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TWO CHARACTERIZATIONS OF CONSISTENCY

PETER A. STREUFERT

ECONOMICS DEPARTMENT, UNIVERSITY OF WESTERN ONTARIO

pstreuf@uwo.ca

Abstract. This paper offers two characterizations of the Kreps-
Wilson concept of consistent beliefs. One is primarily of applied
interest: beliefs are consistent iff they can be constructed by multi-
plying together vectors of monomials which induce the strategies.
The other is primarily of conceptual interest: beliefs are consistent
iff they can be induced by a “product dispersion” whose marginal
dispersions induce the strategies (a “dispersion” is defined as a
relative probability system, and a “product” dispersion is defined
as a joint dispersion whose marginal dispersions are independent).
Both these characterizations are derived with linear algebra.

1. Introduction

1.1. Example
Figure 1.1 depicts the start of an extensive-form game. Xavier

chooses between L and R, and simultaneously Yolanda chooses be-
tween `, m, and r. Six nodes result, and the four nodes Lm, Lr, R`,
and Rm constitute Helen’s information set.

Suppose (for whatever reason) that both Xavier and Yolanda play
to the right. What does this behaviour imply about Helen’s belief? In
other words, if Helen found herself with the move, which of the four
nodes in her information set would she consider most likely?

This question is important even though there is zero probability that
Helen will actually move. To appreciate its importance, consider Fig-
ure 1.2, which incorporates Figure 1.1 into an extensive-form game.
Notice that the outcome Rr results from the sequential equilibrium con-
sisting of the strategy profile (pL, pR) = (0, 1), (p`, pm, pr) = (0, 0, 1),
(p1, p2) = (0, 1), and the belief (pLm, pLr, pR`, pRm) = (0, 1, 0, 0). This
equilibrium outcome would vanish if Helen believed that Lm (or R`
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Figure 1.1. The Question of Helen’s Belief
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Figure 1.2. Motivation for the Question of Helen’s Belief

or Rm) was more likely than Lr: she would then choose 1 over 2 and
thereby induce Xavier to choose L over R. Hence, Helen’s belief over
her zero-probability information set is a critical component of the equi-
librium.
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One answer to the question of Helen’s belief would be provided by
ordinary probability theory. There Xavier’s strategy (pL, pR) = (0, 1)
can be multiplied by Yolanda’s strategy (p`, pm, pr) = (0, 0, 1) to obtain
the product distribution

r 0 1
m 0 0
` 0 0

L R

.

This product distribution assigns zero probability to Lm, Lr, R`, and
Rm, and thus imposes no restrictions on Helen’s belief. Although this
answer is logically coherent, it is unsatisfactory in the sense that Lm
seems markedly less likely than the other three nodes because Lm is
the only node in which both Xavier and Yolanda have failed to play
right.

A better answer to the question is provided by Kreps and Wilson
(1982)’s concept of consistent beliefs, and the purpose of this paper is
to provide two characterizations of their concept. One is primarily of
applied interest, the other primarily of theoretical interest.

1.2. A Characterization of Applied Interest
This subsection is more than introductory. Its four pages fully ex-

plain and illustrate the characterization of applied interest, and conse-
quently, readers interested in consistent beliefs for application purposes
may wish to stop at the end of this subsection.

In mathematics, a “monomial in the variable x” is an expression of
the form cxe, where the coefficient c is a real number and the exponent
e is a nonnegative integer. In this paper, the word monomial will refer
to an expression of the form cne, where c is a positive real number and
e is any real number (allowing e to be real is only a matter of clarity
and convenience: see Note 5).

Then consider a finite set Z such as Xavier’s strategy set {L,R}
or Yolanda’s strategy set {`,m, r}. To set up an analogy, recall that a
distribution [pz] assigns a real number pz to each element of Z. Obvious
examples are Xavier’s strategy (pL, pR) = (0, 1) and Yolanda’s strategy
(p`, pm, pr) = (0, 0, 1). Analogously, a vector of the form [cznez ] assigns
a monomial cznez to each element of Z. Examples are

(cLneL , cRneR) = (n−1, 1) and(1)

(clne` , cmnem , crner) = (n−2, 5n−2, 1) .(2)
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A monomial vector [cznez ] is said to induce the distribution [pz] de-
fined by

(∀z) pz = limn→∞
cznez

Σz′′∈Z cz′′nez′′
=

cz1(ez=max{ez′|z′})
Σz′′∈Z cz′′1(ez′′=max{ez′|z′})

(3)

(the first equation is the definition, the second equation is an obvious
identity, and the symbol 1(·) denotes the indicator function assuming a
value of 1 when its argument is true and a value of 0 when its argument
is false). Note that the right-hand formula is simple: it says to use
the exponents [ez] to find the support of the distribution, and then to
normalize the coefficients [cz] to assign positive probabilities across that
support. For example, (1) induces Xavier’s strategy and (2) induces
Yolanda’s strategy.

It is important that one distribution can be induced by many mono-
mial vectors. For example, Xavier’s strategy can be induced by (1),

(cLneL , cRneR) = (4n−2, 1) , or(4)

(cLneL , cRneR) = (n−3, 1) .(5)

In general, if [pz] is to be induced by [cznez ], then the support of [pz] de-
termines argmax{ez|z}, and over this set, the ratios of the probabilities
pz determine the ratios of the coefficients cz. However, outside of the
support of [pz], there are no restrictions imposed on either the expo-
nents ez or the coefficients cz (except that every such exponent be less
than max{ez|z}). To put this very casually in terms of game theory,
“off-equilibrium” monomials can be defined arbitrarily (almost).

Two monomial vectors can be multiplied together much like two
distributions can be multiplied together. For example, the product of
Xavier’s (1) with Yolanda’s (2) is

r n−1 1
m 5n−3 5n−2

` n−3 n−2

L R

.(6)

This product assigns a monomial to every node in {L`, Lm,Lr,R`, Rm,
Rr} and thus assigns the vector

(cLmneLm , cLrneLr , cR`neR` , cRmneRm) = (5n−3, n−1, n−2, 5n−2)

to Helen’s information set. This monomial vector then induces the
belief (pLm, pLr, pR`, pRm) = (0, 1, 0, 0). In this sense the product (6)
induces the belief (pLm, pLr, pR`, pRm) = (0, 1, 0, 0).
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Further examples are instructive. The product of Xavier’s (4) with
Yolanda’s (2) is

r 4n−2 1
m 20n−4 5n−2

` 4n−4 n−2

L R

,(7)

which induces (pLm, pLr, pR`, pRm) = ( 0, 4/10, 1/10, 5/10 ). Simi-
larly, the product of Xavier’s (5) with Yolanda’s (2) is

r n−3 1
m 5n−5 5n−2

` n−5 n−2

L R

,(8)

which induces (pLm, pLr, pR`, pRm) = ( 0, 0, 1/6, 5/6 ).
Theorem 6.2(a⇒a′) shows that any of these three beliefs is consistent

(Kreps and Wilson (1982)) with Xavier’s and Yolanda’s strategies. Ad-
mittedly this is not that surprising because every product [cxnexcyney ]
like (6), (7), or (8) corresponds to the full-support-product-distribution
sequence

〈[πn
xπn

y ]〉n =
〈[ cxnex

Σx′cx′nex′

cyney

Σy′cy′ney′

]〉

n ,

and this sequence establishes consistency precisely when [cxnex ] induces
Xavier’s strategy, [cyney ] induces Yolanda’s strategy, and [cxnexcyney ]
induces Helen’s belief.

But Theorem 6.2(a⇐a′) derives the converse, namely, that every
consistent belief is induced by the product of two monomial vectors
which induce the two strategies. In other words, the relatively small
set of full-support-product-distribution sequences that correspond to
products of monomial vectors is large enough to support the entire
concept of consistency. Accordingly, Theorem 6.2(a⇔a′) provides an
intuitive, finite-dimensional characterization of consistency.

We can use this result to derive the set of beliefs for Helen that are
consistent with both Xavier and Yolanda playing right. Within this
derivation, let the function P map a monomial vector to the distribu-
tion it induces (for example, P (n−2, 3) = (0, 1), where P ((n−2, 3)) is
written without double parentheses for readability). We will contend
that

{ (pLm, pLr, pR`, pRm) that are consistent with

(pL, pR)=(0, 1) and (p`, pm, pr)=(0, 0, 1) }
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= { P (cLcmneL+em , cLcrneL+er , cRc`neR+e` , cRcmneR+em) |
P (cLneL , cRneR)=(0, 1) and P (c`ne` , cmnem , crner)=(0, 0, 1) }

= { P (cLcmneL+em , cLneL , c`ne` , cmnem) |(9)

P (cLneL , 1)=(0, 1) and P (c`ne` , cmnem , 1)=(0, 0, 1) }

= { P (cLcmneL+em , cLneL , c`ne` , cmnem) |
eL<0, e`<0, em<0 }

= { (pLm, pLr, pR`, pRm) | pLm=0 } .

The first equality is Theorem 6.2(a⇔a′), the second equality holds by
choosing the numeraires R and r (the appendix discusses numeraires
and Remark A.2 is applied here), the third equality holds because
(cLneL , 1) induces (0, 1) iff eL is negative and because (c`ne` , cmnem , 1)
induces (0, 0, 1) iff both e` and em are negative, and the last equality
holds because eL+em must be less than eL because em is negative. This
result accords with our earlier intuition that Helen should regard Lm
as particularly unlikely and also shows that this is the only restriction
imposed by consistency within this example.

If the reader is interested in consistent beliefs for application pur-
poses, now may be a good time to stop. The characterization of ap-
plied interest has been stated and illustrated, and there are no technical
assumptions to learn because the entire paper is algebraic.

1.3. A Characterization of Conceptual Interest
The remainder of the paper proves the previous characterization,

and simultaneously, defines and proves a second characterization which
is primarily of conceptual interest. Since the reader may find these
developments unexpected in three ways, the paper is structured in
terms of three steps. To put it poetically, Sections 1 through 3 invite
the reader to take three steps into the dark woods (the first step is
yet in this section). Then Sections 4 through 6 bring the reader back
to familiar ground, first by a key mathematical result (Theorem 4.1 of
Section 4) and then by comparatively simple reversals of the first two
steps (Sections 5 and 6).

The first step into the woods is to suspend, until Section 6, all in-
terest in the sequences with which Kreps and Wilson (1982) defined
consistency. This effectively divorces the results in Sections 2 through
5 from the economics literature (footnotes will mark equivalent con-
cepts whenever possible).

