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I. Introduction

In his path-breaking work on firm location theory, '"Stability

. in Competition," Harold Hotelling [7] suggested that the firm location

model developed therein could be applied quite easily to the firm's
choice of product variety as well. He states that:

Distance, as we have used it for illustration, is only

a figurative term for a great congeries of qualities.

Instead of sellers of an identical commodity separated

geographically we might have considered two competing

cider merchants side by side, one selling a sweeter

liquid than the other... . The measure of sourness now

replaces distance, while instead of transportation costs

there are the degrees of disutility resulting from a

consumer getting cider more or less different from what

he wants. (p. 54)
In recent years a number of authors have followed Hotelling's suggestion
and adopted this modified spatial location approach when modelling markets
in which product specification is a key firm decision variable. Schmalensee
[18], for example, utilizes the notion of a circular product-location
space to describe the process of brand proliferation in the ready-to-eat
cereals market. Prescott and Visscher [14] and Eaton and Lipsey [4]
employ straight line product spaces to analyze firm entry deterrence
strategies based on choice of product ‘specification (or design). Gabszewicz
and Thisse [5] use the straight line product space to model the process
of innovation in product specification (design). In all of these
authors' works (and in others' work as well) the justification remains
essentially that of Hotelling's; namely, that firm location is simply
a special case of a more general process of product differentiation
and therefore the spatial location model should be equally useful in
analyzing these more general issues of product variety.

This product differentiation interpretation is not only intuitively

appealing, but more importantly, it allows for the application of a set



of models which is relatively tractable. However, the transition from
the simple location model to the general differentiated prodﬁct model

gives rise to certain issues with which the economics profession has

heretofore not dealt. Moreover, the continued failure to do so takes
on ever increasing significance as these sgpatial models become not
only a more widely employed theoretical tool, but a tool of policy
analysis as well.1 Put very simply, the source of the difficulty is
the fact that the spatial model assumption that each consumer can rank
alternative commodities in the product set according to their 'nearness"
to his most preferred variety implies that any specification of the
structure of the set of goods-cum-locations must impose restrictions
on the structure of consumer preferences over the set. The broad
purpose of this paper is to deal with this problem through the
construction of a framework within which these restrictions can be
made explicit. More specifically, in this paper we will derive the
precise restrictions on consumer preferences which are equivalent to
the two most frequently employed location models: the line segment and
the circle. This will have the effect‘of not only making clear the
assumptions which underlie these two models, but it also will allow us
to shed some light on such related issues as: the identification of
the appropriate form for the product space in any market; the
appropriate markets to which location models may be applied; and the
nature of policy recommendations which can be made in any particular
differentiated product market.

Our analysis proceeds within the framework of the Lancaster model
in which consumer preferences are defined over bundles of characteristics
and there exists some technology which defines the way in which characteristics

are bundled into differentiated products.2 We then ask what restrictions
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must be placed on preferences and technology in order for this model

to be representable, in a well~defined sense, as a linear or circular
location model. This analysis is presented'in Sections ITI and III and
is in many ways analogous to Rosen's [15] development of a mechanism by
which hedonic price models could be generated. Section IV presents an
illustration of the nature of the restrictions on preferences imposed
by the linear and circular location models in the context of a two
characteristic model. Section V discusses the implications of our
analysis for the application of spatial models. It focuses on

the way in which our analysis can be used to determine the shape of

the product space and the role that this plays in the analysis of
equilibrium and the question of optimal product variety. This section
also provides a short example of the way in which our analysis could

be applied to policy issues by reexamining the FIC's case against the
ready-to-eat cereal manufacturers. Concluding remarks are then contained

in Section VI.

II. Analytic Framework and Preliminary Results

Implicit in any spatial model of product differentiation is the
assumption that a consumer's ranking of any particular point must be
related to the bundle of characteristics, be it actual location or
something less concrete, which the good at that point embodies. One
might reasonably conclude from this that the shape into which these
points (goods) are arranged (i.e., a circle, line, etc.) and the metric
which is used to define distance, as measured by utility loss, between
points should have implications not only for consumer preferences over

goods, but over characteristics as well (and conversely). The aim of



the present analysis is to define quite specifically what these latter
implications are.

To accomplish this, we take as given the existence of a set, Z,

&

of potentially producible characteristics bundles and a set of consumers,
each of whom have preferences defined over Z. The exact nature of the
set Z is given by the following:

Assumption 1. There exists a set Z c:mP, denoted as the characteristics

possibility set, which is a compact, connected, and separable

topological space. It is such that every point z==(z],z ...,zn)e Z,

2’
representing a bundle of characteristics, corresponds to some
possible good.

This assumption corresponds to the assumed existence of what Lancaster

calls alternatively a product differentiation curve [10] or the product

spectrum [9].3 In what follows, it will be assumed that each z ¢ 2

corresponds to a bundle of characteristics available in one unit of

the good.4
Consumers in this model, as in both the location and Lancasterian

models, are indexed by that good in Z which they most prefer. For ease

of exposition, we define a set 6 which will serve as an index set both
for elements of Z and for consumers. That is, with each 0 ¢ © there

is associated both an element 2 ¢ Z and a consumer & for whom 2% is

most preferred in Z.5 This association is formalized in our second

assumption.

