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ABSTRACT

As sulfonamide hypersensitivity reactions are serious clinical problem, it is
necessary to determine which patients tolerate therapy and which patients are at risk.
Although the exact pathogenesis of these reactions remains unclear, the imbalance in the
production and detoxification of reactive sulfamethoxazole (SMX) metabolites appears to
be important in the propagation of these reactions. It is known that these reactive
metabolites can cause lymphocytes toxicity and produce reactive oxygen species (ROS)
which can damage proteins, lipids, and DNA. The hypothesis of this research is that there
are differences in cytotoxicity and expression of oxidative stress to reactive SMX
metabolites in the cells of patients who have sustained sulfonamide hypersensitivity
reactions versus the cells of controls or sulfonamide tolerant patients. Sulfa
hypersensitive patients were found to express high degrees of cell death and more ROS
accumulation. This finding indicates that the biotransformation of SMX to its reactive
metabolites could be the reason for cytotoxicity, and the oxidative Stress can be a

mediator for cell death and inducing allergy reactions.

Keywords: drug hypersensitivity reactions, sulfamethoxazole, cytotoxicity, Reactive

oxygen species, oxidative stress, Glutathione.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 ADVERSE DRUG REACTIONS (ADRs)

Adverse drug reactions (ADRs) are considered to be one of the important
complications of modern drug therapy in health care. Many of these reactions are mild,
not life threatening and may be unnoticed. However, other ADRs are more severe and
sometimes major causes of sickness and death and highly costly to the health care system
(Pirmohamed et al., 2004; Kongkaew, 2008). The World Health Organization (WHO)
defines ADR as a physiological response to a drug that is deleterious and undesired
occurring at the doses typically used in humans for diagnosis, prophylaxis, therapy or for
the modification of physiologic function (World Health Organization: Technical Report
Series No. 498, 1972). ADRs affect as many as 25% of all hospitalized patients, and
complicate 5-15% of therapeutic drug courses (Gruchalla, 2003). In the United State,
ADRs represent the sixth leading cause of death after heart disease, cancer, stroke,
pulmonary disease and accidents (Lazarou et al., 1998). Additionally, these reactions are
highly costly to the health care system since has estimated that the annual cost of drug-
related morbidity and mortality was more than $177 billion in the United States in 2000
(Ernst and Grizzle, 2001). Unfortunately, some of these reactions can cause the
discontinuation of a drug that was otherwise effective in the treatment of the primary
disease.

Although ADRs are common, it has been challenging to estimate their exact

frequency because accurate statistics do not exist. Moreover, the clinical symptoms of



ADRs commonly overlap with symptoms of the underlying disease and this makes the
diagnostic approach to these reactions difficult (Rieder, 1997).
1.1.1 Classification of ADRs

ADRs can manifest in many different ways and they can affect different organ
systems. ADRs have been classified by Rawlins and Thompson in the late 1970s into two
major types, known as Type A and Type B reactions (Rawlins and Thompson, 1977).

Type A (augmented) reactions are predictable from the pharmacological action of
the drug. Also, these reactions are dose dependent and usually due to an excessive drug’s
therapeutic effect. Therefore, Type A reactions are reversible with reduction of the dose
or withdrawal of the drug (Rawlins and Thompson, 1977). This type is common,
accounting for about 80% of ADRs and includes toxic effects, side effects, secondary
effects and drug interactions (Rieder, 1994; Naisbitt et al., 2003). An example of Type A
pharmacological reaction is peptic ulceration and hemorrhage with nonsteroidal anti-
inflammatory drugs (NSAIDs).

In contrast to Type A reactions, Type B (idiosyncratic or bizarre) reactions are not
predictable from pharmacological properties of the drug, and not dose dependent. Thus,
there is no simple dose-response relationship, and the drug must be withdrawn upon
development of these reactions. This type comprises 10-15% of all ADRs (Rieder, 1994;
Naisbitt et al., 2003). The term of idiosyncratic drug reactions (IDRs) applies for the
adverse events that do not occur in most people (i.e. specific to an individual) within the
range of doses used clinically. Although this type affects a small percentage of the
population, it is very serious and accounts for many drug induced deaths due to

unpredictability and dose independency (Pirmohamed et al., 2002). Thus, identification



of patients at risk for this type of reactions for a specific class of medication is difficult.
In addition, Type B reactions can be divided into immune-mediated (hypersensitivity
reactions) and non-immune mediated (metabolic idiosyncracy) reactions (Pirmohamed et
al., 2002; Naisbitt et al., 2003; Shear et al., 1986). An example of immune-mediated Type
B reactions is allopurinol induced skin rash. An example of non-immune mediated type B
reaction would be hepatic failure and teratogenicity observed in rare patients treated with
valproic acid (VPA). This idiosyncratic reaction is thought to be triggered by an
excessive quantity of toxic VPA metabolites, and referred as metabolic idiosyncrasy
based on a lack of fever and rash and/or lack of immediate onset on rechallenge (Jeavons,
1984; Sadeque et al., 1997). This thesis will focus on immune-mediated Type B
reactions, and more specifically on delayed hypersensitivity to sulfamethoxazole (SMX).

It should be noted that there are supplementary categories which were successively
added and include types C (Continuous; dose and time-related), D (Delayed; time-
related), E (End-of-use; withdrawal) and F (Failure; unexpected failure of therapy)
(Rieder et al., 2009; Zuniga et al., 2012).

1.1.2 Drug Hypersensitivity Reactions (DHRS)

For type B reactions, there are many different mechanisms which are not fully
understood. These reactions usually trigger the immune system and are called allergic
reactions. Hypersensitivity reactions (HSRs) are defined as immunologically-based
adverse reactions that occur in susceptible patients upon exposure to drugs, chemicals or
other antigens (Kanji and Chant, 2010). Most of DHRs are thought to be immune-
mediated based on the delay between starting a drug and the onset of the reactions which

are more severe at re-exposure, and the presence of some immunological markers in



patients with a history of drug hypersensitivity reactions (Park et al., 1992). These
reactions cause problems that range from nuisance (e.g, itchy skin) to life threatening
(e.g, Stevens - Johnson syndrome, SJS, and Toxic Epidermal Necrolysis, TEN). Any drug
is potentially able to evoke hypersensitivity reactions; however, the prevalence differs
challenging as well. To most clinicians the term “drug hypersensitivity" is Synonymous
with the symptoms produced by type | hypersensitivity which is characterized by the
production of IgE. However, when this term is used by pharmacologists, this would
usually include undesired drug-induced effects mediated by an immune response that
produces tissue damage (Naisbitt et al., 2003; Pirmohammed, 2005; Rieder, 2009).

Tilles (2001) has reported that drug induced allergic reactions affect about 5% of
the population, and these reactions are responsible for 6% to 10% of the ADRs. Allergic
reactions can be classified according to the Coombs and Gell classification system (1968)
into four distinct pathophysiological types (Type I- Type V), which can be applied to
those adverse drug reactions with a known immunologic component: immediate type
hypersensitivity reactions (Type I), antibody-mediated cytotoxic reactions (Type 1),
immune complex-mediated reactions (Type IlI), and delayed-type hypersensitivity
reactions (Type IV) (Figure 1).

Type | (IgE- mediated hypersensitivity) reactions: These reactions manifest almost
immediately upon allergen exposure (usually within 30 minutes). This type activates B-
cells to release IgE antibodies which are directed against soluble protein antigens (such as
pollen, animal dander, and foods) or some drugs. This type is triggered by the presence of
mast cells armed with high affinity Fc-IgE (fragment- crystallizable) receptors to which

allergen/drug-specific IgE is bound. The result of linking antigens with IgE molecules on



the surface of mast cells or basophiles causes degranulation of these cells and the release
of inflammatory and vasodilatory mediators such as histamine, leukotriens and
prostaglandins. Clinical symptoms of this type may manifest as anaphylaxis, allergic
rhinitis, urticaria, or bronchospasm. An example of drugs that have been implicated in
causing this type is B-lactam antibiotics (Vega et al., 1994; Rocken et al., 2010).

Type 1l (antibody-mediated cytotoxic) reaction: This type involves binding of an
antibody to a cell with subsequent binding of complement causing cell death and tissue
damage. These reactions are caused by cytotoxic antibodies, which are primarily IgM or
IgG. The essence of this type is that an antigen bound to the surface of a cell combines
with 1gG antibodies. This bound antibody can then activate and direct killer cells or
phagocytic cells against the antigen presenting host cells. The most common clinical
manifestations of type-ll hypersensitivity reactions to drugs are agranulocytosis,
thrombocytopenia and immunoallergic haemolytic anemia (Giner et al., 2003; Akamizu
et al., 2002). Penicillin causing hemolytic anemia is an example of this type.

Type 1l (immune-complex mediated) reactions: Theses reactions involve the
creation of antigen-antibodies complexes (immune complexes either antigen-lgM or
antigen- 1gG) that can deposit in tissues and small blood vessels causing a local
inflammatory response. This response causes the release of inflammatory mediators such
as tumor necrosis factor (TNF) and interleukin. Slow removal of these complexes by
phagocytes leads to their deposition in the skin, glomeruli, joints, and gastrointestinal
system. These immune complexes activate the complement cascade. Then granulocytes

and macrophages are attracted to the site of activation and release of lytic enzymes from



Figure 1: Classification of hypersensitivity reactions according to Gell and Coombs

Refer to pages 4, 5, and 8 for details about each of the four classification types

(lg = immunoglobulin; NK = natural killer)

Figure reprinted from Naisbitt et al. (2000), with permission
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their granules causing damage. The clinical symptoms of type Il reaction include serum
sickness or vasculitis. There are many drugs that cause serum sickness or vasculitis-like
reactions such as [3-lactam antibiotics (Kanji and Chant, 2010; Pichler 2007).

Type IV (T-cell mediated ) reactions: This type is also called delayed type
hypersensitivity (DTH) due to the delay in the immune response compared to antibody-
mediated reactions. All forms of DTH reactions require several days or even weeks to
reach their optimum strength (Rocken et al., 2010). This type involves the activation,
proliferation, and mobilization of antigen-specific T cells. These activated T cells will
release large amounts of cytokines causing damage to host cells and tissues. Also, this
will initiate the activity of other mononuclear cells, such as monocytes and macrophages,
causing harmful outcomes. The clinical symptoms for this type commonly manifest as
skin eruptions such as morbilliform rash or contact dermatitis. Sulfonamides are an
example of the drugs that can develop these reactions (Naisbitt et al., 2000; Choquet-
Kastylevsky et al., 2001).

It should be noted that ADRs may be caused by several immunological and toxic
mechanisms and some of these reactions may not fit into any category of the Gell and
Coombs classification.

1.1.3 Immune Involvement and Mechanistic Hypothesis of Drug Hypersensitivity
Understanding the mechanisms of many ADRs has remained a big challenge to
clinical and basic science researchers either due to the variation of effects elicited from
one individual to another or the lack of good animal models which have hindered detailed
experimental investigations. It has been estimated that the immune system is involved in

10-50% of all idiosyncratic ADRs (Rieder, 1994). However, evidence of immune



involvement such as the presence of antibodies against the drug or drug modified proteins
or immune cells that recognize the offending drug are required to diagnose these
responses as true hypersensitivity (Park et al., 1992). The immune system includes the
innate (natural) and adaptive (acquired) immune systems. The innate immune system
consists of cells and proteins that are always present and ready to fight microbes at the
site of infection. The main components of this system are physical epithelial barriers such
as skin and mucus membrane, phagocytic leukocytes, dendritic cells, and natural killer
(NK) cell. The adaptive immune system is called into action against specific foreign
substances that are able to evade or overcome innate immune defenses. This system
includes B-cells and T-cells (Caamano and Hunter, 2002). Thus; both the innate and
adaptive immune systems play a crucial part in the removal of pathogens from the body.

The immune response can be either a cellular (cell-mediated) response or a humoral
(antibody-mediated) response. Cell-mediated immunity can be induced by cytotoxic T-
lymphocytes that mediate apoptosis of antigen presenting target cells. Alternatively,
humoral immunity can be elicited by B-cell production of antigen-specific antibodies
through the interaction of B-cells with T-cells activated by antigen presenting cells
(APCs) (Zaccara et al., 2007). In this thesis we will focus on the cellular (T-cell
mediated) response of the immune system.

