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MEASUREMENT OF STRUCTURAL CHANGE
(An Application of Random Coefficient Regression Model)

Balvir Singh, A. L. Nagar and Baldev Raj1
University of Toronto, Delhi School of Economics, University of Western Ontario

1. Introduction

The multiple linear regression model with constant coefficients is
often employed to explain variation in a certain economic variable in terms

of some explanatory variables. Let us write such a model in algebraic form as
A
(1.1) y(t) = & B, x, (t) +u(t) ,
\=1 A A
where y(t) and xk(t) are the t-th (t=l,...,T) observations on the dependent
variable (y) and the )\-th ()=l,...,A) explanatory variable xx, respectively,

and u(t) is the usual disturbance term.

In the specification (l.l) the regression coefficient

(1.2) () X=lyeeesh s

is assumed to remain constant over the entire sample period. This implies
that the response in y(t) to per unit change in xk(t) is the same for all
t=l,...,T. Further, the same functional form of relationship between the
dependent and explanatory variables is assumed for all time points in the
sample period. A sample satisfying these restrictions may be called 'struc-
turally homogeneous.' In practical examples, this property refers to peacetime
pattern of behaviour, where any abnormal happenings (war, etc.) are excluded.
The fact, however, remains that this holy property of structural homo-

geneity (in its strict sense) is simply a rare phenomenon. Even during

1The authors are grateful to Professors S. J. Turnovsky and N. K. Choudhry
for helpful discussions.

The research of the first author was partially supported by a grant from the
Humanities and Social Science Committee, University of Toronto.
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peace time, y may respond differently to per unit change in XX’ over dif-
ferent years. Equal per unit change in total income may produce different
effects in the aggregate consumption over different years depending upon
overall consumer expectations about the future income and consumers' atti-
tudes.1 Same level of sales in different years may induce businessmen to
take different decisions with regard to investment in inventories for the
reason of change in government policy and business conditions. Equal doses
of labour and capital in a particular production process may yield different
levels of output over different years in view of technical progress, change
in labour efficiency and managerial ability that might take place during the
course of sample period.2 Same amount of fertilizers applied to a particular
farm may yield different output as the temperature, the rainfall, managerial
and professional efficiency of the farmer may vary over different years.3
Clearly then the analysis carried out in terms of (l1.1) may be of dubious
value. In such cases one may be required to either postulate different forms
of the structural equation for different observations, or specify different
values to regression pa.ameters or do both.

In this paper we assume that the same form of functional relationship
between the dependent and explanatory variables holds for all points of time
in the sample period. However, we do not assume the regression coefficients
to remain constant over time.

In the Section 2 we formulate alternative hypotheses about the random

character of the regression coefficients:

1Klein (1953), pp. 216-18
2Nerlove (1965), pp. 34-35

3Hildreth and Houck (1968), p. 584,



(A) Bk(t)’ at time t, is a random variable with constant

mean E 6X(t) = Bl and V Bx(t) =g

M ]

3) Bk(t)’ at time t, is a random variable with mean

E B, (t) = Ex +a, £(8)

and Var Bk(t) = GXA.

According to the formulation (A) the response coefficients fluctuate around
a constant; however, according to (B) they fluctuate around a trend--thus
indicating a parameter shift in the model. One may test the hypothesis
&x = 0 to establish whether there is a parameter shift or not. The form of
fl(t) to be selected is crucial no doubt. It may be advisable to specify
various alternative forms of fl(t) and choose the one corresponding to which
the multiple correlation is found to be the highest.

Different methods of estimation of regression models with random co-
efficients have been discussed in Section 3 and then in Section 4 we consider
an application of the technique to examine structural change in the consump-

tion function relating to Canada, Finland, India, Japan, Netherlands,

Philippines and U.K.

2. General Linear Regression Model with Random Coefficients

Let us write the general linear regression model with random coefficients

as
A

(2.1) y(t) = & B (t) x (t), t=l,...,T,
3=l A A

where y(t) and xx(t) are observations, at time t, on the left-hand dependent
variable (to be explained) and the right-hand explanatory variables, respec-

tively; and
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- ()
(2'2) Bx(t) axx(t)

measures the change in y(t) per unit change in xx(t), at time t. 1In this
sense Bk(t) is interpreted as a 'response coefficient' and it is assumed to
vary with t. We will assume that x's are nonstochastic and fixed in re-
peated samples and they are independent of any variation in Bk(t)'s° As we
have discussed in the preceding section the variation in response coefficients
may be attributed to the exclusion of certain explanatory variables from the
equation. Therefore, it is not really necessary to include a disturbance
term explicitly in (2.1).1

The specification (2.1) has AT coefficients, Bl(t)'s, to be estimated.
As it is obvious one cannot estimate all of these coefficients with only T
observations at one's disposal We may adopt one of the two alternative pro-
cedures to overcome this difficulty. Either, employ some extraneous infor-
mation along with the sample data, or, alternatively, make some simplifying
assumptions about the probabilistic behaviour of the response coefficients
and thus reduce the number of parameters to be estimated. In this paper we

shall adopt the latter approach.