Section 2 will take a second step into the woods. Before taking
that step, the section will define a “dispersion” to be a system of
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(a) monomial vectors

(a′) sequences of distributions (Kreps-Wilson)

(b) product dispersions

Figure 1.3. Kreps-Wilson consistency (a′) can be char-
acterized by either (a) monomial vectors or (b) product
dispersions. The downhill conditionals a⇒a′, a′ ⇒b and
a⇒b are easy. The key result in this paper is a⇐b.

relative probabilities, and will note the simple one-to-many relation-
ship between distributions and dispersions (in contrast to distributions,
dispersions specify the relative probability between two distinct zero-
probability events). Section 2 will then ask the reader to suspend any
interest in distributions (such as strategies and beliefs) and to focus on
dispersions alone. This is the second step into the woods.

Next, Section 3 will take the third and final step into the woods by
defining the “products” of two dispersions. (Or, in words which are
not used formally in the paper, Section 3 will define “joint” dispersions
over two variables such that the two variables are dispersed “indepen-
dently.”) This producthood will be specified in terms of numerous
cancellation laws which embody the notion that cancellation can pro-
ceed in each of the two dimensions independently. The reader is apt to
find the concept conceptually appealing but hopelessly intractable.

However, Section 4 will provide Theorem 4.1, which is the mathemat-
ical foundation of the paper. It states that the products of monomial
vectors characterize the products of dispersions. Its proof can be re-
duced to the solution of matrix equations, and accordingly, this entire
paper is based on nothing more than undergraduate linear algebra. To
be more specific, the second half of Theorem 4.1’s proof directly con-
cerns the solution of a certain matrix equation, while the first half of
the proof employs Scott (1964). Although that paper is unfamiliar to
economists, it is familiar to mathematical psychologists and Krantz,
Luce, Suppes, and Tversky (1971) explain in detail how Scott’s Theo-
rem can be proven by solving a number of matrix equations.

Section 5 will reintroduce distributions such as strategies and beliefs.
Its Theorem 5.1 states that (a) beliefs can be constructed by multiply-
ing together monomial vectors inducing the strategies iff (b) beliefs
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can be induced by a product dispersion whose marginals induce the
strategies (see Figure 1.3). Note that (a) is the characterization of the
previous subsection. Meanwhile, (b) will become the second charac-
terization of consistency. This second characterization is conceptually
interesting to the extent that the reader is interested in the cancellation
laws defining product dispersions in Section 3.

Finally, Section 6 reintroduces sequences and relates the paper to
the economics literature. Its Theorem 6.2 states that (a) and (b) are
both equivalent to (a′) Kreps-Wilson consistency. The equivalence of
(a′) and (b) is closely related to a result in Kohlberg and Reny (1997)
(see the paragraph following Theorem 6.1).

To put this all in perspective, one might want to weigh the relative
merits of the three equivalent concepts of Figure 1.3. Subjectively, one
might be most comfortable with (a′). At the other extreme, one might
come to feel that (a) is the most tractable in applications and that
(b) is the most clean conceptually. If so, (a′) is the least interesting of
the three concepts, and Theorem 5.1’s equivalence between (a) and (b)
is the most important result in this paper. Further, it then becomes
interesting that this Theorem 5.1 was derived in Section 5 without any
reference to the sequences of Section 6. In this fashion one could con-
clude that the concept of consistency can be well understood without
any reference to the sequences of Kreps and Wilson (1982)’s original
definition. From this perspective, consistency is an algebraic rather
than a topological concept. Such a perspective, however, remains a
matter of personal taste.

2. Focus on Dispersions and not Distributions

2.1. Informally
The second step into the woods requires some new terminology. To

set up an analogy, recall that a distribution [pz] (e.g., a strategy or a
belief) is a vector of ordinary (i.e., absolute) probabilities. Analogously,
Subsection 2.2 will formally define a “dispersion” [qz/z′ ] to be a matrix
of relative probabilities (that obeys two elementary properties to be
discussed there).

In the example, Xavier’s strategy ( pL = 0, pR = 1 ) is equivalent to
the dispersion

[

qL/R = 0 qR/R = 1
qL/L = 1 qR/L = ∞

]

.(10)

The equation qR/L = ∞ means that the probability of R relative to L
is infinite. This information appears redundantly as qL/R = 0, which
means that the probability of L relative to R is zero. In general, every
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diagonal element of a dispersion is one, and every off-diagonal element
is the reciprocal of the corresponding element on the other side of the
diagonal.

Further, for the sake of illustration, suppose that Yolanda’s disper-
sion is





q`/r = 0 qm/r = 0 qr/r = 1
q`/m = 1/5 qm/m = 1 qr/m = ∞
q`/` = 1 qm/` = 5 qr/` = ∞



 .(11)

Note that the relative probabilities qr/m = ∞ and qr/` = ∞ are deter-
mined by the strategy (p`, pm, pr) = (0, 0, 1), but that there is nothing
in this distribution which would determine qm/`. That additional in-
formation is specified by the dispersion alone (and qm/` = 5 has been
arbitrarily selected for the sake of illustration).

Section 2.2 will use the word “induce” to describe the relationship
between distributions and dispersions. Because a distribution does not
specify the relative probability between two distinct zero-probability
events, one distribution can be induced by many dispersions. On the
other hand, it will be seen that exactly one distribution is induced by
each dispersion. This one-to-many relationship between distributions
and dispersions is important.

However, there is a further issue regarding dispersions which is best
studied in isolation from distributions. Accordingly, the second step
into the woods is to suspend (until Section 5) all interest in distribu-
tions (e.g., strategies and beliefs). Instead, focus your attention on
dispersions.

2.2. Formally
Consider a finite set Z. A table over Z is a [qz/z′ ] ∈ [0,∞]Z2 which

lists a relative probability qz/z′ ∈ [0,∞] for every pair of elements z
and z′ from Z. A dispersion1 over Z is a table [qz/z′ ] that satisfies unit
diagonality

(∀z) qz/z = 1(12)

and the basic cancellation law

(∀z, z′, z′′) qz/z′′ ∈ qz/z′�qz′/z′′ ,(13)

in which the correspondence � maps [0,∞]2 into subsets of [0,∞] ac-
cording to

a�b =
(

[0,∞] if (a, b) equals (0,∞) or (∞, 0)
{ab} otherwise

)

.
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Examples (10) and (11) satisfy these two properties, and therefore,
they are dispersions.

Note that every dispersion satisfies reciprocity

(∀z, z′) qz/z′ = 1/qz′/z .(14)

This holds because unit diagonality (12) and the basic cancellation law
(13) at (z, z′, z′′) = (z, z′, z) yield that (∀z, z′) 1 = qz/z ∈ qz/z′�qz′/z,
and thus, it must be the case that either 1 = qz/z′qz′/z for some real
numbers qz/z′ and qz′/z or that one of qz/z′ and qz′/z is 0 and the other
∞.

Finally, say that a dispersion [qz/z′ ] induces the distribution [pz] sat-
isfying

(∀z∈Z) pz =
qz/z∗

Σz′∈Z qz′/z∗
,(15)

for some z∗∈Z satisfying (∀z′∈Z) qz′/z∗ < ∞. In other words, a dis-
persion induces the distribution that is derived by normalizing any row
that contains only finite relative probabilities (the induced distribution
is invariant to the row chosen by the following remark).

Remark 2.1. Every dispersion induces exactly one distribution.
Proof. The existence of the induced distribution follows from two

observations. (a) There is a z∗ satisfying (∀z′∈Z) qz′/z∗ < ∞ be-
cause otherwise we would have that (∀z)(∃z′) qz′/z = ∞, and thus,
by the finiteness of Z, we would have a cycle 〈zm〉Mm=1 such that (∀m <
M−1) qzm+1/zm = ∞ and qz1/zM = ∞. The first condition together
with M−1 applications of the basic cancellation law (13) would yield
that qzM/z1 = ∞, while the second condition together with reciprocity

1 Three other papers have defined equivalent concepts using properties similar
to unit diagonality and the basic cancellation law. The most closely related concept
is a matrix of extended real numbers (“log-likelihoods”) which satisfies McLennan
(1989b, page 146, equation (2.5)). Such a matrix is the logarithm of a dispersion
by the brief discussion at Streufert (2003, page 28). The second concept is My-
erson (1986, page 337)’s “conditional probability system,” which is equivalent to
McLennan’s concept as explained in detail by Hammond (1994, Subsection 4.1,
∆C≈∆M ). Finally, the third concept is Kohlberg and Reny (1997, p. 282-283)’s
“random variable defined on a relative probability space,” which is equivalent to a
dispersion by the lengthy discussion at Streufert (2003, Remark B.5).

Many other equivalent concepts have been defined without reference to properties
like unit diagonality and the basic cancellation law. The sentence with Note 4 will
discuss the concepts nearest to monomial vectors, the sentence with Note 7 will
discuss the concepts defined via sequences of probability distributions, and finally,
Note 9 will discuss the concepts defined via nonstandard probability distributions.
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(14) would yield that qzM/z1 = 0. (b) The denominator in (15) must
be positive because qz∗/z∗ = 1 by unit diagonality (12).

Uniqueness also follows from two observations. (a) Equation (15)
uniquely determines [pz] for a given z∗ satisfying (∀z′∈Z) qz′/z∗ < ∞.
(b) Suppose that a first z∗ satisfied (∀z′∈Z) qz′/z∗ < ∞ and that a sec-
ond z∗∗ satisfied (∀z′∈Z) qz′/z∗∗ < ∞. Then qz∗∗/z∗ < ∞ and qz∗/z∗∗ <
∞, and consequently by reciprocity (14), qz∗/z∗∗ ∈ (0,∞). Thus the
basic cancellation law (13) yields that (∀z) qz/z∗∗ = qz/z∗qz∗/z∗∗ . The
last sentence and the sentence before that yield

(∀z)
qz/z∗∗

Σz′∈Z qz′/z∗∗
=

qz/z∗qz∗/z∗∗

Σz′∈Z qz′/z∗qz∗/z∗∗
=

qz/z∗

Σz′∈Z qz′/z∗
,

and thus, by (15), the induced distribution is invariant to the choice of
z∗ or z∗∗. 2

Remark 2.1 shows a dispersion uniquely determines a distribution.
But conversely, a distribution does not uniquely determine a dispersion
because a distribution does not specify relative probabilities between
distinct zero-probability events. Section 5 will return to this one-to-
many relationship between distributions and dispersions. In the mean-
time, forget about distributions and focus on dispersions.

3. Define the Products of Two Dispersions

3.1. Informally
The third step into the woods is to consider taking the product of

two dispersions. There is precious little motivation for this other than
academic curiosity and the vague promise that it eventually leads to
two characterizations of consistency.

Begin by returning to the example and noting that a product of
Xavier’s dispersion (10) and Yolanda’s dispersion (11) would have to
contain 36=62 relative probabilities because there are 6 nodes in the
Cartesian product {L,R}×{`,m, r} = { L`, Lm, Lr, R`, Rm, Rr }.