In general, the immune system can recognize the foreign molecules (antigens) and
attack them, and the immune response may be generated against the altered
macromolecules (Rieder, 1994). For the immune system to recognize these antigens, they
should be internalized, fragmented and displayed as antigenic determinants, or epitopes,

on the surface of the cell bound to major histocompatibility complex (MHC) molecules
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(Cammano and Hunter, 2002). Extracellular antigens are expected to be presented via
MHC class 1l to CD4" T-cells, whereas intracellular antigens appear to be presented via
MHC class | to CD8" T-cells (Robinson and Delvig, 2002)

The proposed mechanisms for initiation or eliciting an immune response to a drug
involve the metabolism of a parent drug to its reactive metabolites which can bind
covalently to intracellular or extracellular proteins of target cells. This drug-protein
complex is then processed and bound within the antigen binding cleft of a MHC molecule
and displayed on the cell surface for recognition by T-cells. Once this occurs, T-cells can
ultimately act either in a cytotoxic manner to kill the antigen-displaying target cell or can
secrete cytokines that attract or activate other immune cells to the local area causing cell
destruction (Naisbitt et al., 2001).

It is known that a drug or a drug metabolite can induce an immune response by
involving one or more processes. However, the precise mechanisms involved are unclear
and the proposed mechanisms for many of these drugs are based on several hypotheses
(hapten hypothesis, danger hypothesis and pharmacological interaction concept).
1.1.3.1 Hapten Hypothesis

It is the oldest and the most widely accepted theory advanced by several
investigators, notably Park et al., 1987. A "hapten" is chemically reactive, small
molecule, with a molecular weight less than 1000 daltons, which able to form covalent
bonds with proteins or peptides (Pichler et al., 2010). The hapten hypothesis (Figure 2)
proposes that drug and/ or drug metabolites are too small to elicit an immune response,
and therefore must act as haptens which can covalently bind and modify macromolecules

(such as proteins or DNA) to become immunogenic. This drug-protein complex will be
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recognized, processed by antigen presenting cells (APCs) and presented via MHC-I11 to
helper T-cells. Consequently, this will stimulate the immune response (Landsteiner and
Jacobs, 1936; Park et al., 1998).

A few drugs, such as penicillins and cephalosporins, are spontaneously reactive, can
directly bind proteins and act as a hapten which evokes an immune response (Parker,
1982). However, other drugs are not chemically reactive, but may undergo chemical or
enzymatic modification (by Phase | or Phase Il metabolic enzymes) to form reactive
metabolites that can bind macromolecules or be directly cytotoxic. Halothane-induced
hepatotoxicity, in which halothane is metabolized by cytochrome P450 to the reactive
metabolite trifluoroacetylchloride, is a good example of drugs that must be metabolized
to reactive metabolites that can trigger an immune response ( Njoku et al., 1997).
1.1.3.2 Danger Hypothesis

The Danger Hypothesis, as proposed by Matzinger in 1994, states that the antigen
can trigger an immune response in the presence of danger signals that are necessary for
APCs to generate a full or active immune response rather than tolerance (Figure 3).
According to this theory, it is insufficient for reactive metabolites alone to initiate the
immune response. This is supported by the observations that drug-serum adducts can also
be found in tolerant patients that do not develop hypersensitivity after drug exposure
(Gruchalla et al., 1998).

In terms of idiosyncratic drug reactions (IDRs), these danger signals could be
generated as a result of proteins’ alteration due to drug haptenation, drug-associated
oxidative stress, and drug-induced cell maturation or cell death (Matzinger, 1994;

Pirmohamed et al., 2002; Lavergne et al., 2009). These signals may also result from
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Figure 2: Hapten Hypothesis

The drug or reactive metabolite binds covalently to proteins and modifying them. This
drug-protein complex will be recognized as foreign and processed by antigen presenting

cells (APC), which eventually stimulate the immune response.

Figure reprinted from Uetrecht (2007), with permission.
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disease-induced oxidative stress, inflammation or bacterial and viral infections (Gallucci
and Matzinger, 2001). In fact, HIVV-infected patients have high levels of chemokines and
oxidative stress that may act as danger signals (Lavergne et al., 2009; Sandler et al.,
2011). Thus, this may explain the higher incidence of sulfonamide hypersensitivity in
AIDS patients (50-60%) compared to HIV negative subjects (1-3%) (Fischi et al., 1988).
It is possible that the drug reactive metabolites can develop these reactions because of
their ability to act as haptens to provide signal 1 for recognition by specific T cells, or as
danger signals (signal 2) by the activation of signaling pathways linked to oxidative stress
or protein damage (Uetrecht, 2007).
1.1.3.3 Pharmacological Interaction (PI) concept

The PI concept postulates that the chemically inert drugs are unable to covalently
bind to proteins as well as associate with the MHC on APCs. Therefore, these drugs may
interact in non covalent manner with T- cell receptor (TCR) or with human leukocyte
antigen (HLA) molecules without the antigen processing pathway involved (Figure 4).
This concept has been demonstrated for some drugs such as sulfamethoxazole,
carbamazepin and lidocaine (Schnyder et al., 1997; Naisbitt, 2003; Zanni, 1997). Pichler
and colleagues were able to show that the clones of lymphocytes from SMX
hypersensitive patients proliferated when exposed to soluble SMX. This implies that the
parent drug itself may act as a pharmacological agent that can stimulate an immune
response (Pichler, 2002; Pichler, 2008). Furthermore, to date, there is no evidence for the
contribution of P-1 model in vivo drug toxicity.

It should be noted that not all drugs hypersensitivity reactions can be elucidated by

one individual theory. Therefore, it is probable that many drugs can develop these
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Figure 3: Danger Hypothesis

The stressed or damaged cells release danger signals that can activate APCs and stimulate

an immune response.

Figure reprinted from Uetrecht (2007), with permission
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Figure 4: Pharmacological Interaction Hypothesis

The drug binds directly to the MHC-TCR complex and induces an immune response to

the parent drug.

Figure reprinted from Uetrecht (2007), with permission
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reactions depending on different or complex mechanisms that vary from one person to
another.

1.2 _SULFONAMIDES

1.2.1 Sulfonamide Mechanism of Action

Many of new antibiotics are not a good choice either due to their high cost or
because of the development of resistant organisms. The sulfonamides, the drugs of study
in this thesis, are considered to be one of the oldest, inexpensive antibacterial agents, with
broad spectrum of action and a wide tissue distribution. They have been used effectively
in treating many infectious diseases such as bronchitis, urinary tract and gastrointestinal
infections (Marchant and Shurin, 1983). These drugs are structural analogues of para-
aminobenzoic acid (PABA). PABA is a substrate in the formation of folic acid which is
essential for synthesis of precursors for RNA and DNA synthesis in both bacteria and
mammals. However, mammalian cells can take their needs of folic acid from exogenous
sources. Sulfonamides compete with PABA for the enzyme dihydropteroate synthase,
resulting in the reducing folic acid in the bacteria cells and ultimately inhibiting the
growth of bacteria (Hitchings, 1973; Flotzer and Reese, 1987). The most frequently
encountered antimicrobial sulfonamide is sulfamethoxazole (SMX) in combination with
trimethoprim (TMP), together known as Co-trimoxazole. TMP was found to add a
synergistic bactericidal therapeutic benefit when used with SMX, as a selective inhibitor
of microbial dihydrofolate reductase, another enzyme which is essential for folic acid
synthesis (Flotzer and Reese, 1987). Indeed, since both SMX and TMP act on enzymes in
the same pathway, resistance towards one drug can be overcome by the action of the

other.
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Chemically, Sulfonamides are compounds that contain SO,NH, moiety. The
bacterial sulfonamides contain an arylamine moiety (an amine linked to benzene ring) at
N4 position as well as 5 or 6 membred nitrogen containing ring attached at N1 nitrogen
of sulfonamide (Figure 5). Of importance, it has been established that the sulfonamide
containing drugs with both the N1 and N4 substituents, the antibiotics, were most
strongly associated with hypersensitivity reactions compared to other sulfonamide-
containing medications. This might be because of that the other sulfonamide-containing
medications (as diuretic, antihypertensive or hypoglycemic drugs) lack the primary
arylamine group within their chemical structure, and they cannot produce the reactive
intermediate (i.e. nitroso) which is absolutely essential to cause hypersensitivity (Cribb et
al., 1996; Tilles, 2001; Slatore and Tilles, 2004; Brackett et al., 2004). Thus, this would
support that the cross allergenicity can exist among sulfonamide antimicrobials, but not
with other sulfonamide containing medications (Hemstreet and Page, 2006; Dibbern and
Montanaro, 2008).

1.2.2 Metabolism of Sulfamethoxazole

It is important to note that numerous therapeutic agents cause severe IDRs, but the
mechanism behind these reactions is still uncertain. It is believed that bioactivation of
certain drugs to their reactive metabolites plays a crucial role in the initiation of these
reactions. For example, lamotrigine, phenytoin and carbamezipine have been reported to
bioactivate to highly reactive arene oxide metabolites that can form the protein-hapten
conjugate, which is then capable of generating an immune response and inducing allergic
reactions (Madden et al., 1996; Maggs et al., 2000).

The pathogenesis of SMX hypersensitivity (SMX HS) reactions has not yet been
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Figure 5: Basic chemical structures of sulfonamides and of sulfa moiety containing
molecules.

(Sulfonamides are compounds that contain SO,NH; moiety)
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completely elucidated. However, it has been proposed that the metabolism of the parent
drug, SMX, to its reactive metabolites, sulfamethoxazole hydroxylamine (SMX-HA) and
N-nitroso sulfamethoxazole (SMX-NO) play a central role in the pathogenesis of these
reactions (Rieder et al., 1988; Uetrecht, 1989) (Figure 7). SMX is rapidly absorbed after
oral administration and detectable levels are found in the plasma within 5 min. The peak
plasma SMX concentration is up to 2.5 mM, which can be reached within 2-4 hr, and half
life of SMX is 9-11 hr. SMX can be metabolized by two separate pathways. The major
pathway (70-95 %) is acetylation by N-acetyltransferase (NAT) to form an inactive and
non-immunogenic acetylated metabolite (Acetyl-SMX) that is directly filtered by the
kidneys and excreted in the urine (Cribb and Spielberg, 1992; Naisbitt et al., 1999).
Acetylation occurs by the activity of phase Il enzymes, and represents direct
detoxification processes. The second pathway involves the metabolism of SMX (about 5-
10 %) by the cytochrome P450 isozyme, CYP 2C9, to its unstable, electrophilic reactive
metabolite, SMX-HA. The latter can spontaneously auto-oxidize to form the more
reactive metabolite, SMX-NO. CYP2C9 is expressed in the liver, skin, macrophages and
keratinocytes; however, SMX-HA also may be produced in monocytes and neutrophils
via the myeloperoxidase pathway (Cribb and Spielberg, 1992). Thus, this may explain the
diversity in the target tissues for ADRs to individual drugs.

SMX-HA can be reduced back to the parent drug by CYP3A4 (Cribb et al., 1995).
It is relatively stable in vivo compared to SMX-NO. The evidence for this is based on the
ability to detect the SMX-HA, while SMX-NO cannot, in the urine of patients receiving
this drug. SMX-NO can bind covalently to cysteine residues of proteins, and haptenat

them resulting in cellular apoptosis.
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SMX-NO can be reduced back to the SMX-HA by a non-enzymatic pathway using
antioxidants, such as ascorbic acid, cysteine and glutathione. It should be also noted that
SMX-HA does not always undergo auto-oxidation to SMX-NO under biological
conditions. Cribb et al. (1991) have demonstrated that the presence of glutathione (GSH)
can prevent the auto-oxidation of SMX-HA to SMX-NO. Furthermore, GSH can effect
reduction of SMX-NO to both SMX and SMX-HA and thereby prevents the formation of
drug-protein adducts and reduces toxicity (Summan and Cribb, 2002; Trepanier and
Miller, 2000). Thus, increased production or decreased elimination of these reactive
metabolites is considered to be a key component in the initiation of metabolite-induced
hypersensitivity reactions. SMX-HA can also be detoxified enzymatically by the
enzymes cytochrome b5 (b5) and cytochrome b5 reductase (b5R) through a
detoxification pathway that is 10 times more efficient than forward oxidation to SMX-
HA (Kurian et al., 2004; Cribb et al., 1996).

1.2.3 Hypersensitivity Reactions Toward Sulfamethoxazole

SMX-TMP is an effective agent for treatment of many infectious diseases. In HIV
patients, this drug is used in prophylaxis and treatment of Pneumocystis pneumonia
(PCP). However, recently the clinical uses of SMX were restricted due to the fear of
developing severe reactions that occur in 2-4% of general users of the drug and 50-60%
of AIDS patients (Gruchalla, 2003). Indeed, the skin is considered to be the most
common target for drug-induced allergic reactions. This may be because of that the skin
is immunologically very active, and has the capacity of drug metabolism and defense
system. SMX rarely causes IgE-mediated reactions such as urticaria and anaphylaxis, and

more commonly develops delayed hypersensitivity(T-cell mediated) reactions that appear
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Figure 6: Schematic representation of the metabolic pathways of SMX and its

proposed immunogenicity.

