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Abstract 

Engaging the environment through reason, humankind evaluates information, compares it to 

a standard of desirability, and selects the best option available. Stress is theorized to arise 

from the perception of survival-related demands on an organism. Cognitive efforts are no 

mere intellectual exercise when ontologically backed by survival-relevant reward or 

punishment. This dissertation examines the stressful impact, and countervailing peaceful 

impact, of environmental demands on cognitive efforts and of successful cognitive efforts on 

a person’s day-to-day environment, through mathematical modeling of ‘decisional control’. 

A modeling approach to clinical considerations is introduced in the first paper, “Clinical 

Mathematical Psychology”. A general exposition is made of the need for, and value of, 

mathematical modeling in examining psychological questions wherein complex relations 

between quantities are expected and observed. Subsequently, two documents are presented 

that outline an analytical and a computational basis, respectively, for assessing threat and its 

potential reduction. These two studies are followed by two empirical studies that instantiate 

the properties of the decisional control model, and examine the relation of stress and 

cognition within the context of psychometric, psychophysiological, and cognition-based 

dependent measures. Confirming the central hypothesis, results support the validity and 

reliability of best-option availability Pr(t1) as an index of cumulative situational threat E(t). 

Strong empirical support also emerges for disproportional obstruction of control by 

‘uncertainty’, a lack of both information and control, compared to less obstruction of control 

by ‘no-choice’, a simple lack of control. Empirical evidence suggests this effect extends 

beyond reduction in control to an increase in cognitive efforts when even control is not 

present. This highlights an existing feature of the decisional control model, Outcome Set 

Size, an index of efforts at cognitive evaluation of potential encounters regardless of control 

availability. In addition to these findings, the precise specification of model expectancies and 

consequent experimental design, refinement of research tools, and proposal of an integrative 

formula linking empirical and theoretical results are unique contributions. 

Keywords 

Stress and coping, mathematical modeling, decisional control, threat reduction, threat index. 
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1 Clinical Mathematical Psychology 

1.1 Introduction to the First Component Document 
The first paper in this dissertation research initiative is an introduction to mathematical 

modeling of clinical phenomena generally. This is a nascent field. As described in the 

encyclopedia entry, the published format for the paper below, areas such as anxiety, 

neurological functioning, and psychometric testing provide just a few of many promising 

avenues for the application of mathematical modeling techniques in a clinical psychology 

context. The article inserted below first appeared in the Wiley-Blackwell Encyclopedia of 

Clinical Psychology (Shanahan, Townsend, & Neufeld, 2015), edited by Scott O. 

Lilienfeld and Robin L. Cautin. 

Following the article pages (pasted as images within this document), a comment on seven 

aspects of direct application within the rest of the dissertation of discussed techniques, 

approaches and features of Clinical Mathematical Psychology are listed to end Chapter 1. 

 

1.2 First Document: “Clinical Mathematical Psychology” 
The encyclopedia article proper is presented on the 10 following pages in image format, 

drawn from the electronic reprints from Wiley-Blackwell. 
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1.3 Comment: “Clinical Mathematical Psychology” as 
Preface to Subsequent Component Documents 

Looking ahead, there are seven specific examples within the next four component papers 

in this dissertation where principles or approaches described in the preceding paper, 

“Clinical Mathematical Psychology” (Shanahan, Townsend, & Neufeld, 2015) are 

instantiated. These are listed here, with descriptive explanation.  

First, the use of Bayesian methodology to isolate set properties such as decision-structure 

identity in the decisional control model (Shanahan et al., 2015, p. 8), is extensively 

illustrated in Section 5, “Mixture-Model Properties (…) invoked by empirical 

touchstones”, in the second paper, “Towards a Comprehensive Model (…)” (Shanahan, 

Nguyen, & Neufeld, under revision). 

Second, stochastic distributions and precise expectancies of threat allocation (Shanahan 

et al., 2015, pp. 1-2) are detailed in the third study, a dynamic, interactive catalog of 

decisional control values. This catalog provides a generalization analysis context for the 

specific instances selected as experimental values in the fourth and fifth papers, where 

values and structures are selected to investigate model-driven hypotheses. 

Third, “custom-built”, axiom-driven model structures mentioned within the CMP 

encyclopedia entry (Shanahan et al., 2015, pp. 1, 3-4) are contained throughout the two 

conceptual and two empirical papers subsequent to the general introduction paper. These 

especially come to the fore in applying the design to experimentation, as in the stress 

prompting vignettes used to evoke motivated, paradigm consistent performance in 

participants. These structures were developed originally in order to quantify situations of 

partial or obstructed choice in hierarchies, and to examine the likely impact on both 

objective probability distributions and subjective perception and response to these. In 

brief, a non-modeling approach might have been to measure participant stress via 

questionnaire or behavioral instruments in a variety of decision-making environments 

with follow-up application of correlation or analysis of variance techniques. 

Notwithstanding the requisite use of standard statistical procedures, used herein, Neufeld, 
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and colleagues have designed a hierarchical model of various situations and examined 

the logically-prescribed statistical exigencies thereof to inform experimental design. 

Fourth, as a point of instantiation of components of the nascent field of clinical 

mathematical psychology, a spreadsheet platform in the third study (“Catalog of 

Decisional Control Values”, Shanahan, online spreadsheet in preparation) allows the 

immediate examination of the threat-expectancy distributions for all 9 first-order 

hierarchical scenarios (CC, CN, CU, NC, …, UU), and all 27 second-order scenarios 

(CCC, CCN, CCU, CNC, …, UUU). This interactive research tool will be made available 

via the established laboratory website for decisional-control work 

(publish.uwo.ca/~mshanah). This is an example of interactive research tools and 

resources, with apprehensible mechanisms readily examined in the transparent coding of 

spreadsheet cells (p. 9, 10). 

Fifth, “abductive reasoning” (Shanahan et al., 2015, pp. 3, 10) in the fourth study 

“Information Processing (…) occurs in two important contexts: 1) in reference to the 

application of preference parameters to archived data sets and validating the new 

construct of a ‘maximizing continuum’ with existing data, and 2) in the derivation of a 

‘decision value’ calculation to explain the finding of slope reversal in multi-modal 

dependent measures of stress, which suggested a two-source model for stress from 

information processing and threat exposure through abductive reasoning. 

Sixth, the verification of model-prescribed phenomena in the two empirical studies would 

neither be specifiable, nor verifiable, without rigorous underlying theory and exact 

operationalization. The validation of both the best-option availability as a good heuristic 

for situational threat and the systematic obstruction of threat reduction by lack of 

information, not only lack of control (‘uncertainty’ over and above ‘no-choice’) were 

effects whose confident prediction was founded on theoretically-based simulation work 

(Shanahan, 2007; Shanahan & Neufeld, 2010). These expected effects have been 

substantially confirmed, with some qualifications. 

Looking to give this purported achievement some context, a comparison may be made to 

pre-mapping, travelling to and reporting findings from hitherto uncharted territory, as in 
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the 15th and 16th century Age of Exploration, where the known territory is the standard 

body of stress and coping research. This study has predicted, described, operationalized 

and experimentally presented, measured, and confirmed what was expected almost purely 

from theoretical investigations in new stress and decision-making territory. Via 

simulational expectancies and hitherto lightly tested and validated model properties, real 

empirical phenomena were predicted that a) were not known, b) were not describable 

without the model, and c) were not measurable without rigorous theoretical anchoring. 

And there they are! Real participants, within empirically-revealed constraints, do indeed 

perceive stressful situations this way. 

Seventh, the ground is charted to an initial degree and laid open in a multitude of 

directions because of the strong theoretical grounding that allows principled interaction 

between a plethora of phenomena of clinical interest: reaction time data, 

psychophysiological response, psychometric profiles, and the structure and parameter 

variations of decision-making scenarios. Though perhaps the most abstruse, this last 

achievement is the arguably the most valuable in that there is an immense, real, sturdy 

platform, now validated, upon which to build, launch, and otherwise transact potentially 

thousands of scientific research edifices, expeditions, and enterprises. This job, the 

validation of strong theoretical conjecture by real, multi-modal empirical results, is 

plausibly begun. Almost surely, more fruitful work remains open to being taken up in this 

newly opened but largely uncharted territory. 
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2 Towards a Comprehensive Model of Coping with Stress 
through Decisional Control: Exploiting Mixture-Model 
Properties of a Game-Theoretic Formulation 

2.1 Introduction to the Second Component Document 
Presented below in MS Word 2010 format is the manuscript “Towards a Comprehensive 

Model of Coping with Stress through Decisional Control: Exploiting Mixture-Model 

Properties of a Game-Theoretic Formulation”. Authors are Matthew Shanahan, Peter 

Nguyen, and Richard W.J. Neufeld. This paper was submitted to a Special Issue of the 

Journal Mathematical Psychology (in honor of William K Estes), but was not accepted in 

the context of the Special Issue. It is currently under revision for resubmission with added 

improvements. Notably, the appendices contain the core of the formulation framework 

for the decisional control model, in rapidly specifiable form. These are in turn 

instantiated in the third component document, “A Catalog of Decisional Control Values”. 

Also notable within this second paper is the integration of decisional control between 

larger distribution structures of available decision features  (i.e., decision structure set  J, 

housing variation in choice condition ‘C’, ‘N’, ‘U’, and set size parameters P, p, q) and 

the micro-level occurrence count M, the yes-no observation of threatened outcome 

occurrence. This ‘sandwiching’ of the existing decisional-control model between higher-

order meta-parameters and atomistic yes-no occurrence counts creates a simultaneously 

comprehensive yet highly adaptable structure for locating distributions and likelihoods of 

particular features within the model (threat values, decision structures) and for guiding 

future explorations. 

2.2  “Towards a Comprehensive Model (…)”. 
Inserted below is the complete manuscript. Within the formatting in this dissertation it is 

52 pages long, and runs from page 16 to page 67, including a Footnotes page, an 

Appendix , Figure Captions page, and four Figures as the concluding material. 
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Study 2 – Theoretical Extension – Mixture Models 

 

Abstract 

Quantitative accounts of stress-related predictive judgments have stimulated 

consideration of the broader stress-navigation landscape in which such judgments 

operate. Decisional Control (DC), a means of coping with stress by “positioning oneself 

in a multifaceted stressing situation so as to minimize the probability of an untoward 

event,” is considered to occupy a prominent position in this landscape. Salient properties 

of DC have been implemented in a game-theoretic like infrastructure, emerging as a 

probability mixture model from which precise likelihoods of stress-relevant events and 

experiences have been derived. Also conveyed are Bayesian methods of characterizing 

DC-related properties of the stressor environment in which the events and experiences 

have taken place, including identification of hierarchical structures through comparative 

likelihood of sample generation. Uploading DC onto the presented quantitative platform 

forms a bridge between DC, as a cognition-intensive form of coping, with formal 

preference-and-choice models, and contemporary analyses of information processing.  

 

Keywords: 

stress negotiation; decisional stress control; coping; threat reduction; probability 

mixture models. 
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Toward a Comprehensive Model of Coping with Stress through Decisional Control:         

Exploiting Mixture-Model Properties of a Game-Theoretic Formulation 

Matthew J. Shanahan, Peter Nguyen, and Richard W.J. Neufeld 

The University of Western Ontario 

1. Introduction. 

 Psychological Stress and Coping comprises a major topic of investigation in the 

field of experimental personality research. Despite its complexity and intractability to 

verbal theorizing, formal developments on the topic nevertheless have been 

comparatively sparse.1 Underscoring the complexity and challenge of this content 

domain, traditional treatments of psychological stress and coping have cast as 

fundamental to the richness of its phenomena interaction amongst the principle variables 

at work-- described, for example as “interplay of stress and coping responses”, and 

“transactional, person-environment interchange” (e.g., Lazarus & Folkman, 1984; 

Leventhal, 1970).  

 Central to this transactional characterization of stress phenomena has been the 

construct of “cognitive appraisal”. Cognitive appraisal purportedly consists of “primary 

appraisal of environmental threat”, and “secondary appraisal of coping options”, followed 

by re-appraisal according to apparent coping efficacy. As such, psychological stress and 

coping have been deemed to entail cognition (appraisal) intensive person-environment 

interplay. This understanding is parlayed into a game-theoretic schema of stress 

negotiation, known as “decisional control”. Quantitative foundations of the schema 
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disclose mixture-model properties, in that parameters of the model themselves are 

stochastically distributed, with their mixing distributions arising naturally from model 

architecture. Model predictions moreover lend themselves to multinomial likelihoods of 

empirical events, poised for model testing. 

 Because of their status as Bayesian priors, the model’s mixing distributions usher 

in individualization of model operation. Availed is a Bayesian customized profiling of 

model-related environmental properties, mediated through individual specimens of 

experienced events.   

2. Cognitive appraisal of threat.  

 Objects of prediction in anticipatory appraisals surrounding stress pertain to 

aspects of the individual’s environment that potentially generate adverse occurrences 

(e.g., those of physical danger or severe discomfort; or untoward social interchange). To 

what degree might principles of categorical predictions apply to those circumstances? 

Three paradigmatic changes stand to modify or unseat the operative mechanisms such as 

competition models used in past research (cf., Estes, 1976).  

 One such change concerns the nature of the objects of judgment. Where 

predictions are those of a victorious competitor, stimuli necessarily have been presented 

in pairs, thereby invoking two protocols of information. In predicting whether a stimulus 

encounter (e.g., physical location or social setting) will result in a stressing event, 

however, stimuli can be judged singly.  
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 Second, stress related predictions are not necessarily of a discrete format, as they 

are in the case of Bernoulli-like win-loss occurrences. Rather than discrete outcomes to 

stimulus encounter, the probability of a stressing event more likely comes to the fore.  

 Third, the makeup of predicted outcomes also changes. For example, one category 

of outcome may consist of physically aversive events, while another takes the form of 

benign events.  

 Alteration in judgment structure sui generis to anticipatory stress appraisals 

potentially attenuates the judgment-process dominance of categorical frequencies of the 

predicted event, as seen in non-stress judgments (e.g., Estes, 1976). At the same time, 

judgments themselves may be more demanding, and thereby detract from comprehensive 

protocol implementation. Estes (1976) observed that individual probability judgments 

may depend on a series of covert all-or-none predictions. Consequently, increased 

economy by way of a reduced set of implicated protocols may be countered by greater 

complexity specifically of probability assessments, as appurtenant to the stress-coping 

domain.  

 Would previously established categorical-memory mechanisms nevertheless 

extend to this domain? The conclusion from a series of studies in which stress-context 

were instituted (Kukde & Neufeld, 1994; Lees & Neufeld, 1999; Morrison, Neufeld & 

Lefebvre, 1988; Mothersill & Neufeld, 1985; Neufeld & Herzog, 1983; see also, Neufeld, 

1982; Neufeld & Mothersill, 1980) was affirmative. Here, alphabetic letters 

experimentally were endowed with histories of subjectively noxious incidents, 

comprising bursts of experimentally-delivered loud white noise (of documented 
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aversiveness, according to subjective, and Thurstonian-scaled autonomic responses; 

Lefave & Neufeld, 1980; Neufeld & Herzog, 1983), on the one hand, and of benign 

outcomes (illumination of a green light), on the other.  

 Paralleling the previous findings and model predictions, the relative cumulative 

frequencies of the untoward outcomes determined individuals’ probability judgments of 

the untoward event, upon subsequent presentation of a contextual stimulus (alphabetic 

letter). For example, the anticipatory probability of noise occurrence to an alphabetic-

letter stimulus correlated .97 with its earlier cumulative pairing with a noise outcome, .80 

with the contingent probability of a noise outcome, and -.147 with its cumulative pairing 

with a silent outcome. Part correlations of the judged probabilities with these respective 

properties, statistically adjusting for any inadvertent overlap with the other two 

properties, were .419, .013, and -.221 (Neufeld & Herzog, 1983). A similar pattern of 

values was observed for reported levels of subjective stress instigated by the contextual 

stimuli. The dominance of the first property, above, withstood experimental variations, 

including differential pronunciation of the stressing and benign outcomes during the 

history-endowing trials (Einhorn & Hogarth, 1978; Estes, 1976; Neufeld & Herzog, 

1983), and predicting both untoward and benign-event probabilities, during the judgment 

trials (Mothersill & Neufeld, 1985).  

 Interestingly, ascertaining the relative position of a presenting stimulus, with 

respect to its comparative cumulative frequency of adverse outcomes, implies 

consideration of like properties for the remaining contextual stimuli. Establishing the 

contingent probability of adverse-event occurrence to a presenting contextual stimulus, in 

contrast, brings into play but two categorical-event protocols– its past accumulation of 
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stressing and of benign outcomes. Entry of the array of relative adverse-event cumulative 

frequencies into participants’ anticipatory appraisals evidently took place even though a 

contextual stimulus’ contingent probability of the predicted event seemingly was more 

cognitively economical. In any case, relative cumulative frequencies of stressor-events 

decidedly were transduced into predictive judgments of stressor occurrence, coherent 

with the operation of categorical-memory mechanisms in the sphere of stress appraisals. 

These findings stimulated consideration of the larger stress-negotiation landscape in 

which such cognitive stress appraisals are brought to bear.  

3. Coping with stress through Decisional Control. 

 A prominent form of coping in which predictive appraisals play a vital role is 

“Decisional Control” (DC). This constituent of an early informal taxonomy of ways of 

coping, posed by Averill (1973), was deemed simply to vary with the number of 

alternatives available to an individual for engaging stressful situations (cf. Thompson, 

1981). Subsequently, DC has been described somewhat more formally as “positioning 

oneself in a stressor situation so as to avoid situational components harboring higher 

probabilities of stress” (Lees & Neufeld, 1999, p. 185). Decisional control thus is 

regarded as cognition intensive, in its requirements for judged threat attached to the 

respective possibilities for stressor-situation engagement. In socially evaluative 

circumstances, for example, social exchanges may be judiciously broached so as to 

minimize the likelihood of a consequential social misstep, or gauche exchange. In a 

setting of physical threat (e.g., potentially dangerous industrial workplace), DC could 

take the form of successfully manoeuvring into the situational option (e.g., job task) 

carrying the least risk of injury or significant discomfort.    
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3.1. Environmental context of decisional control  

 We begin, in a game-theoretic vein, by posing situation scenarios that express the 

essential features of DC, and that spur quantitative treatments disclosing otherwise 

intractable  inferences about its functioning. Such prototype scenarios take on the 

following design. Objects of potential choice are arranged hierarchically in a nested-

nesting layout. Each tier of the hierarchy is divided into a discrete set of entities, eligible 

for the decision maker’s (DM) engagement-- depending on conditions of accessibility 

operative at that tier (DC condition, elaborated upon below). 

 In a building-construction scenario, for example, nested within construction sites 

are job locations (e.g., atop a scaffolding, or a subterranean location). Specific jobs (e.g., 

transporting materials, versus positioning and assembling them, and so on) in turn are 

nested in job locations. Each tier of this hierarchical, nested-nesting design, from 

construction site down to job assignment, contains a specific number of potential options, 

and each is governed by prevailing constraints on option eligibility.  

 Minimizing threat, by exercising decisional control, ultimately entails engaging 

the specific  situation element (job assignment), from among those made available by the 

constellation of DC conditions, that has the minimum judged probability of physical 

injury or significant pain. Scenarios of social-evaluation stress can be similar. At an 

academic or business convention, for example, gatherings may be nested in convention 

hotels; and potential interlocutors, bearing varying threats of an untoward interchange 

with the diffident delegate, are nested within gatherings.  
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 The number of entities making up the respective strata in such a 3-tier design, 

from highest to lowest, are represented as quantities by P, p, and q (model parameters). 