Or, from another angle, a product has to contain 36=4×9 relative
probabilities because each of Xavier’s 4 relative probabilities must be
multiplied by each of Yolanda’s 9 relative probabilities. For instance,

qLr/Lm = qL/Lqr/m = 1×∞ = ∞
qR`/Lm = qR/Lq`/m = ∞×(1/5) = ∞(16)
qRm/Lm = qR/Lqm/m = ∞×1 = ∞ ,

which accords with our earlier intuition that Helen should regard Lm
as particularly unlikely.
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In fact, 32 of the 36 relative probabilities in a product can be deter-
mined in this fashion. These 32 appear in

[qxy/x′y′ ] =

x′y′

Rr 0 0 0 0 0 1
Rm 0 0 2 1/5 1 ∞
R` 0 0 2 1 5 ∞
Lr 0 0 1 2 2 ∞
Lm 1/5 1 ∞ ∞ ∞ ∞
L` 1 5 ∞ ∞ ∞ ∞

L` Lm Lr R` Rm Rr xy

.(17)

To see all these multiplications quickly, note that the southwest quad-
rant is Yolanda’s dispersion multiplied by qL/L = 1, the northeast quad-
rant is her dispersion times qR/R = 1, the northwest quadrant is her
dispersion times qL/R = 0, and the southeast quadrant is her disper-
sion times qR/L = ∞. The three relative probabilities calculated in
(16) appear as the first three ∞’s in the row Lm.

However, 4 of the 36 relative probabilities are not determined by
qxy/x′y′ = qx/x′qy/y′ . These 4 appear as empty boxes in (17). In partic-
ular, the two relative probabilities

qR`/Lr = qR/Lq`/r = ∞×0 and
qRm/Lr = qR/Lqm/r = ∞×0 ,

as well as their reciprocals, are undetermined. This accords with the
fact that there is nothing in Xavier’s and Yolanda’s dispersions which
would tell Helen which of the two is more likely to fail to play right.
Accordingly, the product of Xavier’s dispersion with Yolanda’s disper-
sion is not unique. Rather, there will be many products corresponding
to the many values that might be assigned to these two undetermined
relative probabilities.

One response to this indeterminateness would be to assign qR`/Lr

and qRm/Lr arbitrarily. But this would admit unattractive assignments
like qR`/Lr = ∞ and qRm/Lr = 0. Here the first equality states that
R` is infinitely more likely than Lr, the second equality states that
Lr is infinitely more likely than Rm, and thus (by some sort of tran-
sitivity), it seems that R` should be infinitely more likely than Rm.
Unfortunately, this contradicts qR`/Rm = qR/Rq`/m = 1/5.
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A better response to the indeterminateness is to assign qR`/Lr and
qRm/Lr while imposing the cancellation laws defined formally in Sub-
section 3.2. One such cancellation law is

qR`/Lr = qR`/RmqRm/Lr

(informally, this law says that the cancellation qR`/ 6R 6m q6R 6m/Lr is legal).
Since qR`/Rm = qR/Rq`/m = 1/5, this cancellation law requires

qR`/Lr = (1/5)qRm/Lr .

Hence, cancellation laws impose one restriction on the two relative
probabilities qR`/Lr and qRm/Lr, and accordingly, the set of products is
one- rather than two-dimensional (full details for this example appear
in Subsection 4.6). That single dimension corresponds to the extent to
which either Xavier or Yolanda is more likely to fail to play right.

In general, finding the products of two dispersions will entail many
undetermined relative probabilities and a great many cancellation laws.
In particular, there can be an arbitrary number of terms on the right-
hand side of a cancellation law, and much more subtly, there are a
great many laws like

qR`/Lr = qRm/MrqM`/Lm(18)

when each dispersion has at least three elements in its domain (the M
appearing in this law is a third option for Xavier; and informally, the
law says that the two cancellations qR 6m/ 6Mr q6M`/L 6m are legal). Such can-
cellation laws operate on the individual coordinates “independently.”
Indeed, such independent cancellation is the way in which the defini-
tion of producthood will specify the notion that x and y are “dispersed”
“independently.”

At this point, the reader has patiently taken three steps into the
dark woods. The familiar terminology of consistency and game theory
has completely disappeared, and the definition of a producthood may
appear impractical.

3.2. Formally
Consider a nonempty finite Cartesian product X×Y and denote

an element of X×Y by xy rather (x, y). The definitions of Subsec-
tion 2.2 apply at Z = X×Y . In particular, a table over X×Y is
a [qxy/x′y′ ] ∈ [0,∞](X×Y )2 listing a relative probability qxy/x′y′ ∈ [0,∞]
for every pair of elements xy and x′y′ taken from X×Y . Further, a
dispersion over X×Y is a table [qxy/x′y′ ] that satisfies unit diagonality

(∀xy) qxy/x′y′ = 1(19)
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and the basic cancellation law

(∀xy, x′y′, x′′y′′) qxy/x′′y′′ ∈ qxy/x′y′�qx′y′/x′′y′′ .(20)

A product2 over X×Y is a table [qxy/x′y′ ] such that for every m ≥ 0,
and for every pair of permutations σ and τ of the set {0, 1, 2, ...m},

(∀〈xiyi〉mi=0) qx0y0/xσ(0)yτ(0) ∈ �m
i=1 qxσ(i)yτ(i)/xiyi(21)

where the product on the right-hand side is defined by

�m
i=1ai =

(

[0,∞] if (∃i) ai=0 and (∃i) ai=∞
{Πm

i=1ai} otherwise

)

for m ≥ 1, and by �m
i=1ai = {1} for m = 0. Each instance of (21) at a

particular m and (σ, τ) is called a cancellation law, and the number m
is called the order of the cancellation law.3

There are many cancellation laws. To be precise, there are ((1+m)!)2

cancellation laws of order m since there are (1+m)! permutations of
{0, 1, 2, ... m}. The 1=(1!)2 zero-order law is

(∀x0y0) qx0y0/x0y0 = 1 ,(22)

which coincides with (19). Thus products and dispersions are similar
in that they both have unit diagonals (in fact we will see shortly that
products are a special kind of dispersion).

The 4=(2!)2 first-order laws are

(∀x0y0, x1y1) qx0y0/x0y0 = qx1y1/x1y1(23a)

(∀x0y0, x1y1) qx0y0/x1y0 = qx0y1/x1y1(23b)

(∀x0y0, x1y1) qx0y0/x0y1 = qx1y0/x1y1(23c)

(∀x0y0, x1y1) qx0y0/x1y1 = qx0y0/x1y1 .(23d)

While (23d) is vacuous and (23a) is implied by (22), laws (23b) and
(23c) are substantial. They might be called separation laws, and they

2 These cancellation laws are equivalent to the acyclicity appearing in Kohlberg
and Reny (1997, Theorem 2.10) [details in Streufert (2003, Remark B.6(a⇔aKR))].
While they treat the idea comparatively lightly, this paper adopts it as its fun-
damental concept. Dissimilar but nonetheless equivalent concepts of producthood
have also been defined via full-support-distribution sequences (see the clause con-
taining Note 8) and nonstandard distributions (see Note 9). All these concepts
define what it means for x to be “independent” of y.

3The terms “cancellation law” and “order” are taken from analogous concepts
for binary relations in Krantz, Luce, Suppes, and Tversky (1971, page 427). (Their
page 431 places Scott (1964)’s theorem in a broader mathematical context, and this
theorem of Scott is fundamental to Subsection 4.3’s proof of Theorem 4.1.)
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will soon be used by Remark 3.1 to establish the existence of a product’s
marginals.

The 36=(3!)2 second-order laws are too numerous to list. However,
one of the second-order laws is

(∀x0y0, x1y1, x2y2) qx0y0/x2y2 ∈ qx0y0/x1y1�qx1y1/x2y2 ,(24)

which coincides with the basic cancellation law (20). This and (22)’s
unit diagonality yield that a product over X×Y must be a dispersion
over X×Y (hence “product” and “product dispersion” are synony-
mous). Another of the second-order laws is

(∀x0y0, x1y1, x2y2) qx0y0/x2y1 ∈ qx0y2/x1y1�qx1y0/x2y2

which is equivalent to the cross cancellation law

(∀xy, x′y′, x′′y′′) qxy/x′′y′′ ∈ qxy′/x′y′′�qx′y/x′′y′(25)

(set x0y0=xy, x1y1=x′y′′, x2y2=x′′y′). Equation (18) was an instance
of this law.

By the way, there are many redundancies within the cancellation
laws that define producthood, and these redundancies lead to some in-
teresting observations which are tangential to the paper. For example,
it can be shown that unit diagonality (22), the two separability laws
(23b&c), the basic cancellation law (24), and the cross cancellation law
(25) are together sufficient for all zero-, first-, and second-order laws.
Also, it can be shown that if a table satisfies unit diagonality (22) and
all cancellation laws of order m, then it must satisfy all cancellation
laws of order less than m. However, it seems tricky to determine when
lower-order laws imply upper-order laws.

The marginals of a product [qxy/x′y′ ] are the dispersions [qx/x′ ] and
[qy/y′ ] which satisfy

(∀xy, x′y′) qxy/x′y′ ∈ qx/x′�qy/y′ .(26)

Note that marginals are defined to be dispersions, and consequently,
each marginal must itself satisfy unit diagonality (12) and the basic
cancellation law (13) (hence “marginal” and “marginal dispersion” are
synonymous).

Remark 3.1. Every product [qxy/x′y′ ] has unique marginals [qx/x′ ]
and [qy/y′ ]. Further, [qx/x′ ] = [qxy◦/x′y◦ ] for any y◦, and [qy/y′ ] =
[qx◦y/x◦y′ ] for any x◦.

Proof. Take any product [qxy/x′y′ ]. First we show that [qxy/x′y′ ] has
at least one pair of marginals. Choose some x◦ and y◦, and define
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[qx/x′ ] = [qxy◦/x′y◦ ] and [qy/y′ ] = [qx◦y/x◦y′ ]. The table [qx/x′ ] is a disper-
sion because

(∀x) qx/x = qxy◦/xy◦ = 1

by the definition of [qx/x′ ] and by the unit diagonality (22) of [qxy/x′y′ ];
and because

(∀x, x′, x′′) qx/x′′ = qxy◦/x′′y◦ ∈ qxy◦/x′y◦�qx′y◦/x′′y◦ = qx/x′�qx′/x′′

by the definition of [qx/x′ ], by the basic cancellation law (24) of [qxy/x′y′ ],
and by two applications of the definition of [qx/x′ ]. A symmetric argu-
ment shows that [qy/y′ ] is also a dispersion. Finally, (26) holds by an
unnamed second-order law (cancel terms to check its validity), by the
separability laws (23b&c), and by the definitions of [qx/x′ ] and [qy/y′ ]:

(∀xy, x′y′) qxy/x′y′ ∈ qxy/x′y�qxy/xy′ = qxy◦/x′y◦�qx◦y/x◦y′ = qx/x′�qy/y′ .