SMX can be metabolized along two separate pathways. The first pathway involves the
enzyme N-acetyletransferase to yield a stable non- reactive N- acetyle SMX. The second
pathway involves the CYP450 2C9 to form the reactive metabolite, SMX-HA, which can

spontaneously oxidize to form more reactive SMX-NO.



26

ﬂ-r:.!l Qe o-N 00
rJle_,.--‘-\:-u_‘\\:w___.r-'*a-.N.-5 | .\__ m_,'x;;-u_m.s. ,
H P Deacetvlation Ho |l -
NH;l = o MHAL
Sulfamathoxazola #" Acatvl-Sulfamatheocamnla
(SMX) AcetylCop | restyl Transfemse (N-Acatyl SME)
CYPRLs0 208
0-N 00
m.--"f:;_,.-f"‘“-n-gm-"-‘:e
o OH
H
Sulfamethoxazols Hydroxylamine Covalent Bindingto
(SMX-HA) callular
Spontznsgus Oxidation Macromolacules Callular Injury/
{non-=nTymaEtic) = Callular Diaath
O-N 00
Y l\.sr
= i Haptan
SulfamsthomazolaMitroso Formstion Tmmmes Hypars ensitivity Raactions
(SRIX-NO) Fzsponss
Detoxification

MNon-toxichMatabolites



27

after 1-2 weeks from the time of drug initiation, and become much shorter with re-
exposure (within hours). SMX-specific T-cells, a marker of drug-specific cellular
immunity, as well as sulfonamide-specific CD4+ and CD8+ T cells have been detected in
sulfa sensitive patients (Mauri-Hellweg et al., 1995).

The clinical manifestations SMX reactions are consisting of fever, skin rash, blood
dyscrasias, hepatotoxicity, renal dysfunction, hemolytic anemia, or severe dermatopathies
(Cribb et al, 1996). A pediatric study has demonstrated that SMX-TMP was among the
most frequently associated antimicrobial agents induced serum sickness (Heckbert et al.,
1990). Also, Stevens - Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN)
are two of the more serious reactions that can be caused by SMX (Tilles, 2001). SIS/TEN
are severe cutaneous reactions characterized by extensive necrosis and detachment of
epidermis, and can affect the function of many organs. A retrospective study between
2000 and 2010 from four sub Saharan African countries including 177 adults and
children, of which 54.8% were HIV positive, with SIS/TEN revealed that antimicrobial
sulfonamides were the most commonly (38.4%) associated drugs (Saka et al., 2013).
Subsequent to their formation, the SMX reactive metabolites can bind covalently to
cellular proteins to form a hapten-conjugate or an antigen, which is then capable of
inducing an immune response (Park et al., 2000).Thus, it has been accepted that SMX
hypersensitivity follows the hapten hypothesis. Recently, some studies have shown that
SMX hypersensitivity may also involve mechanisms of danger hypothesis by generating
danger signals (such as chemokines and oxidative stress) required to initiate an immune
response (Lavergne et al., 2009; Sanderson et al., 2007). Also, the toxic effects of these

metabolites in combination with other disease related factors, such as decreased GSH
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level as well as other genetic factors, have contributed in the high incidence of SMX
hypersensitivity in HIV patients (Carr et al., 1991; Rieder et al., 1997).

Hydroxylamine metabolites of sulfonamides can induce cytotoxicity in the
peripheral blood mononuclear cells (PBMCs) of SMX-hypersensitive patients when
incubated in vitro (Shear and Spielberg 1985). In fact, the in vitro cytotoxicity of SMX-
HA in PBMCs has been used as a predictive tool to diagnose delayed-type
hypersensitivity reactions associated with SMX (Rieder et al., 1989; Carr et al., 1993;
Reilly et al., 1999; Manchanda et al., 2002; Neuman et al., 2000). Rieder and colleagues
demonstrated that in vitro incubation of human lymphocytes with SMX-HA caused
concentration-dependent toxicity, whereas the parent drug, SMX, incubated at equal
concentrations exhibited no toxicity.

Yet, it has been hypothesized that this enhanced in vitro cytoxicity is due to a defect
in a sulfonamide metabolic or detoxification pathway. This defect could be related to
disease, environmental or genetic factors. The lymphocyte toxicity assay (used to predict
SMX hypersensitivity) had been shown to be abnormal in the first-degree relatives of
SMX-HS patients. This suggests a genetic contribution to SMX HS risk (Neuman et al.,
2000; Wolkenstein et al., 1995). In fact, the possible genetic variations may be occurring
either in genes related to bioactivation or detoxification pathways. Rieder and colleagues
demonstrated that the slow acetylator (NAT2 gene mutation) phenotype is considered to
be a risk factor for SMX hypersensitivity (Rieder et al., 1991). However, these genotypes
alone are not sufficient to lead to SMX HS because they make up 50% of the United
States population, and only 3 % of patients develop these reactions (Carr et al., 1994;

Relling, 1989; Eliaszewicz et al., 2002).
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In a recent study by Sacco et al. (2012), they found no difference in NAT2
genotype as well as CYB5A (encoding cytochrome b(5)) or CYB5R3 (encoding
cytochrome b(5) reductase) between sulfa hypersensitive and tolerant patients.
Furthermore, the balance between CYP2C9 (the enzyme oxidizes SMX to SMX-HA) and
CYP3A4 (the enzyme reduces SMX-HA to SMX) isoform expression may contribute to
SMX HS. Since drug hypersensitivity reactions are thought to be immune mediated
ADRys, it is likely there would be association with certain HLA allels. Examples for
strong associations were found between the HLA-B*5701 and abacavir hypersensitiviy,
as well as HLA-B*1502 and carbamazine-induced SJS/TEN in Han Chinese patients
(Mallal et al., 2002; chung et al., 2004; Teraki et al., 2010; Elzagallaai et al., 2011). Also,
another research group has reported a possible link between HLA-B22 halotype and
SMX-TMP-induced fixed drug eruption in Turkey (Ozkaya-Bayazit and Akar, 2001). To
date, there is no research has investigated polymorphisms of TCR as a risk factor in T-
cell mediated hypersensitivity.

1.3 OXIDTIVE STRESS

1.3.1 Reactive Oxygen Species (ROS)

Oxidative stress is a condition defined by an imbalance between increased levels of
reactive oxygen species (ROS) and a low activity of antioxidant mechanisms (Sies,
1991). ROS, which are continuously produced during aerobic metabolism, are needed for
adequate cell function, including the production of energy by the mitochondria and
functioning as essential signaling molecules to maintain the cellular redox balance
(Filomeni and Ciriolo, 2006). ROS are generated both form endogenous sources, such as

enzymes activity, and external sources, such as ultraviolent radiation. Many physiological
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conditions, such as host defense or aging, and pathological conditions, such as
neurodegenerative diseases and diabetes, are associated with the accumulation of high
levels of ROS (Kohen and Nyska, 2002; Rahimi et al., 2005) . Furthermore, a number of
skin diseases have been associated with oxidative stress, including psoriasis, skin cancer
and allergic contact dermatitis (Dimon-Gadal et al., 2000; Matés et al., 2000).

ROS are formed in biological system by the reduction of molecular oxygen (O,).
The generation of ROS, such as superoxide anions (O, "), hydrogen peroxide (H,0,) and

hydroxyl radicals (OH™), is associated with respiration. O, is the primary metabolite of

oxygen and undergoes dismutation to generate H,O, either spontaneously or when
catalyzed by superoxide dismutase (SOD). After that, H,O, can undergo the Fenton
reaction to form the highly cytotoxic OH™ (Schenkman,and Greim, 1993). Increased
concentrations of H,O, are harmful for cells; however, these cells are equipped with
defense systems that detoxify or remove ROS. These systems include scavenger
enzymes, such as Cu/Zn-superoxide dismutase (SOD), catalase (CAT) and cellular
glutathione peroxidase (GPX), and non-enzymatic antioxidants, such as ascorbate
(vitamin C) and glutathione (GSH) (Matés et al., 1999).
1.3.2 Drugs induced Oxidative Stress

Drugs are also considered to be a main source of ROS (kohen and Nyska, 2002).
There are many drugs whose mechanism of action is associated with production of ROS,
and those that produce ROS indirectly. It has been established that CYP450 enzyme-
mediated metabolism of many drugs accounts for the major production of ROS and
inducing oxidative stress (Zangar et al., 2004). For example, acetaminophen, upon

overdose, is metabolized by cytochrome P450 isozymes, producing N-acetyl-p-
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benzoquinone imine (NAPQI). The latter is conjugated with and depleting GSH resulting
in oxidative stress and subsequent necrosis of hepatocytes. This can result in hepatic
failure and death of the patient (James et al., 2003; Rousar et al., 2012). Indeed, N-
acetylcysteine (NAC), a non-toxic synthetic thiol antioxidant, has been used clinically as
an antidote for acetaminophen overdose.

Other types of medicinal drugs are redox-cycling substances that undergo a redox
cycle reactions forming deleterious ROS. They have an original oxidative form and are
considered to be direct generators of ROS. These drugs are able to induce
toxicity/adverse effects via transformation to highly-active radical intermediates, usually
through reducing half-action. An example of these drugs is nitrofurantoin (NFT) which is
an antibiotic used for treatment of urinary tract infection. However, its uses have been
restricted because of the fear of inducing pulmonary and hepatic toxicity. It is believed
that NFT can induce toxicity by undergoing single-electron reduction on its nitro group.
The highly reactive intermediate derived from NFT could cause damage to
macromolocules, either by direct attack or via generation of superoxide anions
(Pourahmad et al., 2001; Wang et al., 2008).

With sulfonamides, such as SMX, the metabolism by cytochrome P450 isozyme,
CYP 2C9, generates the reactive metabolite, (SMX-HA) which is spontaneously auto
oxidized to form the highly toxic metabolite, (SMX-NO). Indeed, the exposure of the
cells to these electrophilic metabolites causes significant depletion of GSH, producing
cellular oxidative stress (Cribb et al., 1991; Carr, 1994). In the process of auto-oxidation,
SMX-HA also has the potential to form ROS by the reduction of a molecule of oxygen to

form the reactive O,~, which can undergo spontaneous dismutation by SOD to generate
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H,0,. The latter, in turn, may be fully reduced to water by ctalase, or partially reduced by
Fenton reaction to form the highly cytotoxic OH™ (Zangar et al., 2004; Vyas et al., 2005).
Thus, the metabolism of SMX may potentially lead to oxidative stress (Figure 7).

Importantly, hydroxylamine metabolites of both SMX and dapson (DDS), a sulfone
antibiotic, were found to induce concentration- and time-dependent cytotoxicty in
different types of cells tested. However; DDS hydroxylamine metabolites are proven to
be more toxic and more ROS generators. This is due the fact that DDS have two N4
substituents that can generate two equivalents of hydroxylamines upon metabolism (Vyas
et al., 2005; Khan et al., 2006).

Another rare but life-threatening toxic effect of antibiotic sulfonamides is hemolytic
anemia, which is categorized as Type Il hypersensitivity reaction. SMX is capable of
inducing hemolytic anemia via a distinct mechanism that involves oxidative stress. This
typically occurs in individuals with certain genetic disorders, among which the most
common is glucose-6-phosphate dehydrogenase deficiency (G-6-PDD) (Beutler, 1991;
Pichler, 2007). In this case the mechanism involves the depletion of NADPH, which is
the source of reducing power to detoxify free radicals. NFT is also contraindicated in
those patients with G-6-PDD or related genetic disorders due to the risk of life-
threatening hemolytic anemia (Wang et al., 2008).

1.3.3 Triggering of Apoptosis by Reactive Oxygen Species

Apoptosis (cell death) is characterized by distinct morphological features such as
shrinkage of the cell, cell surface blebbing, condensation and fragmentation of the
nucleus. Also, there are distinct biochemical features such as an increase in cell density,

proteolytic cleavage of proteins and nuclear DNA and exposure of phosphatidylserin on
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Figure 7: Schematic representation for ROS generation and increase in oxidative

stress by SMX-HA

For SMX, the process of auto-oxidation of SMX-HA to SMX-NO has the potential to
generate ROS by the reduction of a molecule of oxygen to form the reactive superoxide
anion radical (O2) which undergoes dismutation to generate H,O,. The latter can
undergo a Fenton reaction to form the highly cytotoxic OH".Thus, the metabolism of

SMX may potentially lead to oxidative stress due to ROS formation.

Figure adapted from Vyas et al. (2005)



34

[ Omadative Stress ]

/N

a-
op- ¢ HO; Catdsse. g0+ 04
ﬁT
s

0

P450 (auto)oxidation
0, T By =—— > &5
myeloperoxidase W
*t 0
CH CH
Sulfamethoxazole Nitroso
Sulfamethoxazole hydroxylamine Sulfamethoxazole

(SMX) (SMX-H4) (SMX-NO)



35

the cell surface (Desagher and Martinou, 2000). ROS are the most potent death stimuli
faced by cells, and can induce apoptosis by different mechanisms. A longer half life of
ROS can diffuse and reach a sensitive location of the cell causing selective toxicity or
damaging the signaling pathway (kohen and Nyska, 2002).