The DC conditions, which are tier-wise mutually exclusive, are the following: unfettered 

choice of the tier’s entities (C); external assignment of an entity, with uncertainty as to 

the assignment’s identity during the decision process (U); and external assignment of the 

entity, with disclosure of its identity from the outset of the decisional process-- that is to 

say, no choice, and no uncertainty (N). For conditions U and N, external assignment of 

the tier’s encountered constituent is random; this proviso is in keeping with an absence of 

both control and predictability, in the case of U, and the absence of control in the case of 

N. 

 Such a layout is depicted in Figure 1. Using bin (urn) terminology, returning to 

the building-construction example, construction sites represent bin sets; job locations, 

nested within construction sites represent bins; and jobs varying in judged probabilities of 

an adverse event, such as injury or significant pain, instantiate elements nested in bins. In 

this illustration, P = p = q = 2, making for 8 scenario elements. Levels of threat (i.e., 

adverse-event probabilities) attached to the respective elements, increasing from lowest 

to highest, are denoted ti, i = 1, 2, ..., Ppq. 

3.1.1. Summary Expression of DC properties. 

 The above developments lend themselves to more parsimonious and conceptually 

tractable statements. Deployment of DC conditions for a 2-tier nesting-nested hierarchy 

can be expressed as follows:  

∃𝑥𝑖 ∋ ∀𝑥𝑖 ∈ {𝑥1, 𝑥2}, 𝑥𝑖 = 𝐶 ⊻ (𝑈 ⊻ 𝑁), 
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where x1,2 denote the DC conditions for the upper and lower tiers, respectively.  

The parallel statement for a 3-tiered hierarchy is 

∃𝑥𝑖 ∋ ∀𝑥𝑖 ∈ {𝑥1, 𝑥2, 𝑥3}, 𝑥𝑖 = 𝐶 ⊻ (𝑈 ⊻ 𝑁), 

where x1,2,3 denote the DC conditions for the upper, middle and lower tiers, respectively.  

 Each of the pq elements of the 2-tiered hierarchy, and Ppq elements if the 3-tiered 

hierarchy, has a unique appraised probability of adverse-event occurrence ti:                                       

                   {t1<t2< …<ti< …t(P)pq};  tj<ti iff j<i ; ti ∈ [0,1]. 

 Element encounters are deemed to result in Bernoulli outcomes m: presence 

versus absence of adverse-event occurrence. Occurrence implies 1.0 arbitrary unit of 

magnitude, and non-occurrence implies 0 units: m ∈ {0,1}. 

The expected value of m, therefore is equal to   

                                      = E(t). 

Variance in event magnitude Var(m), in turn, is  

 

                                           E[E(m2|i)] – [E(E(m)|i]2   
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Var(m) is appurtenant to the psychological-stress context because unpredictability of 

adverse-event occurrence during an addressed epoch can be stressing in its own right 

(see. e.g., Denuit & Genest, 2001; Osuna, 1985; Paterson & Neufeld, 1987; Smith, 1989; 

Suck & Holling, 1997). While E(m) for m ∈{0,1} is equal to E(t), above, Var(m) is an 

“inverted-U” function of E(t), and is maximum where E(t) = 0.5.    

4. Empirical touchstones of Decisional-Control architecture’s random variables. 

It is apparent that random variables in the DC architecture comprise engagement 

of element i and second, stressing versus benign occurrences m ∈ {0,1}, occurring to the 

engagement. Note that the probability of engaging element i  Pr(i) is identical to the 

probability of encountering its unique threat level, or Pr(ti). The latter is used 

throughout to highlight the focus on this property. Its computation is taken up 

below. Meanwhile, again the probability of a stressor outcome, given element i, 

Pr(m = 1|ti), is ti.   

 Where DC conditions include provision for choice, Pr(ti) entails first the 

probability of its emerging as one of the ti being available for selection, amidst other 

DC constraints; and, second, the probability of its being the lowest value of the 

presenting ti -- min(available ti). Where choice is prevented, the engaged ti falls to 

random assignment.  
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 It is assumed that stressor-event magnitude is such that probability of its 

occurrence is minimized. Accordingly, where condition U applies to an object of 

choice (e.g., elements nested in bins, where DC-condition C attends bins and/or bin 

sets), choice is made in favor of the bin nesting the minimal ti value, from among 

those bins availed by DC conditions (e.g., Morrison, et al, 1988). 

Model-stipulated Pr(ti), and Pr(m = 1), bear on empirical events, namely 

engaged ti ‘s, and attendant m = 1,0. We use the following format in denoting the 

number of experiences (trials) of a specific set of DC conditions C,U,N, as combined 

with (typically single-integer-valued) parameters (P,)p,q : Z DC combination ; Ppq. For 

instance, the number of experiences of a 3-tiered hierarchy with DC combination 

CNU, and parameters P = p = q =2, is denoted ZCNU; 222. A useful more general 

expression takes the form ZC,U,N;(P)pq. Within any particular combination of DC 

conditions C,U,N, and parameters (P,)p,q , the number out of the total ZC,U,N;(P)pq  

experiences resulting in the engagement of ti  is  denoted
    

  

Likewise, within the ti  engaged during a specific —tier-parameter [i.e.,C,U,N; 

(P)pq] experience, the number of sampled Bernoulli-event outcomes is denoted 

MC,U,N; (P)pq. The frequency of m = 1 amongst these ti - dominated outcomes is 

denoted m1, and that of m0 = 0 is denoted m0; m1 + m0 = MC,U,N;(P)pq.  
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4.1. Computation of the probability of engaging threat level ti, Pr(ti). 

The following groups of DC conditions represent the forms of Pr(ti) derivations 

emanating from the 2- and 3- tier hierarchical nesting-nested designs. They include, (a), 

unfettered choice CC and CCC;  (b), choice combined with neither choice nor uncertainty 

NC, CCN; (c), choice combined with uncertain assignment CU, and CCU; (d), all 3 DC 

conditions UCN, and NCU; and,  (e), random assignment NNN, whose Pr(ti) is identical 

to that of UUU (extensions of their 2-tier hierarchy counterparts).   

(a). CC and CCC: Pr(t1) = 1.0, and Pr(ti’) = 0, where i’ = 2, …, (P)pq. That is, the 

lowest of the (P)pq values always is available.  

 (b) NC: Pr(t1) = 1/p. Assuming random assignment, above, the probability of t1’s 

bin being assigned is 1/p, and t1 necessarily is the least of the bin’s q ti values. 3 

 Pr(ti’) entails the current ti’’s availability for possible selection, and its being the 

lowest of the selectable ti’ values. The probability that the current ti’ is selectable brings 

into play the probability that t1’s bin has not been assigned (p-1)/p; the probability that 

the current ti’ occurs in one of the bins not occupied by t1, or  (p-1)q/(pq – 1); and the 

probability that the bin containing the current ti’ has been assigned, given that the bin 

containing t1 has not been assigned, or 1/(p-1) – altogether  

                                      
. 

 The probability that the current ti’ is the lowest of the q ti’ values in its bin invokes 

the Hypergeometric distribution (e.g., Patil & Joshi, 1968). This distribution is used to 
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assess the probability that all other elements in the bin nesting the present ti’ exceed its 

value, given its location outside t1’s bin.  

 Paralleling bin (urn) -model terminology, H(q-1; pq-2, pq-i', q-1) is the 

probability that out of a random sampling of q-1 (mutually independent) balls, without 

replacement (cf., Milenkovic & Compton, 2004) -- that is,  q-1 (mutually independent) 

threat values ti' -- from a bin containing a total of pq-2 balls (both t1 and the ti'’ under 

consideration themselves are ineligible), pq-i' of which are white, -- that is,  pq-i' for 

which ti'’ exceeds the particular ti' under consideration, -- all q-1 sampled balls are white -

- that is, all sampled ti' values exceed the currently entertained ti'. An analogous format of 

the hypergeometric distribution is used when the latter is called upon in obtaining the 

remaining mathematical expectations of threat. 

CCN: By similar logic, for this DC combination, , and   

𝑞 − 1
𝑞

∙ �
𝑞 − 1

𝑞
∙

1
𝑞 − 1

+
(𝑃𝑃 − 1)𝑞
𝑃𝑃𝑞 − 1

∙
1
𝑞

� ∙ 𝐻(𝑃𝑃 − 1; 𝑃𝑃𝑞 − 2, 𝑃𝑃𝑞 − 𝑖′, 𝑃𝑃 − 1). 

 The quotient (q-1)/q expresses the probability of t1 not being the assigned 

element in its bin. The expression in large brackets obviously simplifies to Pp/ (Ppq-1). 

Its expansion nevertheless discloses contingencies on which ti’ engagement depends (as 

also is seen with similar expansions, below). They comprise the probability of the current 

ti’ residing in the bin also occupied by t5, (q – 1)/(Ppq – 1), multiplied against the 

probability of the current ti’s assignment, given both its occurrence in t1’s bin and non-

assignment of t1, 1/(q-1), plus the probability of the current ti’ being positioned in a bin 

other than the one containing t1, given non-assignment of t1, (Pp-1)q/(Ppq-1), multiplied 
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in turn against the probability of the current ti’ being assigned, given its position outside 

t1’s bin, 1/q.   

H(Pp-1; Ppq-2, Ppq-i’, Pp-1), in turn, gives the probability of the present ti’ being 

lowest of the Pp candidates for selection, given that t1 is not one of them.   

  (c.) CU: Extending like reasoning to representative DC-condition combinations 

involving uncertain assignment, in the case of CU, Pr(t1) = 1/q. Recalling that U-related 

bin selection serves potential engagement of the lowest bin-held  ti  (in the present 

instance, t1), Pr(ti’) = (q-1)/[q(pq-1)].  

 CCU: In like fashion, here,  Pr(t1) = 1/q, and Pr(ti’) = (q-1)/[q(Ppq-1)]. 

 (d.) UCN: Turning to representative combinations with the presence of all DC 

conditions, for UCN, Pr(t1) = 1/(Pq), whereas Pr(ti’) =  

                         

NCU: As with UCN, Pr(t1) = 1/(Pq). Different from UCN, Pr(ti’) = 

                             

          Of note is the expression in braces. It conveys the possibility of the current ti’ being 

engaged, regardless of its value. Proceeding successively, included therein is the 
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probability that the current ti’ is not the lowest among the elements in the assigned bin set, 

given that the latter is a set other than that in which t1 is located, and given the current 

ti’’s own location in the assigned set. Included as well is the probability of the current ti’’s 

being one of the other q-1 elements in the bin containing the lowest of the assigned bin 

set’s pq elements, along with the probability of the current ti’ emerging as that bin’s 

designated element, given its location therein.   

 In the case of NCU, then, even the highest p-1 ti’ values stand to be encountered, 

through sheer dent of embedding with the designated bin set’s lowest ti’ value. 

Combination UCN, on the other hand, allows the decision making stress negotiator to 

espy the occurrence of such a high ti’ value, and thereby to take evasive action, in favor of 

the least of the designated p values. Here, the highest p-1 values are never encountered.   

 (e.) NNN;UUU: In each case, Pr(t1) = Pr(ti’) = 1/(Ppq).   

 A complete listing of the Pr(ti) formulae, for the 2 and 3-tier hierarchies, is 

presented in the Appendix to this document.  

5. Mixture-model properties of Decisional-Control architecture invoked by 

empirical touchstones.  

 The DC model has been supported by both empirical and large-simulation data 

(Kukde & Neufeld, 1994; Morrison, et al, 1988; Shanahan & Neufeld, 2010). Empirical 

data has taken the form of psychophysiological (autonomic and facial-

electromyographic) measures, along with subjective and behavioral (element-selection 

latency) measures. Measurement-battery evidence of stressor-event threat has 
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approximated DC-modeled threat expectation E(t), above; evidence of covert information 

processing mediating DC-availed threat reduction, in turn, has approximated the DC-

quantified predictive judgments on which it is contingent. Simulation data has conformed 

to relations between the above threat and processing indexes across an extensive grid of 

P, p and q parameter values (large-scale simulation; Shanahan & Neufeld, 2010a). 

Embedded in such simulations has been model sensitivity and generalization analysis, 

endorsing robustness of model performance across nesting-hierarchy complexity; 

extensive variation in parameter values; and selected constraints on parameter relations 

(e.g., P<p<q).    

 Additional empirical support emanates from an experiment whose principal data 

have addressed individual differences in threat-versus-challenge cardiovascular responses 

(Blascovich, Seery, Mugridge, Norris & Weisbuch, 2004) to variation in DC structures 

(Shanahan, Nguyen & Neufeld, in preparation).5 Presented with a 2-tiered layout, 39 

female and 32 male Psychology undergraduates selected structure elements ti, having 

unique threat associations (cf. 2. Cognitive appraisal of threat, above), within each of 

the 9, 2-tier DC scenarios. Each structure was presented in conjunction with 6 p, q 

combinations, ranging from 2,2, to 9,7.  

 The model-prescribed expected value of i (element order in the ascending 

element-threat array; i = 1,2, …, pq) was computed for each structure, under each 

combination of p and q: 
     The values of E(i) then were 

averaged over the 6 p, q combinations, separately within each DC structure. A substantial 
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correspondence was obtained between these model-generated, and empirical values, 

across the 9 DC structures, pseudo-r2  = .81 (for definition of pseudo-r2, see Cobb, 1981).  

When correction was made for chance departure of the experimental paradigm from 

model-stipulated values [e.g., paradigm designation of ti in condition NN was based on 

random ti selection, with chance departure from a consistent probability of strictly 

1/(pq)], pseudo-r2 was .99.
 

 Other empirical support has been indirect. It has occurred by way of numerical 

simulation, and empirical diary and ecological-momentary-sampling support (Levy, Yao, 

McGuire, Vollick, Jetté, Shanahan, Hay & Neufeld, 2012), of a nonlinear dynamical 

systems model of stress and coping in which DC has figured prominently (Neufeld, 

1999).  

With such sources of endorsement in hand, addressed here are more extensive 

quantitative properties of the DC formalization, and their further empirical linkages. The 

present developments are directed to modeled probabilities of events-- ti engagements 

and occurrences of stressor-benign-incidents m = 0, 1. Note that where the events 

comprise encountered stressing and benign incidents m1 and m0, the probabilities of such 

occurrences ti themselves are stochastically distributed as Pr(ti)--  altogether resulting in a 

mixture-model architecture. Model properties governing Pr(ti) are DC conditions C,U,N, 

and tier-size parameters, P, p and q. In line with this configuration, C,U and N,  and P, p,  

and q assume the role of hyper-parameters, of the model-prescribed mixing distribution 

of  base-distribution parameters ti .   
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Where the addressed observed variates comprise engaged elements ti themselves, 

the architecture is truncated at that observational level. Figure 2 presents the DC layout 

where ti are the observed variates, and Figure 3 depicts the mixture-model extension, 

where m = 0, 1 are the observed variates. 

5.1. Multinomial likelihood of engaged DC-situation elements  

 For observed variates ti,, occurring under a given combination of DC conditions 

and tier parameters, the multinomial likelihood   of the (P)pq empirical 

values of           is 

 

Where there are J DC-structures, the jth of which has prior probability πj ,  j = 1,2 ,…, J, 

(tier-parameter values being equal), the above multinomial likelihood becomes                                                                      
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5.2 Binomial likelihood of stressor and benign incidents m1, m0. 

 In like fashion, for observed variates m = 1, m = 0, occurring under a given 

episode of DC conditions and tier parameters, the binomial likelihood BLC,U,N;(P)pq of the  

m1 and m0 empirical values is
    

                
                    

 

Again, for J DC-condition—tier-parameter combinations, the jth of these having 

probability πj, 

 j = 1, 2, …, J, the above binomial likelihood becomes 

         
 

5.3. Formation of likelihood ratios.  

 Creation of a multinomial and binomial likelihood ratio (LR) ushers in 

assessments of empirical model fit, as follows. Availed are computations of G2, which is 

asymptotically  χ2 with an increasing number of observations [e.g., ZC,U,N;(P)pq of equation 

(1); 𝑀𝐶,𝑈,𝑁;(𝑃)𝑝𝑝 of equation (3)]; G2 = -2 ln (LR). The ML or BL expressions, above, 

form the numerator of the LR. The saturated generic model forming the denominator is 

identical to the numerator, except now Pr(ti) is replaced with  
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and ti is replaced with  
  

                                                       

 

 As there are no parameter estimates, both Akaike and Bayesian Information Criteria 

reduce to G2.  

 Also available is the Bayes factor. With equal prior probabilities of two 

competing models, it comprises  

           

 

As implemented here, the numerator of equation (5), for example, potentially consists of 

the ML or BL of the actual data-generating DC conditions, with the denominator 

consisting of the ML or BL of a different set of conditions, (P,) p, q being equal. Such an 

arrangement conveys the degree to which element engagements, or stressor-benign—

event occurrences, selectively conform to predictions from prevailing DC conditions.    

5.4. Numerical examples and Bayesian profiling in stressor situations. 

5.4.1. Implementing frequencies of Decisional-Control structure -element engagement.  

 The following example illustrates construction of the multinomial likelihood 

MLC,U,N;(P)pq and related statistics for the frequencies of DC-structure-element encounter  
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. Sufficient for illustration is the construction of these expressions for the two-tier 

nesting hierarchy, using the first two listed DC structures, CC, and CU. Computations are 

presented for p = 4, q = 3. Note that like procedures apply to other values of p and q, and 

to increased hierarchy complexity. 

 In the present case,  

                                                                         
 

Because Pr(t1)CC;43 = 1.0, we dichotomize the values of i  into  i = 1, and the remainder, i  

=2,3, …, 12.  Moreover, to avoid singularities incurred by Pr(ti;i=2,3,…, 12) = 0, predictions 

simply assume a close approximation of model predictions (cf. Morrison, et al., 1988). 

Here, Pr(t1) = 1.0 is replaced with Pr(t1) = .95, making 1 - Pr(t1) = .05.  

         The resulting MLCC;43 = .09301, and MLgeneric, saturated model = .2387202. The value of 

G2 = 1.885, which renders a p value of .17 when referred to the distribution for χ2
(df=1).. 

We note that such p values should be interpreted with some care especially considering 

multinomial-likelihood-χ2 empirical cell-frequency assumptions (e.g., Delucchi, 1993; 

García Pérez, 1994; 2000; Tollenaar & Mooijaart, 2003).  

 Turning to CU,  

,0,1,2;10;25
12,...,3,2,143; ===

=iittCU nnZ
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in 5 instances, and then again in 5 instances, and in 1 instance, respectively. Pr(t1)CU;43 

=.33, and Pr(ti;i=2,3, …, 12) = .06. The value of MLCU;43 is 9.6192(10-7). That of 

MLgeneric,saturated  model is .0000154, resulting in a value for G2 of 5.5464;   

                                                    
 

Applying CU predictions to 

 
                                             

 

leads to a G2 value of 32.83. Likewise, applying CC predictions to 
 

                                     
         

 

 produces a G2 value of 62.1. The χ2
(df)   p  values for these amounts approaches 0 in each 

case.  

 Allowing the same Bayesian  for each DC structure, the Bayes factor for the CC-

generated empirical data, 
 

                                               

is 5.2637(106). That for CU-generated data, 
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is 1.942(1012).  DC-structure discrimination in each case obviously meets the Bayes-

factor criterion of “decisive”.  

 Altogether, the present proof-of-principle, illustrative instantiation, indicates that 

multichotomous data tenably emanating from one or the other DC structure distinguish 

that structure (cf. Cohen, 1988, chap.7). 

5.4.1.1 .Bayesian profiling of DC aspects of the stressor situation, as mediated by DC-

structure element- engagement frequencies. 

 Monitored DC-structure element engagements  

in principle afford Bayesian estimation of DC-structure features of stressor environments. 