Second, suppose that [qx/x′ ] and [qy/y′ ] are marginals of [qxy/x′y′ ]. By
(26) and by the unit diagonality (12) of [qy/y′ ] we have

(∀x, x′, y◦) qxy◦/x′y◦ ∈ qx/x′�qy◦/y◦ = {qx/x′}

and thus the marginal [qx/x′ ] must equal [qxy◦/x′y◦ ] for any value of y◦.
A symmetric argument shows that [qy/y′ ] must equal [qx◦y/x◦y′ ] for any
value of x◦. 2

As expected, we define a product of [qx/x′ ] and [qy/y′ ] to be a product
whose marginals are [qx/x′ ] and [qy/y′ ]. Keep in mind that the marginals
of a product dispersion are unique (Remark 3.1) but the product of two
dispersions might not be unique (recall (17)). That can be surprisingly
tricky to digest because distributions are fundamentally different: the
marginals of a product distribution are unique, and the product of two
distributions is unique. Thus, a product distribution is equivalent to its
two marginal distributions. Unfortunately, we don’t have that luxury
here: marginal dispersions are ambiguous.

4. Monomial Vectors

4.1. Representing Dispersions
As introduced in Section 1, let [cznez ] denote a vector of monomials

in which each monomial cznez has a positive coefficient cz and a real
exponent ez. Such a monomial vector [cznez ] is said to represent the
table [qz/z′ ] if

(∀z, z′) qz/z′ = limn→∞
cznez

cz′nez′
=





∞ if ez > ez′

cz/cz′ if ez = ez′

0 if ez < ez′



(27)
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(the first equality is the definition while the second is an obvious fact).
For example, the monomial vector

(cLneL , cRneR) = (n−1, 1)(28)

represents Xavier’s dispersion (10). Further, the set of all monomial
vectors which represent Xavier’s dispersion is characterized by eL < eR

(the coefficients cL and cR are irrelevant).
For another example, the monomial vector

(c`ne` , cmnem , crner) = (n−2, 5n−2, 1)(29)

represents Yolanda’s dispersion (11). To exercise the definition of rep-
resentation (27), note that er = 0 exceeds em = −2, and that this
accords with qr/m = ∞. Also note that em = −2 equals e` = −2, and
that this accords with qm/` = 5 since cm = 5 and c` = 1. Further, the
monomial vectors which represent Yolanda’s dispersion are character-
ized by e` = em < er and c` = cm/5 (the coefficient cr is irrelevant).
In every such monomial vector, the exponents (e`, em, er) represent (in
the economist’s usual sense) an ordering of {`, m, r} which partitions
{`,m, r} into a lower equivalence class {`,m} and an upper equivalence
class {r}. Then the coefficients (c`, cm, cr) serve to establish nonzero
finite relative probabilities within each equivalence class (the coefficient
cr is irrelevant because {r} is a singleton equivalence class).

In general, it is well understood that a dispersion over Z is equivalent
to (1) an ordering of Z such that z is in a higher equivalence class than
z′ if and only if z is infinitely more likely than z′, and (2) a full-support
probability distribution within each equivalence class.4 Accordingly, a
table is a dispersion iff it can be represented by a monomial vector.

4 This equivalence appeared first in McLennan (1989b, page 147), and is formu-
lated conveniently for our purposes by Hammond (1994, Subsection 4.1, ∆M≈∆L)):
There ∆M consists of McLennan’s log-likelihood matrices, each of which is equiv-
alent to a dispersion by Note 1; and ∆L consists of Blume, Brandenburger, and
Dekel (1991, Definition 5.2)’s lexicographic conditional probability systems, each
of which is an ordered list of probability distributions whose supports partition Z.
For example, Yolanda’s dispersion (11) is equivalent to the lexicographic condi-
tional probability system ρ = (p1, p2) in which p1 = (0, 0, 1) and p2 = ( 1

6 , 5
6 , 0). By

inspection, such a ρ is equivalent to (1) an ordering of Z such that z′ is in a higher
equivalence class than z iff z′ is infinitely more likely than z, and (2) a full-support
probability distribution within each equivalence class.

Similar concepts also appear elsewhere. McLennan (1989a, page 127) and Mon-
derer, Samet, and Shapley (1992, page 31) would formulate Yolanda’s dispersion via
the ordered partition {{`,m}, {r}} and the corresponding within-class distributions
{( 1

6 , 5
6 ), (1)}. Vieille (1996, page 209) would formulate it by listing the elements of

{`,m, r} in order of descending probability as σ−1 = (r,m, `), and then listing
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4.2. Representing Products
As introduced in Section 1, two monomial vectors can be multi-

plied together. For example, the product of Xavier’s vector (28) and
Yolanda’s vector (29) is

r n−1 1
m 5n−3 5n−2

` n−3 n−2

L R

.

The 6 monomials in this product represent a 6×6 dispersion over the
6-element set {L`, Lm, Lr,R`,Rm, Rr}. Two of the 36 relative proba-
bilities in that dispersion are

qR`/Lr = limn→∞n−2/n−1 = 0 and

qRm/Lr = limn→∞5n−2/n−1 = 0 ,

two similar calculations would show that both qLr/R` and qLr/Rm are
∞, and 32 more calculations would show that the remainder of the
6×6 dispersion coincides with the 32 numbers in (17).

Theorem 4.1(a⇒b) demonstrates that this dispersion is a product of
Xavier’s dispersion (10) and Yolanda’s dispersion (11). And more sub-
tlely, Theorem 4.1(a⇐b) demonstrates that every product of Xavier’s
and Yolanda’s dispersions can be represented by some such product of
monomial vectors. This theorem is the key to the whole paper (Sub-
section 4.6 continues the example).

Theorem 4.1. For any table [qxy/x′y′ ], (a) [qxy/x′y′ ] is represented
by some [cxcynex+ey ] iff (b) [qxy/x′y′ ] is a product. Furthermore, the
marginals of the product represented by [cxcynex+ey ] are represented by
[cxnex ] and [cyney ]. (Proof in Subsections 4.3 through 4.5.)

Theorem 4.1 reflects the fact that a product over X×Y is a special
kind of dispersion over X×Y (recall the sentence following (24)). In
particular, dispersionhood requires (by the previous subsection) that
there be an ordering of X×Y such that xy is in a higher equivalence
class than x′y′ if and only if xy is infinitely more likely than x′y′. Pro-
ducthood then requires something more: it requires that this ordering
has an additive representation of the form [ex+ey]. Further, dispersion-
hood requires that there be nonzero finite relative probabilities within
each equivalence class. But producthood requires something more: it

the relative probabilities between adjacent elements as α = (qm/r, q`/m) = (0, 1/5)
(here a zero relative probability signals a break between equivalence classes). All
these are very similar to a monomial vector within the context of representing a
single dispersion (monomial vectors are embellished with nontrivial exponents, and
these become important in the context of representing products).
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requires that these relative probabilities can be established with coef-
ficients of the multiplicative form [cxcy].

4.3. Proof of Theorem 4.1(a⇐b)

4.3.1. Overview. This subsection’s proof is the key to the whole
paper: it derives a representation of the form [cxcynex+ey ] for every
product [qxy/x′y′ ]. In accord with the previous paragraph, this proof
will first derive exponents [ex] and [ey] and then derive coefficients [cx]
and [cy].

As discussed two paragraphs ago, the exponents must be chosen so
that [ex+ey] is an additive representation of the ordering � that is de-
fined by xy � x′y′ iff xy is infinitely more likely than x′y′. The deriva-
tion of this additive representation comes from an unfamiliar source. To
set up an analogy, recall that much economics literature has developed
around Gorman (1968), who showed that an additive representation is
implied by separability. Similarly, it appears that much mathematical
psychology literature has developed around Scott (1964), who showed
that an additive representation is implied by cancellation laws. The fol-
lowing proof will use Scott’s result to derive the additive representation
[ex+ey] from the cancellation laws defining producthood.

Krantz, Luce, Suppes, and Tversky (1971) place Scott’s result in a
broader context. In particular, their Subsection 9.2 notes that Scott’s
result is one of several results that can be derived from the rank con-
dition characterizing the existence of a solution to a system of linear
inequalities. Further, their Theorem 2.7 derives this characterization
from the undergraduate rank condition for a system of linear equali-
ties.

The second half of this subsection’s proof derives coefficients [cx]
and [cy]. As discussed in the last paragraph of the previous subsection,
these coefficients must be chosen so that [cxcy] determines the relative
probabilities within all the equivalence classes of �. It happens that
this half of the proof is also based on the undergraduate rank condition
for a system of linear equalities. Accordingly, the mathematical basis
of this entire paper is nothing more than elementary linear algebra.

4.3.2. The Exponents [ex] and [ey]. Take any product [qxy/x′y′ ].
Then define the ordering � of X×Y by xy � x′y′ iff qxy/x′y′ = ∞. The
well-definition of � follows from the fact that producthood implies
dispersionhood (by the sentence following (24)) and from the fact that
a dispersion over Z = X×Y is equivalent to (1) the ordering � and (2)
a full-support probability distribution within each equivalence class of
� (by the sentence with Note 4). As with any dispersion, reciprocity
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(14) implies that � satisfies

qxy/x′y′ = ∞ iff xy � x′y′(30a)

qxy/x′y′ ∈ (0,∞) iff xy ≈ x′y′(30b)

qxy/x′y′ = 0 iff xy ≺ x′y′ .(30c)

for every xy and x′y′. The project here is to find an additive represen-
tation [ex+ey] for �.

This paragraph establishes Scott (1964, page 243, conditions (1V )
and (2V ), at (A,A∗) = (X, Y ), xx∗ = xy, V = �, n = m+1, and
(π, σ) = (σ−1, τ−1)). The first of these two conditions is the complete-
ness of �, which follows from the fact that � is an ordering. To prove
the second condition, consider any m ≥ 1, any permutations σ and τ
of {0, 1, 2, ... m}, and any 〈xiyi〉mi=0 such that

(∀i≥1) xσ(i)yτ(i) � xiyi .

Since (30a&b) yield that (∀i≥1) qxσ(i)yτ(i)/xiyi > 0, it must be that

0 6∈ �m
i=1qxσ(i)yτ(i)/xiyi .

Thus, since the producthood of [qxy/x′y′ ] implies the cancellation law

qx0y0/xσ(0)yτ(0) ∈ �m
i=1 qxσ(i)yτ(i)/xiyi ,

it must be that qx0y0/xσ(0)yτ(0) > 0. This together with (30a&b) yields
that x0y0 � xσ(0)yτ(0) .

