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ABSTRACT 
 

 
A fundamental research concern within contemporary bioarchaeology is the sensitive balance 
between the preservation of human remains and the use of destructive techniques to collect 
information. Here we describe one example of how multiple microspatial destructive/semi-
destructive techniques may be carried out in sequence using only the enamel of a single tooth. 
With careful planning of both sample preparation strategies and sequencing of sampling 
methods, it is possible to produce multiple datasets, and yet to retain material for future analyses. 
In this case, enamel from the teeth of 27 individuals who lived during the early medieval period 
(AD 1170-1198) in Bergen, Norway, were subjected to histological, trace element (LA-ICP-
MS), diagenetic (FTIR), and isotopic analyses (δ18O and δ13C, via micromill/multiprep/IRMS).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



 3 
 

1. Introduction 

A fundamental research concern within contemporary bioarchaeology is the sensitive 

balance between the preservation of human skeletal and dental remains and the use of destructive 

analyses to collect data.  Archaeological human remains not only provide unique opportunities to 

gain understandings of an individual and/or group’s past, but they also hold significant meaning 

and power for the descendant communities to which they are tied.  And so, research involving 

human remains merits the development of sampling methodologies that will best satisfy the 

preservation ethic, even as the potential for data collection and interpretive possibilities are 

maximized. The sampling strategy and sequence of microspatial sampling presented here 

represents but one way by which we may work toward such an achievement. 

 In recent years the development of various microspatial sampling techniques has made it 

possible to minimize destruction of irreplaceable materials, and also to access discrete regions of 

interest within those materials.  This has especially been the case for studies involving the 

microstructure and chemical composition of dental tissues (enamel, dentine, cementum) – 

although there has also been growing exploration of the meaning of microspatial chemical 

variations in bone (Scharlotta et al. 2013).  A significant effort to develop microspatial sampling 

techniques for teeth (human and non-human) comes from within fields such as anthropology and 

archaeology (Dolphin et al. 2005; Cucina et al. 2007; Copeland et al. 2008; Humphrey et al. 

2008; Richards et al. 2008; Aubert et al. 2012; Metcalfe and Longstaffe 2012; Farell et al. 2013; 

Pfeiffer et al. 2013), and health and environmental sciences (Lochner et al. 1999; Arora and 

Austin 2013; Becker 2013), among others. Such research stems from a desire to capture 

information that is only accessible through assessment of the incremental formation (at a known 

rate) of dental tissues, and examination of their incorporation of elements from the environment 
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during development.  The ability to understand temporal variation in the chemical signatures 

preserved in teeth relies on the availability of data derived from histological analyses of dental 

microstructures such as accentuated striae of Retzius (Wilson bands) and cross-striations.  It also 

relies on a careful consideration of the impact that variability in mineralization rates will have on 

the ability to interpret such data (Montgomery et al. 2010; Scharlotta and Weber 2014). 

Histological analysis of dental microstructures in archaeological teeth can be problematic 

as it requires the permanent embedding of samples in a resin block, thus making their removal 

for bulk dissolution techniques later on difficult to impossible.  Similarly problematic are the 

traditional bulk dissolution methods themselves, which homogenize the variable chemical 

composition data recorded in each tooth (Copeland et al. 2008). In terms of stable isotope and 

trace element research, some researchers have moved away from the traditional bulk sampling 

approaches that see entire teeth and/or tooth crowns destroyed, and toward other techniques 

which are less destructive.  Some of these techniques may involve mechanical grinding and 

drilling of small areas within a sample (Hufthammer et al. 2010), or acid dissolution of 

successive layers of tissue. While chemical analyses such as electron probe x-ray microanalysis 

(EPXMA), secondary ion mass spectrometry (SIMS), proton-induced x-ray emission 

spectroscopy (PIXE), or synchrotron x-ray fluorescence (sXRF),  have all been applied to the 

analysis of the chemical composition of dental tissues, laser ablation-inductively coupled plasma 

– mass spectrometry (LA- ICP-MS) is the most commonly utilized technique for conducting 

microspatial analyses of dental hard tissues (Lochner et al. 1999; Goodman et al. 2003; Kang et 

al. 2004; Grün et al. 2008; Humphrey et al. 2008; Dolphin and Goodman 2009; Hare et al. 2011; 

Vašinová Galiová et al. 2012; Austin et al 2013; Farell et al. 2013) .  Laser ablation-ICP-MS 

allows for rapid multi-elemental analysis, with samples extracted from ablated spots with 
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diameters as small as 5µm.  Together with its high sensitivity and low detection limits, LA-ICP-

MS makes possible the mapping of chemical variation with minimal sample destruction.    