There are several mechanisms proposed for the induction of apoptosis by formation of
ROS. One of these mechanisms implies the ability of H,O; to diffuse the mitochondria
resulting in the loss of the mitochondrial membrane potential due to the opening of the
mitochondrial permeability transitions pore .Subsequently, this allows the influx and
efflux of important proteins, such as cytochrome c. Therefore, the increased permeability
of the mitochondria leads to the apoptosis (Chandra et al., 2000; Chiaramonte et al.,
2001). The other mechanism involves the upregulation of the Fas/ FasL system. The
binding of FasL to its receptor triggers the initiation of the mitochondrial apoptotic death
pathway by releasing of pro-apoptotic proteins (Regula and Kirshenbaum, 2005). Lastly,
the formation of ROS can cause apoptosis by nuclear translocation and activation of
transcription factors and the p53 tumor suppressor protein. Thus, this may drive the
transcription of pro-apoptotic genes or suppress the expression of anti-apoptotic proteins.

1.4 CONCLUSION

Drug hypersensitivity reactions are a wide range of morphological reaction patterns,
caused by different drugs. The physiopathology of these reactions is largely obscure.
They may be immunological or non-immunological. Evidence support that these
reactions are immune-mediated is largely based on the role of T cells in the pathogenesis
of skin rashes and the other manifestations of the hypersensitivity reaction, as well as the

presence of anti drug antibodies in some patients. For SMX, it is known that its
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disposition and metabolism are related to the clinical manifestation of hypersensitivity.
Under normal conditions, tissues are protected from the damaging effects of ROS by
antioxidant defense systems. However, the high ROS accumulation can alter the normal
levels of these antioxidant systems, and a state of oxidative stress will be reached. It is
known that with SMX, ROS may be related to the toxicity seen in vitro in PBMCs of
patients who develop hypersensitivity reactions. This is probably through the metabolism
of SMX leading to increased generation of reactive intermediates which can disturb the
anti-oxidant capacity of GSH. As such the imbalance between the drug bioactivation and
detoxification can lead to oxidative damage of proteins and lipids, as well as consumption
of GSH level. Vyas et al. (2005) have concluded that both the generation of SMX highly
reactive metabolites and the inducing of oxidative stress may play an important role in
inducing cell death even though they may not be directly correlated. Thus, more studies
are needed to determine the exact role of ROS in inducing cell toxicity as well as their
relationship with the immunological response. In addition, estimation of oxidative stress

parameters may give unique and valid markers of adverse drug reactions.
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CHAPTER 2: RESEARCH HYPOTHESIS AND OBJECTIVES

Drug hypersensitivity reactions have been implicated as a major problem for
patients, clinicians and health care systems. The pathogenesis of these reactions is still
unclear. Studies have shown that the imbalance between detoxification and metabolic
activation is thought to be a key component of individual susceptibility at least for the
sulfonamides. SMX, a drug which is an antimicrobial agent, is known to develop this
type of reactions. The in vitro cytotoxicity of SMX-HA in peripheral blood mononuclear
cells (PBMCs) has been used as a predictive tool to diagnose delayed-type
hypersensitivity reactions associated with these drugs. Additionally, the reactive
metabolites of this drug increase production of ROS which may affect the natural
antioxidant defense system of the cell, such as a depletion of glutathione (GSH) (Rieder
et al., 1995). The increased level of ROS leads to oxidative stress, which may cause
oxidative modifications to lipids, nucleic acids and proteins. This can definitely cause cell
death and develop SMX allergy.

Research Hypothesis

The hypothesis of this research is that there are differences in cytotoxicity and
expression of oxidative stress to reactive SMX metabolites in the cells of patients who
have sustained sulfonamide hypersensitivity reactions versus the cells of controls or
sulfonamide tolerant patients.

Research Objectives
1. Perform in vitro toxicity testing to determine the cells viability for a number of

sulfamethoxazole hypersensitive patients, sulfamethoxazole tolerant individuals,
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as well as healthy volunteers, by using two in vitro diagnostic tests called
lymphocyte toxicity assay (LTA) and in vitro platelet toxicity assay (iPTA).
Investigate the role of differential ROS induced by SMX and SMX-HA in
PBMCs, and to study the state of oxidative stress in allergy.

Quantify protein carbonyl content and lipid peroxide levels as complementary
assays for oxidative stress

Measure the reduced GSH level in PBMCs treated with SMX and SMX-HA, and
to show whether the variability in GSH could be associated with individual

differences.
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CHAPTER 3: MATERIALS AND METHODS

3.1 Materials and Chemicals

Sulfamethoxazole (SMX), tetrazolium salt 3-(4, 5-dimethylthiazol-2-yl) 2, 5
diphenyl-tetrazolium  bromide (MTT), Hydrogen peroxide (H.0,), 2’,7’-
Dichlorofluorescin diacetate (DCFH-DA), Histopaque® -1077 (ficoll), Hank’s balanced
salt solution (HBSS) and dimethyl sulfoxide (DMSO) were purchased from Sigma-
Aldrich (St, Louis, MO, United states). Sulfamethoxazole -hydroxylamine (SMX-HA)
was synthesized in Professor M. Kerr’s Lab, Department of Chemistry, University of
Western Ontario, London, Ontario, Canada. The methanol was obtained from Caledon
Lab Chemicals (Georgetown, ON). RPMI 1640 and trypan blue were purchased from
Invitrogen™, Life Technologies Inc (Burlington, ON, Canada. Protein Carbonyl Assay
kit and Lipid Peroxidation Assay Kit were purchased from Cayman Chemical Company
(Ann Arbor, MI). Reduced/Oxidized Glutathione (GSH/GSSG) Assay Kit was purchased
from Oxford Biomedical Research Inc. All other buffers were prepared in the lab.

3.2 Study Participants

There were three groups included in our research. The first group was sulfa
hypersensitive patients (patient group) who were recruited by Dr. Rieder at the Drug
Allergy Clinic at London Health Sciences Centre in London, Ontario, Canada. Referral
letters were received in the lab and patients were contacted to set up an appointment for
blood drawing. These patients were having a medical and clinical history of DHS because
of SMX and their LTA test were positive to SMX. Overall, 26 hypersensitive patients

between ages 7 and 77 were recruited. Two hypersensitive patients were male but the rest
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were female (Table 1). The second group was healthy volunteers (control group) who
have denied having any history or hypersensitivity reactions or have not been exposed to
SMX (overall 13 controls). The third group was 6 sulfa tolerant patients (tolerant group)
who were taking SMX and who have not developed hypersensitivity reactions. Informed
consent was obtained verbally from each patient by Dr. Rieder during their clinic visit.

3.3 Blood Collection and Cells Isolation

Venous blood samples from all participants were collected into heparinized
syringes and separated immediately. To isolate the cells, blood was diluted 1:1 with
phosphate-buffered saline (PBS, 10mM NaH,PQO,4, 2mM KH,PO,4, 137mM NaCl, 2.7mM
KCI; pH 7.2). PBMCs were isolated by layering < 30 ml of blood over 15 ml of Ficoll-
Paque density gradien, which was then centrifuged at 500 g for 20 min. The interface
layer (grayish layer that contains the lymphocytes) between dilute plasma and Ficoll was
collected and added to a clean tube. Cells were washed twice with PBS and adjusted, by
using the trypan blue exclusion method, to 1x10° cell/mL in HEPES buffered saline (4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (15mM HEPES, 125mM NaCl, 6mM
KCI, 1.2mM MgSOy, 1.0 mM NaHCOs3;, 1.0mM CaCl,, 10mM glucose; pH 7.4). Trypan
blue is a vital stain used to colour dead tissue or cells blue to estimate the proportion of
living cells in a population. The basis of this assay is that this dye does not react with the
cell unless the membrane is damaged.

To collect platelets, blood samples were centrifuged at 200 x g for 15 min, and then
the platelet rich plasma was centrifuged at 900 x g for 15 min to pellet platelets. Platelets
were then washed twice with modified calcium-free Locke’s solution (154mM NaCl,

2.6mM KClI, 2.14mM K2HPO4, 0.85m M KH2PO4, 1.2mM MgCl2, 10mM glucose, and



Table 1: Characteristics of patients with SMX hypersensitivity reactions and the

assays that used for each one.
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Patient Age  Sex Manifestation LTA iPTA ROS PC LP GSH
1 61 F Pruritus, swollen throat + + - - - -
2 30 F Rash + + - - - -
3 6 F Rash, alteration in urinary + + + - - -

pattern
4 17 M Mild skin rash + + + - - -
5 31 F Rash, sever urticaria and + + + - - -
pruritus
6 6 F Full- body rash, hive like + + + - - -
rash and pruritic
7 60 F Rash, asthma + + + - - -
8 40 F Urticaria + + + - -
9 43 F No clinical data found + + + - + -
10 29 F Urticaria , swelling of the + + + - + -
lips
11 53 F Vasculiticprash with + + + + + -
swelling of hands and feet
12 59 F Rash + + + + + -
13 58 F Pruritc rash + + + + + -
14 69 F Rash + + + + + -
15 76 F not remember the adverse + + + + + -
events
16 53 F Rash + + + + + -
17 57 F Erythematous skin rash + + + + +
18 29 F Rash + + + + + -
19 50 F No clinical data found + + + + + +
20 66 F Itchy rash + + + + + +
21 38 F Itchy rash + + + + + +
22 14 M No clinical data found + + + + + +
23 45 F Rash, difficulty with + + + + + +
breathing and chest
congestion
24 60 F Erythematous skin rash + + + + + +
25 18 F Itchy rash, organ + + + + + +
involvement.
26 13 F No clinical data found + + + + + +

(+) = if test done; (-) = if test not done
Abbreviations: LTA= Lymphocyte toxicity assay, iPTA= in vitro platelets toxicity assay, ROS

(reactive oxygen species), PC (protein carbonyl content), LP( lipid peroxide level), GSH (

glutathione).
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2.0mM EGTA,; pH 7.2) supplemented with 10% heat-inactivated fetal bovine serum
(FBS). Cells density was adjusted to 1x 10° cell/mL in calcium free Locke’s solution. All
procedures were performed in an aseptic condition in a laminar flow hood at room
temperature. All solutions were also brought up to room temperature before use unless
stated otherwise.

3.4 Assessment of Cells Viability and Immune sensitization

Two in vitro toxicity tests (lymphocyte toxicity assay and in vitro platelets
toxicity assay) were used to measure and assess the cytotoxicity that can be caused by
SMX metabolites.

3.4.1 Lymphocyte Toxicity Assay (LTA)

The LTA is a research tool that has been used to investigate the metabolic
pathogenesis of HSRs to SMX for many years (Rieder et al., 1989; Carr et al., 1993;
Neuman et al., 2000). The principle of this test is based on the reactive metabolite
hypothesis which states the imbalance between metabolic activation and detoxification
which leads to accumulation of toxic reactive metabolites correlates with drug
hypersensitivity reactions. This diagnostic test also is based on the observation that the
lymphocytes (PBMCs) from hypersensitive patients express a higher degree of cell death
when exposed to the culprit drug metabolites (SMX-HA) than cells from healthy
volunteers or drug naive patients. Our goal here is to identify the percentage of cell death
for each subject, to show that the incubation of their cells with the reactive metabolites,
SMX-HA, cause more cell death than with the parent drug, SMX, and to assess their sulfa

allergy reactions.
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The conventional LTA was performed as described previously (Shear and
Spielberg, 1988). Briefly, lymphocytes were treated at 1x 10° per well in quadruplicate
with final well concentrations of SMX at 200 uM and varying concentration of SMX-HA
of 25, 50, 100, 200, 400, or 800uM in a Falcon® flat-bottom tissue culture 96- well plate
for 2 hr at 37°C and 5% CO; humidified environment. SMX and SMX-HA were freshly
prepared in 3% dimethyl sulphoxide (DMSQ) to obtain the final well concentration of
1% DMSO. A standard curve was generated by seeding the cells at 25%, 50%, and 100%
of cell concentration in HEPES buffer in quadruplicate. After incubation, drugs were
removed by centrifugation at 500 x g for 10 min, and cells were suspended in 100uL
RPMI1640 media supplemented with 10% FBS, 100U/mL penicillin G sodium and
100pg/mL streptomycin sulfate (P/S), and incubated for 18 h in an atmosphere of 5%
CO, at 37°C to allow for recovery of the cells. Cell viability was quantified using MTT
[3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazoluim] staining. The MTT was diluted
to a concentration of 5mg/mL in HEPES, and 25 pL was added to each well. Plates were
then incubated for 4 h and the reaction was stopped by adding 100uL of stop solution
[50% N, N-dimethyleformamide (DMF) and 20% sodium dodecyle sulphate (SDS)]).
After that the plates were left overnight at room temperature, and protected from light.
The MTT Assay is a colorimetric assay based on the ability of mitochondria of viable
cells to reduce the soluble yellow tetrazolium salt to purple formazan crystals by
mitochondria succinic dehydrogenase; however, non viable cells do not cause this
conversion (Bellamy, 1992; Berridge and Tan, 1993). Thus, the number of viable cells is
dependent on the activity of mitochondrial succinic dehydrogenase that converts the

yellow dye to purple formazan. The absorbance of the plates was measured at 590nm
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Figure 8: Procedures of the lymphocytes toxicity assay (LTA).