The previous paragraph and Scott (1964, Theorem 3.1, with “utility
functions” set to [ex] and [ey]) yields the existence of [ex] ∈ RX and
[ey] ∈ RY such that xy � x′y′ iff ex+ey ≥ ex′+ey′ .5 Thus, by (30) we
have for any xy and x′y′ that

qxy/x′y′ = ∞ iff xy � x′y′ iff ex+ey > ex′+ey′(31a)

qxy/x′y′ ∈ (0,∞) iff xy ≈ x′y′ iff ex+ey = ex′+ey′(31b)

qxy/x′y′ = 0 iff xy ≺ x′y′ iff ex+ey < ex′+ey′ .(31c)

5 This and the preceding two paragraphs have used Scott (1964, Theorem 3.1) to
derive real vectors [ex] and [ey] such that (∀xy, x′y′) xy � x′y′ iff ex+ey ≥ ex′+ey′ .
An omitted five-page appendix uses Krantz, Luce, Suppes, and Tversky (1971,
Theorem 2.7) to derive nonnegative integer vectors with the same property. If
those five pages were inserted here, all the paper’s proofs could be trivially modified
to show that all the paper’s results hold for monomials with nonnegative integer
exponents. I decided to use real exponents because of their clarity (the integer-
ness of exponents has nothing to do with the representation of dispersions) and
convenience (finding integer exponents is an unnecessary tedium when working
examples).
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4.3.3. The Coefficients [cx] and [cy]. It remains to find coefficient
vectors ([cx], [cy]) such that

(∀ (xy, x′y′) ∈ ≈) cxcy(cx′cy′)−1 = qxy/x′y′

(recall that (xy, x′y′) ∈ ≈ iff xy ≈ x′y′). Since (31b) yields the critical
fact that qxy/x′y′ ∈ (0,∞) for every (xy, x′y′) in ≈, this is equivalent to
finding real numbers ([dx], [dy]) such that

(∀ (xy, x′y′) ∈ ≈) dx+dy−dx′−dy′ = ln(qxy/x′y′) .

Index the set ≈ as 〈(x0
jy

0
j , x

1
jy

1
j )〉

|≈|
j=1 (the set ≈ is nonempty since it

must include diagonal elements). Our task is then to find real numbers
([dx], [dy]) ∈ RX∪Y such that

(∀j) dxj +dyj−dx′j−dy′j = ln(qxjyj/x′jy′j) .(32)

First notice that for any xy ∈ X×Y , we can define a row vector
1x1y ∈ {0, 1}X∪Y , in which 1x ∈ {0, 1}X is the unit vector of x and
1y ∈ {0, 1}Y is the unit vector of y. For example, if X = {L,R} and
Y = {`,m, r}, then 1L1m = [1 0 0 1 0] because 1L = [1 0] and 1m =
[0 1 0]. Using this notation, the system (32) can be rewritten as

(∀j) (1xj1yj−1x′j1y′j)·([dx], [dy]) = ln(qxjyj/x′jy′j).

This is a matrix equation of the form Ad = b, in which row j of the
coefficient matrix A is 1xj1yj−1x′j1y′j and element j of the vector b is
ln(qxjyj/x′jy′j).

Recall from elementary linear algebra that Gaussian elimination is
equivalent to premultiplying the augmented matrix [Ab] with a certain
square matrix E which replicates the elementary row operations and
row permutations. Further recall that back substitution then reveals
a solution to Ad = b provided that E[Ab] does not contain a row
which is zero in all but the last column (see for example Strang (1980,
Chapter 1)). In the present circumstance, E has only rational elements
because the coefficient matrix A has only rational elements. As a result,
each row of E[Ab] can be written as

[ Σjλj(1xj1yj−1x′j1y′j) Σjλjln(qxjyj/x′jy′j) ]

for some rational numbers 〈λj〉|≈|j=1 equal to a row of E. Thus E[A b]
does not have a row in which all but the last column is zero if

Σjλj(1xj1yj−1x′j1y′j) = 0 implies Σjλjln(qxjyj/x′jy′j) = 0.(33)

for all rational numbers 〈λj〉|≈|j=1. This we will establish to complete the
proof.
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Equation (33) holds if

Σj`j(1xj1yj−1x′j1y′j) = 0 implies Σj`jln(qxjyj/x′jy′j) = 0.(34)

for all integers 〈`j〉|≈|j=1 (to see the contrapositive of this claim, note
that if 〈λj〉j violates (33) then some multiple of 〈λj〉j violates (34)).
Accordingly, assume that

Σj`j(1xj1yj−1x′j1y′j) = 0(35)

holds for some integers 〈`j〉|≈|j=1. The remainder of this proof will estab-
lish that Σj`jln(qxjyj/x′jy′j) = 0.

First, define 〈(θj, θ′j)〉
|≈|
j=1 by

(θj, θ′j) =
(

(0, 1) if `j ≥ 0
(1, 0) if `j < 0

)

.

Note that (35) is equivalent to

Σj |`j| (1
xθj

j
1
yθj

j
−1

x
θ′j
j

1
y

θ′j
j

) = 0 ,(36)

and that the symmetry of ≈ implies

(∀j) (xθj
j yθj

j , x
θ′j
j y

θ′j
j ) ∈ ≈ .(37)

Next, define m? = Σj|`j| and define 〈(xiyi, x?
i y

?
i )〉

m?

i=1 by

(xiyi, x?
i y

?
i ) = (xθj

j yθj
j , x

θ′j
j y

θ′j
j )

for i ∈ { Σj−1
k=1|`k|+1, Σj−1

k=1|`k|+2, ... Σj−1
k=1|`k|+|`j| }

(at j = 1, Σj−1
k=1|`k| = 0; at any j, the set is empty if `j = 0; and at

j = |≈|, Σj−1
k=1|`k|+|`j| = Σ|≈|

j=1|`j| = Σj|`j| = m?). Note that (36) is
equivalent to

Σm?

i=1 (1xi1yi−1x?
i
1y?

i
) = 0 ,(38)

and that (37) yields

(∀i) (xiyi, x?
i y

?
i ) ∈ ≈ .(39)

Finally, note that (38) is equivalent to

Σm?

i=1 1xi = Σm?

i=1 1x?
i

and Σm?

i=1 1yi = Σm?

i=1 1y?
i

,

which is in turn equivalent to the existence of permutations σ? and τ ?

of {1, 2, ... m?} such that

(∀i) xi = x?
σ?(i) and yi = y?

τ?(i) .



CONSISTENCY 23

The producthood of [qxy/x′y′ ] implies

(∀〈xiyi〉mi=1) 1 ∈ �m
i=1qxσ(i)yτ(i)/xiyi

for any m ≥ 1 and any permutations σ and τ of {1, 2, ...m} (this follows
from (21) by defining σ(0) = 0 and τ(0) = 0). By applying this at m?,
σ?, τ ?, and 〈x?

i y
?
i 〉

m?

i=1, one obtains

1 ∈ �m?

i=1qx?
σ?(i)y

?
τ?(i)/x

?
i y

?
i

which by the definition of σ? and τ ? is equivalent to

1 ∈ �m?

i=1qxiyi/x?
i y

?
i

.

Since every qxiyi/x?
i y

?
i
∈ (0,∞) by (31b) and (39), this is equivalent

to

Πm?

i=1qxiyi/x?
i y

?
i

= 1

and also to

Σm?

i=1 ln qxiyi/x?
i y

?
i

= 0 .

By the definitions of m? and 〈(xiyi, x?
i y

?
i )〉

m?

i=1, this is equivalent to

Σj|`j| ln q
xθj

j yθj
j /x

θ′j
j y

θ′j
j

= 0 ,

which is equivalent to

Σj|`j<0 (−`j) ln q
xθj

j yθj
j /x

θ′j
j y

θ′j
j

+ Σj|`j≥0 `j ln q
xθj

j yθj
j /x

θ′j
j y

θ′j
j

= 0 .

By the definition of 〈(θj, θ′j)〉
|≈|
j=1, this is equivalent to

Σj|`j<0 (−`j) ln qx1
jy

1
j /x

0
jy

0
j

+ Σj|`j≥0 `j ln qx0
jy

0
j /x

1
jy

1
j

= 0 ,

which by reciprocity (14) is equivalent to

Σj|`j<0 `j ln qx0
jy

0
j /x

1
jy

1
j

+ Σj|`j≥0 `j ln qx0
jy

0
j /x

1
jy

1
j

= 0

and also to

Σj `j ln qx0
jy

0
j /x

1
jy

1
j

= 0 .
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4.4. Proof of Theorem 4.1(a⇒b)
It is straightforward to show that the special structure of [cxcyeex+ey ]

implies every cancellation law in the definition of producthood.6 We
do this immediately after the following lemma.

Lemma 4.2. Suppose that {〈an
j 〉n}j is a finite set of sequences in

(0,∞), that each limnan
j exists in [0,∞], and that limnΠjan

j exists in
[0,∞]. Then limnΠjan

j ∈ �jlimnan
j .

Proof. If each limnan
j < ∞, then limnΠjan

j = Πjlimnan
j [Rudin (1976,

page 49, Theorem 3.3)] and �jlimnan
j = {Πjlimnan

j }. If some limnan
j =

∞ and every limnan
j > 0, then limnΠjan

j = ∞ and �jlimnan
j = {∞}.

Finally, if some limnan
j = ∞ and some other limnan

j = 0, the conclusion
limnΠjan

j ∈ �jlimnan
j holds vacuously because �jlimnan

j = [0,∞]. 2

We now demonstrate Theorem 4.1(a⇒b) Suppose that [qxy/x′y′ ] is
represented by some [cxcynex+ey ]. [qxy/x′y′ ] satisfies the zero-order can-
cellation law because

(∀xy) qxy/xy = limn
cxcynex+ey

cxcynex+ey
= 1 ,

by the definition of representation and by algebra. Further, for any
m ≥ 1 and any permutations σ and τ , [qxy/x′y′ ] satisfies

(∀〈xiyi〉mi=0) qx0y0/xσ(0)yτ(0) = limn
cx0cy0nex0+ey0

cxσ(0)cyτ(0)ne
xσ(0)+e

yτ(0)
=

limn Πm
i=1

cxσ(i)cyτ(i)ne
xσ(i)+e

yτ(i)

cxicyinexi+eyi
∈ �m

i=1 limn
cxσ(i)cyτ(i)ne

xσ(i)+e
yτ(i)

cxicyinexi+eyi

= �m
i=1 qxσ(i)yτ(i)/xiyi

by the definition of representation, by algebra, by Lemma 4.2, and by m
applications of the definition of representation. Thus [qxy/x′y′ ] satisfies
every cancellation law in the definition of producthood.

