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*
D. T. Scheffman
University of Western Ontario

I. Introduction

There is an old adage which states that ''the prudent investor
should diversify his holdings". 1In this paper we attempt to analyze
this proposition within the framework of a one-period optimal asset

choice model., The introduction of mean-variance analysis to the econo-

- mic theory of choice under uncertainty by Markowitz and Tobin pro-

vided the first formal economic model which was consistent with this
adage. This model provided the framework needed for the important
breakthrough in modern monetary and financial market theory, with the
main impetus coming perhaps from Tobin's seminal article, "Liquidity
Preference as Behavior Towards Risk'. The two main contributions of
mean-variance analysis for these breakthroughs were:

a) Mean-variance analysis provided a formal but relatively
simple construct for analyzing choice under uncertainty,

b) The most important implication of the model was that an
investor with a mean-variance criterion would generally diversify rather
than specialize, This implication provided a congruence between theory
and actual investors' behavior which only existed on an ad hoc basis
brior to the introduction of mean-variance analysis, (It should perhaps
be recalled by the reader thét the most popular pre-Markowitz theory
of choice under uncertainty postulated that investors were expected-value

maximizers, and since this had very unrealistic implications for investor
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behavior, ad hoc explanatory variables such as risk and liquidity pre-
miums were appendgd to the model,)

An alternative to the mean-variance criterion theory of choice
under uncertainty was provided by the Von-Neumann-Morgenstern expected
utility hypothesis, As we now know, the expected utility hyﬁbthesis is
probably a more adequate model of choice gnder uncertainty than mean-
variance analysis--i.e,, it can be shown that except under very special
assumptions, an investor with a mean-variance criterion can be shown to
make totally implausible choices, and this type of implausible behavior
would not occur for any expected-utility criterion investor. The
expected-utility hypothesis model also provides a formal construct for
analyzing choice under uncertainty, but it is considerably more compli-
cated than the mean-variance model. Because of the difficulty in de-
riving propositions from the expected utility model, there has been much
more research concerned with extending mean-variance analysis than with
discovering meaningful implications of the expected-utility model, This
would seem to be an unfortunate imbalance because of the inherent
superiority of the expected utility hypothesis,

Many of the important questions which a theory of choice under un-
certainty should answer have been thoroughly considered within the mean-
variance model. 1In particular, the conditions under which a mean-variance
criterion investor will diversify are fairly well known, However, very
little analysis has been considered with discovering the appropriate diver-
sification conditions for the expected utility model. Besides discovering
and analyzing such conditions, our analysis will provide three contribu-

tions, First, we will analyze and extend a definition of correlation first
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proposed by Samuelson,1 which we will show provides a more useful defi-
nition of statistical dependence than linear (Pearsonian) correlation
for the expected utility model. Our second contribution is derived
from the apparent philosophy behind the continued research on the mean-
variance model, Since, as we have indicated, the expected utility
hypothesis is inherently superior as a theory of rational choice, seem-
ingly the only defense for continued use of the mean-variance model is
the argument that this model is in some sense a reasonable approximation
to the expected utility model. One very indirect means of considering
the validity of this argument is to compare the conditions necessary
for establishing equivalent results in the two models., Our analysis
will provide one such indirect test by allowing comparison of the diver-
sification theorems of the two models., Of final interest in our expo-
sition is our method of analysis, which is indicative of a general way

of approaching problems of the type we comsider.

II. The Setting of the Problem

The question: '"under what conditions will an investor diversify?"
is not meaningfully posed unless we consider specific preferences and
probability distributions, Restricting ourselves to such specifics would
yield results which would only be of very limited interest. Because one
of the purposes of our analysis is to provide a comparison of results in
the mean-variance and expected utility models, we will focus on the main
diversification theorem of mean-variance analysis, This theorem gives
conditions under which any risk-averse investor will hold positive amounts

of each of the available assets.
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III. The Mean-Variance Model

The mean-variance model is defined by the following assumptions. An
investor must choose from among n securities, i = 1,...,n in planning his port-
folio for one period. The one period yields of at least some of the assets are

uncertain. pz is the price he must pay for one unit of the ith security at

time t. p:+1~is the (possibly) unknown price of the security at time t + 1.

It is assumed that the investor knows (or has a fixed estimate of) E(p§+1/p§) = By

t+1, t t+1, t _
i 1pg -”i)(pj /pj -“j)] =04y He has an initial wealth of W, .

His portfolio optimization problem then becomes:

and E[(p

a) max U[E(Z ptT! x }, var {Z.p?+1 x. 1
{x.} i i i iti i
i
subject to T pz X; = Wy, where X, is the number of units bought of the ith
1

gecurity and U is a mean-variance utility function.

e n ptHl
Let U, =OU/S(E{ = P."" X.}] and U, = 3U/d[var{ £ P X.}]. The usual assump-
4=1 L+ 1 2 41 & i

tions about U require U.I > 0, U2 <0, (If U2 > 0 we call the investor a risk
lover.) Of course, U2 < 0 seems consistent with the notion of a "prudent" in-

vestor.