A. Constant Mean Response (CMR)

This is the most commonly used assumption about the stochastic behaviour

of the response coefficients. We specify

- =— + ’ Flyeeeyd,
(2.3) B)\(t) B ex(t) t=1 T

A

1We exclude the disturbance term from the equation primarily for the sake

of convenience. There is, of course, no loss of generality involved in doing so.



e

where

2. E ex(t) =0, Var ex(t) = T and Cov [Gx(t)’ ex.(t')l = 0,
for N # \', t #t'.

This specification implies
. = B d =
(2.5) E Bk(t) BX and Var Bl(t) UXA ,

that is, 5x(t)'8 (for t=1,...,T) fluctuate around their mean E&_with variance o

Then we may write (2.1) as follows:

A
(2.6) y(t) = I B, x . (t) +w(t),
=l ATX
where
A
(2.7) w(t) = T x_(t) e (t), t=l,...,T;
x.__.l )\ )\
and we observe that
A 2 2
Ew(t) =0, Varw(t) = Z x(t) o, = @ and Cov[w(t) w(t")]= 0,
(2.8) =l A M
if t#¢'.

Thus we have to estimate parameters of the regression model (2.6) which has
constant coefficients and heteroscedastic errors. We will be estimating the

mean responses Ei,...,ax and variances Ull,uoo,UAA specified in (2.4).

B. Variable Mean Response (VMR)/Mean Response with a Trend

In time series analysis it is more likely that the response coefficients
B)\(t) 's, for t=1,...,T, fluctuate around some trend rather than about a fixed
value E&f For instance, consumer's taste may vary over time and this may cause
systematic shift in the marginal propensity to consume. More generally, some

parameters may rise systematically in the upswing of the business cycle and

0



fall during the downswing. Should the movement of the parameters in the two
phases be symmetric, the path of the parameter over the complete cycle can
be approximated by a parabolic trend, or some other suitable trend that can

be specified. In such situations, it may be more appropriate to specify

(t) =B. +a fx(t) + Gx(t)’

(2.9) N )

Py

where fk(t) is some function of t,

(2.10) E (Bx(t)) = BA + O‘k fx(t), t=1,.0.,T,
Ek being the intercept term and

_ 0 f_(v)
(2.11) ax Se

the slope of the trend around which Bk(t)'s, t=l,...,T, fluctuate with a
disturbance Ex(t)’ We may assume that ek(t)'s have the same properties as
stated in (2.4). The function fk(t) represents a general form of the trend--
linear, parabolic, exponential, etc., which may be specified differently for
different parameters, viz., Bx(t)'s for X=l,...,A. In this case (2.1) can

be expressed as

A
(2.12) y(t) = )?1 {BA + ay fx(t) + Ex(t)} xx(t) s
or
A _ A _
(2.13) yt) = = B, x (t) + T a £.(t) x (t) +w(t)
A A _ .
= Z B . x (&) + & a x_(t) +w()
where A

* = = .
(2.14) x3 (t) f)\(t) x)\(t) and  w(t) )\ilék(t) xx(t)



m

It is interesting to note that (2.6) can be obtained from (2.13) if
we write &X = 0 in the latter equation. Thus the constant mean response
(CMR) approach can be interpreted as a special case of the proposed variable
mean response (VMR) approach. Further, if fk(t) is specified as a linear or
quadratic trend, then the systematic component of Bl(t) in (2.9) will be

identical with the Stone's formulation for representing the dynamic Engel

. 1
function.

The problem in the present approach is mainly the determination of the form

of fk(t)° Since intuitive guesses may not be necessarily appropriate, it is
advisable to be guided by the sample information, i.e., estimate (2.13) with
alternative forms for fl(t) and then choose the one which explains the maximum

variation in the dependent variable and yields highest numerical magnitude of

the multiple correlation coefficient.

3. Estimation of the Linear Regression Model with Random Coefficients

As we have seen above a general linear regression model (2.1) with
random coefficients can be reduced to a linear regression model with constant
coefficients and heteroscedastic errors by making appropriate assumptions
about the stochastic behaviour of the response coefficients. We considered
the CMR and VMR approaches and arrived at the specifications (2.6) and (2.13),
respectively. It was noted that (2.6) can be derived from (2.13) if we let
&X==o in (2.13), thus CMR is a special case of VMR. In fact (2.13) can be
treated as the most general formulation of linear regression models with

random coefficients. Therefore, let us consider estimation of (2.13) as

follows.

1ce. Stonme (1965) p. 276 and Stone (1966) p. 435.