4.5. Proof of Theorem 4.1’s Sentence About Marginals
Let [qxy/x′y′ ] be the product represented by [cxcynex+ey ]. Fix any

y◦. By Remark 3.1, the marginal with respect to x equals [qxy◦/x′y◦ ].
Since this [qxy◦/x′y◦ ] is a restriction of [qxy/x′y′ ] and since all of [qxy/x′y′ ] is
represented by [cxcynex+ey ], we have that the marginal with respect to x
is represented by [cxcy◦nex+ey◦ ], which equals cy◦ney◦ [cxnex ]. This yields
that the marginal with respect to x is represented by [cxnex ] because
the definition of representation depends only on the ratios between

6This reformulates the limiting argument of Kohlberg and Reny (1997, page 305,
Proof of Theorem 2.10, first paragraph).
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monomials (the appendix places this last step in a broader context). A
symmetric argument holds for the marginal with respect to y.

4.6. The Products of Xavier and Yolanda
This subsection uses Theorem 4.1 to derive all of the products of

Xavier’s dispersion (10) with Yolanda’s dispersion (11). Within this
derivation, let the function Q map a monomial vector to the dispersion
it represents, and let (10), (11) and (17) denote the tables appearing
at those equation numbers (for instance, one could write Q(n−2, 3) =
[ 0 1
1 ∞ ] = (10) to show that the monomial vector (n−2, 3) represents

Xavier’s dispersion (10)).
The first equality below follows from Theorem 4.1. The second fol-

lows from choosing R and r to be the two numeraires (the appendix
discusses numeraires and Remark A.1 can be applied here). The third
follows from Subsection 4.1’s discussion of which monomial vectors rep-
resent Xavier’s and Yolanda’s dispersions (recall the text after (28) and
(29)).

{ products of (10) and (11) }(40)

=
{

Q





cLcrneL+er cRcrneR+er

cLcmneL+em cRcmneR+em

cLc`neL+e` cRc`neR+e`





∣

∣

∣(41)

Q(cLneL , cRneR) = (10) and Q(c`ne` , cmnem , crner) = (11)
}

=
{

Q





cLneL 1
cLcmneL+em cmnem

cLc`neL+e` c`ne`





∣

∣

∣(42)

Q(cLneL , 1) = (10) and Q(c`ne` , cmnem , 1) = (11)
}

=
{

Q





cLneL 1
cLcmneL+em cmnem

cLc`neL+e` c`ne`





∣

∣

∣(43)

eL < 0, cL free, e` = em < 0, 5c` = cm }

The next step is to evaluate Q(·) within (43) by evaluating

qxy/x′y′ = limn→∞
cxcynex+ey

cx′cy′nex′+ey′
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at each of the 36 xy/x′y′ in X×Y . Fortunately, 32 of the 36 equal the
32 scalars in the 6×6 table at (17): one example is that

qRm/Lm = limn→∞
cmnem

cLcmneL+em
= limn→∞

1
cLneL

= ∞

since eL < 0 by the last line of (43); and the remaining 31 are surpris-
ingly easy because patterns such as unit diagonality and reciprocity
readily emerge. However, 4 of the 36 are more difficult and they ap-
pear with little simplification in (44).

{ (17) | qR`/Lr = limn→∞(c`/cL)ne`−eL ,(44)

qLr/R` = limn→∞(cL/c`)neL−e` ,

qRm/Lr = limn→∞(cm/cL)nem−eL ,

qLr/Rm = limn→∞(cL/cm)neL−em ,

eL < 0, cL free, e` = em < 0, 5c` = cm }

Then, (45) is reached because there are two pairs of reciprocal limits,
(46) is reached by substituting out cm and em, (47) is reached by fac-
toring out the 5 in the limit defining qRm/Lr, and finally, (48) is reached
by noting that qR`/Lr can be made any value while keeping both e` and
eL negative (qR`/Lr can be made infinite by setting e` > eL, made zero
by setting e` < eL, and made equal to any finite nonzero a by setting
e` = eL and c`/cL = a).

{ (17) | 1/qLr/R` = qR`/Lr = limn→∞(c`/cL)ne`−eL ,(45)

1/qLr/Rm = qRm/Lr = limn→∞(cm/cL)nem−eL ,

eL < 0, cL free, e` = em < 0, 5c` = cm }

= { (17) | 1/qLr/R` = qR`/Lr = limn→∞(c`/cL)ne`−eL ,(46)

1/qLr/Rm = qRm/Lr = limn→∞(5c`/cL)ne`−eL ,

eL < 0, cL free, e` < 0, c` free }

= { (17) | 1/qLr/R` = qR`/Lr = limn→∞(c`/cL)ne`−eL ,(47)

1/qLr/Rm = qRm/Lr = 5qR`/Lr,

eL < 0, cL free, e` < 0, c` free }

= { (17) | 1/qLr/R` = qR`/Lr, qR`/Lr free,(48)

1/qLr/Rm = qRm/Lr = 5qR`/Lr }

The equality of (40) with (48) shows that the set of all products
of Xavier’s dispersion (10) with Yolanda’s dispersion (11) is a one-
dimensional set in a 36-dimensional space. Subsection 4.2’s example
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is the point in this set where qR`/Lr = 0, and all of this accords with
Subsection 3.1’s intuition concerning the definition of producthood.

5. Reintroduce Distributions

5.1. Strategies and Beliefs
This section reverses the second step into the woods by reintroducing

distributions such as strategies and beliefs. In particular, this section
considers a strategy [px] over X, a strategy [py] over Y , and a belief
[pxy]xy∈H over some information set H ⊆ X×Y . This section’s only
result is the following theorem, which is derived from Theorem 4.1, the
key result in the paper.

Theorem 5.1. The following are equivalent for any strategy [px], any
strategy [py], and any belief [pxy]xy∈H . (a) There are monomial vectors
[cxnex ] and [cyney ] such that [cxnex ] induces [px], [cyney ] induces [py],
and the restriction of [cxcynex+ey ] to H induces [pxy]xy∈H . (b) There
is a product dispersion [qxy/x′y′ ] whose marginal dispersions induce [px]
and [py] and whose restriction to H2 induces [pxy]xy∈H .

Informally, Theorem 5.1 states that strategies and beliefs are induced
by a pair of monomial vectors iff they are induced by a product dis-
persion. The theorem’s formal statement is more cumbersome because
it uses the word “induce” precisely, as defined for monomial vectors at
(3) in Section 1 and as defined for dispersions at (15) in Section 2.

Theorem 5.1’s proof employs the following lemma, which concerns
the two avenues by which a monomial vector can determine a distri-
bution. The first is the direct route: (3) in Section 1 shows how a
monomial vector induces a distribution. The second is the indirect
route: (27) in Section 4 shows how a monomial vector represents a
dispersion, and then (15) in Section 2 shows how a dispersion induces
a distribution. Unsurprisingly, the following lemma shows that these
two avenues are equivalent.

Lemma 5.2. Suppose that [cznez ] induces [pA
z ], and that the same

[cznez ] represents [qz/z′ ] which induces [pB
z ]. Then [pA

z ] = [pB
z ].

Proof. By the definitions at (3), (27), and (15), we are given that
[cznez ] and [pA

z ] satisfy

(∀z) pA
z =

cz1(ez=max{ez′|z′})
Σz′′∈Z cz′′1(ez′′=max{ez′|z′})

,(49)
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that [cznez ] and [qz/z′ ] satisfy

(∀z, z′) qz/z′ =





∞ if ez > ez′

cz/cz′ if ez = ez′

0 if ez < ez′



 ,(50)

and that [qz/z′ ], [pB
z ], and z∗ satisfy

(∀z) pB
z =

qz/z∗

Σz′∈Z qz′/z∗
(51)

and (∀z′) qz′/z∗ < ∞ .(52)

(52) and (50) together yield that z∗ = max{ez0 |z0}. Hence by (50),

(∀z) qz/z∗ =





∞ if ez > ez∗

cz/cz∗ if ez = ez∗

0 if ez < ez∗



 = (cz/cz∗)1(ez=max{ez0 |z0}) .

Hence by (51), by algebra, and by (49)

(∀z) pB
z =

(cz/cz∗)1(ez=max{ez0|z0})
Σz′∈Z (cz′/cz∗)1(ez′=max{ez0|z0})

=
cz1(ez=max{ez0 |z0})

Σz′∈Z cz′1(ez′=max{ez0|z0})
= pA

z .

2

Proof of Theorem 5.1. Assume (a). By Theorem 4.1(a⇒b) together
with that theorem’s sentence about marginals, [cxcynex+ey ] represents a
product dispersion [qxy/x′y′ ] whose marginal dispersions are represented
by [cxnex ] and [cyney ]. Let [qx/x′ ] and [qy/y′ ] denote these marginals.
Since [cxnex ] induces [px] (by assumption), since [cxnex ] represents [qx/x′ ]
(by the previous sentence), and since [qx/x′ ] induces some distribution
(by Remark 2.1), Lemma 5.2 shows that [qx/x′ ] induces [px]. A simi-
lar argument shows that [qy/y′ ] induces [py]. Further, since [cxcynex+ey ]
represents all of [qxy/x′y′ ] (by the second sentence of this paragraph),
it must be that [cxcynex+ey ]xy∈H represents [qxy/x′y′ ](xy,x′y′)∈H2 . Since
[cxcynex+ey ]xy∈H induces [pxy]xy∈H (by assumption), since this same
[cxcynex+ey ]xy∈H also represents [qxy/x′y′ ](xy,x′y′)∈H2 (by the previous sen-
tence), and since [qxy/x′y′ ](xy,x′y′)∈H2 induces some distribution (by Re-
mark 2.1), Lemma 5.2 shows that [qxy/x′y′ ](xy,x′y′)∈H2 induces [pxy]xy∈H .

Assume (b), and let [qx/x′ ] and [qy/y′ ] denote the marginals assumed
there. By Theorem 4.1(a⇐b) together with that theorem’s sentence
about marginals, there exists [cxnex ] and [cyney ] such that [cxcynex+ey ]
represents [qxy/x′y′ ], [cxnex ] represents [qx/x′ ], and [cyney ] represents its
[qy/y′ ]. Since [cxnex ] induces some dispersion (by the definition at (3)),
since [cxnex ] represents [qx/x′ ] (by the previous sentence), and since
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[qx/x′ ] induces [px] (by assumption), Lemma 5.2 shows that [cxnex ] in-
duces [px]. A similar argument shows that [cyney ] represents [py]. Fur-
ther, since [cxcynex+ey ] represents all of [qxy/x′y′ ] (by this paragraph’s
second sentence), [cxcynex+ey ]xy∈H represents [qxy/x′y′ ](xy,x′y′)∈H2 . Since
[cxcynex+ey ]xy∈H induces some distribution (by the definition at (3)),
since [cxcynex+ey ]xy∈H represents [qxy/x′y′ ](xy,x′y′)∈H2 (by the previous
sentence), and since [qxy/x′y′ ](xy,x′y′)∈H2 induces [pxy]xy∈H (by assump-
tion), Lemma 5.2 shows that [cxnexcyney ]xy∈H induces [pxy]xy∈H . �

5.2. The End of Xavier, Yolanda, and Helen
The example of Xavier, Yolanda, and Helen has appeared on sev-

eral occasions, three of which are important here. First recall that
Subsection 2.1 showed that Yolanda’s strategy can be induced by any
dispersion in a one-dimensional set (her strategy does not determine
the relative probability qm/`). Accordingly, that subsection fixed one
such dispersion for the purposes of illustration (that dispersion has
qm/` = 5). Second recall that Subsection 4.6 showed that the product
of Xavier’s dispersion with Yolanda’s dispersion is a one-dimensional
set (that degree of freedom concerns which of Xavier and Yolanda is
more likely to fail to play right). Finally, recall that Subsection 1.2
showed that the set of consistent beliefs has two dimensions (Helen
could have any belief with support {Lr,R`, Rm}).