This assay was used to assess the cytotoxicity that can be caused by SMX and SMX-HA,
and to confirm the sulfa hypersensitivity reactions. Briefly, the procedures for this test
involve the incubation of lymphocytes with SMX and SMX-HA at different

concentrations. The percentage of cell death is then determined using the MTT technique.

Figure adapted from Elzagallaai et al. (2009)
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using a Molecular Devices spectrophotometer (Vmax Kinetic Microplate Reader) (Figure
8).
3.4.2 Invitro platelets Toxicity Assay (iPTA)

This is a novel assay which has been introduced recently in our lab in an attempt to
simplify the LTA procedures. It is based on use of platelets as a surrogate cell model to
assess the in vitro cytotoxicity. Elzagallaai et al (2011) has demonstrated that platelets are
similar to PBMCs in the way they respond to SMX. The iPTA was also performed as
described previously (Elzagallaai et al., 2011).This test has similar procedures to LTA
except for the use of platelets instead of lymphocytes as a cell model, and calcium free
Locke’s solution was used as a medium in the experiments. Also, platelets were treated at
1x 107 cell/well, and plates were spun at 900 x g.

3.5 Assessment of Oxidative stress

3.5.1 Measurement of Reactive Oxygen Species Formation (ROS)

It has been shown that many drugs can be cytotoxic due to their ability to generate
high levels of ROS which can cause cellular damage. To investigate the differential
oxidative stress induced by SMX metabolites and to study its role in allergy, ROS
formation was determined and quantified in PBMCs by using the DCFH-DA (2°, 7’-
dichlorfluorescin diacetate) fluorescence Assay. The principle of this assay is that this
dye is transported in to the cell where DCFH-DA deacetylated, forming the non-
fluorescent DCFH which is oxidized and yields a highly fluorescent DCF. An increase in
the oxidation of DCFH to DCF results in an increase in DCF florescence which is

suggestive of ROS generation primarily H,O, and OH™ (Gomes et al., 2005).
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PBMCs were harvested and washed with PBS by centrifugation at 500 x g for 10
min. Cells were then re-suspended in Hank’s balanced salt solution (HBSS), and adjusted
to 1x 10° cell/ml of HBSS using the trypan blue dye exclusion assay. After that, cells
were plated at 1x 10° cell per well in quadruplicate in a Falcon® flat-bottom tissue
culture 96- well plate which then centrifuged at 500 x g for 7 minutes to pellet the cells
and decant the HBSS solution. DCFH-DA dye was dissolved in sterilized methanol at a
concentration of 0.97mg/mL, and then diluted to 1% volume/volume (10uM) in HBSS.
Cells were re-suspended with 100uL of 10uM DCFH-DA/HBSS solution, and 100uL
was also added to the blank (containing no cells) wells. Cells were incubated in an
atmosphere of 5% CO, at 37°C for 1 hour. After incubation, DCFH-DA- HBSS was
removed by centrifugation of the plates at 500 x g for 7 min, and 100uL of pure HBSS
was added to each cells containing well, and the blank wells received 150uL of pure
HBSS. A baseline reading of fluorescence (excitation 485nm; emission 527nm) was
taken using a multiwell fluorescence plate reader (Fluoroskan Ascent FL, Thermo
Labsystems). SMX (200 uM) or SMX-HA at varying concentrations( 50, 100, 200, 400,
or 800uM) were added in quadruplicate. A time zero fluorescence reading was taken.
Wells were incubated for 2 h at 37°C with fluorescence readings taken every 30 min.
H,0, (50uM, 100uM, 200uM, or 400uM) was used as a positive control and 1% DMSO
as vehicle control. The data were analyzed using Microsoft Excel ™ 2007 software.

3.5.2 Measurement of Protein Carbonyl Content and Lipid Peroxide levels.
It has previously been shown that the generation of ROS in excess can lead to
oxidative stress which can cause cellular damage by lipid peroxidation and by disrupting

the structure of nucleic acids and proteins (Mates et al., 2000). Thus, we determined the



48

markers of lipid peroxidation [thiobarbituric acid reactive substances (TBARS)] and of
protein oxidation (carbonyl content) in PBMCs as complementary assays for oxidative
stress.
3.5.2.1 Protein Carbonyl Content

A general indicator and by far the most commonly used marker of protein
oxidation is protein carbonyl content. Several approaches have been taken to detect and
quantify protein carbonyl content. The Cayman’s Protein Carbonyl Colorimetric Assay
Kit (10005020) utilizes the 2,4-dinitrophenylhydrazin (DNPH) reaction to measure the
protein carbonyl content. DNPH reacts with protein carbonyls, forming a Schiff base to
produce the corresponding hydrazone, which can be analyzed spectrophotometrically
(Reznick and Packer, 1994). The amount of protein-hydrazone produced is quantified at
an absorbance of 360 nm.

PBMCs were harvested and washed 2 times with PBS by centrifugation at 500 x g
for 10 min. Cells were then re-suspended in HEPES, and adjusted to 2 x 10° cell/ml of
HEPES using the trypan blue dye exclusion assay. Cells were then treated at 6 x 10° cells
per well with 1% DMSO (vehicle control), 400 uM H,0, (positive control), 200 uM
SMX or 400 uM SMX-HA in a Falcon® flat-bottom tissue culture 6 well plate for 2 h at
37°C and 5% CO, humidified environment. Drugs were freshly prepared in 3% DMSO
to obtain the final well concentration of 1% DMSO. After incubation, drugs were
removed through collection of supernatant in 5 mL polypropylene round bottom tubes
and centrifugation at 500 x g for 10 min. Cells were then re-suspended in 1 mL of RPMI
1640 media supplemented with FBS and P/S and incubated for 18 h in an atmosphere of

5% CO, at 37°C.
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After that, cells were collected by centrifugation at 500 x g for 10 min, and re-
suspended in 250 pL of homogenization buffer (50 mM potassium phosphate containing
1 mM EDTA,; pH 6.7). The cells were then sonicated on ice in 1.5 mL microcentrifuge
tubes. The homogenate was then spun at 10,000 x g for 10 min at 4°C, and the
supernatant was transferred to clean microcentrifuge tubes and stored at -80 °C until
assaying. To determine if there were contaminating nucleic acids present in the sample,
the absorbance of the supernatant was taken at 280 nm and 260 nm using the
homogenization buffer as a blank. If the ratio 280/260 was less than 1, a further step to
remove nucleic acids with 1 % streptomycin sulfate was needed.

All reagents were equilibrated to room temperature before beginning the assay, and
each sample was analyzed according to the procedure provided in the kit. Samples were
thawed from -80 °C and well vortexed, and 100 pL of the sample were then transferred to
two 1.5 mL microcentrifuge tubes (sample tube and control tube). Subsequently, 400 uL
of DNPH reagent were added to the sample tubes, while 400 uL of 2.5 M HCI were
added to the control tubes. Both sets of tubes were incubated in the dark at room
temperature for 1 h, and briefly vortexed every 15 min during the incubation. After
incubation, 500 uL of 20 % trichloroacetic acid (TCA) solution was added to each tube,
vortexed and incubated on ice for 5 min. The tubes were then centrifuged at 10,000 x g
for 10 min at 4°C in a microcentrifuge, and the supernatant was discarded. The protein
pellet was then re-suspended in 500 pL of 10 % TCA solution and incubated on ice for 5
min. The tubes were again centrifuged at 10,000 x g for 10 min at 4°C, and the
supernatant was discarded. The pellet was then re-suspended in 500 uL of ethanol/ethyl

acetate (1:1) mixture, vortexed thoroughly and centrifuged at 10,000 x g for 10 min at
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4°C. The washing with ethanol/ethyl acetate mixture was repeated two more times, and
after the final wash, the protein pellets were re-suspended in500 pL of guanidine
hydrochloride by vortexing. The tubes were then centrifuged at 10,000 x g for 10 min at
4°C to remove any leftover debris. After that, 220 pL of the supernatant from the sample
tubes and control tubes were transferred to two wells of the 96- well plate. The
absorbance was measured at a wavelength 360 nm using a multi mode microplate reader
(Synergy™ H4 Software Version 2.01.14).

To measure the protein carbonyl content, the average absorbance of each sample
and control was calculated, and the corrected absorbance (CA) was calculated by
subtracting the average absorbance of the controls from the average absorbance of the
samples. The concentration of the carbonyls was determined by inserting the CA in to the
following equation:

Protein Carbonyl (nmol/ml) = [(CA)/ (*0.011 pM™)] (500 uL /200 uL)

To determine the protein content in final pellets after the washes, 100 uL of the
sample control (C#) were transferred from one of the wells to a ImL quartz cuvette, and
then 900 uL of guanidine hydrochloride were added. The absorbance at 280 nm of each
diluted sample control was determined. The amount of protein was calculated from a
bovine serum albumin (BSA) standard curve (0.25-2.0 mg/mL) dissolved in guanidine
hydrochloride and read at 280 nm.

Protein concentration (mg/mL) = [(A 2s0-Yy-intercept)/slope] x *2.5x10 (dilution factor)

(*2.5 is the correction factor that adjusts the results back to the original sample).

Carbonyl content (nmol/mg) = (carbonyl nmol/ mL)/ (protein mg/mL)

3.5.2.2 Lipid Peroxidation
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Lipid peroxidation is a well established mechanism of cellular damage and is used
as a marker of oxidative stress. Highly reactive free radical species can oxidize lipids and
cause overproduction of malondialdehyde (MDA) which is a naturally occurring product
of polyunsaturated fatty acids’ peroxidation in the cells. The measurement of
thiobarbituric acid reactive substances (TBARS) is a well established approach for
detecting and verifying lipid peroxidation (Yagi, 1998). The Cayman Chemical
Company’s TBARS assay kit (10009055) provides a convenient tool for sensitive
detection of MDA present in a variety of samples. The principle for this assay is that the
MDA in the sample reacts with thiobarbituric acid (TBA), under high temperature and
acidic conditions, to generate MDA-TBA adducts. The MDA-TBA adduct can be easily
quantified colorimetrically at 530-540 nm, or fluorometrically (excitation 530 nm;
emission 550 nm).

PBMCs were harvested and washed 2 times with PBS by centrifugation at 500 x g
for 10 min. Cells were then re-suspended in HEPES, and adjusted to 2 x 10° cell/mL of
HEPES using the trypan blue dye exclusion assay. Then, the cells were treated at 6 x 10°
cells per well with 1% DMSO (vehicle control), 400 uM H»O; (positive control), 200 uM
SMX and 400 uM SMX-HA in a Falcon® flat-bottom tissue culture 6 well plate for 2 h in
an atmosphere of 5% CO, at 37°C. Drugs were freshly prepared in 3% DMSO to obtain
the final well concentration of 1% DMSO. After incubation, drugs were removed through
collection of supernatant in 5 mL polypropylene round bottom tubes and centrifugation at
500 x g for 10 min. Cells were then re-suspended in 1 mL of RPMI 1640 media
supplemented with FBS and P/S and incubated for 18 hr in an atmosphere of 5% CO, at

37°C.
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After that, cells were collected by centrifugation at 500 x g for 10 min, re-
suspended in 150 puL of PBS, and transferred to 1.5 mL microcentrifuge tubes. The cells
were then sonicated 3 times for 5 second intervals over ice. The whole homogenate was
then stored at -80 °C until assaying.