Assumption 2. Associated with each 2% ¢ Z is a consumer possessing

a continuous weak ordering Ra over Z with the property: -
(0 6
for all z ¢ Z\\ {z™}, zaPaz.
For simplicity, we will refer to the set of preference orderings

over Z as R(Z) = {Ralza ez} = {R o ¢ 8}. Any pair (Z,R(Z)) which
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satisfies Assumptions 1 and 2 will be termed a preference structure.

In these terms, then, the issue under investigation is the delinegtion
of the conditions under which a preference structure can be represented
as a certain type of location model. Put more simply, the issue

with which we seek to deal is the conditions under which a Lancaster-
typé model can be represented as either a circular or linear location
model. To address this problem, we require a formalization of the
notion of a location-model representation of our model. This is given
by the following definition:

Definition: The set X C mz is a location-model representation of

the preference structure (Z,R(Z)) if and only if there exists
a continuous, one-to-one function f: Z - m? such that:
(i) £(z) =X and
(ii) for all o ¢ 6 and all Z,2 e Z:
R 7 @ d[E(2), £2)] = dl£ED), £@],

where d: m? -+ R is the euclidean distance function.

The problem of the representability of a preference structure
in the above sense can be divided into two parts. The first concerns
the restrictions on the structure which are necessary or sufficient
for such a structure to exist. The second takes the existence of a
representation as given, and deals with conditions on the structure
which are necessary or sufficient for the representation to have a
specific form. Our analysis will focus primarily on the second question
in the particular cases in which the representation, X, is a line
segment or a circle. This is because this is the issue which has
always confronted authors utilizing spatial models to analyze product
diffefentiation problems but has not been addressed. In addition, it

is the one which involves most of the economically interesting results



in this area.

As for the first issue, while the derivation of sufficient
conditions for the representability of a structure is quite beyond
the scope of this paper, certain of the necessary conditions are of
some interest, and we shall comment briefly on those. First, and
most importantly, it is not the caée that the results of the analysfs
to follow hold only vacuously. That is, it is not true that no
(Z,R(Z)) exists having a linear or circular location-model representation,
as at least two examples of each can be given. One is the case in
which Z is a subset of a two-dimensional characteristic space, and is
presented in Section IV below. Another is the case in which f: X = X
is the identity map. In this case, our results are merely a delineation
of the conditions on '"preferences over locations" which are equivalent
to the two location models.

Next, (ii) of the definition of a representation implies that
for (Z,R(Z)) to be representable, each Ra must have a continuous, real-
valued utility representation, Uaf -d[£(z), f(za5]. The representability
of Ra is guaranteed, however, by our assumptions that each %x is
continuous on the connected and separable topological space, Z. Further,
our assumption that Z is compact implies that there is an %z-maximal (and
minimal) element of Z for each a. Thus, the force of Assumption 2 is only
to require the uniqueness of the maximal element.

Finally, a rather important result from the points of view of
both the interpretation and application of spatial models is that if
(Z,R(Z2)) is representable, then Z and X must be of the same dimensiOn.7
This implies that if X is either a line segment or a circle, then while

the number of characteristics in Z may be as large as one likes, at most
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one characteristic in Z can be varied independently of all the others.
For all practical purposes, then, Z must be described by Lancaster';
[10] product differentiation curve.

This result has some interesting implications, particularly
as regards the sorts of markets to which one-dimensional spatial models
may be applied. It might make one skeptical, for instance, of the use
of these models in markets characterized by a high degree of product
heterogeneity.8 In these instances, it is unlikely that products vary
in essentially only one characteristic dimension, and therefore, the-
one-dimensional spatial model, strictly speaking, is not an accurate
characterization of this market. Moreover, given that the equilibria
in spatial models are not robust with respect to changes in dimensions,
the one-dimensional model is not even arguably a reasonable approximation
to some higher dimensional spatial model. On the other hand, one might
consider the one-dimensional spatial model a useful analytic tool in
those instances in which the market is characterized by a high degree
of product homogeneity. In particular these models would be appropriate
in those instances in which either the good possessed essentially a
single characteristic, or if possessing more than one characteristic,
each variety possessed the characteristics in very similar ratios (but
not in the same absolute amounts).9 Interestingly enough, these latter
cases are generally markets in which products are distinguished by
their perceived quality or reliability and are mafkets in which trademarks

and brand names play a key role.10



III. . Characterization of the Linear and Circular Representations

We now turn our attention to the second aspect of the representability
question. That is, given that a structure is representable, what further
conditions on it are equivalent to the representation, X, being either
linear or circular? In both cases, it turns out that two conditions
characterize the representation in question. The first of the conditions
characterizing the linearly representable structure is:

Condition L.1. For any distinct z,E ¢ Z, there exists a unique a ¢ 6

such that z I_ z.