In matrix notation (2.13) can be expressed as

(3.1) y = XBtw,
where
y(1)
(3.2) y = .
sz)

is the T x 1 vector of observations on the left hand dependent variable,

'to be explained,' and

-

x (1) oo x, (1) xf(l) e x:(l)

(3.3) X = .

xi(T) x, (D X ;X(T)

- -

is the matrix of observations on the right hand explanatory variables in (2.13).
*
Let us note that there are 2A columns in X, and the definition of xx(t) is

given in (2.14). The coefficient vector

™|
=

3.4 p

’_.Q|:>’U)| so e

>Q' e

has 2\ elements as in (2.13), and

w(l)

(3.5) w = .
w(T)

A
is the disturbance vector with w(t) = I Ek(t) xl(t) as defined in (2.14).
=1



It should be noted that

2
¢1...0
(3.6) Ew = 0 and Eww' =% = .
it 2
0 ¢r
2 Aoy
where ¢, = var w(t) = £ x (t) o,, has been defined in (2.8).
t P SRV

>\=
If we assume that the elements of X are independently distributed of

those of w and

3.7) Rank X = 2, = T,

such that X'X is a nonsingular matrix, then the Least Squares estimator
= t -1 1

(3.8) b = X'X) " X'y

is a consistent estimator of B. However, it is well known that this will be
an 'inefficient' estimator because the covariance matrix &, defined in (3.6),
is not a scalar times an identity matrix as required by the Gauss-Markov
theorem. The asymptotic covariance matrix of the least squares estimator

b is

(3.9) E®m-p)b-8)’ = &L x@Ew) x@0 L = @nxex@w .

If & would be completely known one could apply the Generalized Least Squares
procedure to (3.1), and then

3.10) F = @& tx sty

would be an efficient estimator of B. However, a straight forward application
of the Generalized Least Squares is not possible in the present case because

the elements of & depend upon Opp2°°°» which are unknown parameters. It is,

AN

of course, possible to follow a two step procedure as proposed by Hildreth and

Houck (1968), i.e., in the first step estimate 011,...,0AA and obtain an



-10-
estimate of &, then using this estimate of § apply generalized least squares
to (3.1).
Let us outline the Hildreth and Houck procedure briefly as follows:
Apply Ordinary Least Squares to (3.1) to obtain b as defined in (3.8).

This gives the Least Squares estimator of w as

(3.11) d=y-x@x0Lxy,

OT
(3.12) Ww=Mw,
where
(3.13) M=1-xx%"Tx.
It has been noted by Hildreth and Houck (1968) that

. ‘11

(3.14) Ew=MXo, o = M s
A

where w is the column vector of squared elements of W and similarly M, X are
matrices of squared elements of M, X, respectively.

Then apply Ordinary Least Squares to
(3.15) w=MXo + 1

where T is a column vector of disturbances, to obtain

* . -]' L] ° :‘
(3.16) 6 = EMMX) X'Mw .

Using the corresponding estimator & of ¢, obtain

al . -1

(3.17) p=&' ' n 37t

X's "y,

and the asymptotic covariance matrix of B as

(3.18) E@-p@-p)’=& s "X,



-11-

It should be noted that &, as defined in (3.16), is a consistent but

an inefficient estimator of o. The asymptotic covariance matrix of & is

(3.19) E@-0)(6-0)’ = (XMMK)T XM EN) MK @MMR) L,
and as shown in the Appendix A we have

(3.20) ENN =2%¥
where @ is the T x T matrix of the squared elements of V¥ =M 3M.

If we estimate o according to (3.16), the estimates so obtained

ll’...,O-AA
will have a range - to +o. Thus there will always be a positive probability
of arriving at negative estimates of c's.l

Since

(3.21) plim 0 = o,
T

the probability of getting negative estimates of the variances Gll""’UAA
tends to zero as the sample size increases indefinitely. On the contrary,
this probability will be substantial in case of small samples because the
estimates obtained in (3.16) have large standard errors. We can minimize

the probability of getting negative estimates of o's if we employ an efficient
procedure of estimating o from (3.15), instead of the oOrdinary Ieast Squares
as suggested by Hildreth and Houck. For example, one may adopt the two-step
Aitken procedure as follows:

In the first step obtain ¢ according to the Ordinary Least Squares,

as in (3.16), and obtain an estimate of E 7| 17' as defined in (3.20). Employ

1In their paper Hildreth and Houck (1968) have suggested that one may re-~
place negative o's by zeros as their closest approximation. Alternatively,
one may apply nonlinear programming such that o's are then constrained to be
non-negative. It is obvious that the first approach is arbitrary, and if one
follows the second approach there is no way of determining the precision of
the estimates.
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this estimated covariance matrix to obtain a fresh estimate of ¢ according
to generalized least squares applied to (3.15).l

The efficient estimates of B can then be obtained as in (3.17).

In a special case, Theil and Mennes (1959) have shown that the off-diagonal
elements of (3.20) are of lower order ofymagnitude than the diagonal elements.
In fact it is not difficult to see that this result holds good in general.
Therefore, instead of using EN1', as defined in (3.20), we may use the
diagonal matrix obtained from (3.20) by replacing the off-diagonal elements
by zeros, to apply the two-step Aitken procedure to (3.15).

Besides the Generalized Least Squares approach discussed above, one
may follow the Maximum Likelihood procedure, to estimate the parameters of
(3.1), as proposed by Rubin (1950). Obviously, then, one has to assume that
the disturbances in (3.1) are normally distributed with means and variances
as specified in (3.6).