      While histological and microspatial chemical techniques take advantage of the incremental 

growth structure of teeth, and their variable responses to physiological stress, diet/nutrition, or 

exposure to environmental pollutants, they are still inescapably semi-destructive.  In keeping 

with the preservation ethic of bioarchaeology, then, the work presented here offers an example of 

how multiple microspatial techniques may be combined in sequence so as to maximize the kinds 

of data that may be retrieved from a single sample – in fact, from a single tooth tissue.  These 

data include estimates of the frequency and timing of childhood stress episodes via histological 

analyses, pollutant exposure data gathered using trace element analyses (LA-ICP-MS), 

assessment of tissue preservation using Fourier transform infrared spectroscopy (FTIR), and 

isotopic analyses of δ18O and δ13C contributed data regarding origins/migration and palaeodiet, 

respectively.  

 

2. Materials and Methods 

One permanent tooth from each of 27 individuals excavated from St. Mary’s (Mariakirken) 

churchyard at Bryggen, representing burials occurring between 1170 and 1198 AD in Bergen, 

Norway, was subjected to multiple, semi-destructive, microspatial analytical techniques. 

Nitrogen and oxygen isotope ratios derived from bone samples were also assessed, but are not 

discussed here as they used more traditional dissolution, rather than microspatial, methods). The 

human skeletal and dental remains from Bryggen are fragmentary and incomplete for most 

individuals excavated, and also exhibit considerable dental wear. Thus, teeth were chosen for this 

study if macroscopic evaluation indicated that that they were likely well-preserved, with at least 
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one intact cusp (no wear, cracks, caries, etc.) and no visible signs of alteration.  The tooth sample 

ultimately included a combination of intact permanent canines (N=6), premolars (N = 3), first 

molars (N=9), second molars (N= 3) or third molars (N=6).  A schematic showing sectioning and 

sampling regions of the teeth is provided in Figure 1. Figure 1. Schematic illustrating the 

sequence of sample preparation and microsampling procedures.  X= thin section for histological 

analysis; A = longitudinal thick section for LA-ICP-MS; B = longitudinal thick section for 

micromilling.  Laser ablation spots are represented by the square points located in the tooth 

enamel shown for section A.  The white speckled trapezoidal boxes located within the tooth 

enamel of thin section B were micromilled first for the purposes of conducting isotope analyses.  

The black speckled trapezoidal box also located in section B indicates the removal of additional 

enamel for digenetic testing. 

 
 

 

 

 

 

 

 

 

 

 

In the interests of focusing on the sequence of sampling techniques, and the preservation of 

sampled material, and because only standard microspatial methods were applied and have been 

A B 

X	

A B B 
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cited in all cases, details of the operating conditions of the various instruments use, and of 

subsequent data analysis, are not addressed here.  

 

2.1 Step 1: Histology 

Once embedded in a resin block, longitudinal thin sections (~250 µm) were cut from the 

center of the best preserved cusp of each tooth using a Buehler Isomet 1000 slow speed saw.  

The remaining portions of each embedded tooth were retained for microspatial trace element and 

isotope analyses.  Each thin-section was double-polished using a series of aluminum oxide 

slurries. 

Sections were examined and photographed at 40x magnification under polarized light and 

images were knit together using the photomontage feature in Adobe Photoshop CS.  To be 

counted as accentuated striae of Retzius, bands of dense enamel had to be visible from the 

enamel surface to the dentine-enamel junction (see Rose and Goodman 1990; Fitzgerald and 

Saunders 2005).   The frequency and timing of periods of physiological disruption were 

documented for each individual in the sample. 

  

2.2 Step 2: Laser ablation - inductively coupled plasma – mass spectrometry (LA- ICP-

MS) 

From one of the remaining tooth halves, a cut was made parallel to the tooth surface that 

was exposed when the thin section was taken.  This second cut produced a longitudinal thick 

section (~ 250µm), referred to here as “Block A”.   A Thermo Fisher Scientific Element 2 ICP-

MS and New Wave UP-213 laser was used to assess the presence of the following elements in 

the enamel of each tooth: 23Na, 24Mg, 25Mg, 31P, 43Ca, 55Mn, 65Cu, 66Zn, 68Zn, 85Rb, 88Sr, 119Sn, 
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120Sn, 137Ba, 138Ba, and 208Pb.   Spot ablations (80µm diameter) provided samples from the 

earliest to the latest layers of enamel.  Thus, samples (of 15 to 22 spots, depending on the size of 

the crown) were taken from enamel at the dentin-enamel junction (DEJ), moving up toward the 

surface of the cusp, and then down its side toward the root (Figure 2).  Outer and/or worn enamel 

was not sampled as it has been shown to be consistently  enriched in, or depleted of, a number of 

trace elements examined here (see Budd et al. 1998; Lee et al. 1999; Reitznerová 2000; Dolphin 

et al. 2005).   