The solution of problem (a) can be broken down into two parts: i) De-
rive the set of feasible efficient mean-variance combinations--i,e., the effi-
ciency locus in mean-variance space. (A point on the efficiency locus represents
the maximum possible mean for a given variance.) 1i) Choose the preferred
mean-variance combination from the efficiency locus.

Every point on the efficiency locus will be chosen by some risk-averse

mean-variance utility function., Therefore a necessary condition for all
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risk-averse investors to hold positive amounts of each asset is that

all points on the efficiency locus must correspond to portfolios with
positive amounts of each asset. It is well known that if there is no
riskless asset and all mean yields are not equal then thé efficiency
locus (in mean-standard deviation space) is a half-parabola and some
points on this locus correspond to non-diversified portfolios.2 It

is also well known that if there is a riskless asset then the efficiency
locus is a straight line, where again some points correspond to non-
diversified portfolios.3 (We assume here that the mean of the riskless

asset is smaller than at least one risky asset,) Therefore a necessary

condition for all efficient portfolios to be diversified is that all

mean yields are equal and there is no riskless asset.

We can now state the well-known diversification theorems of
mean-variance analysis, Let I be the matrix of variances and covariances

of the asset yields (i.e., & = [Gij]).

Theorem I. The necessary and sufficient conditions for any risk-averse

mean-variance investor to hold positive amounts of each asset are: i) no
. . -1

asset is riskless; 1i) all assets have the same mean yield; iii) &

has positive row sums,

The usual statement of the diversification theorem is the follow-

ing Corollary:

Corollary. If: i) no asset is riskless; ii) all assets have the same
mean yield; iii) Uij =0 fori#j
then any risk-averse mean-variance investor will hold positive amounts of

each asset,
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Since these results are well known, we will not prove them here (the
author will furnish proofs on request). The assumptions of the Corollary are
strongly over-sufficient in fulfilling the condition that zf’ have positive
row sums, Consideration of the formula for 2-1 for n=2 or 3 makes it clear
that a considerable amount of positive correlation is consistent with 2-1
having positive row sums. This is also indicated by various empirical studies
of stock yields (e.g., Evans and Archer)4 which show that while stock yields

are positively correlated there are still significant reductions in variance

for large portfolios possible through diversification.

1v. The Expected Utility Model

The expected utility model choice problem can be written:

a’) max E{U(Z p?+1X )} subject to = ptxX, = W..
i i i7i 0
{x 1} i i
i
t
p. X
t+1, t N . .

By defining Zi =Py /pi., Ai = —iﬂ;- ,» this can be rewritten:
b’  max E{U((mi zi)wo)} subject to I )\ = 1.

N

The usual assumptions about U are U' >0, U" <0. (IfU" >0, we call the

investor a risk lover.) U" < 0 is consistent

with the notion of a "prudent"

investor.

a) Comparison of the Expected Utility Model and the Mean-Variance Model

In the expected utility model, Theorem 1 is no longer valid as the

following example shows. There are three states of nature possible, A, B and

C, and each has a probability of 1/3 of occurrence. There are two assets, the
random yields of which are denoted Z1 and 22 . The value of the asset yields

in each of the states is given in the following table.
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A B c
Z, .5 1 1.5
Z, 0 3 0
E{z,}= /3 5+1/3-1+1/3° 1.5 = 1
E{Zz}— /3« 0+1/3°34+1/3:-0 = 1
Oy = V/3(-1/2)(-1) + 0 + 1/3(1/2)(-1) = 0

Thus the asset yields have equal means and zero covariance. For a mean-variance
criterion utility function, by Theorem 1 a positive amount of each would be held.

Assume Wo = 1. Let U be some utility function with U' >0, U" <0,

E{U()\Z.l +(1-N Zz)} = 1/3 U(.5)) + 1/3 U(X+ 3(1-X)) + 1/3 U(1.5))
dEjU[

ax - 1/6 U'(.5)) = 2/3 U'(-2)x+ 3) + 1/2 U'(1.5\) = F(M) .

The first order conditions for maximizing E{U} require that F(X*) =0, for X*

the maximizer of E{U]}.

F(0)

1/6 U'(0) - 2/3 U'(3) + 1/2U* (0) = 2/3 U'(0) - 2/3 U'(3)

F(1)

1/6 U'(.5) - 2/3 U'(1) + 1/2 U'(1.5)

Since U" < 0, we must have F(0) >0, and F'(\A) <O, for all A\. Therefore

X* > 0. Furthermore it is clearly possible to find a concave U such that

F(1) >0 (e.g., for U(x)=log x, F(1) = 0). For U such that F(1) > 0 the solution
requires »* > 1--i.e., the investor "shorts" the second asset. Of course given
the nature of the assets this is an entirely plausible solution. Thus Theorem 1
is not valid in the expected utility model.

It is not even true that if one prospect has a bigger mean and smaller variance

than another prospect that the first is necessarily preferred to the second.5
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As we mentioned in the introduction to this essay, the mean-variance

criterion can be shown to lead to implausible choices. Congider the following

example.
Let E = expected value of any prospect
V = variance of any prospect.

Consider the utility function

U(E,V) = E/(1+V), for E 20

This utility function has the properties U, > 0 ’ U2 <o0.