Allowing equal values of (P), p and q, and DC model operation, the posterior probability 

of the jth of J mutually exclusive and exhaustive candidate DC structures   

                                               
 

is 

                                                      
 

Where the Bayesian priors  πj are equal, considering the constant normalizing factor,  

 

5.4.2. Implementing frequencies of stressor and benign incidents.  
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  Implementation of stressor and benign incidents, over the course of their 

MC,U,N;(P)pq 

independent opportunities, is illustrated for the 3-tier hierarchy, with P = p = q =2. The 

value of t1 ≡ .1, with △ti ≡ .1 (e.g., Shanahan & Neufeld, 2010a).  

 For m1;CCC;222 = 2, m0;CCC;222 = 23, and m1;UUU, …, NNN;222 = 14, m0;UUU, …,NNN;222 = 

11, conditions with contrasting presence of choice, CCC versus UUU , …, NNN, are 

clearly distinguishable. The BLCCC;222 is .25315; BLgeneric, saturated model = .28203; G2 = 

.21603, The BLUUU;222 is .0480755, and BLgeneric, saturated model is .1591081; 

G2 = 2.396, 
    

 Applying UUU predictions to m1,0;CCC;222 leads to a value for G2 of 3.7593,  

  Using CCC predictions for m1,0;UUU;222 renders G2 as  8.13,                              

 

 The Bayes factor,  

                                            
 

                  

 That comprising    
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 Not surprisingly, numerical explorations indicate that less extreme differences in 

DC structures (e.g., CCC vs. CCU) are empirically less discriminable. Note that the 

mixture-model architecture applicable to empirical data, m1,0;C,U,N;(P)pq, unfortunately does 

not lend itself to conventional statistical power calculations as a function of MC,U,N;(P)pq 

(e.g., Cohen, 1988; chap. 7).  

 All in all, DC structures are identifiable inasmuch as they differ in their 

expressions of Pr(ti) (see Appendix). Statistical discriminability, however, will be an 

increasing function of divergence in these expressions. An asset of the present 

formalization surrounding DC structures arguably comprises self-disclosed sources of 

strengths and weaknesses in the structures’ empirical separability.  

5.4.2.1. Bayesian profiling of DC aspects of the stressor situation, as mediated by 

frequencies of stressor and benign incidents. 

Similar to the case for DC-element engagement, for the jth of J mutually 

exclusive and exhaustive DC structures,  
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Again, with equal πj, and considering the constant normalizing factor, 

  

 

 It also is possible to profile values of ti, given m1, 0. For example, episodic 

incidents m=1, m=0 may be available, contra the engaged context in which they occurred, 

because the former happen to be more poignant in memory. It may be desirable 

nevertheless to re-create-- in a Bayesian posterior-probability sense-- the degree of 

abiding threat in the individual’s surroundings. Doing so now is tantamount to estimating 

the probability of each ti, given the record of m=1, m=0, incidents. For a prevailing DC 

structure, then,  Pr(ti|{m1,m0},C,U,N;(P)pq) = 

                                                               

where 

 

                          

For J candidate DC structures, Pr(ti|{m1,0}) = 
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where the normalizing factor Θ  = 

            
 

                                                            

 

                                                     Discussion 

   The mixture model we delineate is a methodical cognitive- and statistical-science 

approach to otherwise nebulous concepts in the field of psychological stress and coping, 

such as “cognitive appraisal of threat”. This formal stipulation of predictive-judgment 

mechanisms has seeded the development of stress-theoretic infrastructures in which 

predictive judgments play a central role. Research on “The Cognitive Side of Probability 

Learning” (Estes, 1976, p. 76) arguably has spawned substantively significant 

quantification of theoretical “stressology”, and moreover has pointed to candidate applied 

assessment technology for estimating coping-relevant attributes of the stressor 

environment.  The current focus has been on negotiating psychological stress through a 

prominent, cognition-intensive form of coping, Decisional Control – situating oneself in a 

multifaceted stressing situation so as to minimize the probability of an untoward event. 

Uploading essential properties of this form of coping onto a quantitative platform, with 

its accompanying assumptive framework, has produced explicit likelihoods of engaging 

constituent, threat-harboring elements of the stressor situation, and also of untoward and 

benign incident occurrences. Such likelihoods, in turn, in principle are amenable to 

Bayesian characterization of DC-relevant properties of the environment, in which the 

engaged situation elements, or incident occurrences, have taken place.  
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 Quantification of DC’s workings also has potentiated a certain bridging to formal 

models of preference and choice, and information processing, as follows. Note that threat 

reduction demands an associated undertaking of cognitive transactions (Shanahan & 

Neufeld, 2010a). The generation of predictive judgments entails cognitive exertion, 

which represents a source of stress activation in its own right (Kukde & Neufeld, 1994; 

Solomon, Holmes & McCaul, 1980; Wright, 1984); DC-implementing mentation, and 

mitigation of stressor-incident threat, are reciprocally related (Morrison, et al, 1988; 

Shanahan & Neufeld, 2010a).  In this way, the net appeal of DC as a means of coping 

brings into play “incompatibility of criteria” (Tversky, 1969; Tversky & Russo, 1969). 

This DC property has motivated its integration with formal accounts of preference and 

choice that highlight incompatibility of criteria, and accommodate DC’s admixture of 

stochastic --elevated probabilities of lower ti values-- and deterministic--reduced 

predictive-judgment demands-- commodities (Batsell, Polking, Cramer & Miller, 2003; 

Tversky, 1972a; 1972b). Through DC quantification of these inversely related 

commodities, intersection with formal preference-and-choice models has provided a 

means of stipulating psychometrically monitored individual differences in penchant for 

DC, in terms of the commodities’ formally modeled utilities (Morrison, et al, 1988; 

Shanahan, Pawluk, Hong & Neufeld, 2012). 

 Cognitively ascribing threat of untoward events to constituent situation elements 

invokes a constellation of visual and memory search operations. Quantitative attributes of 

DC potentially dovetail with certain developments in contemporary cognitive science 

(Systems Factorial analysis, and assessment technology (SFT); Townsend & Altieri, 

2012;  Townsend & Wenger, 2004; Townsend & Nozawa, 1995). Fundamentals of 
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cognition implemented in SFT include cognitive capacity (cognitive work completed per 

unit time), mental architecture (serial, versus alternate parallel forms of dispatching 

cognitive-task constituents), termination criteria (degree of processing, on whose 

sufficiency informed responding is contingent), and cross-facilitation versus cross-

impedance of component processing channels.   

 Cognitive work, comprising predictive judgments that put into effect available 

DC,  stands to be specified through a mathematically disciplined yardstick, the integrated 

hazard function. Potentially availed by SFT is a formally grounded index of cognitive 

work as an endogenous source of stress activation.  

 Another presenting point of contact with SFT concerns the identification of 

stopping rules. Maximizing DC-afforded threat reduction lies in exhaustive processing of 

accessible situation threat elements ti. As noted, however, meeting such demands 

demonstrably is stressing in and of itself. Depending on individual utilities of reducing 

exogenous sources of stress, ti, versus endogenous sources, cognitive exertion, 

individuals may differentially forfeit a maximizing processing strategy (i.e., ensuring the 

least possible threat; Janis & Mann, 1977) in favor of a satisficing strategy (i.e., accepting 

a “sufficient”, if not maximum degree of threat reduction; Simon, 1955). Possible, as 

well, is a simplifying strategy, whereby the threat-reducing benefits of DC are 

relinquished in favor of minimal information processing (Shanahan & Neufeld, 2010; 

c.f., Paquette & Kida, 1988, Wright, 1975).  

 Cognitive activities underlying cognition-intensive threat reduction originate in 

the company of threat. Stress, therefore, stands to compromise its own resolution through 
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adversely affecting cognitive efficiency. Two (formally modeled) effects of stress on 

cognitive functioning, among others, include task-wise capacity reduction and suboptimal 

deployment of attentional resources across task elements that differ in their (quantified) 

importance to task execution (Neufeld, 1994; Neufeld & McCarty, 1994; Neufeld, 

Townsend & Jetté, 2007). Encroachment on DC-effecting processing capacity risks a 

shortfall, undercutting what is needed to exploit DC threat-reducing opportunities. 

Overall, the potentially complex interplay of endogenous and exogenous stressors, and 

stress effects on cognitive capacity that fuels cognition-intensive coping, ultimately 

bespeaks the continuous interactions of a “low-dimensional (nonlinear) dynamical 

system”, in which DC plays a central role (Levy, et al, 2012; Neufeld, 1999).  
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Footnotes 

1. Notable exceptions, emerging primarily from the ranks of mathematical psychologists, 

mathematicians, marketing researchers, and engineers, in the main have addressed 

waiting-induced stress and its costs (e.g., Denuit & Genest, 2001; Janikiraman, Myer & 

Hoch, 2011; Suck & Holling, 1997; Zohar, Mandelbaum, & Shinkin, 2002; all following 

Osuna’s (1985) seminal work on the issue; see also Booth, 1985), as well as selected 

stress-measurement methods (Birnbaum & Sotoodeh, 1990). 

2. It is assumed throughout that bin sets have an equal number of nested bins p, and that 

bins have an equal number of nested elements q. This assumption makes for 

computational tractability without imperiling generality of essential inferences (Shanahan 

& Neufeld, 2010a). 

3. Additional observations on the current hypergeometric-distribution implementation are 

presented in Shanahan & Neufeld (2010b). 
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Appendix. Formulae for the probabilities of engaging Decisional-Control- structure 

element i, Pr(ti). 

1. Two-tiered nested-nesting hierarchy:  

Pr(𝑡𝑖)𝐶𝐶;𝑃𝑞 =  �
𝑃𝑞 − 𝑖
𝑃𝑞 − 1� ÷ �

𝑃𝑞
𝑃𝑞�. 

Note, for all formulae, the calculation convention assumed for simplicity of notation is 

that  

�
𝑁
𝑁

� = 1, �
𝑁 − 1

𝑁
� = 0. 

 

Pr(𝑡𝑖)𝐶𝑁;𝑃𝑞 = �
𝑃𝑞 − 𝑖
𝑃 − 1 � ÷ �

𝑃𝑞
𝑃 �.

 

Pr(𝑡𝑖)𝐶𝑈;𝑃𝑞 =
(𝑞 − 1)

𝑞(𝑃𝑞 − 1) + �
𝑃𝑞 − 𝑖
𝑃𝑞 − 1� �

𝑃 − 1
𝑃𝑞 − 1�.

 

Pr(𝑡𝑖)𝑁𝐶;𝑃𝑞 = �
𝑃𝑞 − 𝑖
𝑞 − 1 � ÷ �

𝑃𝑞
𝑞 �.

 

Pr(𝑡𝑖)𝑁𝑁;𝑃𝑞 =
1

𝑃𝑞 + �
𝑃𝑞 − 𝑖

𝑃𝑞 �.
 

Note, where inert terms appear, as in NN;pq, above, the following term is inert for  i = 

1,…, pq; 

 

�
𝑃𝑞 − 𝑖

𝑃𝑞
�. 
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The intent is to create points of common comparison across the system of equations. In 

the CU;pq equation, the second term in the addition (with a combination function) is inert 

for i = 2, …¸ pq.
 

 

Pr(𝑡𝑖)𝑁𝑈;𝑃𝑞 =
1

𝑃𝑞 + �
𝑃𝑞 − 𝑖

𝑃𝑞 �.
 

 

Pr(𝑡𝑖)𝑈𝐶;𝑃𝑞 = �
𝑃𝑞 − 𝑖
𝑞 − 1 � ÷ �

𝑃𝑞
𝑞 �. 

 

Pr(𝑡𝑖)𝑈𝑁;𝑃𝑞 =
1

𝑃𝑞 + �
𝑃𝑞 − 𝑖

𝑃𝑞 �.
 

 

Pr(𝑡𝑖)𝑈𝑈;𝑃𝑞 =
1

𝑃𝑞 + �
𝑃𝑞 − 𝑖

𝑃𝑞 �.
 

 

Further notes include: i) the identical and uniform distribution of expectancy values for ti 

of all entropy-assumption conditions (NN, NU, UN, UU; pure random assignment of all 

selections); ii) the similarity of the expressions for partial choice CN, NC, and UC, with 

NC and UC identical, and CN being identical in structure but exchanging p  for q  where 

these appear independently because it is the term for the set size with operative choice 

(i.e., there are p choices under CN and q choices under NC and UC) and iii) the 

uniqueness of CU and its mathematical proximity to the entropy-assumption conditions 
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(not far from NN, NU, UN, UU , only showing substantially better threat-reduction at t1, 

resulting in little threat-reduction power being made available in this design when using a 

maximax decision-making strategy) 

4.2. Three-tiered nesting-nested hierarchy: 

Arranged by similarly structured ‘families of scenarios’: 

Probability of Threat t in position i for Second-Order Scenario XYZ, Pr(ti)XYZ 

Full Choice (one decision structure) 

Pr(𝑡𝑖)𝐶𝐶𝐶 = �
𝑃𝑃𝑞 − 𝑖
𝑃𝑃𝑞 − 1

� ÷ �
𝑃𝑃𝑞
𝑃𝑃𝑞

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑃𝑃𝑞 − 1). 

 

Two Choice Nodes, No Trailing Uncertainty (four decision structures) 

Pr(𝑡𝑖)𝐶𝐶𝑁 = �
𝑃𝑃𝑞 − 𝑖
𝑃𝑃 − 1

� ÷ �
𝑃𝑃𝑞
𝑃𝑃

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑃𝑃 − 1). 

 

Pr(𝑡𝑖)𝐶𝑁𝐶 = �
𝑃𝑃𝑞 − 𝑖
𝑃𝑞 − 1

� ÷ �
𝑃𝑃𝑞
𝑃𝑞

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑃𝑞 − 1). 

 

Pr(𝑡𝑖)𝑁𝐶𝐶 = �
𝑃𝑃𝑞 − 𝑖
𝑃𝑞 − 1

� ÷ �
𝑃𝑃𝑞
𝑃𝑞

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑃𝑞 − 1). 

 

Pr(𝑡𝑖)𝑈𝐶𝐶 = �
𝑃𝑃𝑞 − 𝑖
𝑃𝑞 − 1

� ÷ �
𝑃𝑃𝑞
𝑃𝑞

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑃𝑞 − 1). 
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One Choice Node, No Trailing Uncertainty (seven decision structures) 

Pr(𝑡𝑖)𝐶𝑁𝑁 = �
𝑃𝑃𝑞 − 𝑖

𝑃 − 1
� ÷ �

𝑃𝑃𝑞
𝑃

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑃 − 1). 

 

Pr(𝑡𝑖)𝑁𝐶𝑁 = �
𝑃𝑃𝑞 − 𝑖

𝑃 − 1
� ÷ �

𝑃𝑃𝑞
𝑃

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑃 − 1). 

 

Pr(𝑡𝑖)𝑈𝐶𝑁 = �
𝑃𝑃𝑞 − 𝑖

𝑃 − 1
� ÷ �

𝑃𝑃𝑞
𝑃

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑃 − 1). 

 

Pr(𝑡𝑖)𝑁𝑁𝐶 = �
𝑃𝑃𝑞 − 𝑖

𝑞 − 1
� ÷ �

𝑃𝑃𝑞
𝑞

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑞 − 1). 

 

Pr(𝑡𝑖)𝑁𝑈𝐶 = �
𝑃𝑃𝑞 − 𝑖

𝑞 − 1
� ÷ �

𝑃𝑃𝑞
𝑞

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑞 − 1). 

 

Pr(𝑡𝑖)𝑈𝑁𝐶 = �
𝑃𝑃𝑞 − 𝑖

𝑞 − 1
� ÷ �

𝑃𝑃𝑞
𝑞

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑞 − 1). 

 

Pr(𝑡𝑖)𝑈𝑈𝐶 = �
𝑃𝑃𝑞 − 𝑖

𝑞 − 1
� ÷ �

𝑃𝑃𝑞
𝑞

� , max 𝑖 = 𝑃𝑃𝑞 − (𝑞 − 1). 
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Two Choice Nodes, With Trailing Uncertainty (two decision structures) 

Pr(𝑡𝑖)𝐶𝐶𝑈 = �
𝑃𝑃𝑞 − 𝑖
𝑃𝑃𝑞 − 1

� ∙ �
𝑃𝑃 − 1

𝑃𝑃𝑞 − 1
� +

𝑞 − 1
(𝑃𝑃𝑞 − 1) ∙ 𝑞

, max 𝑖 = 𝑃𝑃𝑞. 

 

Pr(𝑡𝑖)𝐶𝑈𝐶 = �𝜃 ∙
𝑃𝑞

𝑃𝑃𝑞
+ (1 − 𝜃) ∙ �1 −

𝑃𝑞
𝑃𝑃𝑞

�� × �
𝑞

(𝑃𝑃𝑞 − 1) + 𝜃 ∙
𝑃𝑃𝑞 − 𝑞 − 1

𝑃𝑃𝑞 − 1
�

× �
𝑃𝑃𝑞 − 𝑖 − 𝑘 − 𝜃 + 3

𝑃𝑃𝑞 − 𝑘 + 1

𝑝+1

𝑘=3

, max 𝑖 = 𝑃𝑃𝑞 − (𝑞 − 1); 

𝜃 = �
𝑃𝑃𝑞 − 𝑖
𝑃𝑃𝑞 − 1

� , if 𝑖 = 1, 𝜃 = 1, if 𝑖 > 1, 𝜃 = 0.   

 

One Choice Node, With Trailing Uncertainty (four decision structures) 

Pr(𝑡𝑖)𝐶𝑈𝑁 =
1
𝑃

∙ �𝑃𝑃 ∙
(𝑃𝑃𝑞 − 𝑃𝑃)!

(𝑃𝑃𝑞 − 𝑃𝑃 − 𝑖 + 1)!
∙

(𝑃𝑃𝑞 − 𝑖)!
(𝑃𝑃𝑞)!

+ 𝑃𝑃 ∙ (𝑃 − 1)

∙ � �
(𝑃𝑃𝑞 − 𝑃𝑃)!

(𝑃𝑃𝑞 − 𝑃𝑃 − 𝑘 + 1)!
∙

(𝑃𝑃𝑞 − 𝑘 + 1)!
(𝑃𝑃𝑞)!

�
𝑖−1

𝑘=1

�,  

𝑤ℎ𝑒𝑒 𝑖 = 1, … , 𝑃𝑃𝑞 − 𝑃𝑃 + 1;  𝑖𝑖 𝑖 > 𝑃𝑃𝑞 − 𝑃𝑃 + 1, Pr(𝑡𝑖) = Pr�𝑡𝑃𝑝𝑝−𝑃𝑝+1� , max 𝑡𝑖

= 𝑡𝑃𝑝𝑝. 

If i = 1 under CUN , evaluate summation as zero, such that the second term of the 

addition in the square brackets becomes zero. 
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Pr(𝑡𝑖)𝐶𝑁𝑈 = �  �
1
𝑞

�
(𝑃𝑃 − 𝑃)!

(𝑃𝑃)!
∙

(𝑃𝑃 − 𝑘)!
(𝑃𝑃 − 𝑃 − 𝑘 + 1)!

∙
𝑃

(𝑃𝑃𝑞 − 𝑘)

𝑃𝑝𝑝

𝑖=𝑘

𝑃𝑝−𝑃+1

𝑘=1

∙ �(𝑞 − 1) + �
𝑃𝑃 − 𝑃 − 𝑖 + 1
𝑃𝑃 − 𝑃 − 𝑘 + 1

� ∙ (𝑃𝑃𝑞 − 𝑘 − 𝑞 + 1)�� , max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

 

Pr(𝑡𝑖)𝑁𝐶𝑈 = 𝑃𝑞 ∙
𝑃𝑃 − 𝑃

𝑃𝑃
∙

(𝑃𝑃𝑞 − 𝑃𝑞 − 1)!
(𝑃𝑃𝑞 − 1)!