Since any representation, X, must be connected--being the image
of the connected set Z--(ii) of the definition of representability and
Assumption 2 imply that there is always some consumer indifferent between
any pair z,z. L.1 imposes the further restriction that this consumer
be unique. It therefore serves (as Lemmas A.1-A.4 of Appendix A make
clear) to restrict the admissible representations to a subset of the
class of simple arcs.11

The second condition characterizing the linearly representable
structure is:

c _a
z,2z1.2

Condition L.2. For any a, b, ¢, d, e ¢ 6 such that zaI d

b
28

b2

Although this condition has little intuitive appeal, its role is simply

and zclezb, it must be that zdI

that of increasing the tractability of the linearly representable structure.
It guarantees that the representations have the property that the fraction
of consumers contained in any firm's market depends only on the (euclidean)
length of that market in the representation. Thus all of the information
relevant to the firm's product choice decision is captured by the single

statistic, market length.12
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It is clear that a linearly representable structure satisfies
L.1 and L.2 but so would any structure representable by the arc of a
circle up to a semi-circle. In fact, these two representations are
completely equivalent, as stated in our first result.
Theorem 1. If X c:m? is a location model representation of a
preference structure (Z,R(Z)), then X is either a line segment
or the arc of a circle (up to a semi-circle) if and only if

(Z,R(Z)) satisfies L.1 and L.2.

Proof. See Appendix A.

There are also two conditions which characterize a structure with
a circular representation. Contrasting them with the two conditions
above proves to be an illuminating way of distinguishing between the
two location models. The first condition is:

Condition C.1. For every a ¢ 9, there exists a unique b ¢ © such

that:

for all z,z ¢ 2: zRaE ® §sz . *)

As noted before, if a structure is representable there must be
some consumer who is indifferent between any pair z,z ¢ Z. In contrast
to L.1, however, C.1 implies that there are always two such consumers.
Further, it requires that this pair of consumers' preferences be
opposites in the sense given by (¥) above.

As a matter of notational convenience, if a, b ¢ 8 are such that
Ra’ Rb are opposites in tﬁe sense of (*), we will write b = ¥(a) (and
a = y(b)). Given this, our second condition is as follows:

Condition C.2. For any a, b, c, ¢ 8, if y(a) =d, y¥(c) = e and
€ then zdIbze.

a
z Ibz

This condition is analogous to L.2 in that it guarantees that the
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representation of the structure (Z,R(Z)) will have the above-mentioned
market-length property.

The second characterization can now be given.

Theorem 2. If X c:m2 is a location model representation of the
preference structure (Z,R(Z)), then X is a circle if and

only if (Z,R(Z)) satisfies C.1 and C.2.

Proof. See Appendix B.

This result and Theorem 1 above provide complete characterizations
of the assumptions concerning consumers which are typically aggregated into
a statement that consumers are distributed over a line or circle. As
such, they make clear the fact that it is nothing more or less than
variations in assumption on the distribution of consumers (and their
preferences) which distinguish the two models. More specifically,
Conditions L.2 and C.2 capture the extent to which the two structures
are similar, in some sense. This similarity is evidenced by the fact
that arcs of circles represent the same preference structures as do
line segments. Conditions L.1 and C.1, on the other hand, define the
difference between the two structures. This difference hinges on the
existence or nonexistence of oppositeﬂconsumers in the sense of (*). The

significance of this will become apparent in what follows.

Iv. The Difference Between the Linear and Circular Representations -
An Example

One can obtain a better feeling for the nature of the restrictions
imposed on the preference.structure (Z,R(Z)) in the above two sections by
considering two simple Lancasterian characteristic models which give rise
respectively to the linear and circular representations. The purpose of

this present section is to pursue such a consideration. In keeping with

L)
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the restrictions imposed by the necessary conditions for the existence
of a representation (Section II), we assume that the differentiated
] and zz; and that the set Z

(Assumption 1) can be described by a continuous, monotone decreasing

product embodies two characteristics z

and concave function of the form:

z, = ((z)) - (M

In addition, we assume that preferences (Assumption 2) are continuous
and monotonic on mz, and that the set B can be represented by a
bounded interval in R.

For the case of the linear representation, if one assumes that
each Ra is strictly convex and homothetic; and assumes that the slope
of an indifference curve for R, along the ray determined by the origin
and the point za ¢ Z is equal to g' at za, one obtains the result that
each consumer a's most preferred point in Z is 22 (Assumption 2). If,
in addition, one assumes that an indifference curve for exactly one
Ra intersects the graph of Z at each pair of points z,z, then Condition L.1
is fulfilled as well (see Figure 1). The restrictions needed to satisfy
Condition 1.2 are rather more complicated, but are illustrated in
Figure 2 in which, since chazb and both zaIdzb and zaIezc, it must be
that z°I zd.

a

The illustration of the conditions for a circular X, not
surprisingly is more complex. Since 0 in this case must be half
open, the set Z must exclude one of the points za= (0, ¢(0)) or 2% (g-1(0),0)
(in what follows we assume z% is excluded). Further, Condition C.2 implies
that the set © can be partitioned into two disjoint sets such that

each consumer in one set possesses an opposite consumer, in the sense of

(*), in the other set. This implies that if zB is defined by the condition
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that ¥(o) = B, then, by letting y and § be such that zaIyzB and
¥(Y) = §, one can define a partition on the remainder of 6 based
upon consumers' relative preferences for z¥ or 28; and this
partition will have the property that if a is in one set ¥(a) must
be in the other. Thus, one also can partition the set of indifference
curves for R(§’) = {Rala ¢ 9\\ {at,8}} into two sets representing the
preferences of the y-preferring and g§-preferring consumers respectively;
and do so such that the indifference curves for opposite consumers of
each set '"match-up" in the appropriate fashion.