1
Now consider the following two prospects:

P1: 10 with probability .99
1071 with probability .01
P2: 10 with probability .98
101 with probability .02

E.l = 11, V.| = 81.99; E2 = 12, V2 = 162.34,

'For this utility function, P1 is preferred to P2, but this ranking is completely

implausible.

Of course what is going wrong in this example is that variance is not
a good indication of risk. Clearly, in any sense meaningful for portfolio
selection P2 is less risky than P1. Mean-variance disciples would argue that if,
as in this case, the probability distributions considered are highly skewed, then

semi-variance instead of variance should be used. This however does not circumvent

the main difficulty, which is that any simple measure of risk is going to be
inadequate. The reason for this is that only in special circumstances is the
mean-variance criterion (or its common modifications) consistent with the expected

utility axioms.ei As is well known, these special circumstances are: either
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the investor's preferences can be represented by the expected value of a quad-
ratic utility function or that the probability distributions be confined to
Gaussian.

Although much of the recent literature makes one of these assumptions]

X - bx2 exhibits

neither is plausible. The quadratic utility function: U(x)
wealth satiation and increasing absolute risk aversionf; The assumption of
Gaussian probability is not logically consistent with the model since because prices
cannot be negative, the Zi's cannot be negative. Thus the question arises as to
how we are to interpret the results of these various mean-variance models if we
reject the mean-variance criterion. Some of the literature seems to argue that
these mean-variance models are in some sense approximations to an expected utility
model. Most comparisons of the results derivable from the two models would seem
to indicate that the approximation is not very good. A further indication of
this will be a comparison of the diversification theorems for the expected
utility model with Theorem I of the first section.

There has been a small amount of literature concerned with the diversifi-
cation problem in the expected utility model. Hadar and Russell9 enlarged the
scope of the "stochastic dominance" literature by considering stochastic domi-
nance for multivariate distributions. However, they concentrated on combinations
of independent random variables, which is only of very limited interest for
the diversification problem., In an earlier paper Samuelson10 attempted to go
beyond independence in his search for diversification theorems, but met with
only partial success. Our analysis will be, in large part, a development of ideas

Samuelson advanced in that paper.
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b) A Definition of Nonlinear Correlation and Its Properties

As we saw in the earlier example, in our search for a theorem analo-

gous to Theorem I in the expected utility model, non-positive (Pearsonian)
correlation between the asset yields will not be a strong enough assumption.
Samuelson" showed that if the yields were distributed independently with equal
means then a risk-averting expected utility maximizer would hold a positive amount
of each asset. He then argued that since going from zero to negative correlation
in the mean-variance model makes everything even better, going from independence

to some stronger type of negative correlation would have the same result in the

expected utility model. He proposed a stronger form of negative correlation
which we will discuss next. Although he stated this stronger form of negative
correlation for the general n-asset problem, this is not a strong enough condition
except in the two asset case. Thus the following development will concentrate

on the two asset case. We will then see that based on the two asset theorems we
can derive, a stronger condition than Samuelson proposed ﬁill give us some n-
asset results. Let 21 and 22 be random variables with joint density function
denoted dP(z1, 22) and joint cumulative distribution function denoted P(z1, zz).

= s =
Let P(z1|zz) Prob {21 —-z1lzz 22}.

Definition: z1 will be said to be negatively S-correlated with 22 if

BP(z.llzz)/az2 20, for all (21, zz). Z1 will be said to be positively S-correlated

; =
with Z2 if BP(z.llzz)/Bz.l =0, for all (z1, 22).

Note: The differentiability here is not necessary,--the definition applies

also for finite differences between z, points with positive density.

For example, consider the following density functions for the random variables

21 and 22:
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i) There are three states of nature, A, B and C, each with a probability of

occurrence of 1/3.

A B ¢

Z, 1 3 5

z, 7 4 0

puﬂﬁn P(1[0) =0, P(1[4) =0, P(1|7) = 1
P(3l0) =0, P3J4) =1, P3|7) =1
p(5|0)»= P(5]4) = P(5|7) =1

Therefore Z.l is negatively S-correlated with Z2 .

0=z, =1.

ii) dP(z.l, 22) =z, + Z, » 1

/21 [z.l . 11
0 dp(z1|zz) = I, (zy +2)d2,1 [0 J (2 + z,)dz,]

P(z1|22) =
= (Z;Z/Z + 2122)/(1/2 +z,) .
R(zylz) (V242 - - (23/2+2,2,) _2- 2312
oz, (1/2 + 2, (/2 + 2)?

which is Z 0 because 0 éz.l =1.

Therefore Z.| is negatively S-correlated with 22 .

£1, 152, =b

i = =
iii) dP(z.l, 22) z + ‘l/zz, 0= z 2

where b is such that (b-1)/2+ log b= 1.
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z .
1
P(z.']zz) = [Of (zy + V/z,)dz,] ¢ [Of (2 + 1/z,)dz,]
- (zf/z +2,/2,)/(1/2 + 1/z,) .

3 (z, |z,) (1/2+1/z,) - (-z1/z§) - (zf/2+z1/z2)(-1/z§)
oz

2 (172 + 1/22)

1/72( -zq + z%)

z%('l/2+1/22)2

which is £ 0 because 0 =z, =1.

