that bidder  of type  can secure a payoff arbitrarily close to −1 −  by bidding

slightly above , and thus winning when the opponent is of type 0. Hence,  ≥ max©−1 −  0
ª
.

If this inequality is strict, then neither bidder bids 0 with positive probability, and thus  ≥  for

every . Moreover,   max
©
−1 −  0

ª
implies that each bidder of type  must be winning

with positive probability against some opponent of type . Then it is impossible to have    =

min 6=  , since bidder  who bids below  always loses against the opponents of type . But  = 

is impossible either: the requirement of winning with positive probability against some opponent

of type  implies that the bidders who bid  must do so with positive probability, which cannot

happen in equilibrium since each bidder could profitably deviate to a slightly higher bid. Thus

 = max
©
−1 −  0

ª
.

It is straightforward to check that the following is a Nash equilibrium. Type 0 of each bidder

bids 0. Type  of each bidder bids 0 with probability  = 1
1−

³
max

n¡



¢ 1
−1 −  0

o´
, and bids

according to  () = 1
1−

µ¡
max

©
−1 − 


 0
ª
+ 



¢ 1
−1 − 

¶
on
¡
min

©¡
1− −1

¢
 +  

ª¤
.

Proof of Proposition 9. We show for sufficiently small   0 there exists a communication

equilibrium such that each bidder of type  gets a payoff of 2−1. Consider the following symmetric

communication rule. If a bidder reports type 0, then he is suggested to bid 0. If exactly one bidder

reports , then this bidder is suggested to“bid low” (which means “bid uniformly on
¡
0 1
2

¤
”). If

  1 bidders report , then a pair of bidders out of these  bidders is randomly chosen, with each
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pair being equally likely to be chosen. The bidders receive private bid recommendations without

being told whether they have been chosen. The bidders who are not chosen are recommended to

bid 0, and the chosen bidders are given recommendations according to the following probability

distribution where “bid high” means “bid uniformly on
¡
1
2
 
¤
”, and where

 =
−1P
=1

(− 1)!
! (− 1− )!

(1− ) −1−
µ

2

 + 1

¶
= 2

µ
1



1− 

1− 
− −1

¶

is the probability that a bidder who submitted report  was chosen and that he is not the only one

who submitted .41

’s bid \ ’s bid bid 0 bid low bid high

bid 0 0  =
1

−1 0

bid low  =
1

−1  =

1
4
+ 1


−1  =

1
4
− 1


−1

bid high 0  =
1
4
− 1


−1  =

1
4
− 1


−1

We need to check the incentives to tell the truth and to comply with the recommendations only

for the bidders of type , since the bidders of type 0 have no incentive to lie or to disobey.

If a bidder of type  has reported  and is suggested to bid 0, then he knows that either he

was not chosen (which happens with probability 1− −1 − ), or that he was chosen but only his

opponent is suggested to bid above 0 (which happens with probability ).

If this bidder bids  ∈ ¡0 1
2

¤
instead, then he has a chance to win only if none of his opponents

bid high. In particular, bidder  could win if (i) he was not chosen, and one chosen bidder bids low

(which happens with probability
¡
1− −1 − 

¢
2); (ii) he was not chosen, and two chosen bidders

bid low (which happens with probability
¡
1− −1 − 

¢
); (iii) he was chosen, and his opponent

bids low (which happens with probability ). The expected payoff of this bidder is then⎛⎝¡1− −1 − 
¢
2 + 

1− 

Ã

1
2


!
+

¡
1− −1 − 

¢


1− 

Ã

1
2


!2⎞⎠  −  (9)

41 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative for  sufficiently

small (since  = 2

when  = 0).
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Note that (9) is equal to 0 if  = 0. If  = 1
2
, then (9) becomes

Ã¡
1− −1 − 

¢
(2 + ) + 

1− 

!
 − 1

2
 =

⎛⎝
³
31−

−1

− 9

4

´
−1

1− 
− 1
4

⎞⎠  (10)

Note that (10) is equal to −1
4
 if  = 0, and that (10) is continuous in . Thus for  small enough

(9) is nonpositive at  = 0 and at  = 1
2
, and it is convex in  on

¡
0 1
2

¤
, which implies that (9) is

nonpositive for every  ∈ ¡0 1
2

¤
.