If this partition is to form a ciréular X, then £(Z) must be

B Y

such that xa and x" form the endpoints of a diameter of X while x' and
x6 form the endpoints of the diameter at right angles. Further, the
preference orderings in the partition must be such that as a (the index
of consumers) moves continuously from o through 6 = [, [, £(Z) moves

Y B 6

continuously around the circle from x* to x¥ to x° to x® and back to x%.

They also must be such that as an individual consumer, a, moves

v(a)

a .
continuously through z from z to 2z utility decreases continuously,

while it increases continuously as a moves through the remainder of 2

a
¥(a) to z . The sets of indifference curves for a representative

from 2z
consumer Yy and his opposite Y¥(y) which generate this sort of ordering are
given in Figures 3 and 4 below.

If it is assumed that the indifference curves of Ra are homothetic,
then the indifference curves for the other members of the y-preferring
group can be envisioned as being obtained through a continuous distortion
of y's indifference curves. This distortion involves one's rotating the

ray determined by the origin and the intersection with the graph of Z of

the indifference curve containing za and z% continuously through the
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positive orthant. A similar construction can be used to obtain the

indifference curves of other members of the 26

-preferring group, one
needing only to be careful that the indifference curves of each member
of the group intersect with the graph of Z at the same points as the

Y-preferring

indifference curves of their respective opposites in the 2z
group. This procedure also generates the indifference curves for the
consumers o and B (the consumers indifferent between z! and zﬁ). These
indifference curves are illustrated in Figure 5, and have the property that
the intersection with the graph of Z of the indifference curve containing
za and z% occurs at za, so that the indifference curves for ¢ and B are
everywhere concave and convex respectively. Finally, Figure 6 illustrates
the nature of the restrictions imposed on an arbitrary consumer a's
indifference curves (and implicitly, those of b and c¢) by Condition C.2.
While the above preference orderings are admittedly rather
unorothodox, it is nevertheless true that one can provide a rather
intuitive interpretation of them. In particular, the preference
orderings over Z in the case of a circular product space and two
characteristics can be interpreted as being such that each consumer
other than o and g has a minimum char;cteristics level requirement
over the set Z. Thus, consumer y, for example, has a preference
ordering that is such that the level of characteristic z, which any
good he consumes embodies must be at least as great as zg (see Fiéure 3)
in order for him to be at least as well off as in the situation in which
he consumes a good contaiming no z, at all. A similar property holds for
all members of the y-preferring group, with the only difference being in
the value of the minimum level of z, required (being different for each
member of the group). The members of the §-preferring group likewise

1
have a minimum characteristic level requirement, but over zq. 3 The two
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consumers not included in either group, o and B, possess preferences
that are such that o always prefers goods containing all of one or all
of the other characteristic while B always prefers goods containing a

mixture of the two characteristics.

V. Some Implications
1., General Results

A brief survey of the literature on product-location models makes
clear the wide variety of results to be found there. Much of this variety
is due to either differences in assumed firm behavior or to assumptions of
elastic vs, inelastic demand., However, one source of variation in results
is clearly the form of the spatial model used, and to date there has been
offered no satisfactory economic explanation for this., Most often,
differences in results between a circular, as opposed to a linear, spatial
model are attributed to the existence or nonexistence of endpoints of the
product space; and, in fact, this is the technical cause, However, it
is not a very useful explanation for what is an important phenomenon, nor
does it provide any guidance as to what the appropriate model might be
for any given problem. Indeed, one would be hard-pressed to provide any
information concerning whether or not the product space in some particular
market possessed endpoints and where exactly these endpoints occur.

On the other hand, our results make it clear that the existence or
nonexistence of endpoints in the product space stems from alternative
specifications of the disfribution of preferences over the set of products,
That is, one can take a (Z,R(Z)) having a linear representation and alter
R(Z) in an obvious way to obtain a structure with a circular representation,
and vice versa., Thus, we have provided an explanation for the difference
in the two models in terms of one of the standard primitives of economic

theory--preference orderings. This has the obvious value of providing an
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interpretable economic criterion for the determination of the appropriate
product space for any particular market, However, it also allows us to
demonstrate the importance of one's choosing the correct product space by
allowing us to show the extent to which results concerning the nature of
equilibrium and the optimal level of product variety within these models
depend upon the specification of the preference structure, This is done
below.,

Regardless of the assumptions m;de on producer behavior or the
elasticity of demand, there seems to be one persistent difference in
equilibria between the linear and circular models. That is, for the circular
model, the equilibria are (or can be) symmetric, while for the linear model
they are not (and cannot be). In fact, there is a tendency for firms in a
linearly representable market to produce goods near the center of the
market, We would maintain that these differences are due to the fact that in
the circular case every consumer has an opposite, while on the line the
set of consumers with opposites has measure zero (i.e. the endpoint consumers
only) . We can illustrate this by considering the simplest location model,
in which each consumer purchases one unit and price is identical and exogenous
for each f:i.rm.]4

With only two firms in this model any pair of product choices for the
circular case results in a Nash equilibrium, The reason is straightforward.
Consider any pair of firm product choices, z],zz. If firm 1 instead were to
choose 21 this eatns him a new customer a €0 iff §1Paz2 and zzPaz]. By

C.1, however, there always exists b = ¥(a) for which zsz§1 and z1szz, so that

b is lost as a customer by firm 1, No change can gain consumers (and thus
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profits) for any firm, A similar result holds in the n-firm symmetric
equilibrium on the circle, Here, however, while some consumers will
switch to a firm which varies its product, there exists an equal number
of consumers (not in the firm's market) for whom the new product is closer
to their most preferred ones and who have opposites which the firm loses
as customers,