The log likelihood function of the parameters in (3.1) can be written

as,
= 1 b 1 ' -1

(3.22) L = -3 log 2l - 3log 3] -3w's "w
where

T A

2 2 2

(3.23) |&g] = 1 ¢, and @ = T x(t) 0

t=1 t t >\=1 A )\A

are obtained from (3.6) and (2.8), respectively.
The likelihood equations can then be written as follows:

(3.24) X' X) B = X' a7ty

and

lIn fact this procedure can be repeated until the iterations converge
to a stable ¢ .
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T A I
(3.25) s Lo -‘-’—zi‘ilj- xi(t) = 0,  O=ly..eh,
=l e - e

where w(t) is the t-th element of the vector w defined in (3.5).

These equations are highly non~linear. We can solve them by employing
various numerical methods which are essentially iterative in nature. Starting
with some initial values for the parameters we obtain the final estimates by
way of successive approximations. However, for the convergence of any iter-
ative procedure it is necessary that the initial value of parameter lies within
the 'domain of attraction'o1 Since it is hard to find this domain, one has to
depend upon educated guesses based on some prior evidence. Thus, the conver-
gence may sometimes be jeopardized.

In addition, the likelihood equations may have multiple roots and cor-
responding multiple relative maxima of the likelihood function in which case
the iterative procedure may converge to relative rather than the global maxi-
mum. One may as well face the problem of saddle point of the function, in
which case the method may not converge at all. In general, therefore, a more
important problem is to find an iterative method which is at least sure to
converge rather than how fast it does.

In the present analysis we shall employ a suitably modified Gauss-Newton
technique the details of which have been presented in the Appendix B.

4, Illustration: An Analysis of Structural Change in
Consumption Function

To analyze the problem of structural change, as discussed in Section 2,

let us consider the following consumption function:

1Cf. Beltrami (1970. The 'domain of attraction' is defined as a set of
initial points, say B°, for which p*, the 4-th iterate, converges to the true
parameter value B. Moreover, the point B, being unique does not depend on the
initial approximation chosen within the set of points attracted to B.
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4.1) c(t) = K(t) YP(t), t=1l,...,T.

where C(t) and YP(t) represent private consumption expenditure and permanent
income, respectively, at time t.1 The coefficient, K(t), of permanent income
is postulated to vary with time because this may depend upon, interest rate,
ratio of wealth and income and a host of other variables which are not likely
to remain constant.2 The permanent income, YP(t), is, in fact, an unobservable
quantity. One may, however, define it as a weighted sum of current and all
past years' incomes. To simplify matters, one may follow Cagan's (1956) or

Koyck's (1954) weighting scheme and in that case (4.1) can be expressed as

(4.2)  C(E) = B (E) Y(E) + B,(t) C(t-1)

where Y(t) is observed disposable income. We assume that

(443) B (t) =B, +a £+ € (D)
(4.4) By(t) =B, + 0, t + €,(t)

and note that it is a particular case of the specification (2.9) such that

fl(t) = fz(t) = t., This is only a simplifying assumption. One can specify
alternative forms for fl(t) and determine the appropriate form according to
the multiple correlation criterion.

Combining (4.2), (4.3) and (4.4) we have

(4.5) C(t) = By Y(t) + B, C(t-l) +a Y (t) +&, C (t-1) +w(®) ,
where

(4.6) () = t¥(), C (t-1) = t C(t-1)

and

1Assuming that the transitory component of consumption is small we dis-
regard it in the specificacion (4.1). Also see Evans (1969), p. 22,

20¢. Friedman (1957), p. 229.
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TABLE 1: ESTIMATTON OF (4.5)

”"