∙ 

�
(𝑃𝑃𝑞 − 𝑘 − 1 + �𝑃𝑝𝑝−𝑖

𝑃𝑝𝑝−𝑘�)
(𝑃𝑃𝑞 − 𝑃𝑞 − 𝑘 + 1)!

∙ �(𝑞 − 1) + �
𝑃𝑃𝑞 − 𝑖
𝑃𝑃𝑞 − 𝑘

� ∙ (2 − 𝑞)�
𝑃𝑝𝑝−𝑝𝑝+1

𝑘=1

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

 

Pr(𝑡𝑖)𝑈𝐶𝑈 =
1

𝑃𝑞
�
(𝑃𝑃𝑞 − 𝑃𝑞)!
(𝑃𝑃𝑞 − 1)!

∙
(𝑃𝑃𝑞 − 𝑖)!

(𝑃𝑃𝑞 − 𝑃𝑞 − 𝑖 + 1)!

+ (𝑞 − 1) �
(𝑃𝑃𝑞 − 𝑃𝑞)!
(𝑃𝑃𝑞 − 1)!

∙
(𝑃𝑃𝑞 − 𝑘 − 1)!

(𝑃𝑃𝑞 − 𝑃𝑞 − 𝑘 + 1)!

𝑖−1

𝑘=1

�, 

max 𝑘 = 𝑃𝑃𝑞 − (𝑃𝑞 − 1), max 𝑖 = 𝑃𝑃𝑞. 

 

One Choice Node, With Two Trailing Uncertainties (one equation) 

Pr(𝑡𝑖)𝐶𝑈𝑈 =
𝑃𝑞 − 1

𝑃𝑞(𝑃𝑃𝑞 − 1)
+ �

𝑃𝑃𝑞 − 𝑖
𝑃𝑃𝑞 − 1

� �
𝑃 − 1

𝑃𝑃𝑞 − 1
� , max 𝑖 = 𝑃𝑃𝑞. 
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No Choice Nodes (eight equations) 

Pr(𝑡𝑖)𝑁𝑁𝑁 = �
𝑃𝑃𝑞 − 𝑖

𝑃𝑃𝑞
� +

1
𝑃𝑃𝑞

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

Pr(𝑡𝑖)𝑁𝑁𝑈 = �
𝑃𝑃𝑞 − 𝑖

𝑃𝑃𝑞
� +

1
𝑃𝑃𝑞

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

Pr(𝑡𝑖)𝑁𝑈𝑁 = �
𝑃𝑃𝑞 − 𝑖

𝑃𝑃𝑞
� +

1
𝑃𝑃𝑞

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

Pr(𝑡𝑖)𝑈𝑁𝑁 = �
𝑃𝑃𝑞 − 𝑖

𝑃𝑃𝑞
� +

1
𝑃𝑃𝑞

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

Pr(𝑡𝑖)𝑁𝑈𝑈 = �
𝑃𝑃𝑞 − 𝑖

𝑃𝑃𝑞
� +

1
𝑃𝑃𝑞

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

Pr(𝑡𝑖)𝑈𝑁𝑈 = �
𝑃𝑃𝑞 − 𝑖

𝑃𝑃𝑞
� +

1
𝑃𝑃𝑞

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

Pr(𝑡𝑖)𝑈𝑈𝑁 = �
𝑃𝑃𝑞 − 𝑖

𝑃𝑃𝑞
� +

1
𝑃𝑃𝑞

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 

Pr(𝑡𝑖)𝑈𝑈𝑈 = �
𝑃𝑃𝑞 − 𝑖

𝑃𝑃𝑞
� +

1
𝑃𝑃𝑞

, max 𝑡𝑖 = 𝑡𝑃𝑝𝑝. 
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Figure Captions 

Figure 1: Illustrative Decisional-control Coping Three-Tiered Hierarchy. Bin-sets are 

construction sites; Bins are job locations nested within construction sites; Elements are 

jobs of varying threat probabilities of an untoward event (e.g., injury), ti ; i = 1, 2, …, 

Ppq, nested within job locations. This type of diagram is typical of decisional control 

hierarchy illustrations. In this example, the threat managed via decisional control is the 

threat of injury occurring during a given task (“job”) in a given area (“location”) of a 

given building project (“site”) under construction by a given construction company. 

Figure 2:  Architecture of Decisional-control for Two- (or Three-) Tiered Hierarchy. 

Notation C stands for free choice regarding associated nesting-hierarchy level; U denotes 

assignment of an object whose identity is unknown to the decision-maker during the 

decisional process; N denotes object assignment whose identity is known to the decision-

maker from the outset of the decisional process. Notation P stands for number of bin-

nesting bin sets; p denotes number of bin-set nested, element-nesting bins; q denotes 

number of bin-nested elements. Two-tiered hierarchies use only bins p and elements q. 

Figure 3:  Architecture of Decisional-control Coping for Two- (or Three-) Tiered 

Hierarchy: Predicting Stressor-Event Occurrences. (see Figure 2 for explanatory notes) 

Figure 4: Graphical Depiction of scenario CUN (2,2,2). (See description below graphic) 
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𝐶𝐶𝑚𝐶𝑢𝑢𝑡𝑖𝑢𝑒 𝐸𝑥𝑃𝑒𝐸𝑡𝑢𝑡𝑖𝐸𝑒 𝐸𝑖 𝑇ℎ𝑟𝑒𝑢𝑡 𝐸(𝑡) = � Pr (𝑡𝑖) ∙ 𝑡𝑖

(𝑃)𝑝𝑝

𝑖=1

 

  

Hyper-parameters 
Structure Conditions{C, U, N};  
Condition Parameters{P, p, q} 

Bin-set Choice Condition (C,U,N) 
| 
| 

Bin Choice Condition (C,U,N) 
| 
| 

Element Choice Condition (C,U,N) 

Set Size for Bin-sets (P) 
| 
| 

Set Size for Bins (p) 
| 
| 

Set Size for Elements (q) ----- 

----- 

----- 

Base-Distribution Parameters; 
Predicted/Observed variates 

 
Pr(ti);  

ti, i = 1, 2, …, (P)pq. 

Figure 2 
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𝐶𝐸𝑒𝐶𝑖𝑡𝑖𝐸𝑒𝑢𝑢 𝐸𝑥𝑃𝑒𝐸𝑡𝑢𝑡𝑖𝐸𝑒 𝐸𝑖 𝑇ℎ𝑟𝑒𝑢𝑡 𝐸(𝑡) = 𝑡𝑖 for a given obtained value of i. 

 

 

 

 

 

 

 

 

 

 

Meta-parameters 
{C, U, N}; {P, p, q} 

Bin-set Choice Condition (C,U,N) 
| 
| 

Bin Choice Condition (C,U,N) 
| 
| 

Element Choice Condition (C,U,N) 

Set Size for Bin-sets (P) 
| 
| 

Set Size for Bins (p) 
| 
| 

Set Size for Elements (q) ----- 

----- 

----- 

Hyper-Parameters; 
Base-Distribution Parameters 

 
Pr(ti); 

ti, i = 1, 2, …, (P)pq. 

Predicted/Observed Variates 

m ϵ { 0, 1}; Pr(m=1) = ti. 

Figure 3 
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Graphical Description of  ZCUN(2,2,2) : Two bin-sets  (P = 2) with choice condition “C” 

(coloured green), two bins (p = 2) per bin-set with choice condition “U” (coloured grey), 

two elements per bin (q = 2) with one element per bin (one element coloured green, 

excluded elements in red). Threat values ti are interspersed to depict random distribution 

of ti values among elements nested in bins, and bins nested in bin-sets. The probability of 

obtaining ti is a function of access or obstruction to t1, t2, t3, … in preferential order. In 

this decision scenario, a decision-maker would select the left-hand bin-set. This bin 

contains t2, and is the hope of the decision-maker when the left-hand bin-set is selected 

using the only available decision-making power, bin-set choice ‘C’. Other cognitive 

evaluations, under what is called ‘Outcome Set Size’ (OSS), would consider possible 

other element encounters, other possible final outcomes in terms of t values. In this case, 

t7 is also possible in the same bin-set, and t5 and t3 are also available in the right-hand 

bin-set. As such OSS = 4; in CUN more formally, OSS = Pp, the product of ‘C’- and ‘U’- 

node set sizes. 

  

Figure 4 
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2.3 Comment: “Towards a Comprehensive Model (…)” 
The foregoing manuscript is somewhat abstruse. However, it presents what could be a 

workable foundation for further integration of decisional control modeling with outcome-

oriented stress research. Stress can tenably be conceived of as driven by the obtaining of 

a desirable objective (a ‘positive’ goal) or the avoidance of a known peril (a ‘negative’ 

goal). Consequently, the understanding of how to shift the probabilities for successful 

goal pursuit in one’s favour through nested decision-making becomes highly relevant. 

Having a functional structure (the mixture-model in the preceding manuscript) in which 

to place decisional-situation features provides the advantage of placing many types of 

situations on a comparable footing. Situational features such as number of alternatives (P, 

p, q), information availability (C, N : yes; U: no) and executive power (C: yes; U, N: no) 

at different levels of decision-making are common in organized human social life. 

Companies, families, charities, schools, armed forces (police, military), and 

bureaucracies generally all apportion authority somewhat systematically and 

hierarchically. This, not to mention the valuable footing provided to researchers who 

would seek to systematically vary these quantities in a cohesive, unified, formal manner. 

The sequential linking of probabilities described in the preceding manuscript starts at the 

most basic phenomenological level: occurrence or non-occurrence of an event (either of 

which may be the desired outcome). Over this most common starting point for any type 

of data, simply counting ‘yes’ or ‘no’, are mounted threat values  ti – the chance of a 

‘yes’. Governing threat values, in turn, are the chance of obtaining the threat value in 

ordinal (aka “ranked”) position i, where i = 1 is best and i at a maximum value is worst. 

This level of ‘probability governance’ is denoted Pr(ti), the chance of getting ti. 

 Governing Pr(ti) in turn again, is the probability of a given decision structure, such as 

CC, NC, CU, or in a three-level hierarchy, CNU or UUN, for example. To index these 

decision structures, the indexing variable j is recruited, similar to i for threat.1 That is, 

                                                 
1 Note that a ‘choice structure’ refers strictly to the node-by-node pattern of choice condition (C, U, or N) 
at each hierarchy level  ( bin-sets (if applicable), bins, and elements). A ‘decision structure’ refers to the 
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what i is to threat,  j is to decision structure. One difference is that j does not refer to an 

ordinal position of decision structure. There is no preferential ‘rank’, though this could be 

done. Rather, j is properly a nominal variable. Nonetheless, each decision structure can 

be identified, and an expectancy count of structure frequencies can be developed or 

estimated based on counting the number of occasions when the particular node and 

parameter configurations combine to produce a decision structure. Because Pr(ti) can 

now be completely codified and located as a known distribution of probabilities within 

the set of decisional-control decision structures, Pr(j) is the likelihood of a particular 

distribution Pr(ti)j, characteristic of given decision structure j, being operative. As an 

example, our initial work on distribution of decision structures assumed a ‘gentle prior’ 

(‘mild assumption’) of equal likelihood for all nine first-order scenarios (see p. 38). This 

meant a 1/9 chance of one of CC (j = 1), CN (j = 2), CU (…), NC, NN, NU, UC, UN, and 

UU (j = 9) determining relative access to the set of ti values for the decision-maker. 

The assortment of j decision structures can itself be considered governed by the 

availability of choice conditions  (C, U, and N) and the set sizes at each choice node (P, 

as applicable, and p and q). These model parameters can be conceived of as being 

potentially in short or uneven supply, hence benefitting from prudent administration. 

Allotment of choice to a subordinate node may be costly to a super-ordinate decision-

making unit, if overarching concerns are not being met or system-wide considerations 

become difficult to address. This may especially be true if error-free ‘maximax’ decision-

making (selecting to obtain the best) is not occurring at subordinate nodes. Conversely, 

subordinate decision-makers may find their super-ordinate decision-makers make more 

errors in their decision-making than subordinate agents. The rise of tyranny (removal of 

subordinate freedom) and groundswells of social upheaval (toppling of corrupt regimes) 

might well be influenced by comparative decision-making efficacy. 

                                                                                                                                                 

 
combination of choice conditions by node and a parameter set size values ( P(if applicable), p, and q). A 
‘decision scenario’ is the expression used to refer to a particular arrangement of choice conditions and set 
sizes, such as CUN(4,2,3). 
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In sum, the capacity to expect and produce desired outcomes has been housed within five 

‘levels of governance’ as modeled and distributed statistical quantities: event outcome (m 

= 0,1), event probability (Pr(m = 1) = ti), access to event probability ( Pr(i) for Pr(ti) ), 

likelihood of a given access to event probability ( Pr(j) for a given Pr(ti)j ), and the 

availability of decisional control parameters C, U, N, and (P), p, and q for creating the 

distribution J of decision scenarios ZC,U,N;(P), p, q each with an indexing identity denoted 

specifically with the label of lower-case j. This general distribution J then provides the 

context for relative frequency of a given decision structure j, with decision structure j 

governing a probability distribution Pr(ti). Discrete probability distribution Pr(ti) in turn 

allots the chance of obtaining a good event probability ti, and a favourable ti hopefully 

allows better-than-random chance of event non-occurrence (in the case of threat), or of 

event occurrence (in the case of a desired outcome). 
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3 A Dynamic Catalog of Decisional Control Values 

3.1 Introduction to the Third Component Document 
The third document within the full dissertation is a catalog of decisional control values 

for consultation by researchers and others interested in using a decisional control 

approach. These tables are created to be user-friendly while also maintaining a 

transparency that is intended both for pedagogical purposes, to train and teach others in 

model specifics, and for construct validity, allowing the inspection of the algorithms 

generating probability distributions. These spreadsheets are proffered as a component 

document in their own right within the dissertation, as they can generate full ranges of 

decisional control probability values for the 283 different permutations of p and q values 

that produce a product of 100 or less (i.e., pq ≤ 100; p, q > 1; p, q ϵ N ) and the 324 

different permutation of P, p, q values with analogous constraints (i.e., Ppq ≤ 100; P, p, q 

< 1; P, p, q ϵ N ). In practice, this means the most extreme values for p and q in first-

order choice structures are (p, q) = (2, 50) or (50,2) and the most even is (p, q) = (10, 10), 

with the lowest being (p , q ) = (2, 2). For second-order structures, the most extreme and 

most even are (P, p, q) = (2,2,25), (2,25,2), or (25,2,2) and (5,5,4), (5,4,5), or (4,5,5); the 

lowest set of values is (P, p, q) = (2, 2, 2).  

The value of this document is comparable to a more historic form of tabulation for 

consultation values, a catalog, as for z-values, t-values, logarithmic tables and other 

relevant statistical quantities. In the older style ‘look-up table’ catalogs (before the advent 

of rapidly accessible programming and computation, as used in this study) it might be 

reasonable in the case of a ‘decisional control value catalog’ to expect one full page to list 

a comprehensive set of values for a given choice structure and specific set of parameters. 

On such a page, a given set of Pr(ti) values, adjusted ti standardized vector, and resultant 

E(t) values per element index number (i) and in some cases, per leading-bin number (k), 

as well as their overall summation might be listed for consultation.  

In a liberal estimate, the dynamic and interactive spreadsheets are able to generate the 

equivalent of 283 x 10 pages (including Main page), or  2,830 individual table pages for 

the first-order scenarios and 324 x 28, or 9,072 pages of independently valid decisional 
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control values information. By a more conservative estimate, condensing for equivalent 

pages (where the calculations are the same), there would still be 283 x 6 pages (Main plus 

5 subsets of functionally equivalent choice structures: CC, CN, NC/UC, CU, 

NN/NU/UN/UU) or 1,698 pages in the first-order consultation tables catalog. For the 

second-order consultation tables, a total of 324 x 16 pages (Main plus 15 subsets of 

functionally equivalent choice structures: CCC, CCN, CNC, NCC/UCC, CNN, 

NCN/UCN, NNC/NUC/UNC/UUC, CCU, CUC, CUN, CNU, NCU, UCU, CUU, 

NNN/NNU/NUN/UNN/NUU/UNU/UUN/UUU) or 5,184 pages of unique information 

would validly be printed. My intent with this third ‘document’ is to provide a 

comprehensive reference guide for the allocation of probabilities in hierarchical, 

partially-obstructed choice scenarios through the tutorial below and the online 

accessibility of the dynamic, interactive consultation tables. 

3.2 Decisional Control Values: Catalog Tutorial 
Two main files are composed in the Microsoft Excel 2010 spreadsheet program, one each 

for two-level  (‘first-order’) and for three-level (‘second-order’) hierarchies. The first 

order file has ten worksheets, accessible via the tabs at the bottom of the program screen. 

These consist of a Main worksheet to coordinate the file, and nine worksheets, each 

named for a choice structure (CC, CN, CU, NC, NN, NU, UC, UN, UU). These are called 

‘choice structure’ here, because the parameters, namely, p bins and  q elements-per-bin 

are to be inputted by the user. In just moments of calculation, the spreadsheet updates a 

given set of probabilities of access to a given threat value Pr(ti), and combines them with 

a set vector of ti values, with the value of i ranging from 1 to pq (p times q). In some 

choice structures, the probability of accessing a given ti becomes true zero (as opposed to 

infinitesimal, in some other cases) and hence the product of Pr(ti) and ti is zero. For all 

nine choice structure worksheets, a mathematical expectation of threat, also known as the 

cumulative expectation of threat or again threat expectation E(t) is calculated by 

summing the product of Pr(ti) and ti across all values of i. As such, each worksheet yields 

a ‘threat expectation’ that is both proper to the choice structure and to the parameters that 

the user has entered. In terms of usefulness, the model allows assessment of the threat 
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level inherent in the decisional control scenario examined, accounting for both choice and 

number of options. The second-order spreadsheet has the same design. 

Basic usage for the first-order spreadsheet will be described here, and is applicable sto 

the second-order spreadsheet, also. Consulting the decisional control values tables 

involves the inputting of the p and q parameter values (minimum single value of 2, 

maximum combined product value of 100) in cells B5 and B6, in the appropriate 

worksheet. If a combined E(t) is desired across choice structures with a constant p and q, 

the constituent E(t) values can be pooled on the Main page.  

The tables are designed to follow a convention, with choice structure identified at the top 

left (cell A1). The choice structure is also the name of the given worksheet, accessible by 

clicking its specific tab at the bottom left of a Microsoft Excel 2010 spreadsheet display. 

Below the choice structure name at cell A1, a simple description in a few lines of 

characteristic features of this choice structure, and the p, q, and pq values. Only the p and 

q values need be entered, the formula-based dynamic nature of the spreadsheets does the 

other calculations upon the p and q values being entered definitively with the press of the 

“Enter” key, or movement to other cells with the Tab key, arrow keys (up, left, down, 

right) or by clicking on another cell with the mouse. 

Visible immediately to the user is the label E(t)norm in cell D7, and its numerical value in 

cell E7, adjacent. This value is the cumulative expectation of threat in the decision 

scenario entered, the combination of a specific choice structure (e.g. ‘CU’) with a specific 

pair of parameters (p, q). The subscript ‘norm’ is used to denote ‘normative’, indicating 

that the list of t values used is the normative vector that divides the full range of 

probability from zero to one into pq different, evenly spaced values, with an increment of 

1/pq. Using the number line convention, t1 and tpq are at the start and end of this range of 

t values, respectively, and are themselves placed at an interval of half the standard  

increment (a distance of 1 / (2pq) ) to the right of 0 (for t1) and to the left of 1 (for tpq). 