On the line, Hotelling's minimum differentiation result holds, of
course, This follows from the nonexistence of opposites. If z and z2
are the original, nonequilibrium product choices, a change to El earns a
new consumer a €0 for firm 1 iff E1Paz2 and zzPaz]. Since no such consumer
a exists who has an opposite, firm 1 can always gain customers without
losing any by some "small" variation in its product. This is true so long
a% the new product 51 is such that the consumer who most prefers 22 prefers
it to 21. Thus, the only exception would be the case in which z1 and 22
are essentially identical., The minimum differentiation result thus follows
immediately. With arbitrary numbers of firms greater than three, a similar
result holds locally (i.e. at the market boundary) in that two firms will
bunch together at the periphery of the market.

The above analysis makes it tempting to conclude that if some set
of consumers having a positive measure, but less than the entire set, were
to have opposites, one would obtain results which are intermediate in some
sense. Surprisingly this is not the case. We have shown in Theorem 1 that
a semi-circlg and a line represent identical structures. If one were to
start then with a semi-circle and add consumers and goods to complete the

circle, this would define a path in the space of models leading from the
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linear to the circular such that the set of consumers having opposites goes
from none to all, In doing this, however, the sets of equilibria which’
one obtains from all of these intermediate models are identical to those
obtained on the line. The only exception to this is the limiting model,
the circle itself, Thus the important characteristic of the circular model
(i.e. the one which distinguishes it from the linear model) is the fact
that every consumer has an opposite. In this sense, it is a particularly
special model,

This indication of the rather special nature of the circularly
representable structure is reinforced when one considers the issue of
optimal product differentiation in the two cases. For, consider the above
simple models once again, with the added feature that each producing firm
incurs a fixed cost F > 0 and zero variable costs.15 In an analysis of the
optimal level of product variety, an obvious welfare measure for this model
would be the sum of fixed costs plus the utility losses due to consumers not
being able to obtain their most preferred good in Z. One can then ask whether,
in either market, this indicator increases or decreases in equilibrium with
the addition of another firm (productf.

Since in both markets the equilibria are not unique, for consistency
we will compute the welfare measure at the welfare-maximizing (cost-minimizing)
equilibria for each, Clearly, the answer to the question of the optimal
level of product variety will depend on parameter values. However, the
surprising fact is that for any initial number of firms N 2 4 and population
density K > 0, if K and F satisfy

K|&N@+H) <F <K|4(N-2) (N-1)

the addition of another firm will reduce welfare in the linear case and
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increase it for the circular market. Further, there is no set of parameter
values such that an additional firm has the reverse effect in each market.]
The explanation for this lies in the nature of the equilibria in the two
models, With the circular product space and a given N, the welfare-maximizing
equilibrium configuration is also welfare maximizing over all possible con-
figurations. Thus the addition of a new firm (product) improves welfare only
in that it reduces the consumers' average utility loss, With the linear
product space, the welfare-maximizing equilibrium configuration is not
welfare-maximizing over all possible configurations. Thus the addition of a
new firm (product) involves not only the utility loss reduction property of
the circular product space, but also a movement to an equilibrium closer to
the overall welfare-maximizing configuration. This additional welfare gain,
then, produces the above results, Thus, it is ultimately because of the
difference in preference structures (and the differences in equilibria

which they produce) that allows cases in which an increase in variety can

have an opposite effect on welfare in the two models.

2, Specific Results - The RTE Cereals Case

Perhaps the best known instance of the use of a spatial model as a
tool for policy analysis is that by Schmalensee [18] in the U.S, Federal
Trade Commission's suit against the ready-to-eat cereal manufacturers, In
this case, the FIC argued that the three major U,S. cereal producers .sought
to reduce competition through the proliferation of different brands of cereal,
Schmalensee argued this case in the context of a circular product market

in which existing producers sought to "fill the product space" through
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the introduction of new cereal brands so as to reduce competition from new

firms,

Our analysis allows us to make a number of comments concerning the

interpretation of Schmalensee's results,

i) Schmalensee, in discussing his assumption of localized rivalry

ii)

argues that cereals possess "at least four different attributes
relevant to consumers" (p. 309). Our analysis indicates that
unless only one of these attributes varies independently of the
other three, which seems unlikely, there exists no circular
location model representation of this market. Moreover, as was
mentioned earlier, since equilibria vary so wildly (and often

do not even exist) as the dimension of the product space changes,
it is questionable whether this model can even reasonably be
claimed as an approximation to a less tractable, higher dimensional
problem. Therefore, given the model specific nature of the results
which Schmalensee obtains, one must exercise some caution in
interpreting them or employing them for the purpose of making
policy prescriptions,