Method of - - - - ) 2
Estimation B By * % 1 %2 R
0.44141%%  0.57690%%  0.00565 -0.00756
I 0.9992
(0.09214) (0.11061) < (0.01112) (0.01330)
-]
8 0.55566%%  0.43140%  -0.01782 0.02075 -0.00052 0.00080
S e (0.09154) (0.11163) (0.01299) (0,01551) (0.00032) (0.00045) 1.000
o
- 0.45288%%  0.55033%%  =0.00109 0.00061 0.60081% 0.00117%%
< [F @ (0.07899) (0.09978) (0.01235) (0.01489) (0.00026) (0.00037)
= )
< 0.44165%%  0.57257%%  0.00033  -0.00106 -0.00068%%  0.00099%*
= IIT (b) (0.09321) (0.11458) (0.01299) (0.01557) (0.00022) (0.00031)
o 0.36646%%  0.66430%%  0.01830%%  -0,02236%%  0.00029%%  ~0,00031%*
v (0.09654) (0.11135) (0.00578) (0.00658) (0.00000) (0.00000)
0.79196%%  0.16565%  -0.00834 -0.00663
o | (0.07227) (0.08642) (0.01457) (0.01810) 0.9992
O
2 0.82205%%  0.13676%%  -0.01849 0.01848 0.00039 -0.00043
w | (0.03831) (0.04314) (0.01096) (0.01356) (0.00096) (0.00144) 0.9991
‘ 0.846925%  6.10625 -0.02026 0.52065 0.00057 -0.00055
i (@ | (0.07019)  (0.08369)  (0.01578)  (0.01962)  (0.00050)  (0.00072),
< 0.86179%*  0.08816 -0.02125 0.02186 0.00041 -0.00032
z | (® (0.07313) (0.08853) (0.01565) (0.01951) (0.00047) (0.00067)
[
B 0.81310%%  0.14612%%  -0.01686 0.01659 0.00035%  0.00038%%
w (0.03857) (0.04393) (0.01056) (0.01310) (0.00010) (0.00010)
0.88368%%  0.08768 . 0.00517 -0.00926
I (0.12897) (0.14458) (0.00933) (0.01087) 0.9980
§ 0.82080%% 0.14868 0.00745 . _ -0.01079 -0.00054 0.00090
o b (0.09685) (0.10964) (0.00655) - (0.00776) (0.00049) (0.00068) 0.9970
&
a 0.74751%%  0.2300%%  0.01574%  -0.02028%  =0.00095% 0.00151%
I (0.06553) (0.078095)  (0.00671) (0.007119)  (0.00043) (0.00062)
- 0.72948%%  0.25130%%  0.01809%  -0.00230 -0.00095%%  0.00150%
z |11 (D) (0.05066) (0.06272) (0.00825) (0.60901) (0.00037) (0.00053)
-
1V SAME AS H-H ESTIMATES




Mcthod of
2y R
Estimation ) By | ay 1 92
L 0.43771%%  0.57275%%  0,02098%  -0.03321%% 0.9996
(0.11007)  (0.13857)  (0.01028)  (0.01014)
S - 0.38403%%  0.65356%%  0,02851%%  -0,04461%* -0.00065 0.00145 | oo
T (0.11607)  (0.14838)  (0.00358)  (0.00486) (0.00076)  (0.00146)
[Ta)
& I @ 0.48655%  0.53227%*  0.03065%  -0.04948% -0.00008 0.00056
. (0.17240)  (0.21772)  (0.01434)  (0.01950) (0.00022)  (0.00039)
N 1T (b 0.49092%%  0.52718%  0.03080%  -0,04977% -0.00004 0.00043
< (0.16568)  (0.20914)  (0.01390) , (0.01889) (0.00019)  (0.00034)
-
v SAME AS HH ESTIMATES
Yt * - ok
2 L 0.12387 0.94398 0.03741 0.05032% 0.9985
= (0.15209)  (0.18126)  (0.01887)  (0.01544)
(=]
o . 0.08496 0.98560%%  0.03223%  -0.04272% -0.00151 0.00280 ¢ goce
' (0.13605)  (0.16168)  (0.01191)  (0.01635) (0.00086)  (0.00154)
w
a uI @ 0.08581 (0.99077)%%  0.03609%%  -0.04842%% -0.00126 0.00238
z (0.12361)  (0.14990)  (0.00581)  (0.00628) (0.00071)  (0.00132)
[ |
. . 0.08582 0.99080%%  0.03613#%  -0,04848%* -0.00123 0.00233
B (0.12306)  (0.14901)  (0.00633)  (0.00726) (0.00659)  (0.00122)
s
= .
a v SAME AS HH ESTIMATELS
=
ek - * *
o . 0.82886 0.14066 0.04411 0.04988 0. 9984
2 (0.20807)  (0.23342)  (0.01762)  (0.02037)
]
in 11 0.88721%*  0.08765 -0.04439%%  0,04875%% -0.00010 0.00052
N (0.15506)  (0.17508)  (0.01351)  (0.01574) (0.00104)  (0.00149)
- N 0.89458%*  0.07977 -0.04481%%  0.04926%* -0.00019 0.00059
= (0.14056)  (0.16421)  (0.01262)  (0.01473) (0.00091)  (0.00128)
-
A I () 0.89514%%  0.07909 -0.04483%  0.04929%* -0.00019  0.00060
-9
- (0.14365)  (0.16265)  (0.01250)  (0.01459) (0.00085)  (0.00120)
(]
. v 0.90348%%  0.06993 -0.04516%%  0,04963%% -0.00029  0.00066
E? (0.13318)  (0.15112)  (0.01125)  (0.01316) (0.00060)  (0.00085)
~
[ o]
¢ . -0.22168 1.31470%%  0.05505%%  -0.,06267%* 0.9996
o (0.16816)  (0.18280)  (0.01457)  (0.01628)
' 1 -0.03906 1.10938%  0.02881%  -0.03467% -0.00038  0.00051 o oo
- )
= (0.16983)  (0.18500)  (0.01461)  (0.01632) (0.00028)  (0.00035)
[=]
o I1I (a) -0.24683 1.34021%%  0.05273%%  -0.05988%* -0.00047 0.00064
= (0.19111)  (0.20813)  (0.01637)  (0.01828) (0.00026)  (0.00033)
-
2 111 (b) -0.24804 1.34155%%  0.05281%*  -0,05995%* -0.00049 0.00066%%
A (0.19321)  (0.21045)  (0.01656)  (0.01850) (0.00025)  (0.00031)
o 0} -0.29629 1.39358%%  0.05545%%  -0.06276%* -0.00050 0.00067
- (0.18281)  (0.19926)  (0.01500)  (0.01674) (0.00032)  (0.00041)
i
s
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.7 W) = € (B) Y() + €,(E) C(e-1) .