If this bidder bids  ∈ ¡1
2
 
¤
instead, then he wins for sure if none of his opponents bids high,

and has a chance to win otherwise. In particular, bidder  wins for sure if (i) he was not chosen, and

none of the chosen bidders bid high (which happens with probability
¡
1− −1 − 

¢
(2 + ));

(ii) he was chosen, and his opponent does not bid high (which happens with probability ). Also

bidder  could win if (i) he was not chosen, and one chosen bidder bids high (which happens with

probability
¡
1− −1 − 

¢
2); (ii) he was not chosen, and two chosen bidders bid high (which

happens with probability
¡
1− −1 − 

¢
). The expected payoff of this bidder is then

Ã¡
1− −1 − 

¢
(2 + ) + 

1− 
+

¡
1− −1 − 

¢
2

1− 

Ã
− 1

2


1
2


!
+ (11)

+

¡
1− −1 − 

¢


1− 

Ã
− 1

2


1
2


!2⎞⎠  − 

Note that (11) is equal to (10) if  = 1
2
, and (11) is equal to zero if  = . Thus for  small enough

(11) is nonpositive at  = 1
2
 and at  = , and it is convex in  on

¡
1
2
 
¤
, which implies that (11)

is nonpositive for every  ∈ ¡1
2
 
¤
.

If a bidder of type  has reported  and is suggested to bid low, then he knows that either he

faces no opponents (with probability −1), or that he was chosen and faces one chosen opponent

who bids 0, low, or high with probabilities , , and , respectively. The expected payoff of

this bidder from bidding any  ∈ ¡0 1
2

¤
is

Ã
−1 + 

−1 +  ( +  + )
+



−1 +  ( +  + )


1
2


!
 −  =

2−1
2−1 + 1

2

≥ 0
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If he bids  ∈ ¡1
2
 
¤
instead, then his payoff is

Ã
−1 +  ( + )

−1 +  ( +  + )
+



−1 +  ( +  + )

Ã
− 1

2


1
2


!!
 −  =

2−1
2−1 + 1

2


Ã
 − 
1
2


!


2−1

2−1 + 1
2


If a bidder of type  has reported  and is suggested to bid high, then he knows that he was

chosen and faces one chosen opponent who bids low or high, with equal probabilities. Thus the

expected payoff of this bidder from bidding any  ∈ (0 ] is equal to zero.
To summarize, if a bidder of type  truthfully reports his type and follows the recommendations,

then he gets a payoff of 2−1
2−1+1

2

when he is suggested to bid low, and zero payoff otherwise. Hence,

his ex ante payoff is 2−1.

If a bidder of type  has reported 0, then he is suggested to bid 0. He knows that he faces

no active opponents with probability −1; one active opponent who bids low with probability

(− 1) (1− ) −2 + 2, where  =
¡
1− −1 − (− 1) (1− ) −2

¢
; two active opponents who

both bid low, both bid high, or one bids low and another high with probabilities , , and

2, respectively.

If this bidder bids  ∈ ¡0 1
2

¤
, then his payoff is

⎛⎝−1 +
¡
(− 1) (1− ) −2 + 2

¢Ã 
1
2


!
+ 

Ã

1
2


!2⎞⎠  −  (12)

Note that if  = 0, then (12) is equal to −1 which is smaller than the payoff from truthtelling

2−1. If  = 1
2
 then (12) becomes

¡
−1 + (− 1) (1− ) −2 +  (2 + )

¢
 − 1

2
 (13)

Note that (13) is equal to −1
4
 if  = 0, and that (13) is continuous in . Thus for  small enough

(12) is smaller than 2−1 at  = 0 and at  = 1
2
, and it is convex in  on

¡
0 1
2

¤
, which implies

that (13) is smaller than the payoff from truthtelling 2−1 for every  ∈ ¡0 1
2

¤
.
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If this bidder bids  ∈ ¡1
2
 
¤
, then his payoff is

⎛⎝−1 + (− 1) (1− ) −2 +  (2 + ) + 2

Ã
− 1

2


1
2


!
+ 

Ã
− 1

2


1
2


!2⎞⎠  −  (14)

Note that (14) is equal to (13) if  = 1
2
, and (14) is equal to zero if  = . Thus for  small enough

(14) is smaller than 2−1 at  = 1
2
 and at  = , and it is convex in  on

¡
1
2
 
¤
, which implies

that (14) is smaller than the payoff from truthtelling 2−1 for every  ∈ ¡1
2
 
¤
.

Thus the considered communication rule is a communication equilibrium, and it achieves the

desired payoffs.
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