Even if one is willing to argue that the only relevant characteristic
in the market is brand name, so that the product space is
essentially one dimensional, our analysis also makes clear the
rather special nature of the circular product space. In particular,
in order for Schmalensee to obtain his results he must assume

that every consumer in the market has an opposite in the sense

of (*) in Section III (or Figures 3 and 4 in Section IV)., Anything
less than this, while not generating a linear product space,

generates equilibria which are identical to the equilibrium for
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a linear product space., Thus, while seeming to be rather innocuous,
particularly given the difficulty one would have in defining an
endpoint of a product space, Schmalensee's assumption of a

circular product space is, in fact, quite strong; and his results,
in this sense, are rather special,

iii) Schmalensee does conclude that the amount of product variety
resulting from firm brand proliferation may have exceeded the
socially optimal amount. Our analysis above demonstrates that, due
to the fact that these sorts of results depend upon the equilibrium
configuration which, in turn, depends upon the shape of the product
space, Schmalensee might have arrived at a different conclusion
had he employed a linear product space. In particular, it is
possible that with a linear product space firm brand proliferation
would have unequivocally resulted in too little (less than socially

optimal) product variety.17

We cannot conclude this section without making some qualifications to
the above comments, First, it would be wrong for anyone to conclude from
our analysis that Schmalensee's results are necessarily in error. Our
intention is only to point out that, given the difficulties one faces in
constructing a compelling case for the application of a circular location
model to the cereal market, one should proceed cautiously when attempting
to formulate policy measures based upon an analysis which utilizes this
model. Neither, however, should it be concluded from this that spatial

models are an inappropriate tool for policy analysis. As was mentioned in
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Section II above, one can conceive of a number of markets, many of which have
brand names and trademarks as key elements, to which these models could be
reasonably applied. In some of these :i.nst:ances]8 our analysis actually

makes the application of these models more straightforward, in that it

provides guidelines, based on standard economic concepts, for the determination
of the proper shape of the product space. One can proceed on the basis of
assumptions concerning consumer preferences rather than on some nebulous

notion about the existence or nonexistence of product space endpoints.

VI. Concluding Comments

In this paper we have sought to provide a preference foundation for
the two most frequently employed spatial models of product differentiation: the
line segment and the circle. In doing so, we have been able to define
precisely what it means for a product space to have endpoints and the
important role that this assumption plays in the analysis of equilibrium
and issues of optimal product variety. We have also shown a way in which
our analysis could be usefully brought to bear on policy questions, particularly
those dealing with markets in which brand names and trademarks play a key
role,

It might be argued that our analysis is very special in one respect
in that it requires an assumption of completely inelastic demand. This,
however, is not the case. For, since the inelastic demand model is simply
a special case of a more general model of consumer behavior, the important
characteristics of the inelastic demand analysis (i.e. Conditions L.1-L,2
and C,1-C.2) must be characteristicsvof the general model as well, Research
which we are currently undertaking has established this point; and we are
now considering a method by which elastic demand behavior can be sensibly

incorporated into a spatial model.
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FIGURE 1
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FIGURE 2
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FIGURE 3
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APPENDICES

The two appendices that follow contain the proofs of Theorems 1 and 2,
as well as statements and proofs of necessary preliminary results in each
case, In addition to the notation already introduced in the text of the

paper, we will make use of the following:

A\B = {xsAl|x £3}
C = the closure of C.
Further, for any x,x e!Rz, we define:
[x,x] = {x'eﬂ%zl(ﬂt el0,1D): x’' = tx + (1-t)x},
which is just the line segment having x and x as endpoints, and

L(x,x) = {x'efﬁzld(x'x) =dx',%)1},

which is the perpendicular bisector of [x,x],

In appendix A, it is established in the first lemma that for amy x,x €X,
there is a unique path connecting them; and this path is denoted as P(x,%) .
That is, there is a continuous function p defined on [0,1] such that
p(0) = x and p(1) = %, and we let p([0,1]) =P(x,x).

Finally, as a notational convenience, we will write f(za) = xa, for

any &% e 6.

Appendix A: Characterization of the Linear Production Set
Lemmas A.l - A.4 all have as hypotheses that X is a representation

of a structure satisfying Assumptions 1 and 2 and Condition L.l.

Lemma A,1 - For any xa,xb € X, there exists a unique path PCX connecting them,
Proof: Suppose, by way of contradiction, that 1’] ,P2 CX are distinct paths

connecting x° and x2. Then there exist sub-paths P'CP1 R P'C'PZ having only

1 2

endpoints in common, so that [P{ U Pz'] C X is a closed loop, contradicting L.T.

O
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Lemma A.2 - If d(xa,xb) = d(xc,xb), then xb € P(xa,xc).

Proof: Immediate from lemma A.1 and condition L.1.

Lemma A.3 - For all a,b,c ¢ 6, if d(xa,xc) = d(xb,xc) =B >0, then
d(xd,xc) = B implies d = a or b.
Proof: Suppose such a distinct x(1 exists. Then lemmas A.1 and A.2 imply
that all three of xa,xb.,xd are located on a circle of radius B with center
xc, and that each pair of these 3 points is connected by a unique path in
X containing x°.

Let Y = max[d(xd,xc),d(xd,xb)] > 0.

Then d(xd,xc) = d(xd,xb) contradicts L.1 immediately, so suppose that,

Y= d(xd,xa) > d(xd,xb) =§ >0,
- a d - d - b
Then there exists an x ¢ P(x ,x ) such that d(x,x ) = 8, so zIdz .
£ - b f - f b - b
But then there exists x ¢ P(x,x ) such that dx ,x) =d@x ,x ) & zIfz .
Since xd § P(::,xb), this contradicts L.1.

b
Lemma A4 - If xa‘,xb €¢X are not endpoints of X, and d(xa,xc) = d(x ,xc) =8,

- . a_b_c
then for any x €X distinct from x ,x ,x ;

{x%,2°} N PGS, 0 # 4 = dExS) >B.