This approach creates a balanced vector, whereby choice structures without the threat-

reducing element of choice produce E(t)norm = 0.5. Values for E(t)norm less than 0.5 

indicate the threat reduction available through decisional control. 
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An example with (p, q) = (2, 4) and values for E(t)norm is reported in Table 1 below: 

Table 1 

Decisional Control Values Across Choice Structure for Parameter Values (p,q) = (2,4) 

 
 p q Pr(t1) E(t)norm 

CC 2 4 1.000 0.0625 
CN 2 4 0.250 0.3125 
CU 2 4 0.250 0.4375 
NC 2 4 0.500 0.1625 
NN 2 4 0.125 0.5000 
NU 2 4 0.125 0.5000 
UC 2 4 0.500 0.1625 
UN 2 4 0.125 0.5000 
UU 2 4 0.125 0.5000 

 

Commenting on Table 1, above, CC(2,4) provides the most threat reduction. This is 

model-consistent, in that the best available option, in this case 1/(2pq) to the right of zero 

on the standard threat vector can always be selected directly. In other words there is a 

100% chance of the best threat value option available, as reflected in the Pr(t1) column 

value for CC of 1.000. Note, a convention for E(t) values is to use four decimal points; 

for Pr(ti) values, three decimal points are used in order to distinguish these two types of 

probabilities. The next most favorable decision scenario is NC/UC(2,4), wherein having 

four options at the element level allows considerable threat reduction because the choice 

available is also at the element level (i.e., in NC/UC). For NC and UC, which are 

functionally equivalent in this context, the ‘C’ choice condition is at the element-level 

node, allowing selection among q elements, or more centrally to the operative mechanism 

in decisional control, elimination of the q – 1 least desirable elements. The CN(2,4) 

scenario provides the next most threat reduction, at E(t)norm = .3125. Note that this is just 

about double the threat expectation in the NC/UC(2,4) scenario, where E(t)norm = .1625. 

Interestingly, a quick check with the interactive tables confirms what is deducible by their 

complementary analytical formulations, that the E(t)norm values would be swapped, 

exactly, should the parameters be switched to (p, q) = (4, 2). This is directly due to the 
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relative placement of the ‘C’ choice condition node (for bins in CN and for elements in 

NC/UC). The leverage in reducing threat expectation is a function of increasing 

parameter value at the node where the ‘C’ choice condition is operative. 

Two more choice structure-types can be highlighted from Table 1, CU and 

NN/NU/UN/UU or simply the NN-family. The CU choice structure has been shown to be 

only slightly better than the completely randomly assigned NN family of values. This 

finding was reported from extensive simulation work (Shanahan, 2007; Shanahan & 

Neufeld, 2010). The discrete distribution in the CU structure is such that Pr(t1) is 

identical to Pr(t1) for CN, but subsequently, all remaining values have a uniform 

distribution such that for Pr(t2) to Pr(tpq), using a secondary index i’ = 2, 3, …, pq:  

Pr(𝑡𝑖′) =
𝑞 − 1

𝑞
∙

1
𝑃𝑞 − 1

 

In the case of CU(2,4), this evaluates to 3/4 x 1/7, or 3/28, or 0.107. The flatness (equal 

probabilities from i = 2 upwards) and length (up to and including i = pq) of this 

distribution of probability of obtaining ti under a CU choice structure means it is exposed 

to the highest threat vector values (i.e., tpq,  tpq-1, tpq-2) in generating the product value of 

Pr(ti) ∙ ti =  E(t). Compared to the probabilities for its one-‘C’ compatriot, CN, the 

chances of obtaining Pr(t2) under CU (a great option if it can be obtained), is 

comparatively lower (CU, 0.107; CN, 0.214) and Pr(tpq) is higher (CU, 0.107; CN, 0.000 

– true zero). Note that this is a trend that holds, without contradiction, in the range of t 

values between Pr(t2) and Pr(tpq), also. Because of this, the functional equivalence that is 

seen for NC and UC, whereby calculations of E(t) use the same formula for both choice 

structures, is not seen for CN and CU. These latter two are distinct and CN will always 

have the advantage; on Pr(t1), they are equal, and CN will always exercise more threat-

reduction power at subsequent indexing values i for threat values. 

 One final feature that is of particular interest in the cases of CN and NC/UC, is the 

reaching of true zero probability at some value of i < pq. This occurs because the exercise 

of decisional control at the choice node in these choice structures always occurs with 

some ability to eliminate the worst threat option(s). Specifically, p-1 of the worst options, 
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counting back from tpq, are removed from possibility by the CN choice structure, and 

similarly the q-1 worst options, counting back from tpq, are removed from contention by 

the NC/UC choice structures. If the magnitude of the threatened event is considerable, 

eliminating the worst threat levels can be very powerful, especially if threat increments 

are not equally spaced. Poignantly, ordinal position i still retains the same probability of 

being obtained by the decision-maker, regardless of t value increment. If the list of threat 

elements contains threats such as permanent injury or disability in the last positions, 

elimination of the worst few in a list of threat possibilities because they are ordinal 

positions in a decisional control structure becomes a noteworthy advantage. It is possible 

under CN and NC/UC to eliminate, with theoretical certitude, the p-1 and q-1 worst 

options, respectively, according to ordinal position (assuming error-free selection). By 

contrast, it is not possible to eliminate any ti values under the CU choice structure.  

This is a sample of what is available by consulting the dynamic tables in concert with the 

analytical formulae available in the Appendix of the second component document. These 

decisional control value tables will available upon request at the candidate’s website 

publish.uwo.ca/~mshanah, and can be consulted more extensively if desired. 

3.3 Comment: “A Dynamic Catalog (…)” 
As a manuscript per se has not been inserted, the closing comment will be brief. 

The essential structure for a threat-based decisional control model application is an 

ordinal sequence of likelihood values (threat values) for an undesirable ‘state of affairs’, 

or outcome. In some sense, every clinically-oriented research subfield can be said to have 

an ordering of more or less desirable situations, or an ordinal progression of likelihood of 

a specific undesirable situation such as adolescent substance abuse, PTSD intrusive 

symptoms, and act of alcohol-related aggression, non-adherence to a medication regimen, 

or a triggered phobia. As such, the example of an exposure hierarchy in the treatment of 

phobias can serve as a starting point for potential utility of the model. 

In an exposure hierarchy, clients with a particular phobia list in increasing order various 

stimuli they might encounter that will progressively (ordinal positioning) trigger more 
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fear, by their estimation. For a fear of snakes, for example, this might range from 

thinking of a tube at 10 % of maximal fear, through thinking of a snake at 30 %, through 

seeing a hose in the grass at 50 %, through being in the room with a snake at 70 %. The 

feature emphasized in this context is the ordinal positioning of threat. In the decisional 

control model approach threat can be managed, by contradistinction with the exposure 

method where exposure to the threat is the therapeutic element. Nonetheless, a possible 

hybrid therapy might be considered, whereby four, six, eight, or other even-numbered 

multiple of threat possibilities could be actively managed by the clinical patient, but 

where the two-level hierarchy decision structure could be set by the clinician. For 

example, in Week 1, simply seeing the four threat options and navigating easily to a 10 % 

fear item (subjective units of distress) could be possible, and confer initial empowerment, 

under a Choice-Choice structure. Week 2 might see the use of a CN structure; Week 3, 

NC, and so forth so that over perhaps 8 or 9 weeks of treatment, most choice structures 

would be encountered. By the last several weeks, a much more random exposure to level 

of feared stimulus would occur, including an Uncertainty component (at least one U 

node). This would gain increased ecological validity as well as inuring the client to the 

possibility of the highest perceived threat in list with an even-number of items (e.g., 70 % 

of maximal fear for ‘being in the room with a snake’, at the highest position). In a similar 

way, decision-making by the individual can be supported, constrained, and ultimately 

retrained according to decision structures based on the operation of decisional control. 

This can conceivably be applied with any type of clinically-oriented intervention where 

there is a threat to be mitigated or responsibly managed, and a known ordinal progression 

in situations that raise or lower that threat. 

There are considerable potentialities for investigation, exploration, and mathematical 

enjoyment in the tables published, as outlined above. They are designed to make the 

involved calculations within the decisional-control approach more user-friendly, but also 

transparent for the motivated reader, interested investigator, and theoretical researcher. 

Their availability can be compared to that of a ‘pocket calculator for decisional control 

research’. From a higher vantage point, they consist of essentially a new type and pattern 

of discrete distributions that, to the knowledge of this researcher, are not charted 

elsewhere in the main body of the sciences.  
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4 « Information Processing for Threat Reduction in 
Decisional Control Scenarios » 

4.1 Introduction to the Fourth Component Document 

Soon after its original proposal and design (Neufeld, 1982), experimental testing and 

verification of the decisional control model has been an important component of this 

decidedly theoretical approach (Kukde & Neufeld, 1994; Morrison, Neufeld, & Lefebvre, 

1988). The study presented as the fourth component document for this dissertation 

entitled “Mathematical modeling of Stress Management via Decisional Control” is a 

novel, extensive application of the paradigm using a broader range of measurement 

modalities: psychophysiological, reaction time, and subjective stress ratings. 

Additionally, the theory anchored in the model structure has been expanded using 

abductive reasoning, described in the first component document, “Clinical Mathematical 

Psychology”, in order to create a theoretical basis for past and future empirical findings. 

Also notable in this study, “Information Processing for Threat Reduction in Decisional 

Control Scenarios”, is the recruitment and application of advanced personality and 

individual differences work on decision-making preference. This work, the composition 

of a ‘Maximizing Continuum’ derived from model based choice-preference parameters, 

is briefly described in this study but more extensively elsewhere (Shanahan, Pawluk, 

Hong, & Neufeld, 2012; see References section within the integrated fourth manuscript, 

below). This study will be submitted for publication, pending the completion of its 

function as the fourth study within this dissertation. 

4.2 “Information Processing for Threat Reduction (…)” 

The manuscript “Information Processing for Threat Reduction (…)” is inserted in 

Microsoft Word 2010 format below. It comprises 72 pages as an independent manuscript, 

and 81 pages within Chapter 4, pages 76-156 of this dissertation document. 
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Abstract 

Formal modeling of decisional control outlines an ‘economy’ for negotiating stress: 

information processing is provided in order to receive threat reduction (cf., Morrison, 

Neufeld, & Lefebvre, 1988). Participants (N = 65) made selections for the best available 

(lowest) threat-options in response to vignettes evoking the stress of physical danger or 

social evaluation. A 3 x 2 factorial MANOVA used three levels of Choice Structure (full 

choice, constrained choice, no choice) in a two-tier hierarchy, with two levels of Element 

Set Size (number of choices). Dependent measures were maximum heart rate, minimum 

heart rate, vascular resistance, duration of decision-making cognition, and subjective 

stress ratings. Results lend empirical support to a main effect of Choice Structure, a main 

effect of Element Set Size, and their interaction. The Choice Structure main effect 

suggests that participants tend significantly toward the intermediate Choice Structure 

(constrained choice) for allocation of increased information intake (lowest minimum 

heart rate), longest time of decision-making cognition, and report the highest stress levels 

(suggesting increased effort). By contrast, the full choice and no choice experimental 

levels did not differ significantly from each other on these measures. The Element Set 

Size main effect was characterized similarly by increased information intake (lower 

minimum heart rate), longer time of cognition, and higher subjective stress ratings at the 

experimental level with fewer choices (two sets of two choices) rather than more choices 

(two sets of four choices). The interaction involves a more pronounced difference 

between the full choice and constrained choice levels when there are more choices than 

when there are fewer. A mechanism is proposed explaining ‘preference for the 

intermediate’ with equivalent and counterbalancing valuation of information processing 

provided per threat-unit faced in the decisional scenario, and threat-exposure accepted per 

unit of control afforded by the decisional scenario. A measure of ‘decision value’ is thus 

obtained theoretically. This theoretical index of decision value predicts minimum heart 

rate (pseudo-R2 = -.92), time of decision-making (pseudo-R2 = .72), and subjective stress 

ratings (pseudo-R2 = .77) across the 3 x 2 experimental condition cell averages.  

 

Keywords: decisional control, threat reduction, information processing, stress and coping.   
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The cultivation of good decision-making patterns is highly relevant in an age of 

proliferating information (cf. Levitin, 2014; Miller, 2009). Abundance of information 

makes necessary the improvement of the human decision-maker for evaluating, selecting, 

and implementing responses in situations of potential gain or loss. Charting the features 

of such situations systematically can be a valuable aid to decision-makers and applied 

decision science.  

In this study, we use psychophysiological indices of stress (e.g., Kukde & 

Neufeld, 1994; Tomaka, Blascovich, Kibler, & Ernst, 1997), reaction time measures 

specific to the decision-making process, and subjective stress ratings as arbiters of 

participant sensitivity to the decision features of choice constraint and number of choices. 

These decision features are varied systematically within a formal model of decisional 

control, a cognition-intensive form of coping (Neufeld, 1982; Morrison, Neufeld, & 

Lefebvre, 1988; Shanahan & Neufeld, 2010). Psychometric measurement in decision-

making preference, anxiety, and response to uncertainty adds an individual differences 

context to behavioral observations. 

Decisional Control: Research Paradigm and Experimental Platform 

The model used in the present study is a formal model of decisional control. 

Working on the assumption of ‘opting for the best’ (“maximax”, defined below) the 

model facilitates the apprehension of plausible and straightforward considerations that are 

relevant to a decision-maker. Choice constraint (freedom of selection) and number of 

choices (possible selections to evaluate) are varied within the theoretical and 

experimental structure of the study. With this range of choice scenarios, we examine 

psychophysiological fluctuations, time spent on decision-making, and subjective stress 
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reports under simulated stressful decision-making conditions, through the lens of 

decisional control concepts. An illustration is presented immediately below. 

 Decisional Control Illustration: ‘Planning a Picnic’ 

The decisional control model is characterized by the assumption of the decision-

maker’s knowledge of an array of probabilistic threat levels, one of which must be 

engaged to complete the scenario. As a pleasant and accessible example, planning a 

company picnic with the threat of inclement weather can be approached through the lens 

of decisional control. 

Planning a picnic – example structure. 

In order to illustrate decisional control concepts, the picnic planning will be 

explained in parallel with the decisional control concepts involved at each stage. The 

fundamental requirement of a decisional control approach is a known array of 

probabilistic threats. As such, this example invokes the modern availability of a daily 

probability of precipitation (P.O.P.) as the defining threat facing a picnic. No other 

threats are accounted for in this illustration. Nonetheless, if a rank-order list of ‘combined 

threat’ was developed from the additive nature of other threats (food available, guests 

available, competing events, lack of venue), a decisional control approach can be used for 

any rank-ordered list of probabilistic threat values, with success being defined as 

avoidance of the probabilistically threatened outcome. 

For the sake of illustration, we assume there is a four-day period (such as a long 

weekend) during which a day-long company picnic may be held. We can use the daily 

P.O.P. as the ‘index of threat values’, the list of potential occurrence likelihoods of what 

is generically defined as an ‘untoward event’ in decisional control literature (e.g., 
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Morrison, Neufeld, & Lefebvre, 1988). In this example, the list of threat probabilities is 

the rank-ordered list of probabilities that it will rain on a given day in the eligible four-

day period. 

We will assume that any rain will be ‘untoward’ for the success of a picnic. A 

‘vector’ of probabilities of precipitation P.O.P. is laid out in Table 1, over a four-day 

meteorological prediction period. What is also represented is the ordinal position of each 

day’s P.O.P., the practical ‘threat value’ in this example, as an index from t1 as the lowest 

chance of rain and t4 as the highest threat value, or highest probability of precipitation.2 

Table 1 

 

Probability of Precipitation as Threat Values over a Four-Day Long Weekend 

  

 Friday Saturday Sunday Monday 

Probability of precipitation P.O.P. 40% 30% 70% 10% 

Ordinal Threat Value ti t3 t2 t4 t1 

 

For a decisional control approach, we subdivide the set of four possible 

picnicking days into two portions: “earlier in the long weekend” (Friday or Saturday) and 

“later in the long weekend” (Sunday or Monday). This creates two sets of two choices, a 

structure that mirrors one of the two experimental levels in this study for number of 

choices. For generality, mathematical work on this model uses the terms two ‘bins’ in 

                                                 
2 Previous work with the model has stipulated a requirement of equal increments between threat values (the 
difference between each threat value and its ordinal neighbor(s) set as a constant; Shanahan & Neufeld, 
2010). Recent developments, however, allow for complete model functionality with only an unequivocal 
ordinal ranking of threat values, where equal increments are not necessary (Shanahan, Nguyen & Neufeld, 
2012). 



83 

 

each of which two ‘elements’ are nested. The other experimental level in the present 

study has two sets of four choices, referred to more formally as two bins in each of which 

four elements are nested.  

Within the two divisions of “earlier in the weekend” and “later in the weekend”, 

two threat values are nested (see Figure 1.1 for a structural depiction). The utility of the 

decisional control model comes into play now in this way: if this situation arose, for 

statistical argument, 10,000 times (a very large number approximating distribution 

patterns unlikely to change with increased sample size), what statistical advantages would 

choice of a) portion of the weekend, and b) day within the selected portion confer on the 

picnic planner as improved odds of a successful event (no rain)? 

 

Figure 1.1 Decisional Control Hierarchy with Bins and Elements 

 

 

 

 

 

Figure 1.1. Depiction of two bins, each nesting two elements. In the picnic example, Bin 
1 is “early in the long weekend”, Friday is Threat 3, Saturday is Threat 2. Bin 2 is “later 
in the long weekend”; Sunday is Threat 4 and Monday is Threat 1, the lowest P.O.P. 
 

Planning a picnic – explanation of Cc, Nc, and Nn structures. 

If the planning committee is given free choice of portion of the weekend, and free 

choice of day within that portion, then they can choose the lowest P.O.P. every time 

(whether each year, each occasion, or every hypothetical occasion) for the company 

Bin 2 Bin 1 

Threat 3 Threat 2 Threat 4 Threat 1 
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picnic. If this is feasible, it is clearly the best situation. In the example values from Table 

1, the picnic would be set on the Monday, with a 10% probability of precipitation. More 

powerfully, if company policy was such that organizers could always select the weekend 

portion (early or late) of the annual company long-weekend picnic and could select a 

specific day within that portion, then, banking on the meteorological predictions every 

time, they could always select the day with the lowest chance of rain in a four-day 

weekend. This doesn’t mean just Monday, it means an ‘always’ chance of obtaining t1, 

the best option or lowest threat of rain in the four-day forecast. In the parlance of the 

decisional control model this is a Choice-Choice structure denoted Cc, whereby there is 

choice of bin and choice of element within a chosen bin. 

There may be difficulty, however, in ensuring that employees keep all four days 

of their long weekend open until reliable weather reports are issued. As such, a more 

feasible arrangement may be to determine by a brief survey whether employees at a given 

branch of a company prefer to keep the earlier or later portion of the long weekend 

available. Then, within the two-day window, a lowest P.O.P. day can be selected. This is 

a No Choice-Choice scenario for the planners, denoted Nc. There is external assignment 

of bin for the planners by employee preference (only keeping either the earlier or later 

two-day portion of the long weekend available), but choice of element for the planners 

(either of two days in that portion is available). The advantage here is that, for example, 

the organizers will never need to hold the event on the worst P.O.P. day. They will 

always be able to choose one of t1, t2, or t3 and never be forced to accept t4. In fact, to 

highlight the advantage, we can assume that the P.O.P. allotments are random (threat 

values for rainy days over the four-day weekends), and that the portion of the weekend 
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reserved is free to vary also, year-to-year. If this approach to company picnics, as a 

policy, holds across 100 branches nationwide, and over hypothetically 100 years of 

celebratory company picnics (10,000 events), a precise guess (mathematical-

combinatoric estimation) of the number of times that planners were able to select the 

best, second-best, or third-best weather day for P.O.P. is half the time, one third of the 

time, and one sixth of the time, respectively. 