We shall analyze this consumption function for Canada, Finland, India,
Japan, Netherlands, Philippines and the United Kingdom.1 The parameters of
the model have been estimated by the following methods:
I. Ordinary Least Squares (OLS)
II. Hildreth and Houck procedure
III. Modified Hildreth and Houck procedure:
(a) Employing (3.20) to apply a two-step-Aitken
Procedure to (3.15)
(b) Employing (3.20) with off-diagonal elements replaced
by zeros to apply a two-step Aitken Procedure
to (3.15) and

IV. Maximum Likelihood Procedure-Employing, Modified Gauss-
Newton Method discussed in the Appendix B.

Numerical estimates of the parameters of the model (4.5) obtained
according to the above mentioned methods are displayed in Table 1. The signi-
ficance of various parameter estimates at 5% and 1% level has been indicated
by a single star and double stars, respectively. It turns out that in maj-
ority of the casesthere is broad agreement between all the estimation proce-
dures, so far as the significance of the parameter estimates is concerned.

We may analyze these results in the light of the hypotheses implicit in (4.3)
and (4.4) also discussed in subsection B of Section 2.

Statistically insignificant estimates of o1 and 022 for Japan,

Netherlands, Philippines and U.K. (622 according to Method III(b) is although

significant) indicate the absence of random character of the response coeffi-

cients in the model (4.2). However, in these cases, the statistical significance

1The data on both consumption and income are in current prices. The data
for Netherlands have been discussed in Singh, Drost and Kumar (1971) and for
the remaining countries in Singh and Drost (1971), Appendix, p. 333.
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of &1 and &2 indicates a definite trend (parameter shift) in the response
coefficients of both the income and the lagged consumption. On the contrary,
statistically significant 311 and 322 in Canada supports the hypothesis about
the randomness of the response coefficients. In this case, the estimates of
Ei and Eé are statistically significant according to all the methods of es-
and Q, is not entirely conclusive

1 2

because of lack of unanimity among different methods. Keeping in view the

timation, although the significance of a

conflicting evidence about a's, one might be tempted to conclude that the
response coefficients 51(t) and ﬁz(t) for Canada fluctuate around a constant
rather than a trend.

Next, in Canada and Japan, where both El and Bé are statistically
significant, relatively high magnitude of the latter may indicate strong
stickiness in consumer habits. This can be explained in terms of well developed
consumer credit facilities in both the countries coupled with good social security
system in Canada and traditional habit of thriftiness of Japanese.] Further,statis=-
tically significant estimate of Bé and not that of Bi for Netherlands and U.K.
seems quite expected in view of generous social security system and typical
Europe-mindedness (where traditions are very important) in both countries.

In addition, monetary equilibrium and healthy expansion in the Netherlands
economy and high proportion of old age people in the British population3 may
also contribute towards the dependence of current consumption on past year's
consumption in these countries. As a contrast, significant estimate of Ei

and not that of Eé in case of the Philippines can be explained in terms of

the absence of above factors, heavy dependence on agriculture and structural

1Broadridge (1966) pp. 20-21.

2Pen (1964) p. 179.

3Klein (1958) pp. 60-69.
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disorders that existed in the country around 1950.1

As noted above, the response coefficients of both income and lagged
consumption exhibit shift with time for Japan, Netherlands, Philippines and
the U.K. Rising tendency in Bl(t) and falling in Bz(t) as for Japan, Nether-
lands and U.K. implies a change in consumer habits in the sense that the
consumers tend to adapt to the changes in income more and more quickly. This
indicates quite a significant structural change inasmuch as the countries
known for maintaining traditional habits, exhibit a tendency of giving up
their rigidities. Such a phenomenon can in part be due to (a) increasing
industrialization and thus rising proportion of wage earners in the popula-
tion in all the countries,2 (b) the peculiar wage system in Japan under
which the worker enjoys a bonus scheme of transient nature and is paid a
very low wage,3 (c) the experience of recession during 1952-58 and
the unstable balance of payment situation during the fifties in the heavily
export-dependent Dutch economy,4 and (d) stagnation in the British economy
resulting in the devaluation of the Pound first in 1949 and then in 1967,
heavy unemployment, high prices and cut in the growth of real consumption.5
Clearly, all these factors contribute towards weakening of consumer's con-
fidence in the economy and thus tend to increase "urgency to consume" in
the consumer which exhibit through shortening lags and increasing dependence
on current income. Conversely, in the case of the Philippines, we find that

the coefficient of income falls whereas that of lagged consumption rises.

lRoxas (1969). Also see Power (1969) and Power (1970).
2Singh and Drost (1971), pp. 331-332.