 

Figure 2. Photograph demonstrating the size, location and number of laser ablation spot samples 
taken from the enamel crown.  Arrows indicate the location of a number of these spots; which 
run from the dentine-enamel junction at the tooth cusp to the surface of the cusp, and then down 
the side of the tooth enamel. 
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Using Glitter 4.0 software, a bone meal standard reference material (NIST 1486) was 

analyzed with a NIST612 glass standard serving as a calibrant, and Ca43 was used as an internal 

standard (Simonetti et al. 2008; Castro et al. 2010; Hare et al. 2011).  The spot ablations removed 

such extremely small samples (difficult to see with the naked eye) from the tooth crown that 

“Block A” was retained for future analyses of the remaining dental tissues.  

 

2.3 Step 3: Micromill 

From the remaining one half of the embedded tooth, a second longitudinal thick section 

of ~250 microns was cut (“Block B”) and prepared for the micromilling of enamel samples in 

order to conduct stable isotope analyses.  For each individual, “Block B” was sampled using a 

Leica GZ6 Merchantek micromill – a device that can be used to drill out very small samples of 

hard materials with great precision.  Two samples (~2mg each) of enamel were taken from 

“Block B”, per individual.  The first sample represented an earlier period of growth and the 

second sample represented the latest period of growth recorded by the enamel.  These samples 

were milled in order to explore life time mobility by comparing δ18O values within tissues (the 

mobility study included data from analyses of δ18O from the bones of each individual as well). 

The sampling area was chosen by examining the histological sections produced with Step 

1.   Each of the two samples per tooth was reserved for isotopic analyses.  Figure 3 provides an 

example of the regions of “Block B” that were micromilled for the purposes of stable isotope 

analyses and the assessment of alterations of the enamel in question. 
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Figure 3.  Photograph showing the location and size of micromilled sample areas.  A = areas 
milled to produce samples for structural carbonate analyses of oxygen isotopes; B = area milled 
to produce a sample of tooth enamel for the purposes of diagenetic testing. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4  Step 4: Fourier transform infrared spectroscopy (FTIR) 

The longitudinal thick sections (>200µm) used for the trace element analysis, and 

micromill sampling were also used to assess the state of preservation via Fourier transform 

infrared spectroscopy analysis (FTIR).  FTIR analysis and crystallinity index (CI) determinations 

were conducted using a Bruker Vector 22 Spectrometer according to standard protocols 

developed in the Laboratory for Stable Isotope Science (LSIS) at The University of Western 
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Ontario, London, Ontario, Canada.  The results of these analyses allowed us to test for post-

mortem alteration prior to moving forward with investigating the stable isotopes. 

 

2.5 Step 5: Isotopic Analyses 

          The powdered samples from both “early” and “late” forming enamel, as obtained through 

micromilling, were used to assess δ18O and  δ13C signatures from the structural carbonate 

component of the tooth enamel (Sponheimer and Lee-Thorp 1999; Pasteris et al. 2008;  Metcalfe 

et al. 2009).   Although each sample was approximately 2mg in weight, ~0.89mg subsamples (on 

average) were used for both the oxygen and carbon isotope analyses, with the remaining 

powdered enamel being used to analyze several duplicates in order to test for instrument 

accuracy.    Structural carbonate isotope analysis was conducted using a Micromass MultiPrep 

carbonate device attached to a Micromass Optima dual-inlet IRMS.  The remaining portion of 

“Block B” (some enamel and all dentine) was retained for the purposes of conducting future 

research regarding this sample of individuals. 

 

3. Results  

 Both Figures 2 and 3 illustrate the sampling strategy employed, yet they also demonstrate 

the amount of each dental tissue remaining after material was removed by/for the various 

analytical techniques.  There is a considerable retention of enamel material after LA-ICP-MS 

sampling, of “Block A” (Figure 2).  For “Block B”, micromilling removed most of the surface of 

the exposed enamel, but only to a depth of 65 microns, thus preserving some enamel for future 

analysis.  For both blocks, dentine and cementum were left intact for the purposes of this project, 

but certainly it would be possible to extend trace element, isotopic, and other analyses to those 
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tissues as well.  Aside from the material remaining in these blocks, and the thin section produced 

for histological analysis, and as indicated by the schematic presented in Figure 1, lateral aspects 

of some teeth were also preserved.  While the remaining lateral portions were quite large for 

molars, they are considerably smaller, and sometimes not always present for, samples taken from 

incisors and canines.  