The logic in the proportions for t1, t2, and t3 is that under random assignment of 

weather patterns, there is a one-in-two (three of six total combinations of two groups of 

two from a full set of four) chance that t1 will be in the two-day-weekend portion that 

planners have available. There is a one-in-three (two of six combinations) chance that t2 

will be in the available two-day portion and that t1 simultaneously is not in that portion, 

and a one-in-six (one of six combinations) chance that the two-day portion contains t3 and 

t4. In this latter case, t3 will be selected, never t4. The worst or, in this case, fourth-best 

choice need never be selected, representing a zero probability of having to organize a 

picnic on the day with the highest chance of rain. 

The final scenario relevant for the present experimental report involves the 

company celebration picnic day being directly chosen by the most senior person being 

celebrated. This person or group of persons, perhaps new retirees or celebrating 

birthdays, may include weather, friends, or any number of considerations, but the 

planners will have no influence on choosing of the day with P.O.P. in mind. The only 

useful estimate for P.O.P. over the four-day period is the average across the four days of 

the long weekend. Despite this estimate, actual selection by P.O.P. is out of the planners’ 

hands.  From the planners’ point of view, this represents a No Choice – No Choice 
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scenario, labeled an Nn structure, where there is a one-in-four chance for each of t1, t2, t3, 

or t4, falling on the picnic day, equal likelihood from best to fourth-best P.O.P. 

Planning a picnic – model implications and applications. 

Though fairly innocuous, this example is meant as an illustration to facilitate 

exposition. Situations where a maximax approach applies include stress-charged 

environments such as air-traffic control, pilot decision-making, SWAT team deployment, 

and other high-stakes,  decision-making contexts requiring rapid, effective heuristics and 

algorithms for optimal outcomes. The value of the formal model is that it is the structure 

itself that is understood, where statistical comparison of full choice, constrained choice, 

or lack of choice among a known set of probabilities is valuable.  

As a hypothetical application of this understanding, Company Z can establish a 

picnic policy in keeping with best chance of success and local culture and circumstance. 

The company might establish an Nn structure at its branch in Arizona, where P.O.P. 

(usually low) is generally in favour of a successful picnic, and there may be a higher 

proportion of senior staff with power to request a specific day. There may be profit to 

using an Nc structure in Ohio, where there is rain often enough, but family-minded values 

discourage encroachment on family time (an Nc structure means a two-day rather than 

four-day window is to be kept available). In Seattle, a Cc structure for company picnics 

would likely suit the purpose best, where rain is frequent, the workforce is younger, and a 

culture of competitive bonuses can make up for infringement on employee freedom in 

requesting them to reserve a four-day window. 
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Planning a picnic: Archival analysis. 

An archival analysis of this technique was performed by retrieving daily weather 

reports from a local international airport (London, Ontario, Canada). Using actual 

precipitation readings (http://climate.weather.gc.ca) in the context where P.O.P. is used 

hypothetically above, the Cc, Nc, and Nn decision structures can be tested for 

retrospective selections of good picnic days. A tie-break ordinal ranking for multiple zero 

precipitation days was absolute distance to a set ideal temperature of 25°C. Over 10 four-

day periods (the 9th to the 12th of each month) for warmer months between August 2013 

and May 2015, the actual average result across the 10 selected picnic days for 

precipitation and temperature are: 0.02 mm and 22.4°C under the Cc model, 2.10 mm and 

21.5°C under the Nc model, and 8.92 mm and 20.8°C under the Nn model. External 

assignment for Nc bin and for Nn bin and element-within-bin was done with a 

randomization function in a common spreadsheet program, whereas decision-maker 

selection in Cc and Nc opted for the best available bin and element, and element-within-

assigned-bin, respectively. The difference in the Cc, Nc, and Nn results in a sample of ten 

real-world occasions obtained within the same ten four-day ranges illustrates clearly the 

anticipated relative advantages of full choice, constrained or partial choice, and single-

item choice over identical ranges of selection interest. 

This same logic for the relative merits of decision structures holds generally for 

scenarios where there is I) nested decision-making, II) a clear rank-order of threat values, 

and  III)  the potential for a full set of choices, partial set of choices, or single choice 

available within a nested decision structure. As such, the investigations herein are made 

to evaluate stress as a function of the decision-maker’s ability to select a less threatening 

http://climate.weather.gc.ca/
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option by having and evaluating options to a greater or lesser degree. Obtaining the best 

possible outcome is the goal, by lowering the likelihood of the ‘untoward event’. This 

threat-mitigation impetus for the decision-maker is the focus of the threat-management 

approach to stress that underpins this study. 

Decisional Control – Approach to Experimental Design 

Decisional control in the experiment. 

In the present experiment, we recorded psychophysiological changes, time of 

decision-making, and stress ratings for repeated presentations of decision scenarios in a 

two-level hierarchy involving three levels of freedom of choice (Choice Structure: Cc, 

Nc, and Nn), and two levels for number of choices (Element Set Size: two or four).  

Contextualizing decisional control as a form of stress negotiation. 

Decisional control involves coping with psychological stress through decision-

making. Decisional control contrasts with behavioral control, directly acting to remove a 

noxious stimulus, and cognitive control, mentally re-calibrating stress reactions (Averill, 

1973). Decisional control involves action as the result of systematic thinking. Decisional 

control has been modeled as a pattern of quantities in decision-making structures 

(Morrison, Neufeld, Lefebvre, 1988; Neufeld, 1982). These quantities have been defined 

as: 1) decisional control, ‘number of available responses’ (actual options), 2) information 

processing demand, the number of possibilities to consider (potential outcomes, 

regardless of choice input), and 3) expected threat, the cumulative likelihood of stressor 

occurrence in the wake of decisional control implementation across all threat values that 
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may be obtained in a decision scenario. In more comprehensive discussions of the model, 

a third condition, Uncertainty, is included as a possible choice condition along with 

Choice and No-choice. In the present study, no Uncertainty conditions were used. As 

such, information processing demand is described as ‘number of available responses’, 

termed Response Set Size or RSS to index the cognition requirements of scenarios. 

Decisional control is indexed, in this study, via probability of access to the least 

threatening option Pr(t1), calculated as RSS divided by the product of bins and elements 

(number of bins times number of elements). 

For stress and coping resource use, the model allows for balancing the ‘options’, 

the ‘cost’, and the ‘return on investment’. These correspond to mental processing effort, 

tolerance of threat in exchange for a certain level of control, and ultimately threat 

reduction. The potential for threat reduction can be evaluated by assessing prevailing 

threat in a situation without and with, or again, before and after, the exercise of available 

decision-making. The model depicts a psychological economy, with plausible 

mechanisms and openly specified operational terms. 

Assumptions of the decisional control model. 

Five simplifying assumptions allow for tractability of model properties to 

statistical calculation. Formal modeling requires stipulation of assumptions within which 

formal reasoning is made (Neufeld, 2007; Staddon, 1984). Still, model implications are 

considered to generalize outside of the strict regimen of assumptions (Shanahan & 

Neufeld, 2010), which to some degree are specified to facilitate computation. The 

assumptions within the decisional control model in use within this study are: 
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1) maximax decision-making  (maximize the maximum advantage) 

2) same number of elements in each node (bins, elements) at a given hierarchy level 

3) mutually exclusive threat values (a definite single rank-order) 

4) equal likelihood of external assignment among co-nested options (random 

selection) 

5) necessity of a selection (no ‘escape’) 

The strategy of maximax decision-making refers to maximizing the maximum 

advantage, shortened to maximax (cf., Janis & Mann, 1977). The model convention is 

that threat values are ordered according to increasing threat values, t1, t2, …, tmax, where 

tmax is the highest threat value. A maximax decision strategy prescribes that if t1 is 

available it will be the decision maker’s target; if t1 is not available, then t2, and so forth. 

As a contrast, a different decision-making strategy could be minimax whereby a 

conservative decision maker seeks to minimize the maximum disadvantage. This would 

entail a decision pattern of avoiding the worst t value.  

Advantageous features of the decisional control model. 

Findings from experimental designs anchored in a formal model of decisional 

control (Benn, 1995, 2002; Kukde & Neufeld, 1994; Morrison, Neufeld, & Lefebvre, 

1988) support the utility of the model. Decisional control in these studies has been related 

empirically to psychophysiological reaction among participants. On the theoretical side, 

comprehensive simulation research has detected robust patterns of a high negative 

correlation of availability of the best option to the decision-maker and cumulative threat 

expectation across a scenario. In the picnic example earlier, cumulative threat expectation 
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is comparable to total accumulation of rain over several instances of using decisional 

control. Past simulation findings inform the present analyses and invite validation of 

potential hypotheses (Shanahan & Neufeld, 2010). 

The advantages of this modeling approach are: 1) mathematical independence 

from situational details, such that if a balanced, nested decision structure and rank-

ordering of threat values is present, the probability of obtaining lower or higher threat 

values are retained regardless of threat content or particular authority frame, 2) 

applicability to hierarchical structure (nested decision-making, arguably ecologically 

valid where decisions are contingent on other decisions) and 3) the incorporation of 

number of options (number of bins and number of elements) as formal algebraic variables 

(denoted as p bins and q elements-per-bin). 

Psychometric Instruments Relating to Decisional Control 

The scales selected as background psychometric measures for this study relate to 

decisional control in specific ways.  Relevant to the individual differences in the 

dependent variables, instruments relating to anxiety and uncertainty were selected. These 

are the Endler Multidimensional Anxiety Scales – Trait (EMAS-T; Endler, Edwards, & 

Vitelli, 1991; Endler, Edwards, Vitelli, & Parker, 1989), and the Uncertainty Response 

Scales (URS; Greco & Roger, 2001).  Relevant to the impact of independent variables, 

instruments relating to decisional control were selected to inform appreciation of 

individual profiles. These are the Desirability of Control scales (DOC; Burger & Cooper, 

1979) and the Need for Cognition scales (NFC; Caccioppo & Petty, 1982; Caccioppo, 

Petty & Kao, 1984). Relevant to measuring control variables not directly part of the 

experimental manipulation but potentially acting as confounds were demographic 
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information, manipulations check questions and a brief test of cognitive ability 

(Wonderlic Personnel Test, Wonderlic & Hovland, 1939; Wonderlic Inc., 2002). Finally, 

subjective ratings of stress were collected after each trial as a main dependent measure. 

Psychophysiological Measurement of Decisional Control 

Previous work has indicated that psychophysiological measures can successfully 

discriminate between prevailing decisional-control conditions (Kukde & Neufeld, 1994).  

Facial electromyography, skin conductance, and heart rate measures have been 

significantly related to experimental manipulation of decisional control.  Blascovich and 

colleagues (see, e.g., Blascovich, 2008) have also used heart rate, cardiac output, pre-

ejection period, and vascular resistance measures to measure the impact of personality-

oriented cognitive manipulations.  

Psychophysiological measures are used in this study to assess the impact of 

constructs from the decisional control paradigm. Variance in psychophysiological 

measures obtained with cardiac impedance technology is expected to correspond to 

visually-presented decision scenario features for which instruction and practice in 

paradigm-consistent responding has been given. 

The psychophysiological measures used are briefly described here in their 

operation and assessment. Heart rate is measured through cardiac impedance technology, 

whereby an imperceptible electric micro-charge is used to assess the flow of blood 

through the chest cavity. Measures of particular interest are maximum and minimum 

heart rate, averaged in this experiment over 6 identical repeated trials per cell condition. 

Also used in testing the principal hypotheses was total peripheral resistance (TPR), a 
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measure of vascular resistance considered to vary with the experience of increased stress, 

especially in stress due to a sense of threat. This and other psychophysiological measures 

have been successfully used in personality and individual differences research by 

Tomaka, Blascovich and colleagues (e.g., Blascovich, Seery, Mugridge, Norris, & 

Weisbuch, 2004; Tomaka, Blascovich, Kibler, & Ernst, 1997). 

Statement of Study Hypothesis 

Our hypothesis is threefold. First, levels of Choice Structure with more decisional 

control will be significantly negatively associated with stress. This hypothesis is driven 

by existing findings suggesting that lack of control in decisional control scenarios is 

particularly stressing (Kukde & Neufeld, 1994; Morrison, Neufeld, Lefebvre, 1988). 

Second, the number of options in a scenario, or Element Set Size, will be significantly 

associated with increased stress. This hypothesis is driven by the stress related to the 

prospect and execution of increased information processing, especially under implicit 

time constraints. Third, if an interaction is found between Element Set Size and Choice 

Structure, it is expected that higher Element Set Size will enhance Choice Structure when 

it is higher in decisional control (Cc, Nc, Nn in decreasing order) to raise stress due to 

increased cognitive load required for threat reduction. 

Methods 

The design of the methods used in this study warrant a detailed introduction. In 

order to assess stress response within the decisional control paradigm with an informative 

individual differences background profile, several specific approaches were incorporated 

into the design. To begin, several modes of data for each participant were cross-
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referenced, permitting a close following of personal interaction with decisional control 

conditions and fine-tuned comparison between participants. The psychophysiological 

portion of the experiment was fully randomized within participants, such that all 

participants received all six (3 x 2) experimental cell conditions, each with six identical 

repeated trials for reliable measurement, a total of 36 experimental trials. A choice-

preference portion of the experiment was conducted prior to the data collection for the 

present study but with the same participants in the course of the same overall 

experimental session. This first portion of the experiment involved 180 trials with 

participant selection between different decisional-control structures, paired with either a 

physical danger prompt or an ego-threat prompt. The pattern of participant selection was 

then modeled rigorously using an elimination-by-aspects (see Tversky, 1972; also see 

Batsell, Polking, Cramer & Miller, 2003) decision framework and set of equations for the 

generation of choice preference parameters through optimization procedures within the 

standard MATLAB (version 7.5, 2007b) software package (Pawluk, Shanahan, Hong, 

Neufeld, 2008).  

In the main portion of the experiment for the study reported here, the portion of 

the experiment enacting decisional control used a detailed design to collect a ‘duration of 

decision-making’ time period measure. Distinct from the immediately subsequent time 

period used for effectuation of the motor movement for response registration (pressing a 

letter response on a key board), the time of decision-making cognition reflects the time 

spent mentally evaluating and selecting a desired option. As such, the present study 

validates and refines understanding for the operation of decisional control within a 

psychophysiological, personality and individual differences, and cognitive psychology 
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framework. It also is an extensively cross-indexed data set with potential for new 

analyses for questions in cognition, personality, and decision-making. 

Participants 

Participants were recruited via posters or from an introductory psychology pool at 

a large central Canadian university. The initial sample consisted of 36 male and 35 

female students (N = 71; Age M= 22.7, S.D. = 5.5, Min. = 18, Max. = 44, Mode = 20, 

Median = 21).  

Procedure 

Initial & learning phases. 

Informed consent was obtained, after exposing the prospective participant to two 

seconds of white noise in a headset with controlled decibel level to inform the participant 

of relevant study features. Written instructions first coached participants about a set of 

probabilities that unpleasant white noise would be administered, assigned to each of 10 

different letters, as below: 

Table 2 

Letters for Stimulus Presentation and Associated Probabilities  

D B J L M A Z V P G 
.30 .35 .40 .45 .50 .55 .60 .65 .70 .75 

The participants were then instructed to order the letters into the order shown in 

Table 2 above out of a scrambled order, rank ordering correctly from lowest (e.g., Rank 

1, ‘D’, 30% chance) to highest (Rank 10, “G”, 75% chance). If done incorrectly, 
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feedback was provided and the participant tried again. The next stage did not begin until 

this ordering was done correctly. 

Participants were acquainted with schematic depictions of decisional control 

scenarios in three steps. First, as the basis of a recurring stress prompt, they read 

situational vignettes (as in Figure 2.1, below). Second, these vignettes were summarized 

into simple titles for in-trial reference (e.g., “Job Interview”). Third, participants were 

taught and practiced how to access available decisional control as depicted in 

hierarchical, coloured-box patterns (Figure 2.2). 

 

Figure 2.1. Excerpt from Vignette Presentation Portion of Experiment 

 

Boating / Lightning Storm [example for evocation of Physical Danger] 

You are boating with a friend on a large lake when a thunder/lightning storm approaches. 

There are two islands which are still visible on the lake. You recall that there are eight 

different possible landing sites from which you may choose. [structure: Cc] 

 

Oral Presentation [example for Ego Danger / Social Evaluation] 

Your new position requires you to deliver oral presentations for critical analysis by one 

superior assigned from two possible. You may choose the subject of these presentations 

from amongst eight given subjects. [structure: Nc] 

 

Formal Debate [Ego Danger / Social Evaluation] 

In order to fulfill your degree requirements, you must successfully complete the 

Communication 020 course which requires each student to formally debate an issue with 

one other fellow student, to be followed by questions and class discussion. One of two 

opponents will be assigned to you, as will your specific issue for debate amongst the 

eight available. [structure: Nn] 
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Figure 2.1. Examples of stressful vignettes training presentation; in square brackets are 
commentaries added for the figure, not presented to participants. Note, eight options are 
mentioned in each case, with all, half, and only one made available by further description. 
 

Figure 2.2. Example of Graphical Depiction of an Nc2 Decisional Control Scenario 

 
Figure 2.2. An Nc2 (No-choice, Choice; q = 2) decisional-control hierarchy presentation 

The situational vignettes used to depict stressful scenarios focused on two kinds 

of threat, one to physical well-being (threat of serious injury), the other to personal ego, 

or sense of self as a social being (threat of embarrassment, humiliation, loss of status. 

These types of awareness of threat are recognized as some of the main sources of stress 

action (Eysenck, 1989; Mothersill, Dobson, & Neufeld, 1986). Use of vignettes in 

simulating threat or stress is an established personality and individual differences method 

that is supported for eliciting stress in participants that is experienced similarly to the 

stress in the situation described, though to a lesser magnitude (Lanza & Carifio, 1990; 

van den Tooren & de Jonge, 2010). Once participants had been familiarized to the story 

of each vignette, only the referent titles were used to help participants recall the stressful 

situation in navigating a presented decisional control scenario. The full text of the six 
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vignettes used in this experiment is available from the first author. Titles of each vignette, 

describing briefly the situation and practical threat, were the vignette situations were 

“Skiing / Blizzard”, “Driving / Icy Roads”, and “Boating / Lightning Storm” for physical 

threat. For social evaluation or ‘ego threat’ the vignette titles were: “Oral Presentation”, 

“Formal Debate”, and “Job Interview”. These titles were randomly associated in advance 

with the various decisional control hierarchies to be navigated. 

The hierarchical arrangement of decisional control for each scenario was depicted 

with rectangular boxes of identical size with full element sets visible as nested within 

bins, connected by simple straight black lines. The “Choice” condition was depicted by a 

green box on all equivalent options at a given hierarchy level (i.e., under Cc all bins and 

elements were green; under Nc, the assigned bin and all elements were green; excluded 

bin was red, such that its nested array of green elements were not accessible through the 

hierarchy, see Figure 2.2). The “No Choice” condition at a given node (either a bin- or 

element-level box) was depicted by a red-colored box for all equivalent options except 

for a green-colored box on the only available option. The rationale for the coding was 

that a ‘green’ option was available for selection, whereas a ‘red’ option, and any options 

under it, had been eliminated by decision-making external to the participant. 