This example illustrates that the multiplicity of consistent beliefs
stems from two distinct sources. The first is that a player’s strat-
egy does not specify the relative probabilities between her own zero-
probability actions. This first degree of freedom appears when choos-
ing one of the many dispersions that induce her strategy. The second
source of multiplicity is that two dispersions do not specify the rela-
tive probability between one player’s zero-probability actions and the
other player’s zero-probability actions. This second degree of freedom
appears when choosing one of the many products of the two players’
dispersions. In this simple example, both of these sources contribute
one dimension so that the set of consistent beliefs has two dimensions.

5.3. Taking Stock
As explained at the outset in Section 1, this paper is concerned with

the question of how Helen should assign probabilities to the nodes in
her zero-probability information set. A good answer to that question
would appeal both computationally and conceptually.

Saying that Helen’s belief should be induced by a pair of mono-
mial vectors is an answer which appeals computationally (at least in
comparison with the alternatives). Saying that Helen’s belief should
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be induced by a product dispersion is an answer which appeals con-
ceptually (dispersions and their products seem to be the appropriate
“fundamentals”). Hence Theorem 5.1’s equivalence suggests that we
have a single answer which appeals both computationally and concep-
tually. (And in addition, each cancellation law is a necessary condition
which has some computational appeal of its own.)

We have found this answer without any reference to the sequences
with which Kreps and Wilson defined consistency, and virtually with-
out reference to any results in the economics literature. To put this
poetically, we have found this answer while yet remaining one step in
the woods. Subjectively, one might find this a comfortable place to
pause or even to stop.

6. Reintroduce Sequences

6.1. Approximation
This final section reverses the first step into the woods by reintroduc-

ing the sequences with which Kreps and Wilson defined consistency. It
thereby connects this paper with the economics literature.

This subsection begins the task by studying how dispersions and
products can be approximated by sequences of full-support distribu-
tions. Subsection 6.2 will then discuss consistency (which concerns
how distributions such as strategies and beliefs can be induced by se-
quences of full-support distributions).

A full-support-distribution sequence 〈[πn
z ]〉n is said to approximate a

table [qz/z′ ] if

(∀z, z′) qz/z′ = limn→∞ πn
z /πn

z′ .(53)

It is well understood that (a) a table over Z can be represented by
a monomial vector iff (a′) it can be approximated by a full-support-
distribution sequence iff (b) it is a dispersion.7

Analogously (in two dimensions rather than one), Theorem 6.1 will
show that (a) a table over X×Y is represented by the product of two

7 The equivalence of (a) representation and (b) dispersionhood was discussed in
Note 4. The equivalence of (a′) approximation and (b) dispersionhood has been
noted twice in the literature. First, recall from Note 1 that a dispersion is equiva-
lent to Myerson (1986)’s conditional probability system. Thus his Theorem 1 (page
337) can be regarded as the equivalence between dispersionhood and approximation.
Second, recall from Note 1 that a dispersion is also equivalent to a matrix of likeli-
hood ratios that satisfy McLennan (1989b)’s condition (2.5). Thus his Lemma 2.1
(page 147) can also be regarded as the equivalence between dispersionhood and
approximation.
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monomial vectors iff (a′) it is approximated by the product of two full-
support-distribution sequences iff (b) it is a product. This theorem
is a straightforward extension of Theorem 4.1, and its intuition is as
follows.

First, note that any representation can be regarded as a special sort
of approximation: given [cznez ], define 〈[πn

z ]〉n = 〈[cznez(Σz′cz′nez′ )−1]〉n
and note that the definition of representation then coincides with the
definition of approximation. Accordingly, a table is represented by
the product of two monomial vectors only if it is approximated by
the product of two full-support-distribution sequences. In brief, (a)
representation by two monomial vectors implies (a′) approximation by
two distribution sequences.

Second, note that the table of relative probabilities derived from
the product of two full-support distributions must satisfy all the can-
cellation laws defining producthood: given [πxπy], define [qxy/x′y′ ] =
[πxπy(πx′πy′)−1], and observe by elementary algebra with positive reals
that any such table satisfies every cancellation law. Hence, the limit
of a sequence of such tables must also satisfy every cancellation law.
Accordingly, (a′) representation by two distribution sequences implies
(b) producthood.

Third, recall Theorem 4.1(a⇐b), which showed that (a) representa-
tion by two monomial vectors is implied by (b) producthood (this is
the paper’s key result). Hence, the last three paragraphs together show
the equivalence of (a) representation by two monomial vectors, (a′) ap-
proximation by two distribution sequences, and (b) producthood. The
following theorem states this formally.

Theorem 6.1. For any table [qxy/x′y′ ], (a) [qxy/x′y′ ] is represented by
some [cxcynex+ey ] iff (a′) [qxy/x′y′ ] is approximated by some 〈πn

xπn
y 〉n iff

(b) [qxy/x′y′ ] is a product. Further, the marginals of the product repre-
sented by [cxcynex+ey ] are represented by [cxnex ] and [cyney ]. Similarly,
the marginals of the product approximated by 〈πn

xπn
y 〉n are approximated

by 〈πn
x〉n and 〈πn

y 〉n.
Before proving the entire theorem, we note that the equivalence of

(a′) and (b) reformulates a result in Kohlberg and Reny (1997). In
particular, their strong independence concept (page 286) is equivalent
and similar to (a′),8 and their Theorem 2.10 (page 288) shows that
this strong independence is equivalent to a kind of acyclicity which is
equivalent and similar to (b) [the details are sorted out in Streufert
(2003, Appendix B.1)]. Further, and perhaps more importantly, the
present paper fundamentally reflects their focus on relative probability
as a means of understanding consistency.



32 STREUFERT

Proof. (a⇒a′) Suppose [qxy/x′y′ ] is represented by some [cxcynex+ey ].
Define

〈[πn
x ]〉n = 〈[cxnex ](Σx′′cx′′nex′′ )−1〉n and

〈[πn
y ]〉n = 〈[cyney ](Σy′′cy′′ney′′ )−1〉n .

Then by the definition of representation (27), by algebra, and by the
definitions of 〈[πn

x ]〉n and 〈[πn
y ]〉n,

(∀xy, x′y′) qxy/x′y′ = limn→∞
cxnex·cyney

cx′nex′ ·cy′ney′
=

limn→∞
cxnex(Σx′′cx′′nex′′ )−1·cyney(Σy′′cy′′ney′′ )−1

cx′nex′ (Σx′′cx′′nex′′ )−1·cy′ney′ (Σy′′cy′′ney′′ )−1 = limn→∞
πn

xπn
y

πn
x′π

n
y′

.

This entire equality is the definition of approximation (53).
(a′⇒b) Suppose [qxy/x′y′ ] is approximated by some 〈πn

xπn
y 〉n. Take

any order m≥0 and any permutations σ and τ of {0, 1, ...m}. By 2m
cancellations of identical pairs of positive reals in the numerator and
the denominator of the right-hand side, we have that

(∀n)
πn

x0πn
y0

πn
xσ(0)πn

xτ(0)

= Πm
i=1

πn
xσ(i)πn

yτ(i)

πn
xiπn

yi

.(54)

By approximation, all m terms on the right-hand side have limits. Sim-
ilarly, by approximation, the term on the left-hand side has a limit, and
thus by (54) itself, the product of the m terms on the right-hand side
has a limit. The last two sentences and Lemma 4.2 (in Subsection 4.4)
yield that

limn→∞Πm
i=1

πn
xσ(i)πn

yτ(i)

πn
xiπn

yi

∈ �m
i=1limn→∞

πn
xσ(i)πn

yτ(i)

πn
xiπn

yi

.

Hence by (54)

limn→∞
πn

x0πn
y0

πn
xσ(0)πn

xτ(0)

∈ �m
i=1limn→∞

πn
xσ(i)πn

yτ(i)

πn
xiπn

yi

,

which by the definition of approximation (53) is equivalent to

qx0y0/xσ(0)yτ(0) = �m
i=1qxσ(i)yτ(i)/xiyi .

Therefore, the mth-order cancellation law with permutations σ and τ
is satisfied. Since this holds for all m, σ, and τ , [qxy/x′y′ ] is a product.

(a⇐b) Theorem 4.1(a⇐b). (This is the key step.)
8 Also equivalent and similar to (a′) is the construction of the set Ψ within the

equilibrium existence proof of McLennan (1989b, page 170) [details at Streufert
(2003, page 32)].
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The Representation of Marginals. Theorem 4.1’s sentence about
marginals.

The Approximation of Marginals. Let [qxy/x′y′ ] be the product ap-
proximated by 〈[πn

xπn
y ]〉n. Fix any y◦. By Remark 3.1, the marginal

of [qxy/x′y′ ] with respect to x equals [qxy◦/x′y◦ ]. Since this [qxy◦/x′y◦ ]
is a restriction of [qxy/x′y′ ] and since all of [qxy/x′y′ ] is approximated by
〈[πn

xπn
y ]〉n, we have that the marginal with respect to x is approximated

by 〈[πn
xπn

y◦ ]〉n. Thus, by noting the common πn
y◦ in conjunction with

the definition of approximation (53), we have that the marginal with
respect to x is also approximated by 〈[πn

x ]〉n. A symmetric argument
holds for the marginal with respect to y. 2

This section has studied how dispersions and products can be approx-
imated by sequences of full-support distributions. Analogously, other
papers have studied how dispersions and products can be expressed by
nonstandard vectors.9

6.2. Consistency
A distribution [pz] is said to be induced by a full-support-distribution

sequence 〈[πn
z ]〉n if

(∀z) pz = limn→∞πn
z .(55)

As in Kreps and Wilson (1982, page 872 with their π = ([px], [py]) and
their µ = [pxy]xy∈H), the belief [pxy]xy∈H is said to be consistent with the
strategies [px] and [py] if there exist full-support-distribution sequences
〈[πn

x ]〉n and 〈[πn
y ]〉n such that 〈[πn

x ]〉n induces [px], 〈[πn
y ]〉n induces [py],

and 〈[πn
xπn

y ]xy∈H(Σx′y′∈Hπn
x′π

n
y′)

−1〉n induces [pxy]xy∈H .