1=

Therefore Z.l is positively S-correlated with z2 .

iv) 1f Z.I and 22 are distributed as bivariate normal then Z.l is negatively
S-correlated with z2 if p 20 and 21 is positively S-correlated with 22 if
Z20. To see this, recall for the bivariate normal
b 2

1 -(Z, - b)
P(z.llzz) = _mf k exp [Tl—-—-z—-]dz

20'.'(1 -p) 1

where b = . + ploy/a)) [z, - kol -

2k(po, /0 ,) {z
Therefore bP(z1 ]zz)/Bz2 = ——2-——- o (Z -b) exp [ ]d21
20~ (1-p )

and the sign of this expression = - sign p because

1
_mf (Z1 -b) exp [ ]dZ.l < 0 for all zy <@ because E{Z] Izz} =b.
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The definition of S-correlation is not a symmetric one--i.e., Z, may be negatively

1
S-correlated with Z2 but Z2 may not be negatively S-correlated with Z] .« (As we
shall see in Lemma 5 it is not possible for Z.l to be strictly negatively S-corre-
lated with Z]') The following example shows that S-correlation is not a symmetric
property.

There are two states of nature, A and B, with prob {A} = 9/10, prob {8} = 1/10.

The density function for random variables Z.I and 22 is:
State A State B
Z1 = 5, with probability = 1 Z1 = 10, with probability = 1
z, = 3, with probability = 1/2 Z, = (1, with probability = 1/2
'{ﬁu with probability = 1/2 3, with probability = 1/6
4, with probability = 1/3

From this density function we get the cumulative conditional distribution

functions:

‘ (—4 = S - =
P(z, _1|z] 5) =0 P(Z, = 5]z2 1) =0
B(z, §1lz1 = 10) = 1/2 P(z, €5z, = 3) = 27/28
P(Z, sslz1 =5) = 1/2 B(Z, éS]zz =4) = 27/29
P(z, 53]z, = 10) = 2/3

= =
P(z, =4 ) =1

We see from the definition (using first differences between points of positive

density) that Z2 is negatively S-correlated with Z., but since P(Z.| = SIZ2 = 4)

'l’
- P(Z1 = 5|22 =3)<0, Z.l is not negatively S-correlated with Zz.

Z2 negatively S-correlated with Z. means that for.e > 0,

1
P(Z2 = a]Z1 =b+ e) - P(22 = alZ1 =b) >0 (for b, € such that b and b + € are
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points of positive density for Z]). This means that an increase in the given
value of Z2 shifts the conditional cumulative distribution P(zzlz1) to the left.
Thus negative S-correlation is plausible as a stronger version of negative
correlation. The shifting of the conditional cumulative distribution function

is depicted in the following diagram. To determine the properties of negative
S-correlation we need the following mathematical results,

The following result is obvious.

Lemma 1: Let g(y) and h(y) be continuous functions which are Riemann-
Stieltjes integrable with respect to P where dP(y) is a probability density
function,

a) If g(y) and h(y) are both monotone non-increasing or are both

monotone non-decreasing, cov(g,h) Z 0,

b) 1If g(y) is monotone non-increasing and h(y) is monotone non-

decreasing then cov(g,h) =0,

Of course if g and h are not constant at all points of positive density

the inequalities in a) and b) are strict inequalities,

The following result is from the paper by Hanoch and Levy.12

Lemma 2: Let F(x) and G(x) be cumulative distribution functions and let
h(x) be a function which is Riemann-Stieltjes integrable with respect to

F and G, Let EF{h} = j\h(x)dF(x), etc,
If F(x) = G(x), for all x and (<) holds for some X then:
E {h(x)} > (<) E{h(x)} if h' > 0(h' < 0).

(Again--the differentiability is not necessary here, The basic strategy of
the proof is to integrate H(x) [dF(x) - dG(x)] by parts.)

Z, 20

* For the rest of this essay we will assume , which is a reasonable

. . _ t+l, t
assumption since Zi = P; /p:.L o
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We can now prove the following results.

Let E{lezz] = zldP(zllzz) -- i,e,, the conditional expectation of Z1

given Z2 = 22.

Lemma 3: If ap(z1|z2)/az2 20, for all (z;,z,), then BE{Z1|22}/322 =0

(The differentiability is not necessary here,)

Proof : E{lezz} = J zldP(zllzz).
Let ¢ > 0,

E{lez2 + e} - E{Zl|zz} = J zldP(zllz2 +¢) - J zldP(zllzz).

By the assumptions of the Lemma,
P(zllzz) = P(zl|z2 +¢) for € >0,

Furthermore, the function U(zl) =z, is monotone-~increasing,

Therefore by Lemma 2

~

J zldP(zllzz) z zldP(zllz2 + ¢),
so that E[Zl|22 + e} - E{Zl|z2} =0 fore >0
and the result is proved, (Notice if aP(zllzz)/az2 > 0, then

aE{lezz}/Bz2 <0.)