Participants were given three practice trials to learn accurate decisional-control 

responding. They were presented with singular graphic stimuli.  Tags on the stimuli had 

letters randomly selected from the previously presented 10-letter set.  Participants were 

informed that white noise would be presented at the end of the first phase of the 

experiment and the duration of the noise would be contingent on their performance on the 

accuracy practice trials.  In actuality, the duration of noise administered was to be 
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randomly determined, between 1 to 4 seconds. During the experimental trials, no 

feedback regarding judgment accuracy was provided and no white noise was 

administered. 

In the psychophysiological testing area, participants sat facing a computer screen, 

with button box to record preferences for a presented scenario. Eight buttons were 

available to allow the participants to indicate their choice directly if there were eight 

options presented. When Element Set Size q = 2, only four options were presented. In 

these cases the two sets of outer-edge buttons on the full set of eight were indicated as 

corresponding to the four boxes on the screen (as buttons 1, 4, 5, and 8, seen in Figure 

2.3, Apparatus section, below).  

Threat values across presentations were controlled by sampling randomly from 

the list of 10 threat levels depicted by proxy through a letter stimulus (D, B, J, …, G). 

Specifically, when four elements were used, they were randomly chosen without 

replacement from the list of 10, and when eight elements were used, they were also 

selected without replacement from the list of 10. The experimental design thus provides 

an approximately balanced set of threat option values.  

A ‘teacher’s desk bell’ was placed on the computer desk within the participant’s 

reach to notify the experimenter of completion or to request assistance. Following the 

general procedure outlined in Kukde and Neufeld (1994), the protocol for the experiment 

proper is listed below. 
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Psychophysiological measurement and decision-making response phase. 

Prior to any presentation of stimuli, baseline psychophysiological measures were 

collected after the participants were fitted with the psychophysiological apparatus. Six 

practice trials were given to familiarize the participants with the experiment layout.  A 

different set of 10 letters and their associated probabilities were presented for their 

reference.  Participants also practiced registering subjective stress ratings at the end of 

each practice trial. Participants were given time to re-learn original threat levels 

associated to letter stimuli. 

The goal of the practice phase was to minimize stress reaction during actual 

testing and prevent confounding with stress associated with uncertainty and anxiety due 

to the inability to remember.  After the re-learning phase, participants’ cognitive appraisal 

of potential challenge or threat was verbally assessed (see Blascovich et al., 2004; Lees & 

Neufeld, 1999). Care was taken to ensure that participants understood the appraisal was 

to be done with reference to upcoming actual trials and not the previous practice trials. 

In total, there were 36 experimental trials per participant.  These followed a 3 x 2 

within-subjects design, with these factors: 3 levels of Choice Structure (i.e., Cc, Nc, and 

Nn), and 2 levels of Element Set Size (i.e., q = 2 or q  = 4, q represents elements-per-bin). 

Each unique combination was presented as an experimental trial six times. Participants 

were given one of the three pre-arranged random orders of stimulus presentation.  These 

orderings were a control condition to minimize the prospect of order effects. After this 

phase psychophysiological apparatus was removed and participants completed the 

psychometric and manipulation check instruments listed in Materials, further below. 
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Apparatus 

The apparatus used in the first phase of the experiment was a computer with a 

Windows 3.1 operating platform. Programming of the instructions, practice and actual 

trials was done in Visual Basic. Headphones and a box for administering white noise 

were shown to participants. The design of the response button box is shown in Figure 2.3 

below. 

Figure 2.3 Representation of Button Box Configuration for Registering Responses 

 

 

 

H R W T 

Home Response Box 

Graphic 

Representation 

    5       6       7       8    1       2       3       4 
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Apparatus for the psychophysiological research was based on apparatus used for 

personality-related cognitive variables (Blascovich, et al., 2004; Tomaka, Blascovich, et 

al., 1997). A Biopac Systems MP-150 data collection apparatus was used to coordinate 

electronic signals for cardiac impedance-based measurement. This unit was augmented 

with STP-100 module, and also included the UIM 100C, EBI100C, ECG100C, and 

DA100C Biopac modules.  

Ten electrical leads were placed bilaterally (left and right) on participants (note, 

more leads can be added to obtain other data such as skin conductance, electro-

myographic and respiration rate). Two leads were affixed at the top of the neck below the 

back of the jaw, two at the base of the neck in line below the upper two electrodes, two 

on the breastbone and two pairs at the upper and lower end of the rib cage. One more 

monitor was placed in the middle of the chest for heart rate calculations. Past research has 

shown that heart rate measures, including the calculation of a minimum heart rate in a 

given trial (heart rate deceleration, or HRDEC) can be sensitive to changes in decisional 

control variables such as choice structure (e.g., Morrison, Neufeld, & Lefebvre, 1988). 

Data was collected on a computer in an adjoining room, using the AcqKnowledge 

software package, version 3.7.2, associated with the Biopac data collection apparatus. 

Materials 

Wonderlic Personnel Test. 

The Wonderlic Personnel Test (WPT; Wonderlic & Hovland, 1939) is a 12 

minute paper-and-pencil test of cognitive ability. Due to the importance of cognitive 

processing in this research, cognitive ability is assessed. Past research (e.g., Benn, 1995, 
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2002) suggests that cognitive ability does not correlate with affinity for information 

processing in a decisional control paradigm. The WPT is a standard industrial psychology 

assessment tool and provides a good prediction of general intelligence, as supported by 

comparison with other standard measures such as the Wechsler Adult Intelligence Scales 

(e.g., .93 correlation with WAIS FSIQ in Dodrill, 1981; differences less than 1.3 with 

WAIS FSIQ scores in Dodrill and Warner, 1988; .92 correlation with WAIS-R in 

Hawkins, Faraone, Pepple, Seidman, Tsuang, 1990; foregoing studies, all as cited in 

Restrepo, 2008). 

Endler Multidimensional Anxiety Scales – Trait. 

The Endler Multidimensional Anxiety Trait Scales (EMAS-T; Endler, Edwards, 

& Vitelli, 1991) have four subscales: Social Evaluation, Physical Danger, Unfamiliar 

situations, and Routine. There are 15 statement items endorsed from 1 (Not at all) to 5 

(Very much). The 15 statements are identical between the four subscales and include 

items such as: “Seek experiences like this”, “Have an ‘uneasy feeling’”, “Feel secure”, 

and “Feel anxious”. The difference between the four subscales is the preface to each 15 

item set. One asks participants to answer as if “You are in situation where you are being 

evaluated by other people” (Social Evaluation). Physical danger, new/unfamiliar 

situations, and daily routines are similarly primed as the context within which to rate the 

same 15 items. Reliability coefficient alpha is reported as .85 or higher on all sub-scales 

for both males and females (Endler, Parker, Bagby, & Cox, 1991). In the present sample, 

we calculated the reliabilities for the four scales: Social Evaluation (α = .87, 15 items, 70 

cases), Physical Danger (α = .88, 15 items, 69 cases), New/Unfamiliar Situations (α = 

.85, 15 items, 69 cases), and Routine (α = .87, 15 items, 69 cases). These values are 
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consistent with the aforementioned previously published results (Endler, Parker, Bagby, 

& Cox, 1991). 

Physical danger and social evaluation are of particular relevance in our 

experiment as these types of situations are reflected in the design of the stress-prompting 

vignettes (e.g.: physical threat, “Driving / Icy Roads”, “Boating / Lightning Storm’; 

social evaluation, “Oral Presentation”, “Job Interview”). In addition, the New/Unfamiliar 

Situations and Daily Routines sub-scales provide valuable background and often 

converse results in the tendency to feel anxious in new situations or by contrast, in daily 

routines. 

 Need for Cognition scale. 

The Need for Cognition Scale (NFC; Cacioppo & Petty, 1982; Cacioppo, Petty, & 

Kao, 1984) is a measure designed to assess an individual personal disposition to desire 

information processing and thinking as part of any given activity. This scale has been 

used effectively in previous decisional control research, supporting a personality-

dependent view of decisional control preference (Benn, 1995, 2002) over an ability-

dependent view. The NFC is an 18-item scale rated on a nine-point interval between -4 

(very strong disagreement) and +4 (very strong agreement). Sample items include: “I 

would prefer complex to simple problems.”, “I would prefer a task that is intellectual, 

difficult, and important to one that is somewhat important but does not require much 

thought.”, and  “I would rather do something that requires little thought than something 

that is sure to challenge my thinking abilities” (reverse scored). Strong internal 

consistency, with Cronbach’s alpha of .90, is reported (Cacioppo, Petty, & Kao, 1984), 
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supporting a single dimension for the NFC scale. Using all data available (without 

exclusions) we calculated an internal consistency of .90 for Cronbach’s alpha in our 

sample (18 items, 70 cases). 

 Desirability of Control scale. 

The Desirability of Control scale (DOC; Burger & Cooper, 1979) is designed to 

assess “general level of motivation to control the events in one’s life”. It is a 20-item 

measure, with a 7-point scale ranging from 1 (This statement doesn’t apply to me at all.) 

to 7 (This statement always applies to me.) Sample items include: “I prefer a job where I 

have a lot of control over what I do and when I do it”, “When it comes to orders, I would 

rather give them than receive them”, and “Others usually know what is best for me” 

(reverse scored). A Kuder-Richardson 20 reliability statistic is reported as .80 and a test-

retest reliability of .75 (Burger & Cooper, 1979). In our sample internal reliability is 

consistent with published research, with a Cronbach’s alpha of .81 (20 items, 71 cases). 

 Uncertainty Response Scales. 

The Uncertainty Response Scales (URS; Greco & Roger, 2001) are designed to 

assess modes of coping with uncertainty. Factor analysis work has confirmed three 

subscales for individuals’ patterns of coping with anxiety: emotional uncertainty, desire 

for change, and cognitive uncertainty. Sample items for emotional uncertainty, wherein 

the reaction to uncertainty is primarily emotional, include: “I feel anxious when things 

are changing”, and “Uncertainty frightens me.” Sample items for desire for change, a 

subscale related to an eager and anticipatory attitude towards uncertainty, include: “I find 

the prospect of change exciting and stimulating”, and “I think variety is the spice of life.” 
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Sample items for cognitive uncertainty, characterized by an awareness of a lack of factual 

knowledge and understanding of an uncertain situation, include: “I like to plan ahead in 

detail rather than leaving things to chance”, and “I like to know exactly what I am going 

to do next.” Items are rated on a 4 point scale, presented as “Never, Sometimes, Often, 

Always” (scored as 0 to 3). Coefficient alpha for the three subscales is reported as: .89 

(emotional uncertainty), .90 (desire for change), and .85 (cognitive uncertainty). The test-

retest reliability statistic is reported as .79, .86, and .80, respectively. In the present 

sample, the coefficient alpha for reliability was calculated as .86 for Emotional 

Uncertainty, .89 for Cognitive Uncertainty, and .90  for Low Desire for Change. 

Manipulation-check questions. 

Psychometric scales for related constructs (as described immediately above), 

control variables and demographics, and subjective self-report data were collected after 

the experiment so as not to inordinately sensitize participants to experimental variables. 

A series of manipulation check questions were presented to ascertain the strength of the 

experimental design. This type of verification has precedent in research involving 

perception of control (Dobson & Neufeld, 1989). Four questions were asked (presented 

below), with endorsement between 1 and 9 on a Likert-type scale. Written anchoring 

descriptors for questions 1 and 2 were: 1 - “No control at all”, 5 - “Moderate control”, 

and 9 “Total control”. Written anchoring descriptors for questions 3 and 4 were: 1 “Not at 

all willing”, 5 “Moderately willing”, and 9 “Extremely willing”. 

1 – During the letter-selection task, how much control do you feel you had 

in reducing the amount of white noise to be administered to you? 
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2 – During the letter-selection task, how much control do you think other 

participants (doing the same task as you did) had in reducing amount of 

white noise administered to them? 

3 – When dealing with stressing situations, to what extent would you be willing to 

process information that enables you to reduce threat? 

4 – When dealing with stressing situations, how willing are you to tolerate threat, 

rather than to process information that can reduce it? 

Results 

Data 

 Data types. 

Three types of data are used in this research design. The use of formal modeling 

permits the generation of ‘method data’, an a priori furnishing of expectancies with its 

own set of statistical properties, and specific point estimates. In this way, model-driven 

‘method data’, derived from instantiation of modelled quantities for specific experimental 

levels creates a type of data that might be termed the ‘modus’ (Latin for ‘method’).  

The data as commonly understood, (data the plural of datum, Latin for ‘what is 

given’) summarizes the dependent variable measurements. Finally, a third ‘terrain’ exists 

which is properly distinguished both from ‘method’ (modus) and ‘givens’ (data): the 

context within which these both occur and do or do not match up to one another. The 

expected influence of psychometric backdrop, the individual differences landscape, can 
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be named the ‘topothesis’, “the logic of the place where the idea is laid down”. The 

matrix of related construct variables can be considered the ‘topic data’, and might be 

called by a fitting neologism the ‘topia’. 

 Linguistic inventions aside, the three types of data can be conventionally referred 

to as: ‘method-driven’ (model predictions), ‘empirically-acquired’ (data collected under 

experimental manipulation) and ‘background inventories’ (psychometric-type data). 

 Besides this trifecta of data types, the data collected by experimental means in this 

multi-modal study can be classified in two large categories: individual difference 

variables, and experimental trial variables. The individual difference variables include 

administrative counts (participant number, trial order), demographic variables, 

manipulation-check ratings, published psychometric instruments, and modeled decision-

choice preference parameters. The experimental trial variables include 

psychophysiological measures, reaction time data, and per-trial subjective stress ratings. 

Individual difference variables. 

Administrative, demographic, and psychometric instrument data. 

Among the individual difference variables, administrative counts were Participant 

Number (sequential within data collection dates) and Trial Order (three randomized 

orders were alternated). Demographic variables are Sex and Age. Manipulation check 

ratings were collected using four questions to assess for effectiveness of the experimental 

manipulation. Published psychometric instruments used were: the Wonderlic Personnel 

Test, the Desirability of Control scale, the Need for Cognition scale, the Endler 
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Multidimensional Anxiety Scales – Trait (subscales: Social Evaluation, Physical Danger, 

Unfamiliar Situations, and Routine), and the Uncertainty Response Scales (subscales: 

Emotional Uncertainty, Low Desire for Change, and Cognitive Uncertainty).  

Individual choice preference profiles. 

Elimination-by-aspects preference parameters. 

The final set of individual difference variables are the modeled decision-choice 

preference parameters. Data was collected in an initial stage of the full experimental 

session for participant preference between Cc, Nc, and Nn scenarios, always with two 

bins randomly mixed for two and four elements per bin. Over 180 selections were made 

by participants, and these were modeled into preference parameters, reflecting relative 

preference for choice. These involve a total of eight parameters, four relating to ego-

threatening situations, and four relating to physically dangerous situations. In parallel, 

each of these two types of situations has four parameter values optimized for fit to an 

elimination-by-aspects decision-making model (Tversky, 1972; see also, Batsell, Polking, 

Miller & Cramer, 2003), allocating individual relative preference for features of decision-

making scenarios presented in the first phase of the experiment. This modeling method 

has been used successfully in previous research (e.g., Morrison, Neufeld, & Lefebvre, 

1988). The four parameters are: 1) parameter a, related to decision features unique to full 

choice scenarios (Cc only), 2) parameter b, decision features shared by mixed choice 

scenarios and pure no-choice scenarios (Nc and Nn), 3) parameter c, decision features 

unique to pure no-choice scenarios (Nn only), and 4) parameter d, decision features 
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shared by full choice and mixed choice scenarios (Cc and Nc). The result is a subset of 

four parameters each for ego-threatening and physically dangerous situations. 

Optimization and calculation of preference profiles. 

Optimization was done with a range for possible values from .001 to 999.000, to 

allow for a suitable degree of variation in order of magnitude between parameters. Higher 

values indicate increased preference for a given particular feature of a choice scenario. 

These preferences were summarized on a single dimension (see “Maximizing 

Continuum”, next paragraph). This optimization and main findings from the first phase of 

this experiment are reported elsewhere (Pawluk, Shanahan, Hong, & Neufeld, 2008). 

However, one change in the present analysis is that the four variables were permitted to 

vary freely, rather than setting parameter c equal to 1 as was the approach in previous 

analyses. A second change involved creating within-subject proportions for the four 

variables, such that the sum of the four ego and four danger parameters were used as the 

denominator in allocating a proportional preference between the four parameters 

(Shanahan, Pawluk, Hong, & Neufeld, 2012). This allows comparison between 

participants, and improved psychometric properties.  

A new measure of decision preference: the Maximizing Continuum. 

The development of a “Maximizing Continuum” took its impetus from the 

availability of these standardized parameters. On the same sample as in the present 

report, a successful development and validation of a “Maximizing Continuum” as a 

decision-making tendency was developed (Shanahan, Hong, Pawluk, & Neufeld, 2012). 

This involved the sum of the choice-oriented parameters (parameters a and d), and the 
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subtractions of the choice-averse parameters (b and c). The scale that emerges has robust 

properties and specified ranges for three decision-making preferences: Maximizing (a 

desire for maximal result, accepting the attending information processing demands), 

Satisficing (a desire for a ‘good enough’ result, seeking an intermediate amount of 

information processing), and Simplifying (a preference for limited information 

processing, with acceptance of minimal decision-making advantage). Using these 

definitions, previous datasets were reviewed and the prevalence of the three decision-

making preferences, Maximizing, Satisficing, and Simplifying was found to occur with 

these as reliable factors in previous analyses (Benn, 1995, 2002).  

The Maximizing Continuum is used in the present study in constructing a 

psychometric profile for individual participants. As reported in the Main Analysis, under 

Results, a factor score relating dominantly to Maximizing exhibits a significant covariate 

interaction with Choice Structure within the experiment. Although covariate interactions 

can be considered nuisance effects, in this context it is a construct validation of expected 

overlap between the constructs of preference for control (Maximizing) and availability of 

decisional control (Choice Structure). 

Experimental trial variables. 

 Psychophysiological measures. 

Experimental trial variables were maximum and minimum heart rate, total peripheral 

resistance, decision-making time, and subjective stress rating. Maximum heart rate 

indicates degree of arousal and has been used to detect a ‘challenge’ response to stressful 

situation (e.g., Blascovich et al., 2004). The short form for maximum heart rate is 
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HRACC, as it is an indicator of acceleration in heart rate. For minimum heart rate, the 

lowest heart rate recorded during a particular trial is an indicator of deceleration in heart 

rate for that trial. The short form for minimum heart rate is HRDEC. Based on previous 

research (see Kukde & Neufeld, 1994; Morrison, Neufeld, & Lefebvre, 1988), a lowered 

minimum heart rate can be an indication of increased information intake (c.f. Lacey & 

Lacey, 1974). This may also be compared with increased ‘focus’, or a quieting of 

physiological function to prioritize higher-order cognition. Morrison and colleagues 

(1988) found that minimum heart rate was at a maximum in scenarios with the least 

decisional control (e.g., Nn condition) and at a minimum in scenarios with most 

decisional control (Cc, Nc). This may result from a combination of increased information 

intake combined with lack of decision-making power. A qualitative impression for this 

pattern of participant mental and physical status is that of a physiological ‘self-calming’ 

and cognitive ‘focus’ when mentally effortful threat reduction is available, and an 

increased physiological arousal and undifferentiated cognitive ‘alertness’, when threat 

can be met but not managed. 

 Total peripheral resistance TPR is an index of ‘resistance to blood flow’. It is 

calculated as the drop in mean arterial pressure registered after one systole, or a cycle of 

blood fully through the circulatory system, as divided by cardiac output, or the volume of 

blood flow per unit time. More involved discussions of TPR are available elsewhere (e.g. 