Theorem 6.2. The following are equivalent for any strategies [px]
and [py] and any belief [pxy]xy∈H . (a) There are monomial vectors
[cxnex ] and [cyney ] such that [cxnex ] induces [px], [cyney ] induces [py],
and [cxcynex+ey ]xy∈H induces [pxy]xy∈H . (a′) [pxy]xy∈H is consistent with
[px] and [py]. (b) There is a product dispersion [qxy/x′y′ ] whose marginal
distributions induce [px] and [py] and whose restriction to H2 induces
[pxy]xy∈H .

9 Here is a brief summary. Say that a nonstandard vector [az] expresses [qz/z′ ]
if each qz/z′ equals ∞ whenever az/az′ is infinite, and equals the standard part of
az/az′ whenever az/az′ is finite. Then, dispersionhood is equivalent to expression
by a nonstandard vector [az], and further, producthood is equivalent to expression
by a nonstandard product [axay]. Thus, if one views nonstandard vectors solely as
a means of expressing dispersions, this paper’s concept of producthood is equivalent
to the producthood appearing in Blume, Brandenburger, and Dekel (1991, Defini-
tion 7.1) and Hammond (1994, Subsection 6.5). See Streufert (2003, Appendix B.2)
for details.
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Casually, Theorem 6.2 says that (a) strategies and beliefs are in-
duced by some [cxcynex+ey ] iff (a′) they are consistent iff (b) they are
induced by some product dispersion [qxy/x′y′ ]. This (a) is the character-
ization of applied interest that was discussed in Subsection 1.2, while
(b) is the characterization of theoretical interest that was introduced
in Subsection 1.3. The entire theorem is a straightforward extension of
Theorem 5.1, which is restated here as the equivalence of (a) and (b).
Note that the equivalence of (a′) and (b) is closely related to a result
in Kohlberg and Reny (1997) (see the text following Theorem 6.1).10

The theorem’s proof occupies the remainder of this section. It begins
with the following lemma, which is analogous to Lemma 5.2. It con-
cludes with a critical one-line reference to Theorem 5.1(a⇐b), which
was in turn derived from Theorem 4.1(a⇐b), the fundamental theorem
in this paper.

Lemma 6.3. Suppose that 〈[πn
z ]〉n induces [pA

z ] and that the same
〈[πn

z ]〉n approximates [qz/z′ ] which induces [pB
z ]. Then [pA

z ] = [pB
z ].

Proof. By the definitions at (55), (53), and (15), we are given that
〈[πn

z ]〉n and [pA
z ] satisfy

(∀z) pA
z = limn→∞πn

z ,(56)

that 〈[πn
z ]〉n and [qz/z′ ] satisfy

(∀z, z′) qz/z′ = limn→∞πn
z /πn

z′ ,(57)

and that [qz/z′ ], [pB
z ], and z∗ satisfy

(∀z) pB
z =

qz/z∗

Σz′∈Z qz′/z∗
(58)

and (∀z′) qz′/z∗ < ∞ .(59)

By (58), by (57), by Rudin (1976, page 49, Theorem 3.3) with (59) and
the fact that the denominator is positive because limn→∞πn

z∗/π
n
z∗ = 1,

by algebra, and by (56), we arrive at the desired equality:

(∀z) pB
z =

qz/z∗

Σz′∈Z qz′/z∗
=

limn→∞πn
z /πn

z∗

Σz′∈Z limn→∞πn
z′/π

n
z∗

= limn→∞
πn

z /πn
z∗

Σz′∈Z πn
z′/π

n
z∗

= limn→∞πn
z = pA

n .

2

10 Also note that the equivalence of (a) and (a′) bears some resemblance to
Govindan and Klumpp (2002, Theorem 2.4)’s use of polynomials to characterize
perfection. Indeed, this whole paper reflects their paper’s use of algebra to clarify
difficult concepts. Yet the mathematics of the two papers are entirely different:
this paper uses linear algebra while their paper uses algebraic topology.
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Proof of Theorem 6.2. (a⇒a′) Assume (a). Define

〈[πn
x ]〉n = 〈[cxnex ](Σx′cx′nex′ )−1〉n and

〈[πn
y ]〉n = 〈[cyney ](Σy′cy′ney′ )−1〉n .

By the assumption that [cxnex ] induces [px], and by the definition of
〈[πn

x ]〉n, we have

(∀x) px = limn→∞cxnex(Σx′cx′nex′ )−1 = limn→∞πn
x .

Thus 〈[πn
x ]〉n induces [px]. Similarly, 〈[πn

y ]〉n induces [py]. Further, by
the assumption that [cxcynex+ey ] induces [pxy]xy∈H , by algebra, and by
the definitions of 〈[πn

x ]x〉n and 〈[πn
y ]y〉n, we have

(∀xy∈H) pxy = limn→∞
cxcynex+ey

Σx′′y′′∈Hcx′′cy′′nex′′+ey′′

= limn→∞
cxnex(Σx′cx′nex′ )−1·cyney(Σy′cy′ney′ )−1

Σx′′y′′∈Hcx′′nex′′ (Σx′cx′nex′ )−1·cy′′ney′′ (Σy′cy′ney′ )−1

= limn→∞
πn

xπn
y

Σx′′y′′∈Hπn
x′′π

n
y′′

.

Hence 〈[πn
xy]xy∈H〉n induces [pxy]xy∈H . By the previous sentence and

by the earlier sentences about [px] and [py], we have that [pxy]xy∈H is
consistent with [px] and [py].

(a′⇒b) Assume (a′). By the definition of consistency, there ex-
ist full-support-distribution sequences 〈[πn

x ]〉n and 〈[πn
y ]〉n such that

〈[πn
x ]〉n induces [px], 〈[πn

y ]〉n induces [py], and 〈[πn
xπn

y ]xy∈H〉n induces
[pxy]xy∈H . By Theorem 6.1(a′⇒b) together with that theorem’s sec-
ond sentence about marginals, 〈[πn

xπn
y ]〉n approximates a product dis-

persion [qxy/x′y′ ] whose marginals are approximated by 〈[πn
x ]〉n and

〈[πn
y ]〉n. Let [qx/x′ ] and [qy/y′ ] denote these marginals. Since 〈[πn

x ]x〉n
induces [px] (by assumption), since 〈[πn

x ]〉n approximates [qx/x′ ] (by
the previous two sentences), and since [qx/x′ ] induces some distribu-
tion (by Remark 2.1), Lemma 6.3 shows that [qx/x′ ] induces [px]. A
symmetric argument shows that [qy/y′ ] induces [py]. Finally, since
〈[πn

xπn
y ]〉n approximates all of [qxy/x′y′ ] (by this paragraph’s third sen-

tence), it must be that 〈[πn
xπn

y ]xy∈H〉n approximates [qxy/x′y′ ](xy,x′y′)∈H2 .
Since 〈[πn

xπn
y ]xy∈H〉n induces [pxy]xy∈H (by assumption), since this same

〈[πn
xπn

y ]xy∈H〉n approximates [qxy/x′y′ ](xy,x′y′)∈H2 (by the previous sen-
tence), and since [qxy/x′y′ ](xy,x′y′)∈H2 induces some distribution (by Re-
mark 2.1), Lemma 6.3 shows that [qxy/x′y′ ](xy,x′y′)∈H2 induces [pxy]xy∈H .

(a⇐b) Theorem 5.1(a⇐b). �
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Appendix A. Numeraires

This appendix shows how calculations using monomial vectors can be
simplified by choosing one numeraire for X and another numeraire for
Y (indeed, our calculations for Xavier and Yolanda used Remark A.1
to justify (42) and Remark A.2 to justify (9)).

First consider a set Z. Recall how a monomial vector [cznez ] induces
a distribution (3) and represents a dispersion (27). Both definitions
concern only the ratios among the monomials listed in [cznez ]. Thus
both constructions are invariant to multiplying [cznez ] by a monomial
cne, and consequently, both are unaffected by specifying an element of
Z to be the “numeraire” (that is, by choosing some z? and maintaining
that cz?nez? = 1).

Next consider a Cartesian product X×Y . Intuitively, one should be
able to choose one numeraire for X and another for Y . The following
remarks confirm this intuition. The first remark is for Theorems 4.1 and
6.1 (which concern dispersions) while the second is for Theorems 5.1
and 6.2 (which concern distributions).

Remark A.1. Choose any x? and y?. A table [qxy/x′y′ ] is represented
by some [cxcynex+ey ] iff it is represented by some [ξxξynεx+εy ] for which
ξx?nεx? = 1 and ξy?nεy? = 1.

Proof. The “if” part is obvious. To prove the “only if” part, take
any x? and any y?, assume that [qxy/x′y′ ] is represented by [cxcynex+ey ],
and define

[ξxnεx ] = c−1
x? n−εx? [cxnex ]

[ξynεy ] = c−1
y? n−εy? [cyney ] .

Then

[ξxξynεx+εy ] = (cx?cy?)−1n−ex?−ey?

[cxcynex+ey ]

represents [qxy/x′y′ ] because it is a monomial multiple of [cxcynex+ey ]
which represents [qxy/x′y′ ] by assumption. 2

Remark A.2. Choose any x? and y?. The following are equiva-
lent for any strategy [px], any strategy [py], and any belief [pxy]xy∈H .
(a) There are [cxnex ] and [cyney ] such that [cxnex ] induces [px], [cyney ]
induces [py], and [cxcynex+ey ]xy∈H induces [pxy]xy∈H . (a?) There are
[ξxnεx ] and [ξynεy ] such that [ξxnεx ] induces [px], [ξynεy ] induces [py],
[ξxξynεx+εy ]xy∈H induces [pxy]xy∈H , ξx?nεx? = 1, and ξy?nεy? = 1.

Proof. It is obvious that (a)⇐(a?). To show that (a)⇒(a?), take
any x? and any y?, and assume that [cxnex ] and [cyney ] are such that
[cxnex ] induces [px], [cyney ] induces [py], and [cxcynex+ey ]xy∈H induces
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[pxy]xy∈H . Then define

[ξxnεx ] = c−1
x? n−εx? [cxnex ] and

[ξynεy ] = c−1
y? n−εy? [cyney ] .

[ξxnεx ] induces [px] because it is a monomial multiple of [cxnex ] which
induces [px] by assumption; [ξynεy ] induces [py] because it is a monomial
multiple of [cyney ] which induces [py] by assumption; and

[ξxξynεx+εy ]xy∈H = (cx?cy?)−1n−εx?−εy?

[cxcynex+ey ]xy∈H

induces [pxy]xy∈H because it is a monomial multiple of [cxcynex+ey ]xy∈H

which induces [pxy]xy∈H by assumption. 2
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