3Broadridge (1966).

4Pen (1964), pp. 179-180.

5Cripps and Reddaway (1971).
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This indeed shows growing confidence among the consumers about their economic
conditions which may strengthen stickiness in consumer habits. Such a phenom-
enon in a predominantly agricultural country like the Philippines where agri-
culture still depends on the vagaries of nature may arise due to the changing
structure of the Philippine economy during the sample period. Vigorous indus=-
trial growth because of import and foreign exchange control, tax exemption,
liberal credit, tariff protection during 1950-611 and substantial improvement
in agricultural sector following devaluation and decontrol in 1962 notwith-
standing its repressive effects on the growth of manufacturing seems to have
increased confidence among the Filipinos. Moreover, the minimum wage law intro-
duced in 1950 and in 1965, land reform code of 1964 and advanced welfare
legislation may also reduce uncertainty and thus reinforce stickiness in
consumer habits.2

Finally, in the case of Finland and India the estimates of'B1 are
significant by all methods, however, there is no consensus among the methods

of estimation regarding other parameters.

1Bantegui, (1969), pp. l4-16.

21t may be for these reasons besides the effects of devaluation and decontrol
on income distribution that Williamson (1967) finds an upward shift in the
saving function after 1960, "even after controlling for the traditional
measured disposable and personal income, permanent and transitory income,
real interest rate and price changes."
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Computational Note on the Maximum Likelihood Procedure

It may be noted that the determination of v' plays crucial role in the
modified Gauss-Newton procedure described in the Appendix B. The table below
indicates the domain of v and the number of iterations for different countries.

TABLE 2: The Number of Iterations and the domain of v for
all the Countries

Countries No. of Iterations The Domain of v
Canada 26 Osvsl
Finland 22 0svsl
India - 0<vs10®
Japan - 0svse 10-6
Netherlands - 0<svs 10‘.6
Philippines 36 0 <v<0.2
United Kingdom 5 0<svsl

It may be noted that the original domain of v, (0,1), as indicated in
the Appendix B, works satisfactorily only for Canada, Finland and the United
Kingdom. For the Philippines we found the new domain for v to be as(0, 0.2).
However, the value of v' computed according to (B.20) was found to be outside
this domain. Consequently, we used 0.2 for v'.in (B.13) and continued the
iterative scheme. Small value of v' explains the reasons of slow convergence
of the procedure in this case. In case of India, Japan, and Netherlands we
did not find any value of v within the domain (O, 10-6) for which the value
of L would be larger than L 0). Since, for computational reasons, we could
not narrow down the domain any further, we concluded that the Hildreth and
Houck and the Maximum Likelihood estimates are identical within reasonable

limits.
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B. NUMERICAL SOLUTION OF LIKELIHOOD EQUATIONS

B.1l. GAUSS-NEWTON METHOD

The log likelihood function and the likelihood equations defined in
(3.22) - (3.25) are functions of the parameters Ei,..., EA, 6&,..., aA,

Tpqseses GAA of the model (3.1). Suppose we represent these parementers

by a colum vector vy such that

(B.1)

Y' = (Yl"ooa YK) = (6190009 BAs a1:~°¢9 aA’ 0'11"“0’ GAA)’ K = 3A,
where y' indicates the transpose of vy.

Now according to the method of
maximum likelihood we have to determine vy

such that the likelihood function
(3.22) is maximum, that is

3L _ oy
2 v = =— E 1 = 0
(8.2) Ve Sy .
oL
BYk
and
2 2
a L _ 7 a L NN
B.3 H = = —_— k,k' = 1,,4.,K
( ) ay aYl k& aYk aYk' )2 > ’ H s
is a K x K negative definite matrix,
As shown in (3.24) - (3.25), the equations in (B.2) are highly non-
linear;

however, we may solve them by numerical methods. Therefore,
linearizing (B.2), we write

(B.4) Ve = (.Vg)yo + HYO (v - ¥°)

according to the Taylor series expansion, In the present case, the initial



APPENDIX
A, COVARIANCE MATRIX OF THE RESIDUALS IN THE REGRESSION (3.15)

Let us write

A A
L]

W - Ew)(x'; - wa;)'

|
=

a.1) ENTW

N

w' - (E x‘S)(E 'v.;)'

]
=3
ey

' - MX oo X' s

1]

=1
ey
ey

and thus to evaluate the required covariance matrix we must evaluate

Eww' .
Since
5 -
T
. tfl my, W(t)
(A.2) w = Mw =
T
T m, w(t)
_t=1 Tt
we get
T
. hX M, M w(t) w(t')
L] ‘=
(A.3) . = t,t'=1
T
P " 1
2
where M is the element in the t~-th row and t'-th column of the T x T

matrix M defined in (3.13) and w(t) in the t-th element of w in 3.5).