Corollary: If aP(zllzz)/azz =0 for all (z;, 2,), then

3E{z, |2z,}/32, 2 0,

Lemma 5: If Z1 is negatively S-correlated with 22 (or vice versa) then
019 =0,

[od

Proof: 0yp = J J zlzzdP(zl, ZZ) - E{Zl} E{Zz}

f j ZIZZdP(zl’ zy) = J zlE{Zzlzl} dP(zl)
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By Lemma &, E{Zzlzl} is a monotone non-increasing function of z;. Therefore,
by Lemma 1, cov(z, , E{Zzlzl}) = 0, But of course cov(Z,, E{Zz|z1}) =
cov(Zl, ZZ)’ and the result is proved, (Notice if aP(zllzz) > 0, then

039 < 0.)

Corollary: If Z1 is positively S-correlated with 22 (or vice versa) then

Consider the following example:

There are three states of nature, A, B, and C, each with probability = 1/3,

The values of random variables Zl and 22 in each state are given in the

following table:

A B Y
z, 1 5 0
z, 1 2 3
o1 = - 1/3
P(zllzz): P(l]l) =1
P(1]|2) = 0
P(1]3) =1

Therefore Z1 is not negatively S-correlated with Z,, and so negative

S-correlation is a stronger condition than negative (Pearsonian) correlation,
We state without proof the following obvious result:

Lemma s5: If aP(z1|z2)/az2 =0, V(zl, 22) then Z1 and 22 are independent

random variables,
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c) Some Diversification Results for the Two-Asset Case

The previous examples, lemmas and comments give us a fairly clear
picture of the properties of S-correlation. We will now show that this
definition of correlation is of interest because of the diversification
theorems we can prove using it. 1In the following theorem we will assume

that there are only two assets available,

Theorem II: If E{Zl} = E{Zz}, neither asset is riskless, and z, is nega-
tively S-correlated with 21, then any risk-averse (U" < 0) expected utility

criterion investor will hold positive amounts of each asset,

Proof: The investor's maximization problem becomes:

max E{U[(xz1 + (l-h)Zz)wgB. Without loss of generality we will let W6 =1,
{1}

Therefore we must show that the solution to the problem:

max E{U()A z, + (1-x)z])} is such that 0 < \* < 1,

i\

IV

Suppose h* 1, The First Order Conditions (F.0.C,) for the

problem require:
1) || 2,000z, + (1-¥)20)dP(z02,) = | | 2.0 (\zy + (L-A7) 2.) dP(z,, 2.)
) J %1 %1 2 1220 =) %2 1 2 1> %2
Iterating integrals we have:
2) J U'(X*z + (l-l*) z,) dP(z., z,)
%2 1 2 1* %2
= | Uz + (10 2,) dP(z,|2)) ] @ (2)
= [ 1] zua’y 2 212 1
where dP(zl) is the marginal density of Z,.

aU'/az2 = (l-x*) U" 2 0 since x* z 1, Thus U' is a monotone non-decreasing

function of Zge



W

-19-

Let cov, (ZZ’ U') be the covariance of 22 and U' relative to the density
function dP(zzlzl). Then by a) of Lemma 1 we have cov,, (ZZ’ u) z0 (z2 is
1

a monotone increasing and U' is a monotone non-decreasing function of zz) so,
D [ 2)0048(zy)2)) 2 E(z,|2,}E(U" |2} for all .

Then from 2):

4) I J zzU'dP(zl, zz) z I E{Zz|zl} E[U'lzl} dP(zl).

0.

A

5) By Lemma 3, aE{Zzlzl}/azl

6) /32, [E{U' |2, 1] = E(\"0"|2,] + f Ut 3/dz, [4B(zy|z)) ]
(E{U'|2,} = j U'dR(z,|2,)) .

Since x* Z 1 and U" < 0 by assumption, we have E{l*U"izl} < 0,

Now we must determine the sign of FU' B/BZ][dP(22|z])].

For ¢ > 0, consider

[or0%a) + @) 2y dreaylzy + o) - [ otz + @ 2,) dB(z,|2))
] * * ‘ % "n
0/9z, [U' (A z; + (1-1) z,)] = (1-¥)U" z 0,

Therefore by Lemma 2
j U'dP(22|21 +e€) - j U'dP(zzlzl) =0,
since aP(zz|zl)/az1 20, (In Lemma 2, let F = P(z2|z1 +¢e), G= P(zz|zl),

h =1', and h' 2 0,)

7)  Therefore 3/dz; E{U'|z1} <0,
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From 5), 7) and a) of Lemma 1 we have

8) cov(E{Zzlzl}, E{U'Izl}) z0,

Therefore we can rewrite 4):

rPop

9) J J zzU'dP(zl, z,) = E{Zz} E{u'}.