Proof: Suppose the hypotheses hold, with xa eP(xc,i) , but d(:.:,xc) = B'_< Be

~ a _c
(Note that lemma A,3 rules out equality,) Thentheremust exist x €P(x ,x )

and x eP(xb,xc) such that d(xc,b = d(xc,ﬁ) = B', since these are connected

sets., This, however contradicts lemma A,3, a
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Proof of Theorem 1: The necessity part of the theorem is immediate. To
prove sufficiency, one need only show that the curvature of X at two arbitrary
points :-:o”,:-r6 (assumed not to be endpoints) must be the same,
Lemma A,2 implies there exists x € X with d(xa,i) = d(xB,;:) = y; and
lemma A.4 implies there exists xa,xb €X such that
a*,%) = ax’, R =y’ >v.
Further, L(xa,xb) Nx = {x].
We will now show that the sets
C={xex|dx,x) =vy’}
c, = {x ecld(x,x?) = d(x,xb)]
C, = {x eCld(x,xb) = d(x,x%) }
are such that there exists a function 0':932 - 3?2 which is a reflection or axial

symmetry with respect to L(xa,xb)° That is (see Choquet (1969), p. 59),

(i) =x sL(xa,xb) =2 0(x) =x

{x eC|L(x,x) = L(xa,xb) }.

(11) x AL, = o(x)
B

Then, since O'(xa) = x by construction, we will have the desired

result,

We define G(§) = x, and construct now a dense subset of C, such that
a function o(*) satisfying (ii) exists, from which it follows that its

extension to C also satisfies (ii).
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Let xc,xd be the unique points in X such that (from condition L,1),

d(x,x°) = d(x®,x% and d(i,xd) = d(xb,xd).
Condition L,2 implies then that all four of these distances are equal, so
in particular, x eL(xc,xd). There are two cases to consider now.

(a) =, x° and xb are collinear., Then if either of xc,xd are not
also, then X must have an inflection point, in the éense that some line L
in 5?2 intersects X in at least three disconnected sets, However, then
L,2 is violated, so x° and xd are collinear with the original points,
and L(xc,xd) = L(xa,xb).

(b) =%, x> and xb are not collinear, Now let L(x,x>) N [x,x%] = y
and L(;:,xa) n [xa,xb] = y. Then it must be the case that d(xc,};) > d(xc,y)
and d(i,xc) > d(y,y). Otherwise, X must have an inflection point as in (a),
violating L.2, Since the same argument applies to xa, we have that
L(x%x%) = L(x,xD).

Continuing then, we construct the four points xe,xf,xg,xh such that:

aGa35% = ac%x®d  ,  aaSxh = a@xH

axx®) =axdx®  , axd <D = aeP,dh.
Note that lemma A,4 implies that all of the points being constructed are in C,
Condition L,2 implies that all eight distances above are in fact equal, An
argument dealing with inflection points as above further implies that the four
new points must be oriented such that

LGaxY) = LoE,ah) = Le?,xD).,

This process results in the construction of a dense subset B C C such

that B N Ca is a reflection of B N Cb’ as above, By continuity this holds

Ca and B N Cb = Cb also, and since d(:-:,xa) = d(i,xB), we must
x&. Thus, the curvature of X at xa and xB must be the same, as

g

(04 .
was to be shown. Since x and x were arbitrary, X must be an arc of constant

forBﬂCa

have cr(xa)

curvature. o

(U

"

[
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Appendix B: Characterization of the Circular Product Set

Lemmas B.l and B.2 assume that X is a representation of a structure

satisfying Assumptions 1 and 2 and Condition C.l.

Lemma B,1 - If b = ¥(a), then xb is the unique furthest point from x2 in X,

Proof: If b = Y¥(a), then for all other xeX,
d(xa,x) > d(xa,xa) =0,

so d(xb,x) < d(xb,xa) from condition C,1. 0

Lemma B,2 - For any x,x €X, there exists a unique a ¢ 8 such that, for

b = ¥(@a); d(xa,x) = d(xa,i) and d(xb,;:) = él(xb,x)°

Proof: Since X = £(x) is connected, there exists a € @ such that d(xa,x)
= d(xa,i), or else L(x,;{) would separate X, If b = Y(a), then from C.1 it
follows that d(xb,;:) = d(xb,x) also,
Suppose now that some third point x° € L(x,x) also, and then necessarily
xd e L(x,X), where d = Y¥(b).
Then Lemma B,1 implies
aG®,x%) <aG?,xd,
and d(xa,xd) < d(xa,xb) .
Thus, x° and xd both lie between x2 and xb on L(x,x), which implies
that
d(xc,xd) < d(xc,i) for ® = x° or xb,

and this contradicts lemma B.1. )

Proof of Theorem 2: Again, the necessity part is trivial,

For sufficiency, let a; € ® be arbitrary, with b] = ‘l’(a1) o From lemma B,2

there exists a2,b2 ¢ 8 such that
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a, a a, b
dx 2,x 1) = d(x 29x ])
a b
and d(x 2,x 1) = d(x z,x 1).