The element in the 7-th row and 7'~-th (7,7' =1,...,T) column of

AA

Ew w' may then be written as



L4
1

. )
(A.4) E {t,gz' | Mot e V() WD }
T =
. " " 1
X {t"?t"'=1 m'r't" m’r't'" w(t") w(t") }J
T
= m m E t t") w(") w(™
t,?',tmtm:]_ T e e {w(e) w(e") we™ w(e™) }
T T T 2
2 2 2 2 2
=(Z m_@ )(Z m , ¢ )+ 2( m._om, © ) .
g=] TEE T o TECE g=7 TE TETE
Hence
(A.5) Eww' = BX oo X'M 4+ 2V
or
(A.6) ENTN = 2%
where Y is a T x T matrix, the element in the T-th row and 7'-th column of
which is
T
(A07) tfl m‘Tt m"["t (Pt s

and ‘.i’ is the matrix of squared elements of ¥ , We may also express

(A.8)

where

Y = M&¢M

% has been defined in (3,6).
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iterate vector y° has been obtained by the Hildreth and Houck procedure

described above, Then (B.,2) implies

(B.5) @g) o+ Ho (v-¥) = 0,

and if H is nonsingular at y = y© , we obtain
o "']. — 1

(8.6) Y = Y -HYo (Vg)Yo = y (say).

Suppose we write

-1
(B.7) D = -1 T8 »
then
1
(B.8) Yy = YO+ DYO

where DYo is the value of D at y=y°,

Then the Gauss-Newton iterative scheme can be outlined as

(8.9) Vet D4-1

Dv"l being the value of D at vy = yz-l and the superscript 4 stands

for the A-th iteration, Further, we may interpret DYL"I as the correction

y£-1 to obtain yz .

to
It should be noted that if the correction D , ; is too large at any
Y
stage of iteration then there is a possibility of overshooting the maximum

and the procedure does not permit retracing the step, In fact such a

situation will arise if H becomes close to singularily,
B.2, MODIFIED GAUSS-NEWTON METHOD

In this part of the appendix we propose a modification of the Gauss=-

Newton method to overcome the difficulty mentioned above, The procedure is



L1

*)

L

-

similar to the one proposed by Hartley (1961), yet it differs from him in
as much as we, unlike him, require the second order derivatives of L,

We define the likelihood function at
(B,10) Yo + v D o 0<sv<l,
instead of at
(8.11) Yo + DYO

as in the case of Gauss-Newton procedure, Then determine v = v' such

that
(B.12) L (Y + V' Dyo)

is maximum in the interval (0,1) .,

Next,
(B.13) vy = ¥+ V' Do

and we may repeat the procedure to determine the value of v (say v'") which

maximizes I in the subsequent iteration, Thus we have

(B.14) v o= oyl 4+ D1

It follows that

(B.15) L (y2) 2L () 2L (y°)

and that yz and yl lie in the interior of the closed convex set,

If we repeat the procedure, we shall finally have

(8.16) Lm L () = L

L— o



the maximum of L .
The estimate of asymptotic covariance matrix of the maximum likelihood

estimate of y is given by,

-1
(B.l?) - H z °

Y
B.3 DETERMINATION OF V WHICH MAXIMIZES L )
The function
£4-1

(B,18) L(v) = L (y +vD 4-1)
Y

to be maximized may be specified to be parabolic as in Hartley (1961),
2

(8.19) L(v) = a+bv+cv

Theoretically we can determine the parameters a, b and c if we are
given three points on the parabola, In the present analysis, however, we
assume that the parabola passes through, (0, L(0)), (%, L(3)) and (1, L(1)).

Then the value of v, say v', which maximizes L(v) can be given by

. " L) - L) )
(B.20) v o= %+%t'zif“(g-1,(1)-r,(0)f

Clearly v' expedites the convergence in that it represents the largest
possible step in the required direction, Numerical values of v! indicate
the nearness of the two successive iterates, Smaller is v' closer are the
two successive iterates,

In special cases, however, where the function is not well-behaved,
(B.20) may not work that satisfactorily and a number of problems may arise,
For example, L(v) may have a maximum for v outside the interval (0,1). Never-

theless, in such a situation one may evaluate L(v) at v = 0,0, % and 1,0 and



»

1)

L

choose that v for which the value of the function L is relatively large,

This procedure would retard the convergence no doubt but it will still ensure
movement in the right direction, In case L(0) is greater than L(%) and
L(1.0), we get v' = 0 implying yl = y° . This suggests that the maximum of
L(v) is in a close neighbourhood of v = 0, Noting that v can not be negative,
one may narrow down the range of v to, say, 0 - % and proceed as before, That

is choose £, and E, in the range (0,%) and if
(B.21) L(0) < L(gl) and/or L(gz) ’ gl < §2

then compute v' according to (B,20) to lie between 0 and §2. Should v'

thus computed lie outside (0,52), one may use

(8.22) g, if L(0) < L(§) > L(5))
or
(8.23)  E,, if L(0) < L(§;) < L(E,)

If, however, one finds
(B.24)  L(0) >L(§) > L(§y)

for gl and §2 being sufficiently close to zero, then iteration would stop

because the maximum of L is reached.
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