Going back to 1), by iterating integrals we have

10) f j le'dP(zl, ZZ) = j z E{U'Izl} dP(zl),

giving us from 9) and 2):

11) j z, E{U'|z1} dP(z;) = E{Zz} E{U'}

But as we have already shown, aE[U'|zl}/az1 < 0 so by b) of Lemma 1

12) cov(Z E{U’lzl}) < 0 which means:

1’
13) j z; E{U'|z,] dr(z;) < E{z,} E{U'}.
But 13) is a contradiction of 11) since by assumption, E{Zl} = E{Zz}. Thus
we have shown A* < 1, If we repeat the proof by assuming that k* < 0 we can
again arrive at a contradiction in an analogous manner, Therefore
0< h* < 1l, Notice that although we have demonstrated that the definition
of negative S-correlation is not necessarily symmetric, we need only
assume it for one direction,

Theorem II is of course of limited interest because of the two-asset
framework. However, Theorem II does allow comparison with the Corollary to
Theorem I, and we see the assumptions of Theorem IT (negative S-correlation)

are much stronger than the assumptions of the Corollary (non-positive linear

correlation),
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Theorem II generates our first n-asset result in the form of the

following Corollary:

* *
Corollary: Let (xl,..., kn-l) be the maximizers of the problem:

n-1 n-l
a) max E{U( & xizi)} subject to T A, = 1, where U' >0, U" < 0,
{13 i=1 i=1 *
1
n-1 * n-1 *
Suppose 2 A.Z, is negatively S-correlated with Z_ and E{ = A2z,}sE{z].
jo1 L . n i=1 ivi n

Then the solution of the problem:

n n
b) max E{U( = hizi)} subject to X A; = 1 has the property that

. i=1 i=1
i

A, # 0. [It can be seen that this Corollary is a stronger version of
Samuelson's Theorem III.13]
n-1 *
Proof: Let £ A,Z., =X, and Z_ = Y.
- i=1 %

Then by the assumptions of the Corollary and by Theorem II we have that the

solution of the problem max E{lUMX + (1-0)Y)} has the property that A < 1,

{A}
Therefore it cannot be optimal to have kn = 0 since the solution of 1) is
admissible as a solution of b),
This Corollary is of some practical interest since it gives conditions
under which an investor can tell that his portfolio is inefficient. Thus
if an investor's portfolio is negatively S-correlated with an asset which
he does not hold, and if this asset has a mean yield at least as large as the

portfolio, the portfolio is inefficient.
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d) Some Non-Diversification Results

As in the case of the Corollary to Theorem I, the assumption of nega-
tive S-correlation is strongly over-sufficient. This can be seen in the next

material, where we derive a non-diversification theorem, This theorem has

already been found to be useful in the theory of warrant pricing.14 We will
see that we need a much stronger condition than positive S-correlation to
guarantee that an investor will "short" one of the assets in a given situation.
This analysis requires the following strengthening of Lemma 1, which the author

has proved elsew-here.1

Lemma 6: Let Y¥(y), ¢(y) and v(y) be functions which are Riemann-Stieltjes

integrable with respect to P, where dP(y) is a probability density function

defined on [0, ], and v(y) 2 0 for y 2 0,

Suppose:

a) &y >0 such that ¥(y) = ¢(y) for all 0 Sy =y and ¥Y(@y) = ¢(y) for all
y Zy, and these inequalities are strict inequalities at some points of

positive density,
b) v(y) is a monotone non-increasing (non-decreasing) function.
o [ o a2 2 @ | v v ar

Then | 6(y) v(y) () 2 (D | ¥ v(y) ey

and if v(y) is a strictly decreasing (strictly increasing) function this is

a strict inequality.
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By interpreting ¥, ¢ and v correctly, the corollary gives us a proof of
Lemma 1 (e.g., let ¢ =g, ¥ = é, and v = £, and we have a proof for a) of
Lemma 1 for the case f and g non-increasing). We will have to make use of

Lemma 6 in our proof of Theorem III.

Definition: Z] will be said to be strongly positively S-correlated with Z2
if Z, is positively S-correlated with Z, and E{lezz} is a strictly convex
function of z,. (By Lemma 3, E{Z]IZZ} is a monotone-increasing function

of 22.)

Example: Let Z, ~ U[O, 1] and let z, = 3/2 Z..
. < 2 <
Then P{22|z1} = )1, if z, = (3/2)z3, 0 = z, =1
0, otherwise
and E{Zzlzi} = (3/2)z%. Clearly, Z, is positively S-correlated with z, and
E{Zzlz# is a strictly convex function of z,. Therefore Z, is strongly

positively S-correlated with Zl'

The theory of warrant pricing presented in the paper by Samuelson and

M.erton16 has as one result that the yield on a warrant is strongly posi-

tively S-correlated with its associated stock.

Theorem II: If U' > 0, U" < O, E{Zl} = E{Zé} and if Z, is strongly positively
S-correlated with 22’ then the solution of the problem

max E{U(AZ. + (1 - A1)z )}

has the property that A#é[o, 1.

Proof: Suppose 0 = A% = 1.

The First Order Conditions for the problem require:
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D jj z]U'(h*z] + (1 -z @ (z,2,) = Ijzzu'(h*z] + (1 -2z ar(z,, =

Iterating integrals we have:

2) IJZIU'(h*zl + (1 -0z, ar(zy, z,)

n

3" f3z, = AU" = 0 since A 2 0.