On the day of the experiment, all reagents were equilibrated to room temperature
before beginning the assay. The standard was prepared by diluting 25 uL of the MDA
Standard with 975 pL of distilled water to obtain a stock solution of 12.5 pM. Then,
different concentrations of MDA standards, labeled A-H, were obtained (0, 0.0625,
0.125, 0.25, 0.5, 1, 2.5 or 5 uM MDA). Subsequently, 100 uL of the sample or standard
were added to 5 mL polypropylene round bottom tubes that were labeled with a standard
number or sample identification number. Then, 100 uL of sodium dodecyl sulfate (SDS)
solution were added to each tube and vortexed. Also, 4 mL of the Color Reagent
[containing 530 mg of thiobarbituric acid (TBA), 50 mL of diluted acetic acid and 50
mL of diluted sodium hydroxide) were added to each tube. Tubes were then placed in a
holder, added to vigorously boiling water, and boiled for 1 hr. After boiling, tubes were
removed and incubated on ice for 10 min. After 10 min, tubes were centrifuged at 1600 x
g for 10 min at 4°C. To complete this assay, 150 uL. from each sample or standard were
loaded in triplicate to a 96-well plate, and PBS was used as a sample blank. The
fluorescence (excitation 530nm; emission 550nm) was taken using a multi mode
microplate reader (Synergy™ H4 Software Version 2.01.14).

To determine the MDA level, the average fluorescence of each standard and sample
was determined, and the corrected fluorescence was calculated by subtracting the

fluorescence value of the standard A (0 uM) from itself and all other values (both
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standards and samples ). The value of MDA for each sample was calculated from the
standard curve.
MDA (uM) = [(corrected fluorescence) — (y-intercept) / slope]

3.6 Determination of Reduced Glutathione Content

It is known that reduced glutathione (GSH) appears important in protecting cells
against toxicity of reactive metabolites, and conjugation with GSH is considered as an
essential detoxification pathway as well (Cribb et al, 1991). Therefore, we determined the
level of reduced GSH in the isolated PBMCs using Reduced/Oxidized Glutathione
(GSH/GSSG) Assay Kit, GT-40, with modifications. This assay depends on the reaction
of glutathione with DTNB (5, 5’-dithiobis (2-nitrobenzoic acid)) forming a yellow
colored product [5-thio-2-nitrobenzoic acid, (TNB)] that can be quantified
spectrophotometrically at 405 or 412 nm. This assay measures total amount of
glutathione (GSH + GSSG) and GSSG concentration. The quantity of GSH can be
determined by subtracting the amount of GSSG from the total amount of glutathione
(GSHy). Also, this assay employs a pyridine derivative (1-methyl-2-vinyl-pyridium
trifluoromethane sulfonate) as a thiol-scavenging reagent to prevent the oxidation of GSH
to GSSG during sample preparation (Tietze, 1969).

PBMCs were harvested and washed 2 times with PBS by centrifugation at 500 x ¢
for 10 min. Cells were then re-suspended in HEPES, and adjusted to 2 x 10° cell/ml of
HEPES using the trypan blue dye exclusion assay. Cells were then plated at the
concentration of 2 x10° cells per well, and incubated with 1% DMSO (vehicle control),
200 uM SMX, 200 uM SMX-HA or 400 uM SMX-HA in a Falcon® flat-bottom tissue

culture 12 well plate for 2 h in an atmosphere of 5% CO; at 37°C. Drugs were freshly
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prepared in 3% DMSO to obtain the final well concentration of 1% DMSO.
Subsequently, drugs and HEPES were removed by centrifugation at 500 x g for 10 min.
Cells were then allowed to recover in 500 pL. of RPMI media for 18 h in an atmosphere
of 5% CO, at 37°C. After that, cells were collected in microcentrifuge tubes and washed
with cold PBS. For GSH sample, cells were lysed by sonication in 200 uL of cold buffer
(containing 50mM potassium phosphate, 1mM EDTA, pH=7). Tubes were then
centrifuged at 10,000g for 10 min at 4°C, and the supernatant was transferred to a clean
tube. The same procedures were followed for preparing GSSG samples except 20 uL of
Scavenger were added to the buffer for cell lysis. Because almost all biological samples
used for GSH quantitation may contain large amounts of proteins, it was essential to
remove those proteins from the sample to avoid the interference due to sulfhydryl groups
of proteins in the assay. Therefore, the supernatant was deproteinated by adding an equal
volume of 5 % metaphosphoric acid (MPA) to the sample, mix it on a vortex mixer, and
allowed to stand at room temperature for 5 min. Subsequently, tubes were centrifuged at
2000 x g for 5 min, and the supernatant was collected without disturbing the precipitate.
Samples were stored at — 80°C if not assaying on the same day.

On the day of the experiment, 100 uL of both sets of samples were added to 500 uL
of Assay Buffer in a new microcentrifuge tube. All chemical solutions were prepared
according to the procedures in the kit. Briefly, DTNB and NADPH were reconstituted
with 500 pL of Assay Buffer, and then diluted with 5.5 mL of Assay Buffer and
vortexed. Also, 30 ul of glutathione reductase were diluted with 6 mL of Assay Buffer,
and left on ice until using. Standards were prepared within a concentration range from 0

to 3 uM of GSH and 0 to 1.5 uM of GSSG in Assay Buffer. After that, 50 pL of
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standards, samples, or blank (Assay Buffer) were added to the corresponding wells, in
triplicate, on a 96 -well plate. To each well, 50 uL. of DTNB and glutathione reductase
were added using a multiple-channel pipettor. Plates were then placed on an orbital
shaker for mixing, and incubated at room temperature for 5 min. Subsequently, 50 uL of
NADPH solution were added to each well. The absorbance at 405 nm was taken every
minute for 10 min using a kinetic plate reader (Multiskan Ascent, Thermo Labsystems).
To calculate the concentration of GSSG and GSH in the sample, the average

absorbance of each standard and sample was plotted as a function of time. The slope of
each curve, which is equal to the rate, was determined. The calibration curves were then
determined by plotting the Net Rate as a function of the concentration of GSSG or GSH.
Net Rate is the difference between the sample or standard rate and the blank rate. The
concentration of the total GSH (GSH;) or GSSG in the sample as well as the reduced
GSH was determined using the following equations:

GSH; or GSSG = (Net Rate — Intercept)/Slope x Dilution factor

Reduced GSH = GSH; — 2GSSG

3.7 Statistical Analysis

Statistical analysis was performed using the SPSS Statistics program, version 23.
Data are expressed as percentages of vehicle control cells except for the glutathione
assay. The area under the curve (AUC) of ROS formed over time (5-120 min) was
calculated. Significant differences were determined by either a t-test or repeated measures
analysis of variance (rmANOVA) where appropriate. A probability of more than 95%
(P<0.05) was considered statistically significant. Correlations were made using Pearson

correlation analyses. Values are presented as mean + standard error (SE).
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CHAPTER 4: RESULTS

4.1 Assessment of Cell Viability by the Lymphocyte Toxicity Assay (LTA) and the in
vitro Platelets Toxicity Assay (iPTA)

To confirm the patient’s susceptibility to SMX, and to determine the cell viability
for each SMX-HS patient, tolerant patient or healthy subject, two in vitro diagnostic tests
(LTA and iPTA) were employed. Briefly, cells (PBMCs or platelets) were incubated with
SMX (200 puM) or varying concentrations of SMX-HA (25 to 800 uM). After incubation,
drugs were discarded and cells were resuspended in RBMI 1640 media for 18 hr to allow
for the recovery of the cells. Viability was determined spectrophotometrically using MTT
method.

The exposure of lymphocytes or platelets to the parent drug, SMX, did not induce
a harmful effect (no toxicity). However, the reactive metabolites, SMX-HA, caused a
dose-dependent cytotoxicity (for all groups). With both assays, hypersensitive patients
had significantly less cell viability (i.e. higher cytotoxicity) than the controls or tolerant
group at SMX-HA 100,200, 400 or 800 uM concentrations (Figure 9A and 9B). The LCsg
values of SMX-HA were also calculated in case of both assays. As expected, SMX-HS
patients had significantly the lower LCsy than controls (P< 0.001) and SMX tolerant
patients (P< 0.0001) (Table 2). Thus, our data had approved that these in vitro
cytotoxicity assays, LTA and iPTA, have predictive value in diagnosing SMX

hypersensitivity in which total cytotoxicity is the standard reported outcome.
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Figure 9: Assessment of cell viability by LTA and iPTA.

LTA (A) and iPTA (B) for sulfa hypersensitive patients (n=26), controls (n=19) and sulfa
tolerant patients (n=6). PBMCs or platelets were isolated and incubated with increasing
concentration of SMX-HA or 200 uM SMX for 2 hr. The experiments were conducted in
quadruplicate, and cell death was then determined using the MTT method and expressed
as percentages of control (vehicle without drug). Results are presented as mean + S.E.

(*P < 0.05, **P < 0.01, ***P < 0.001) as compared to the patients group.
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Table 2: LCsp values of SMX-HA for study participants in both assays ( LTA and

iPTA).

Data are presented as mean + S.D, and expressed as a percentage of vehicle control cells.

*P< 0.001, **P< 0.0001as compared to patients group.

LCs Patients (n = 26) Controls (n=19) Tolerant (n=6)

LTA 121.8+6.11 243.9+ 5.38* 513.8+ 7.84**

iIPTA 133.9+5.13 300.9+ 9.01* 610.9+ 8.91**
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4.2 Measurement of Oxidative Stress Parameters
4.2.1 Quantification of Reactive Oxygen Species (ROS)

To determine the contribution of ROS in SMX-HA induced cytotoxicity, and to
Show whether hypersensitive patients exhibit higher ROS levels than other groups, the
2°, 7’-dichlorfluorescin diacetate (DCFH-DA) fluorescence assay was employed. PBMCs
were loaded with DCFH-DA dye for 1 h, and then the dye was removed. The baseline
reading was taken using a fluorometer set to excitation at 485nm and emission at 527nm.
Cells were incubated with SMX (200 uM) or varying concentrations of SMX-HA (25 to
800 uM) and H,0, (50, 100, 200, or 400uM) was used as a positive control. Fluorescence
was measured every 30min for 2 h; however, due to the difficulty to read the plates
immediately after adding the drugs, a 5 min reading was considered instead of a 0 min
reading. The amount of ROS formed was expressed as a percentage of control (vehicle
without drug).

The treatment of PBMCs with SMX did not alter the amount of ROS formed during
incubation times (data not shown). However, with the experimental concentrations of
SMX-HA of 50 to 800 uM, there was a significant increase in the ROS formation for all
study groups at each time point as compared to the corresponding vehicle control (Figure
10A, 10B and 10C). Also, the amount of ROS continued to increase as incubation times
increased, this is an indicative of a time dependency in ROS formation associated with
SMX-HA treatment.

The area under the curve (AUC) was used to quantify the amount of ROS that
formed over time (5 to 120 min) by exposure to SMX-HA metabolites. As expected,

lymphocytes from sulfa sensitive patients accumulated higher levels of ROS at the more
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Figure 10: Quantification of ROS produced by lymphocytes upon their incubation

with varying concentrations of SMX-HA.

Using the DCFH-DA fluorescence Assay (2’, 7°-dichlorfluorescin diacetate), DCFH is
oxidized and yields a highly fluorescent DCF (excitation 485nm; emission527nm) which
is used as indicator for ROS formation.

- The amount of ROS formed over incubation times by lymphocytes of SMX
hypersensitive patients (n=24) [A], healthy volunteers (n=16) [B], and SMX tolerant
patients (n=6) [C] when treated with SMX-HA (50 to 800 uM). Values are presented
as mean = S.E. *P < 0.05, **P < 0.01, ***P < 0.001 compared with the corresponding
vehicle control.

- The amount of ROS formed by the PBMCs of all study participants upon incubation
with 200 uM SMX-HA [D] or 400uM SMX-HA [E]. Data were expressed as a
percentage of vehicle control. The area under the curve (AUC) over time (5-120 min)
was calculated and the differences between patients and controls, or patients and the
tolerant group were determined by independent t-tests. Values are presented as mean

+S.E.
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relevant physiological SMX- HA concentrations (i.e. 200and 400 uM) compared with
other groups (Figure 10D and 10E). AUC5—120 of ROS that formed upon incubation of
cells with SMX-HA 200 or 400 uM for the patient group (AUC HA200=527.8112%;
AUC HA400=638.0%) was significantly greater than for the control (AUC
HA200=248.1%; AUC HA400=331.6%; P= 0.0001), and tolerant group (AUC HA200
=232.55%; AUC HA400 =198.9%; P< 0.001) (Table 3). No significant correlation was
shown between the amount of ROS formed and percentage of cell death when
lymphocytes from allergic patients were incubated with 200uM SMX-HA (p = 0.99, r =
0.002) and 400uM SMX-HA (p = 0.17, r =-0.29) (Figure 11A and 11B).

4.2.2 Measurement of Protein Carbonyl Content

The carbonyl content, which is the index of protein oxidative damage, was
determined in the lymphocytes of the study participants. Cells were treated for 2 h with
200 uM SMX or 400 uM SMX-HA using H,0, as a positive control and DMSO (1 %) as
a vehicle control. Protein carbonyl content was determined through DNPH reaction with
protein carbonyl groups, and expressed as the percentage of vehicle control.