By carrying out a sequential sampling strategy it was possible to employ several 

analytical techniques and answer different, yet inter-related, questions regarding the meaning of 

physiological disruption during childhood, diet, pollution, mobility, and diagenesis (manuscripts 

in preparation).  The production of standard histological thin sections of each tooth allowed for 

the determination of the number of accentuated striae of Retzius per tooth. Calculations 

regarding the periodicity of their occurrence resulted from the visualization of striae of Retzius 

and cross-striations (weekly and daily growth markers, respectively). Trace element analyses 

conducted via LA-ICP-MS showed that individuals’ values for each element agree with the 

broad concentration categories summarized in the seminal work of Curzon and Cutress (1983:5).  

When examining the distribution of trace elements across growth/temporal bands, inter- and 

intra-individual variability was also identified and used to further comment upon the nutrition 

and exposure to pollutants of children in medieval Bergen. Crystallinity Index (CI) and C/P 

values produced via FTIR ruled out any significant influence of diagenesis upon the 

concentrations of trace elements or stable isotopes.  The stable isotope analyses themselves 

demonstrated good sample reproducibility and agreement with accepted values. Further 

assessment of stable isotope variation within and between individuals is being considered in 

relation to the accentuated striae of Retzius and trace element results, as well as in relation to 

osteological and archaeological data. 



 13 
 

 

 

  All   An4.  Discussion and Conclusion 

This paper describes only one method for successfully employing a sample preparation 

strategy, and a suite of microspatial techniques, to build multiple complementary datasets from 

one dental tissue.  Data collection may be maximized while ensuring the retention of sample 

material so that future analytical techniques can be used to add new information as technological 

capabilities and research goals evolve.   A strength of this approach comes from the ability to use 

histological data to comment upon the timing of fluctuations in trace element and stable isotopic 

concentrations in tooth enamel.  The timing of periods or waves of chemical variation can, in 

addition, be estimated relative to histological structures such as accentuated striae of Retzius, 

which may prove revealing regarding the nature of episodes of physiological stress experienced 

by children.  Given that the sample used here was fragmentary and several surviving teeth were 

worn, it was necessary to be opportunistic in terms of including a variety of tooth types in the 

analyses.  Although the teeth varied in terms of their size, or the amount of intact enamel 

available, they all provided enough material to conduct the analyses and conserve material for 

future work.   

There are some limitations of this single tooth/tissue strategy that should be considered 

prior to application of this sequence, or another like it.   The strategy presented here leaves no 

room for error.  For example, if the single slide for histological analysis is lost during sample 

preparation another cannot be produced without sacrificing the blocks reserved for other aspects 

of the research project.  Also, although a great deal of varied information was obtained, this was 

a time consuming process in terms of sample preparation and data collection (vs employing 
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traditional dissolution techniques that destroy the entire sample).  This significant time 

expenditure is countered by the fact that approximately only 6mg of tooth was lost to analysis. 

Some enamel and the entire dentine portion of the tooth remains, as well as the root structure and 

the cementum. The remaining tooth material can thus be used in future studies.  For example, 

two years after the initial analyses discussed here, an unanticipated opportunity arose to produce 

fine elemental maps for one of the teeth using synchrotron X-ray Fluorescence (sXRF) on the 

VESPERS beamline at the Canadian Light Source synchrotron (Saskatoon, SK).  This research 

added new knowledge regarding the relationship between trace element distributions and dental 

microstructures, and information about elements, such as Fe, which could not be captured via the 

original set of methods.   

 The goal of this paper has been to provide an example of a method for collecting multiple 

kinds of data from a single dental tissue in such a way that data are produced which are of 

equivalent quality as those derived from more traditional and more destructive sampling 

strategies.  This is certainly not the only sequence or set of methodological techniques one might 

want to employ.  Our hope is that the example presented here will serve to build awareness of 

some microspatial options available to researchers, and of their enhanced value when combined.  

With careful planning, and the application of microspatial sampling strategies, it is possible to 

maximize data acquisition while preventing the complete loss of irreplaceable sample material, 

which is becoming more and more necessary for anyone hoping to do research with human 

tissues (ancient or contemporary).  The sequence of sampling and analysis presented here is but 

one example of how this might be done, and given that there are significant portions of each 

sample remaining, this project has demonstrated that, even with such rich data gathering, 

preservation of material for future research endeavors is entirely possible. 
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