But since b, = ¥(a ), condition C,1 implies
1
a, a a, b b, a b, b

d(x 1 2 2) < 2)

x5 Zdx ,x2) @*dx 2,x 2) Sdx | ,x

and therefore,
a, a a, b b, a b, b

d(x 1,x 2) = d(x ],x 2) = d(x 1,x 2) d(x T,x 2).

These four points form the vertices of a square then, and we let x

be the center of the circle C containing them, noting that by lemma B,2,
a a b b

x£X. Using condition C,1 again, we construct four points x 7, x 4, x 3, X 4

such that

a, a a, a b, b b, b
déx 3,x ]) = d(x 3,x 2) s d(x 3,x 1) d(x 3,x 2)
a, a a, b b, b b, a
4,x ) = ax 4,x 2) s d(x 4,x ) = dx 4,x 2)

d(x

so that Y(a3) = b3 and Y(a4) = b4.

Again, it must be that these four points are the vertices of a square,
and lie on a circle with center x. It remains to show that they lie on the
same circle C, as the first set of four points.

a. b

To show this let x S,x €X be such that (using lemma B,2):

a_ a a_ a b. a b, a
dx 2,x ') = d(x 2,x °) and d(x 2,x ) = d(x 2,x 3)
so Y(as) = b5.
Then condition €C,2 implies that:
a_ b a_ b b. b b. b
d(x s,x ]) = d(x 5,x 3) and d(x 5,x 1) = d(x s,x 3),
. ag b5 a, a, b] b2
since Y(a1) = b] and Y(a3) = b3. But then x “,x “e[L(x ,x”) NL&x ,x )1,
a,” a b, b
which can happen only of L(x 1,x 3) = L(x 1,x 3). This in turn implies that

a a b b
d(@,x J) = d(E>x 1) =d@x ) = d(Ex J).

(o

v

‘o
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Therefore, this argument establishes that all eight points
constructed so far are equidistant from x, and the procedure can be
repeated to construct a dense subset C’ of the circle C. Continuity of £
implies then that c'=cc X,

We must also have XCC, since if there exists % eX\C, then letting L

be the line determined by x and %, we have three points (x plus L N C) which

are equidistant from an infinity of pairs of points in C, violating lemma B,2,

So, X =C, m}
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FOOTNOTES

1The U,S, Federal Trade Commission, for instance, employed a spatial

model in its case against the ready-to-eat cereal manufacturers. For

discussions of this case see Schmalensee [18] and Scherer [17].

2For a discussion of the basics of the characteristic approach see

Lancaster [10].

3 bl s . s

In fact, it is a much less restrictive assumption than those of
Lancaster. In [9], Lancaster assumes that the product spectrum is an
n-dimensional, linear and convex subspace of an n+l -dimensional characteristics

space.,

4This is done not only for simplicity but also to capture the usual
assumption in spatial models that each consumer purchases one unit of the
good in question. The issue of what defines one unit of a good in the present

context is left open. For one possible solution, see Dreze and Hagen [2].

5This captures the usual assumption of a uniform customer density.
This assumption is not essential, however, and any density having Z as its
support can be dealt with, Our discussion focuses on the uniform case because
this is the model almost universally employed in the literature.

GPa is the strict preference ordering derived from Ra, while Ia is the

indifference relation.

7Th:i.s follows from the fact that since £(+) is a continuous bijection

from the compact set Z to X CZRZ, a Hausdorff space, Z and X must be

homeomorphic, (C£f Munkres [12], Theorem 5.6.)
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Heterogeneous goods, in this context, refers to goods which vary
over a number of characteristic dimensions. Automobiles would be just one
example., We will argue below that ready-to-eat cereals are another.

9While there are almost no products ome can imagine which contain a single

characteristic--and so essentially no markets to which these models can strictly
speaking, be applied--we would argue that there are certain products for which one
characteristic plays a dominant role in consumer decision-making and which can
arguably be approximated therefore by a spatial model, Examples of the sorts of
products we have in mind are household chlorine bleaches, or specific grocery

items such as frozen peas, canned corn, etc,

1OIn a number of these markets, however, the model discussed in this

paper is not strictly applicable. For unless one is willing to assume that
quality (or reliability) becomes a bad beyond some point, the assumption
that each consumer possesses a different most-preferred good no longer holds.
For a way to modify this model to deal with the quality issue see Gabszewicz
and Thisse [5].

]]The subset is defined by those simple arcs which have the property

that exactly one consumer is indifferent between any two points f(Z),f(Ea.
An example of a simple arc which violates this condition is the arc of a circle

beyond a semi-circle,

lzThis is strictly true only for a uniform distribution of consumers. It
is still true for non~uniform distributions that firm markets of a given
length differ only to the extent that the distribution of consumers within
them does--the location of the market is irrelevant beyond that.

131n the case of a single characteristic, the §~preferring group

would have a maximum characteristic requirement. That is, each member of
the group would have a level of z, = 52 such that he would prefer a good

embodying the maximum amount of z, to one embodying any amount between §2

(o

{3
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and this maximum; but would prefer any good embodying a level of z, < 22

to the maximum z, good,

14Thi.s is purely for simplicity. A more sophisticated model would

illustrate the point no better while making the analysis significantly

more complex,

]sAny fixed marginal cost will yield the same result.

]6There are values of K and F which either reduce or increase welfare
in both markets.

}zThis result applies equally well to Scherer's [17] analysis.

18I.eo those in which the independently varying characteristic is not

quality.
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