There was no significant difference in protein carbonyl content over incubation of
PBMCs with SMX (parent drug) as compared to the corresponding vehicle control.
However, all groups’ cells that were exposed to 400 uM SMX- HA showed significantly
(P< 0.05) higher carbonyl content. This observation explains the role of drug metabolism
in inducing oxidative stress through the damaging of cellular proteins. Interestingly,
hypersensitive patients significantly (P< 0.05) expressed higher protein carbonyl content
as compared to tolerant patients upon incubation their cells with 400 uM SMX- HA

(Figure 12).
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Table 3: Area under the curve (AUC) of ROS over time (5-120 min) for study

participants upon incubation of their lymphocytes with SMX-HA 200 or 400 pM.

Data are presented as mean + S.D, and expressed as a percentage of vehicle control cells.

*P< 0.001, **P< 0.0001as compared to patients group.

AUCs_, 129 Patients (n = 24) Control (n = 16) Tolerant (n =6)

SMX-HA 200uM 527.8+ 213.2 248.0 + 78.8** 232.5 + 26.5*

SMX-HA 400uM 638.0+ 232.1 331.6 £96.1** 198.9 + 30.9*
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Figure 11: Correlation between the amount of ROS and the percent of cell death for

allergic patients.

The amount of ROS formed and the cytotoxicity of SMX-HA 200 uM (A) or 400 uM (B)
measured after a 2 hr of incubation.[ (p = 0.99, r = 0.002) ; (p = 0.17, r = -0.29);

respectively].
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Figure 12: Protein carbonyl content of lymphocytes treated with SMX (200 nM) or

SMX-HA (400 pM).

Lymphocytes of participants were treated with 200 uM SMX or 400 uM SMX-HA for 2
h. Drugs were then removed and cells were incubated in RPMI media for 18 h. Cell
lysates were used for this assay. Protein carbonyl content was determined through DNPH
reaction with carbonyl groups, and expressed as a percentage of vehicle control. Data are
presented as mean + S.E (n= 16 sulfa sensitive patients, 14 controls and 6 sulfa tolerant
patients). *P < 0.05 compared with the corresponding vehicle control. # P < 0.05

compared with hypersensitive patients group for the same treatment.
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4.2.3 Lipid Peroxidation

The lipid peroxides level was also determined as a complementary assay (to protein
oxidation) for oxidative stress. The TBARS level, which is the index of lipid
peroxidation, was measured in PBMCs to show whether SMX metabolites cause
increasing in lipid peroxide concentration or whether lymphocytes of allergic patients
exhibit higher degrees of membrane lipid peroxidation than others. Cells were treated for
2 hr with 200 uM SMX or 400 uM SMX-HA. Lipid peroxidation was assessed through
the reaction of MDA with TBA forming MDA-TBA adduct.

The lipid peroxide content was expressed as a percentage of vehicle control. For all
groups, cells treated with SMX showed no trends towards significant difference in lipid
peroxide concentration as compared with the corresponding vehicle control. However,
incubation of patient or control cells with SMX-HA exhibited significantly higher
TBRAS levels. In comparing allergic patients with other groups, no significant difference
was obtained (Figure 13).

Estimation of Reduced Glutathione (GSH) Content

GSH, in its reduced form, is the most powerful intracellular antioxidant, and the
ratio of reduced to oxidized glutathione (GSH/GSSG) is representative of the oxidative
status of the cell. GSH and GSSG levels were measured in PBMCs to show whether the
SMX itself may have some effect on the protective role of GSH, probably because of its
metabolic pathways. As well, it is worth knowing if there is a relationship between the
allergic pathologies and the glutathione defense system. GSH/GSSG assay is based on

the development of yellow color with DTNB as outlined in Materials and Methods. Cells
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were treated for 2 hr with 200 uM SMX, 200 uM SMX-HA, or 400 pM SMX-HA. GSH
was taken to be the difference between total glutathione content and GSSG.

All groups’ cells that were exposed to 400 uM SMX-HA revealed a significant
depletion in GSH content compared with the corresponding vehicle control, but a more
pronounced decrease was observed within allergic patients cells (P< 0.001). Treatment of
patients’ cells with 200 uM SMX-HA also showed a significant decrease in GSH content.
No significant changes in GSH values were observed in comparing allergic patients with
others (Figure 14A). Similar trends were revealed with the GSH/GSSG ratio (i.e.
significant reductions in GSH/GSSG ratio upon incubation of cells with SMX-HA 400
uM) (Figure 14B).

Interestingly, there was a negative correlation between ROS and GSH content for
patients group at SMX-HA 200 uM (p = 0.01, r =-0.8) and 400 uM (p = 0.002, r =-0.91)
(Figure 15A and 15B). As such, this indicates the functioning of the antioxidant defense

systems to detoxify free radicals produced through the SMX allergy.
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Figure 13: Lipid peroxide content of lymphocytes treated with SMX (200 uM) or

SMX-HA (400 pM).

Lymphocytes from participants were incubated with 200 uM SMX or 400 uM SMX-HA
for 2 h. Media containing drugs was removed and cells were then incubated for 18 h in
RBMI media. Lipid peroxidation was detected through the reaction of MDA with TBA as
described in the methods, and expressed as a percentage of vehicle control. Data are
presented as mean + S.E (n= 18 sulfa sensitive patients, 15 controls and 6 sulfa tolerant

patients). *P < 0.05 compared with the corresponding vehicle control.
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Figure 14: Determination of GSH level and GSH/GSSG ratio in PBMCs treated

with SMX and SMX-HA.

Lymphocytes were treated with 200 uM SMX or SMX-HA (200 or 400 uM) for 2 h.
Media containing drugs was removed and cells were then incubated for 18 h in RBMI
media.GSH and GSSG was detected through the reaction with DTNB. GSH (A) and
GSH/GSSG ratio (B) were calculated. Data are expressed as mean + S.E, (n= 8 allergic
patients, 8 controls and 6 tolerant patients). *P < 0.05, **P< 0.01compared with the

corresponding vehicle control group.
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Figure 15: Correlation between the amount of ROS and the GSH level for

hypersensitive patients.

The amount of ROS formed and the level of reduced glutathione (GSH) were measured
after incubation the lymphocytes for 2 hr with SMX-HA 200 uM (A) or 400 uM (B). [(p

=0.01,r=-0.81) ;( p=0.002, r =-0.91,); respectively].
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CHAPTER 5: DISCUSSION

Since hypersensitivity reactions can cause high morbidity and mortality rates, it is
very important to determine which patients tolerate therapy and which patients are at risk
for ADRs. The pathophysiology underlying drug hypersensitivity is not well understood,
however; it is believed that complex events of metabolic, toxic, and immunologic factors
play key roles. In addition, there are other factors which may predispose an individual’s
sensitivity towards a specific agent including species differences, genetic makeup,
concomitant dietary supplements or medications, and health state (Zuniga et al., 2012;
Rogers et al., 2002). A strong genetic association have recently been suggested to
contribute the HLA in the pathogenesis of drug hypersensitivity such as the presence of
HLA-B*5701 and abacavir hypersensitivity, and HLA-B*1502 and carbamazepine-
induced SJS/TEN in Han-Chinese patients (Mallal et al., 2002; chung et al., 2004; Teraki
etal., 2010)

Sulfonamides, such as sulfamethoxazole (SMX), are inexpensive antimicrobials
with a wide spectrum of action, and are commonly used in the therapy of infectious
diseases and for AIDS-related complications. However, their uses have been limited
because of the high incidence of potentially life threatening reactions. Sulfonamide
hypersensitivity reactions frequently present with skin rash, fever and internal organ
involvement, usually after 10 to 14 days of therapy and are resolved by withdrawing the
offending drug. Moreover, the occurrence of SMX allergy has increased in some disease
states, such as viral infections like HIV (Slatore and Tilles, 2004). The toxicity of SMX

has been widely studied in a variety of cell models in in vitro studies, as well as in in vivo
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studies. Also, a lot of research has been focused on understanding the mechanisms
involved in SMX induced hypersensitivity due to the availability and the known protein
reactivity of SMX metabolites, as well as much is known about its disposition in the
body. It has been established that the genetic factors, such as HLA polymorphisms and
drug metabolizing enzyme gene polymorphisms, are not major predisposing factors for
SMX hypersensitivity (Alfirevic et al., 2009; Alfirevic et al., 2003; Pirmohamed et al.,
2000).

Studies, by various investigators, have shown that oxidative bioactivation of SMX
to its reactive metabolites and protein haptenation appear to be essential steps in the
precipitation of immune reactions to SMX (Rieder et al., 1992; Reilly et al., 2000;
Svensson et al., 2001; Reilly and Ju, 2002). However, many of the mechanistic details of
how these toxic metabolites initiate immune activation remain unclear. Indeed, these
reactive metabolites can associate with macromolecules forming adducts that may disturb
cell function by damaging DNA or alterations in key signal transduction pathways, such
as disruption of ionic gradients and intracellular calcium stores, which ultimately cause
apoptosis (Hess et al., 1999). It has been also illustrated that SMX upon its metabolism
produces ROS which can impair the antioxidant system and modify immune responses
causing immunological tissue damage (Cornejo-Garcia et al., 2006). High ROS,
particularly O, and H,O,, concentration also disturbs cellular macromolecules, including
proteins and nucleic acids (Siems et al., 2005).

The purpose of our study was to investigate the role of SMX reactive metabolites,
as cytotoxic agents, and the oxidative stress on purified PBMCs subpopulations in vitro

in order to better understand the mechanisms and pathways that lead to ADRs toward
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SMX. As such, this knowledge will be very useful in preventing the incidence of these
critical reactions.

The first objective of our research was to assess and confirm the metabolic and
immunologic basis of SMX hypersensitivity reactions. In vitro cell death associated with
reactive electrophilic drug metabolites has been used as a marker to diagnose
sulfonamide hypersensitivity in a number of studies (Rieder et al., 1989; Reilly et al.,
1999; Neuman et al., 2000); however, it should be noted that the diagnosis of drug allergy
continues to represent a challenge until now. This is due to the lack of a safe and reliable
test and because of the variable clinical pictures.

We examined the total cytotoxicity in lymphocytes and platelets following drug
exposure and overnight incubation. Lymphocyte toxicity assay (LTA) has been used for
many years in our lab and has proven to be a very useful diagnostic tool for idiosyncratic
reactions to sulfonamides. However, in vitro platelets toxicity assay (iPTA) was
introduced recently as a novel diagnostic tool which focused on the use of platelets as a
surrogate cell model. All of the participants in this study underwent in vitro LTA and
IPTA testing with SMX and its metabolites. Our data demonstrated that cytotoxicity due
to SMX-HA varies between hypersensitive patients and other groups at higher SMX-HA
(100, 200, 400 or 800 uM) concentrations, with cell viability being lower in allergic
patients than others (Figure 9A and 9B). This is consistent with the previous findings
which established that these in vitro toxicity assays are good diagnostic tools to detect
sulfa hypersensitivity reactions (Neuman et al., 2007; Elzagallaai et al., 2010; Elzagallaai

et al.,, 2011). Also, we were able to report that the bioactivation of SMX to its



82

arylhydroxylamine metabolites appears to be a critical step in the development of
hypersensitivity reactions.

These differences in the cytotoxicity could be explained by the fact that there are
cellular, molecular or biochemical variation in human tissues, cells or fluid which make
some patients susceptible to specific drugs. Those patients may have pharmacokinetic
issues related to excessive quantities of reactive metabolites, or may have
pharmacodynamic difference in the ability of their cells to deal with the metabolites, or
may be due to tissue-specific difference in the drug metabolism.

Our second objective was to study the state of oxidative stress in allergy, and to
determine whether ROS accumulation following metabolite exposure may play a causal
role in the cytotoxicity observed with these compounds. Indeed, the releasing of oxygen
radicals and the imbalance in ROS production has been established to cause tissue
damage contributing in the clinical manifestations of asthma and other allergic diseases
(Bibi, et al., 1998; Boluda et al., 1998). Upon uptake, SMX can be oxidized by CYP 2C9
to corresponding hydroxylamine (SMX-HA) which automatically oxidized to the
corresponding nitroso (SMX-NO). The latter is a highly electrophilic metabolite which
can conjugate with proteins forming haptens, or deplete GSH which can directly cause
oxidative stress. Also, the reaction of the auto-oxidation of SMX-HA can be linked with a
partial reduction of molecular oxygen to superoxide anion, which is another source of
sulfonamide-induced oxidative stress.