Let cov, (Z], U') be the covariance of Z] and U' relative to the density
2

function dP(z1lzz). Then by b) of Lemma 1 we have cov, (Zl, U') =0, so
2

3) Iz U'(h*z + (1 - A*)z ) dP(z,|z,) = E{z |z, }E{U' |2,]} for all z
1 1 2 1727 — 1172 2°°? —_ "2
Iterating the integrals in 1) and substituting 3) into 1) we have:

4) [ B(z)|2,38{0' [2,} ap(z) = [ 2,5(0" |2,} ap(a,)-

Applying the notation of Lemma 6, let v(zz) = E{U'Izz},

Y(zz) = E{Z1|22}, @(zz) = 2,, and dP = dP(zz). By assumption, Y(zz) is
strictly convex and since j ¥(z,) dP(z,) = E{Z]} = J@(zz)dP(zz) = E{Zz},
q 52 such that Y(zz) < é(zz) for z, < 52 and Y(zz) > §(z2) for 2, > z,.
5) 3/oz,[E{V" [2)}] = E[(1 - AU |z,} + [ v 3/dz,lap(z, |2,)].

Since (1 - A*) Z 0 and U" < 0, E{(1 - A")u"} = 0. Furthermore, by

*
Lemma 2, since Z1 is positively S-correlated with 22 and A = 0,
JU' B/Bzz[dP(zllzz)] £ 0. To see this, consider
IU' dP(z.l|z2 +¢e) - Ju" dP(zllzz), for ¢ > 0.

Since Z.l is positively S-correlated with 22, P(z.llz2 +¢e) = P(21l22),

for all (z],zz). Also, albzi(U') = X*U" = 0. Therefore, by Lemma 2

= | 1[0 %2+ (1 - 22y dB(z, |2,)1 dP(z,).

2)'
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JU'dP(zllz2 +¢) - jU'dP(z1|22) = 0,
6) Thus, a/azz[E{U'[zz}] =0, so v(z,) is non-increasing.

Since f&'(zz)dp(zz) = B{z,} = £{z,} = Jé(zz)dP(zz) by Lemma 6.

! = '
7) IE{Z.‘|22}E{U |22}dP(22) :IzzE{u [zz}dP(zz).
* %* *
Since it must be the case that either A > 0 or (1=A)>0,if A >0
then 4) holds with strict inequality which is a contradiction of 7), or if
*
(1 -X) >0, then 7) holds with strict inequality which is a contradiction
of 4).
*
Therefore A ¢[0, 1].

As mentioned earlier, the theory of warrant pricing developed by
Sémuelson and Merton17 has as a result that a warrant must be strongly posi-
tively S-correlated with its associated stock. Thus, in a world where in-
vestors have "similar" subjective probability distributions, the warrant must

have a higher expected yield than its associated stock; otherwise both could

not exist.

* *
Corollary: Let (11, cee, ln-l) be the maximizers of the problem;

n=-1 n-1
a) max E{U( & Azl subject to X A, =1, where U' > 0, " < o0.
_ ii . i
{A) i=1 i=1
n-1
Suppose iil X?Zi is strongly positively S-correlated with Z and

n-1 %
E{Zn} ZE{Z A Zi}. Then the solution of the problem:
i=1

nMgs

n
b) max E{U( T AiZi)} subject to

{1} i=1 i

hi = 1 has the property that hn # 0.
1
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n-1
Proof: Let X A,Z, =X and Z =Y.
—_— . i“i n
i=1
Then by the assumptions of the Corollary and by Theorem 3 we have that

the solution of the problem

1) ?:? E{U(X + (1 - A) Y)} has the property that A ¢ [0, 1]. Therefore

it cannot be optimal to have kn = 0 since the solution of 1) is an admissible

solution of b),

e) Some n-Asset Results

Of course Theorems IT and III are of very limited interest since they

apply only to the two-asset case. The Corollaries to these theorems are much more

interesting since they give conditions under which in some circumstances a
risk averter can tell that his current portfolio is non-optimal (i.e., if
his portfolio doesn't contain an asset which satisfies the assumptions of

one of the Corollaries relative to his current portfolio).

We are now ready to develop an n-asset theorem. The proofs of the two-
asset theorems are suggestive of the type of assumptions we will need for
the n-asset case in that the obvious type of assumptions to make are those

which will get us back to a two-asset framework.

Definition: Consider a family of random variables (ZI, cees Zn) with joint

density function dP(zi,...,zn). Let

n
..M ) where A, 20 and T A, = 1}.
n 1 i=1 1

A = {}\ll = (}\1"

Let Y(A) be the random variable generated by taking a linear combination

nh™MB

of the Zi's according to the vector A, i.e., Y(A) = hiZi.

i=1
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We will say that the family of random variables (Z1,...,Zn) has the negative

S-correlation property if for any j, and for any AeA with Kj =0, Y(A) is
negatively S-correlated with Zj' (In the case of n=2, this definition is

equivalent to our definition of negative S-correlation in the two variable

case).

This is obviously a very strong definition, but there are some density

functions which satisfy the definition as the following example shows.

Example: dP(zl, Z, 23) = (z] + z, + z3)dz] dz2 d23 for 0 = z4 = (2/3)%.