We focused the study on PBMCs, because these cells are metabolically active and
expressing most of the enzymes that are required for drug detoxification, more closely

related to the immune system, and play an important role in allergic diseases. ROS
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formation in PBMCs was quantified by DCFH-DA fluorescence Assay over 2 h. Overall,
the amount of ROS significantly increased over time upon incubation with SMX-HA but
not with SMX, which supports the role of the reactive metabolites of a drug in inducing
oxidative stress and developing ADRs rather than the parent drug. This finding was in
consonance with previously published results by Vyas et al., (2005) which illustrated that
ROS generation in normal human epidermal keratinocytes (NHEK) was increased by all
arylhydroxylamines of SMX and DDS as compared to vehicle control, and the metabolite
of DDS produced a larger amount of ROS.

In general, to stimulate a full and efficient immune response, two definite signals
are required: the first from the interaction between a MHC restricted antigen and the T
cell receptor, and the second from the co-stimulation of the T-cell by the antigen
presenting cells (APCs) (Naisbitt et al., 2000; Maemura et al., 2005). Without the
generation of the second signal, this would lead to the tolerance. ROS may be an essential
mediator in the initiation and amplification of MHC class 1l and co-stimulatory molecule
expression (Maemura et al., 2005), in which ROS enhance MCH Il expression by
increasing the DNA binding of the transcription factor NY-F (Harari and Liao, 2004).
Lavergne et al. (2009) have illustrated that danger signals, such as cytokines, H,O, and
bacterial or viral pathogenic factors, enhance the formation of intracellular SMX-protein
adducts in human APCs. Also, they reported that oxidative stress within APCs may be a
risk factor for SMX hypersensitivity even though it does not directly affect cell viability
(Lavergne et al., 2009).

Indeed, it is known that the danger signals, such as ROS, which cause cell death

may be related to the drug (or chemically reactive metabolite) itself, or to other factors
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such as bacterial or viral infection. However, other studies showed that danger can also
be received in the absence of foreign substances from virally infected cells or dead cells
(Gallucci et al., 1999; Shi et al., 2000). When ROS were measured for all participants in
our study, cells from allergic patients treated with SMX-HA (200 or 400 uM) appeared to
accumulate higher ROS content than others (Figure 10D and 10E). This indicates the
pivotal role of oxidative stress as one of the mechanisms of hypersensitivity although it is
still unclear whether oxidative stress is the cause or the consequence of the allergic
reactions to the drugs. Our data supporting the fact that these serious reactions can occur
along with enhanced ROS production, either due to instability of ROS scavenging
systems or to enhanced oxidative stress production in cells of sensitive patients. Also, the
difference in relative potencies for ROS generation observed between study groups may
be related to the genetic variation in antioxidant defense enzymes or other important
oxidative metabolism. Collectively, these data add a new dimension to our current
understanding of the pathogenesis of drug allergy.

Even though our data did not show a simple correlation (like Vyas et al., 2005
finding with NHEK) between ROS formed and the percent of cell death, this should not
be interpreted to suggest that the increase in ROS generation in hypersensitive patients is
unimportant. Manchanda et al. (2002) have demonstrated that SMX metabolites
haptenate cellular proteins at concentrations below that associated with toxicity and
without loss of viability. Thus, haptenation alone does not cause enough direct cellular
damage to lead to toxicity. In reality, although reactive oxygen species can cause
oxidative stress, they are not essential for the apoptotic processes to occur. This

establishes that ROS can induce some apoptotic events, such as damaging the signaling
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pathway, releasing or surface expression of further danger signals (as heat-shock proteins
(HSPs), TNF and cytokines). Additionally, ROS are able to regulate the recruitment of T-
cells by expression of adhesion molecules, such as E-selectin, or by up-regulate cell
surface markers on APCs (Khan et al., 2006). This will ultimately cause cytotoxicity and
elicit an immune response.

SMX-protein adducts are thought to play a role in the pathogenesis of SMX
hypersensitivity (Naisbitt et al., 2002; Cheng et al., 2008). However, it has been
established that the haptenation of the proteins by SMX-NO can occur without loss of
cell membrane integrity, depletion of GSH or detectable disruption of redox-sensitive
factors (Naisbitt et al., 1999; Naisbitt et al., 2000). Binding of SMX-HA to proteins is
postulated to imply the auto-oxidation to SMX-NO. However, whether the SMX-HA
itself or SMX-HA generated ROS conjugates or interacts with lipid membranes is
unknown.

In order to examine the oxidative status, we went on to assay the oxidative stress
parameters that include lipid and protein oxidation. Lipid peroxidation is believed to be
an important cause of damage to cell membranes, and occur as a result of the increased
ROS production and decreased antioxidant capacity (Reiter et al., 2001). We determined
lipid peroxidation from cell lysates by the TBARS method which is a standardized tool
for assaying malondialdehyde (MDA). The latter is one of the stable products of
degradation of polyunsaturated fatty acid by radicals. Also, it is a highly reactive and
potentially mutagenic compound which can form covalent protein adducts and DNA
adducts (Farmer and Davoine, 2007; Marnett, 1999). Therefore, MDA must be

maintained at a low intracellular level. When lipid peroxide content was measured in our
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study, there was a significant increase in lipid peroxide content in cells of hypersensitive
patients and healthy controls when treated with 400 uM SMX-HA compared to the
corresponding vehicle control treated cells. Thus, this suggests that the SMX metabolites
can produce oxidative effects on the lipid cell membrane (Figure 13).

In a study by Neuman et al. (2007), they found that there is a correlation between
the severity of symptoms observed in affected patients by sulfonamide induced-
hypersensitivity and chemokine levels, with these mediators becoming higher in the
reactions that presented the organ involvement when compared with the individuals that
presented less important symptoms such as skin rash and fever. Also, data from Pérez-
Gobmez et al. (2000), and Verma et al. (2012) showed that there is higher TBARs within
severe symptomatic patients. In our research, we failed to find a significant difference
between allergic patients and other groups in terms of lipid peroxide content, and this
may be due to the fact that the majority of our sulfa allergic patients developed relatively
minor manifestations including only mild cutaneous reactions, and none of them were
clinically ill at the time of sampling. It has also demonstrated that the metabolic risk
factors for SMX hypersensitivity are likely to differ over time with HIV infections
(Eliaszewicz et al., 2002). Therefore, the severity of adverse reaction and the time
elapsed since hypersensitivity events may also play key roles.

Protein carbonyl content, which is used as an index of the oxidative damage to
proteins, was also quantified from cell lysates of all study subjects to assess the
relationship between oxidative stress and different allergic reactions. Higher carbonyl
contents were seen in cells treated with 400 uM SMX-HA compared to the corresponding

vehicle control treated cells. Also, PBMCs from allergic patients express higher protein
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carbonyl levels in comparison with values from sulfa tolerant patients (Figure 12).
Although a deeper and larger study with more defined clinical cases is needed before
definitive conclusions can be drawn, we can suggest using the protein carbonyl as a
suitable recovering marker for oxidative stress. This discrepancy in the oxidative stress
parameter has also been established at high-altitude training conditions in animal models
within an increase in the reactive carbonyl derivatives but not lipid peroxidation (Radak
et al., 1997). Another probable reason for the higher carbonyl content is the fact that
proteins seem to be more sensitive to oxidative modification and the higher relative
stability of oxidized proteins over time than lipids (Pantke et al., 1999). Also, protein
carbonyl groups can be induced by almost all types of ROS, and this may have some
advantages in comparison with lipid peroxidation products (Dalle-Donne et al., 2003).

The other goal of this study was to see if an allergic reaction to drugs induces a
response to antioxidant activities. Cells need appropriate redox balance for surviving and
to function well. GSH is the major endogenous antioxidant that is important for reducing
reactive metabolites to inactive compounds and scavenging of free radicals (Cribb et al.,
1996). Importantly, the electrophilic reactive intermediates of SMX-TMP are detoxified
by conjugation with glutathione, and subsequently this conjugate is metabolized and
excreted in the urine. SMX-induced hepatotoxicity is rarely observed although the liver is
the major site for the formation of SMX reactive metabolites, and this may be related to
the higher levels of GSH in hepatocytes than other cells.

Under conditions of inadequate intracellular glutathione, the reactive metabolites of
this drug can bind covalently to cellular macromolecules, initiating immune-mediated

hypersensitivity reactions, and hepatic and renal cellular necrosis (Walmsley et al., 1997;
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Rieder et al., 1989). Lymphocytes are affected by the alteration in the redox balance due
to their needs for a reducing medium for ideal proliferation and activation (Gelderman et
al., 2006). Further evidence for the induction of oxidative stress because of the SMX
metabolic pathways is provided by the ability of SMX metabolites to reduce GSH
content, but not with the SMX itself, as well as the significant reduction in GSH/GSSG
ratio (Figure 14). Importantly, the significant negative correlation found between the
GSH content and ROS formation for the allergic patients may demonstrate the benefit of
complementary antioxidant therapy in alleviating the oxidative alteration and the
consequently pathophysiological complications of sulfa toxicity (Figure 15).

The Glutathione deficiency has been hypothesized to be a risk factor for ADRs to
sulfonamides in AIDS patients (Van der Ven et al., 1996; Witschi et al., 1995; Walmsley
et al., 1997); however, this finding was not confirmed by other studies (Pirmohamed et
al., 1996; Wolkenstein et al., 2000; Eliaszewicz et al., 2002). These discrepancies
between the studies might be because of the instability of the GSH which require a
careful and prompt sample analysis for its determination. It is known that the low GSH
levels observed in HIV patients could contribute to increased cells haptenation, drug
immunogenicity and intracellular accumulation of highly reactive species, thus providing
an explanation for the high prevalence of sulfa allergy within those patients.

Indeed, if GSH depletion plays a critical role in the pathogenesis of these reactions, as
has been suggested for HIV-positive patients, it is possible that more significant or long-
standing deficiencies are necessary. When GSH was evaluated in our study groups, we
did not find a significant effect on GSH content between hypersensitive patients in

comparing with other groups. This is probably because of the very small number of
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subjects whose their GSH content was determined since our research limitations were the
size of blood sample and the need of having more cells to work in all assays. This
observation establishes that GSH may not play a major role, but could still make a
contribution to sulfonamide-induced oxidative stress or sulfa toxicity. In a study done
recently by Verma et al., (2012) to assess the oxidative stress status in the blood of 33
cutaneous drug reaction patients and 33 drug naive patients by assaying for GSH and
MDA levels, they found that the allergic patients had significantly raised MDA levels and
reduced GSH content as compared to the other group.

Although not all in vitro results can be translated to clinical data, and since a deeper
study is required before definitive conclusions can be drawn, our explanations can report
estimation of cell death, oxidative stress parameters, and GSH content, may give unique
and valid markers of ADRs associated with SMX. As oxidative stress is considered to be
at least partially involved in a variety of pathogenesis and drugs toxicity, it will be of
interest to assess the antioxidant potential against oxidative stress induced by

sulfonamides in in vivo studies.
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CHAPTER 6: FUTURE DIRECTIONS

The present study offered insight on the pathogenesis of sulfonamide induced
hypersensitivity, and we were interested to know why certain patients develop these
serious reactions while others do not. Significant progress toward a better understanding
of the mechanisms involved in drug hypersensitivity would be worthy and have a
powerful impact. Also, further investigations in this area will not only aid the
development of new therapeutic strategies, but may allow us to use current drugs more
safely.

Data have been presented suggesting the formation of both highly reactive
metabolites and reactive oxygen species may be important in generation of further danger
signals that can induce cytotoxicity even though they may not be directly correlated.
However, more and large clinical studies should be done to evaluate whether ROS are a
major predisposing determinant of individual susceptibility leading to clinical
hypersensitivity.

More exploration, including better animal models and innovative in vitro,
pharmacogenetic, and clinical studies, will be beneficial to explain the mechanisms
involved in oxidative stress, as well as their relationship with the immunological
response. A much larger study with more carefully defined clinical and symptomatic
cases is also needed to determine if the reactive oxygen species, that were observed in
vitro, are observed in patients receiving these drugs at the time of the reaction.

GSH is a primary intracellular anti-oxidant for scavenging free radicals and

detoxification of xenobiotics. Decreased GSH content have been shown to play a pivotal
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role in the modulation of immune functions and promote HIV expression (Arp et al.,
2005; Choi et al., 2000). It would be interesting to determine how the external danger
signals, such as HIV infection, increase the risk of hypersensitivity reaction and this may
help in designing safer and more effective therapy for those patients. Our findings detail
that the GSH defense is out of balance upon incubation of lymphocytes with SMX
metabolites. More clinical trials are required, however, to show whether there is a
significant inhibition of allergic reactions by treatment with different antioxidants, and to
determine to what extent is antioxidant supplementation beneficial for the purpose of
alleviating oxidative stress. Moreover, studies investigating the role of genetic variations
in genes related to oxidative stress (i.e. polymorphisms in antioxidant defense system
genes) could be fruitful for better understanding the pathogenesis of drug hypersensitivity

reactions and their metabolic complications.
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