Let (2/3)% = b. One can easily show that

P{AZ, + (1 - V)Z, = k|2,} =

i [_é]_'z'] + 2k’ [Er(]rm

6A"(1-0) ,
3 T 27 _ 11
b | ———————— | + 2.b° | = |
[6h2(1-h)2 3 [zx(l-x)J

Using this formula it is easily shown that BP{kZ] + (1 - )\)Z2 = k|z3}/az3 Z20
(using the fact that zq = b). It is also clear that if (Z],...,Zn) are in-~
dependent or are joint Gaussian distributed with Gij =0 for i # j, they

have this property.

From the previous definition we can now prove an n-asset theorem. However,

this theorem is different in character from the previous theorems in that

the assumptions of the theorem do not allow shorting. This is not a totally
objectionable assumption, however, since institutional arrangements make
going short considerably more difficult than going "long" in an asset. We

again assume that no assets are riskless,
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Theorem IV: If U' > 0, U" < 0, E{Zi} = E{Zj} for all i, j=1,..., n and the
family of random variables (Z],..., Zn) has the negative S-correlation property

then the problem:

n n
max E{U( & kiZi)} subject to T

{r;3 i=1 i=1

ki=1 and Ai 2 0 has the property that

x: > 0 for all i.

* %
Proof: Suppose that the solution vector (k], cees xn) is such that

n
* % % * *
- =1 = . > -
Al voe hk-l 0; hk, ceey Kn 0 and of course .Z Ai 1.
i=k
* n . '] * * .
Let Z = X A Zi' Since, by assumption, hz, cees Ak-i = 0, the solution

*

of the problem max E{U(XZ] + (1 - AM)Z )} subject to A = 0 will have the
A
*

property that A* = 0. But Z is, by the assumptions of the theorem, nega-

n

*
tively S-correlated with z1 and since X hi = 1 and E{Zi} = E{Zj} for all
" i=k

i, j, E{z2} = E{Z]}.
Therefore we are back in the situation of Theorem II, slightly modified by

the constraint: A 2 0. However, this only modifies step 1) of the proof

of Theorem II, where now we must invoke the Kuhn-Tucker F.O.C.'s:]8
* *
1 [zt e, + (- D2aee, z,) =
WS % *
IE U'zy + (1 - Mz dr(z", z,).
It is easily seen that the rest of the steps in the proof of Theorem II

*
follow exactly. Therefore, k] > 0, and the theorem is proved.

By using an even stronger definition than the previous one, we can prove

a stronger theorem. Using the notation of the previous definition:
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Definition: We will say that the family of random variables (Z1, e Zn)

has the strong negative S-correlation property if for any A, X € A such that

AMa=o0 (i.e., X and A are orthogonal) Y(A) is negatively S-correlated

with Y(A).

Clearly, if (Z], ooy Zn) are independent or if they have a joint Gaussian
distribution with %3 = 0 for i # j, they satisfy the strong negative S-

correlation property.

We now have the apparatus necessary to derive the analogue of Theorem I for

the Expected~Utility model.

Theorem V: If U' > 0, U" < 0, E[Zi} = E[Zj} for alli, j=1, ..., n and
the family of random variables (Zl’ ceey Zn) has the strong negative

S-correlation property, then the problem:

n
*
max E{U( Z liZi)} sub ject to Ehi = 1 has the property that ki > 0 for all i.
{r.] i=1
i

[It can be seen that this theorem is a stronger version of Samuelson's Corol-

lary II.]]9

Proof: § A A =0, A A" > 0and A< 0 £
roof: Suppose A,, ..., A _, =0, hk’ cees A an j or some j

1A

*
such that 1 = j £ k-1. (If no Aj < 0, then we are in the case of Theorem 4,

where the F.0.C.'s hold with equality).

n, n k-1
Since Z Ri =1, £ A, 2 1. Also, by our previous assumption, Z Ai < 0.
i=1 i=k T i=1
k-1 k-1 n n
let X, ==~ ZAN,Z,/ £ X, and X, = £ A,2Z./ £ A,. Using this notation,
1 . ii® | i 2 . iit [T T
i=1 i=1 i=k i=k

we can rewrite the previous problem:
max E{U(AX, + (1 - M)X,)]}.
1 2
{ad
It is easily seen from our construction that X1 = Y(A) for some A € A,

X, = Y(A) for some Xe A and A A =o0.

2
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Therefore, X1 and X2 are negatively S-correlated by the assumptions of the
theorem. Furthermore, since E{Zi} = E{Zj}, for all i, j it is easily seen
that E{Xl} = E{Xz}. Thus we are back in the case of Theorem II, and the

result is proved.

V. Summarz

We have now derived the diversification theorems for the expected utility
model. In our derivation we have seen that, with suitable modifications,
Samuelson's conjectural definition of non-linear correlations is a very useful
definition of statistical dependence for the theory of decision making under un-
certainty, The results which we have obtained are very weak, even in comparison
with analogous results in the mean-variance model, but this is yet another strong
indication that the mean-variance model probably cannot be considered an adequate
approximation of the expected utility model. Thus, it is time that more research
be directed towards the expected utility model in a multivariate context., Our

results are a small advance in that direction.
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FOOTNOTES

*
The author expresses gratitude to Paul Samuelson and Harold Freeman
for many helpful discussions.
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