Blascovich et al., 2004); for the purposes of this study this measures serves as a screen at 

the psychophysiological level for reduced blood flow often associated with the 

experience of being threatened under stress. 
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The values used for psychophysiological measures are reactivity scores. These are 

differences between the experimental cell condition means for the participant’s 

psychophysiological readings during the experimental stimulus presentation (trial) and 

the experimental cell condition means for the same participant during a thirty second 

resting period immediately prior to each stimulus presentation (baseline). For example, a 

positive value for minimum heart rate reactivity score indicates that during the trial, 

participants did not return to resting levels for minimum heart rate. 

Psychophysiological scores were averaged across the six identical repeated trials 

to provide an estimate of a peak and lowest heart rate for participants that characterized 

their encountering a specific decision scenario (Cc2, Cc4, Nc2, Nc4, Nn2, Nn4).  

Decision-making time and stress ratings. 

The other two experimental trial variables are decision-making time and stress 

rating. Decision-making time RT1 is defined as the time taken by the participant to assess 

the scenario and make a decision regarding an optimal selection for lowest threat within 

decisional control constraints. This involved the pressing and holding of the ‘space bar’ 

key on a standard personal computer keyboard. The pressing of the space-bar initiated the 

presentation of the decision scenario, with little or no delay between the press and the 

presentation (< 50 ms). Subsequently, once a decision was made, the participant was to 

register their letter selection by pressing the appropriate letter key with the same hand as 

had been holding down the space-bar. The act of releasing the space-bar acts as an end-

marker for the time period of decision-making (decision-making time, RT1, from 

“reaction time 1”). This approach was closely coached for participants and was 
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periodically verified by the experimenter as actively being used throughout each 

experiment for continuing construct validity for the ‘decision-making time’ measure. 

Within the set of valid participant cases, the range of reaction times was a minimum of 

931 milliseconds and a maximum of 7069.7 milliseconds. 

Stress ratings involved the presentation after each trial of a Likert-type scale with 

five anchor points in answer to the question: “How stressed were you during that trial?” 

The verbal descriptors matched anchor points as follows: 1 – No Stress, 2 – A Little 

Stress, 3 – Moderate Stress, 4 – Considerable Stress, 5 – Extreme Stress. This question 

was presented after each of the 36 experimental trials and a value from 1 to 5 was 

collected as a single-trial rating of subjective stress (STRSS). Use of subjective ratings of 

stress is common with research involving physiological or psychophysiological efforts 

and demands (e.g., Siegwarth, Larkin, & Kemmner, 2012; Stamford, 1976). 

 Data processing. 

Age exclusion. 

From the original sample of 71 participants (35 female, 36 male), six were over 

age 30 (range 32-44, 3 female, 3 male). Removal of these participants is supported by a 

tendency for a change in physiology that can affect cardiac impedance recordings (cf., 

Denburg et al., 2007). This sub-group also contributed additional confounding with a 

disproportionate number of outliers for psychophysiological and psychometric covariate 

measures. Participants aged 30 years or more were removed from the sample. For future 

consideration, participant Age should be kept within ranges most likely to vary with some 
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uniformity. In our study, this was the 18-29 years range. After Age exclusion, our sample 

consisted of 65 participants (32 female, 33 male).  

Psychometric instruments and choice preference parameters. 

No participants were excluded based on their scores on published psychometric 

instruments. The properties of these scales are robust and remained within acceptable 

ranges for analysis. Among the choice preference parameter values, their standardization 

via the use of proportions allowed these values to become comparable between 

participants and useful for analyses. An important caveat for the Maximizing Continuum 

is the disproportionate distribution toward Maximizing. In the Ego-Threat parameter set, 

there were 49 Maximizers, 20 Satisficers, and 2 Simplifiers; in the Physical Danger 

parameter set, 53, 16, and 2, respectively. However, the Maximizing Continuum is a 

continuous measure as its name suggest, such that interval differences are considered 

meaningful. As such, the participant scores on a Maximizing score for both sources of 

threat combined yielded a measure of Maximizing suitable for use in the factor analysis 

that was undertaken to create an individual psychometric profile of participants. 

The covariates generally, both psychometric instruments and modeled preference 

parameters, are intended to reflect individual difference meaningfully, and so it was 

fitting that once these became comparable and, or, distributed suitably, all individual 

difference variables data were kept within the main analysis. This was done even with the 

concern for entire sets of missing psychophysiological data on a participant-wise basis. 

However, in order to preserve the characteristics of the sample population, participants 

excluded via the Age criterion were not re-introduced into the sample. In sum, the sample 
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of 65 participants was drawn from a comparable population of 18-29 year-old 

undergraduates, generally.  

The psychophysiological data were complete or nearly-complete for 49 

participants, but 16 participants’ psychophysiological datasets were largely missing due 

to apparatus and methodological challenges. These kind of experimental issues are not 

uncommon with psychophysiological research even with state-of-the-art implementation, 

as was used in our study with up-to-date methodology (e.g., as per Blascovich et al., 

2004). Notwithstanding missing data, the analysis done on the full set of 65 participants 

returned the same results as a control analysis with only 49 participants in terms of 

psychophysiological sensitivity to independent variables, such that the software analysis 

platform (SPSS 22.0) compensated suitably for missing data. 

Psychophysiological measures. 

Using an established research paradigm (Blascovich, Seery, Mugridge, Norris, & 

Weisbuch, 2004; Kelsey, Blascovich, Leitten, Schneider, Tomaka, & Wiens, 2000; 

Tomaka, Blascovich, Kelsey, & Leitten, 1993; Tomaka, Blascovich, Kibler & Ernst, 

1997), we successfully collected data from the majority of participants. Some 

participants’ readings were considered invalid due to several factors. Blood pressure 

readings were affected if the continuously inflating and deflating blood pressure cuff was 

placed sub-optimally or changed location during testing. Heart rate readings were 

affected at times by sweating, body fat percentage, and relatively higher levels of 

localized fatty tissue, such as with females in the breast area. Despite pilot testing and the 

use of a standardized anatomical schematic drawing, optimal placement of electrodes 
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seemed to be a skill that could be continually refined with practice for experimenters in 

order to elicit higher quality data. As such, the resulting data collection tended to yield 

either an entirely useable set of psychophysiological readings, or a largely unusable set. 

Erratic readings occurred, potentially due to an electrode slipping due to perspiration or 

the blood pressure cuff moving during data collection. Notably however, rate of attrition 

for data quality decreased as the sample increased. 

Participants excluded on the basis of missing psychophysiological data 

nonetheless furnished valid and cohesive psychometric covariate data, both from 

published instruments and choice preference profiles, as well as decision-making time 

and stress ratings data. As such the general analyses involving these measures included 

the full sample of 65 participants, 33 male, 32 female, all under age 30. Factor structure 

for covariates was replicated with both a full sample of 65 and a full data sample of 49, 

and main effects and interaction were significant in the same pattern. However, unlike the 

principal analysis for this study that included psychophysiological variables, no 

significant interactions were found between the covariates and the decisional control 

experimental variable levels when no psychophysiological data was used.  

 Reaction time and trial stress ratings. 

 Reaction times above 10,000 ms and below 100 ms were eliminated as indicative 

of construct-invalid responding. A reaction time less than 100 ms was assumed to 

indicate a lack of deliberation according to instructions, and this time period is a standard 

cut-off in cognitive science literature (cf., Townsend & Ashby, 1983). The 100 

millisecond criterion removed 2 data points as outliers, within a full set of 65 x 3 x 2 x 6 
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(2340 data points). This is considered a liberal but effective exclusion criterion. The 

minimum averaged cell-condition reaction time for any single participant remaining in 

the data analysis was 163 milliseconds. 

A response delay over 10 seconds was deemed to indicate distraction not related 

to the experimental task. By experimental observation and statistical review, this criterion 

was judged to eliminate definitely confounded responses but allow for the inclusion of 

responses by participants who spent considerable time evaluating a novel and complex 

stimulus set. By this exclusion criterion, 28 data points were excluded. In total, with the 

100 millisecond floor and 10 second ceiling, 98.7 % of the data remained valid. 

Importantly, no more than three data points were removed from within a given set of six 

trials in a specific cell condition: average values were always calculated across half or 

more of all intended trials. 

Parametric assumptions. 

Control variables and psychometric variables related to this paradigm were 

examined for parametric assumptions. Participant data (three male and three female) for 

those aged 30 or over were eliminated from the sample, for consistency among 

psychophysiological and psychometric variable properties. The resulting sample size of 

65 participants thus comprised 33 males and 32 females (Age M = 21.3, SD = 2.7). 

Among Control Variables, no major violation of parametric assumptions was observed 

(Manipulation Check questions 1-4).  

Dependent variables were also assessed for parametric assumptions. Across all six 

conditions, minimum heart rate reactivity values had a mean of 6.055 (beats per minute 
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increase during task completion), standard deviation of 6.981, a skewness statistic of 3.09 

and a kurtosis statistic of 15.55. These values merit consideration for validity; they are 

outside the typical ranges prescribed for meeting univariate parametric assumptions. 

However, using a GLM repeated measures model these values can be taken as indicative 

of trends in participant responding, and not in serious violation the assumption of 

multivariate normality (Tabachnick & Fiddell, 2001). Reaction times across the six 

experimental cell conditions had a mean of 2304 milliseconds, a standard deviation of 

1238 milliseconds, a skewness statistic of 0.82 and a kurtosis statistic of 0.49. Stress 

ratings across the six experimental cell conditions had a mean of 1.512 (on a 1 to 5 

Likert-type scale, from low to high subjective experience of stress during the preceding 

trial), a standard deviation of 0.557, a skewness statistic of 1.14 and a kurtosis statistic of 

0.59. Due to the robust nature of GLM analyses and near-normal distributions of 

decision-making time and stress rating, the intended 3 x 2 MANOVA analysis was 

carried out. 

Data descriptives. 

The correlations reported in Table 3 below are largely consistent with expected 

relations between variables. NFC and DOC exhibit high moderate positive correlation, 

and high moderate negative correlation with several anxiety and uncertainty measures. 

Note the WPT (cognitive ability) is largely uncorrelated with these variables. 
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Table 3 
 
Correlations among Psychometric Measures 
 

  NFC DOC WPT EMAS 
– Soc 

EMAS 
- Phy 

EMAS 
– New 

EMAS 
- Rout 

URS – 
Emo 

URS – 
LD 

DOC .49         
WPT .14 -.08        
EMAS-Soc Eval -.35 -.40 -.01       
EMAS-Phy Dan -.22 -.34 .03 .33      
EMAS-New Sit -.49 -.53 -.13 .56 .39     
EMAS-Rout -.13 -.21 .08 .12 .09 .37    
URS-Emo Unc -.50 -.49 -.07 .48 .28 .59 .39   
URS-LD Change -.48 -.40 -.00 .27 .28 .32 -.02 .33  
URS-Cog Unc -.02 .20 -.25 .01 -.12 -.11 -.22 .09 .16 
Italics typeface:   p < .05; Boldface type:  p < .01 
 
Note: Table 3 above is intended for description, not to test for significant correlations. 
Key: NFC, Need for Cognition; DOC, Desirability of Control; WPT, Wonderlic 
Personnel Test; EMAS, Endler Multidimensional Anxiety Scales: Soc, Social Evaluation, 
Phy, Physical Danger, New, New/Unfamiliar Situations, Rout, Routine; URS, 
Uncertainty Response Scales: Emo Unc, Emotional Uncertainty, LD Change, Low Desire 
for Change, Cog Unc, Cognitive Uncertainty. 
 

Preliminary Analyses 

 Factor analysis of psychometric instruments. 

Given substantial but not excessive overlap between the construct-related 

variables, a factor analysis was undertaken to distill the data into useable profiles (cf. 

Tabachnick & Fiddell, 2001). With extraction of 51% of the variance, the first three 

factors in a four-factor solution distill the patterns within the psychometric data and 

preserve the concurrent benefit of economizing degrees of freedom in the Main Analysis. 

A principal components analysis was undertaken, using Quartimax rotation. The 

Quartimax rotation algorithm allots variance so as to minimize the number of factors. 

Observing a Scree plot, a plausible ‘elbow’ is found between the third and fourth factors; 
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the eigenvalue at the third factor was 1.56, at the fourth factor, 1.023, at the fifth factor, 

.948. The steep drop between factors 3 and 4 recommended the relevance of a solution 

stopping at the third factor for use of factors as covariates. The fourth factor is included 

in Table 4, but was not included as a covariate in the main analysis. 

Table 4 

Factor Loadings for Factor Analysis of Psychometric Scales with Quartimax Rotation 

 
Scale, Sub-Scale or 

other Variable 
Anxious 

Abdicating 
Restless 
Fidgeting 

Steady 
Maximizing 

Obedient 
Understanding 

EMAS –  
Unfamiliar 
Situations 

.73 .33 .03 -.16 

Desirability of 
Control -.71 -.15 -.27 -.32 

Need for Cognition -.70 .15 .07 .01 

Emotional 
Response  
to Uncertainty 

.70 .34 -.39 -.00 

EMAS –  
Social Evaluation .63 .03 .06 -.12 

Low Desire  
for Change .62 -.39 .07 .25 

EMAS –  
Physical Danger .44 .02 .42 -.28 

Cognitive Response  
to Uncertainty -.01 -.54 -.62 -.08 

EMAS – Routine .20 .82 -.07 -.03 

Maximizing .08 -.14 .79 .18 

Psychophysiological  
Data - Full Set -.00 -.34 -.01 .77 

Wonderlic  
Personnel Test -.08 .29 .21 .67 

Extraction Method: Principal Component Analysis.   
Rotation Method: Quartimax with Kaiser Normalization. Rotation converged in 5 iterations. 
EMAS: Endler Multidimensional Anxiety Scales 
Factor loadings > .40 are in boldface underline, .20 < factor loadings < 40 in underline only. 
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First factor: Anxious Abdicating. 

In the factor analysis, the first factor accounted for 25.4% of the variance within 

the rotated solution, with an initial eigenvalue of 3.171 on the unrotated version of this 

factor. The first factor seems to capture the tendency of high anxiety and tendency to an 

emotional response to uncertainty, together with a marked lack of desire for control and 

similarly marked lack of need for cognition. As such, this factor received the descriptive 

name “Anxious Abdicating”.  

Second factor: Restless Fidgeting. 

The second factor accounted for 13.4% of the variance within the rotated solution, 

with an initial, unrotated eigenvalue of 1.73. The second factor seems to capture the 

tendency for the experience of anxiety stemming from routine, a negative tendency to 

low desire for change, or, some degree of positive desire for change. Additionally, there 

is an illuminating if secondary preponderance within this factor: there is some correlation 

with poor data quality (namely, a lack of psychophysiological data, where absence or 

presence is coded as 0 or 1). Given the pattern of anxiety from routine, desire for change, 

and a tendency to emotional instead of cognitive coping with uncertainty, with some 

indications of poor psychophysiological data, this factor was named “Restless Fidgeting”.  

Third Factor: Steady Maximizing. 

 The third factor accounted for 12.3% of the variance within the rotated solution, 

with an initial, unrotated eigenvalue of 1.56. The third factor seems to capture a 

preference for maximal choices in stressful decision-scenarios, a tendency to low 

emotionality and a low cognitive coping in response to uncertainty, with some 

endorsement of anxiety from physical danger. This factor appears to account for a pattern 
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of little effect from uncertainty, a desire for choices, and sensitivity to situations of 

physical danger. There is a ‘pragmatic military’ or ‘prudent huntsman’ impression to this 

mentality; it received the name “Steady Maximizing”. 

Fourth factor: Obedient Understanding. 

The fourth factor accounted for 11.4% of the variance within the rotated solution, 

with an initial unrotated eigenvalue of 1.02. The fourth factor seems to capture a 

combination of cognitive ability and good quality data, with indications of lower desire 

for control and lower anxiety from physical danger. This factor, accounting for the least 

variance among the factors, was named “Obedient Understanding”.  

Main Analysis 

The results for the GLM analysis using a Repeated Measures MANOVA design 

with a 3 x 2 fully factorial table of experimental cell conditions (Cc2, Cc4, Nc2, Nc4, 

Nn2, Nn4) are reported below. Covariates were the first three sets of factor scores from 

the factor analysis of psychometric instruments described in Preliminary Analyses above. 

Dependent variables were maximum and minimum heart rate (HRACC, HRDEC), total 

peripheral resistance (TPR), decision-making time (RT1), and per-trial stress rating 

(STRSS). 

Main effects and interaction. 

A significant main effect was observed for both Choice Structure and Element Set 

Size.  A significant interaction between Element Set Size and Choice Structure was also 

observed. A significant interaction was also found between Choice Structure and the set 

of factor scores from the third factor in the psychometric profiles, “Steady Maximizing”. 
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Choice Structure main effect. 

The main effect of the Choice Structure was significant, Wilks’ λ = .30, F(10, 

152) = 9.24, p < .001, 𝜂𝜌
2 = .45 (univariate tests on Choice Structure and its interactions 

use Huynh-Feldt adjustments for non-sphericity throughout). The Nc condition (HRDEC 

for Nc, M = 4.78) exhibited lower mean heart rate minimums than the Cc condition 

(HRDEC for Cc, M = 6.47; mean difference Cc-Nc = 1.71, t(48) = 3.03, p = 0.004, 

Cohen’s dz = 0.44, ‘moderate’ effect size) and the Nn condition (HRDEC for Nn, M = 

6.90; mean difference Nc-Nn  = -2.12, t(48) = -3.10, p = 0.003, Cohen’s dz = 0.45, 

‘moderate’ effect size). The Cc and Nn conditions did not differ from each other 

(HRDEC mean difference Cc-Nn = -.41, t(48) = -1.11, n.s., Cohen’s dz = 0.16, no 

significant effect). Cohen’s dz is used here for effect size in a repeated measures design 

(Rosenthal, 1991, as cited in Lakens, 2013). In terms of decisional control available, there 

appears to be a pattern of more focus in the middle (Nc), as compared with reduced 

concentration (higher HRDEC) at the highest and lowest control levels (Cc, Nn). 

Element Set Size main effect. 

The main effect of Element Set Size was significant, Wilks’ λ = .60, F(5, 36) = 

4.87, p = .002, 𝜂𝜌
2 = .40. As expected, a greater Element Set Size resulted in higher values 

for lowest recorded heart rate (HRDEC). The value for HRDEC was significantly higher 

when Element Set Size was four (q = 4) than when Element Set Size was two (q = 2). 

The univariate results for HRDEC are F(1, 40) = 6.64, p = .014, 𝜂𝜌
2 = .14. Element Set 

Size might be expected to present more of a challenge with more elements, but HRDEC 

is expected to decrease with more information intake. Results indicate a kind of 
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‘selection’ is occurring, whereby participants are exhibiting more information intake 

when there is less information. This point is developed under Theoretical Synthesis in the 

Discussion. The Element Set Size main effect is also detected in part by Decision-Time 

(RT1) and Stress Rating (STRSS), according to univariate results (RT1, F(1,40) = 14.18, 

p = .001, 𝜂𝜌
2 = .26; STRSS, F(1, 40) = 16.99, p < .001, 𝜂𝜌

2 = .30. In contrast to HRDEC, 

RT1 and STRSS decrease from Element Set Size (q = 2) to Element Set Size (q = 4). 

Choice Structure and Element Set Size interaction. 

The interaction of Choice Structure and Element Set Size was significant, Wilks’ 

λ = .73, F(10, 152) = 2.62, p = .006, 𝜂𝜌
2 = .15. Dissection of this interaction revealed a 

steeper slope between Cc4 and Nc4 than between Cc2 and Nc2 for both Decision-Making 

time (RT1) and Stress Rating (STRSS). In univariate follow-up testing, RT1 and STRSS 

showed a significant result for a Choice Structure by Element Set Size interaction (RT1, 

F(2, 80) = 9.98, p < .001, 𝜂𝜌
2 = .20; STRSS, F(2, 80) = 6.99, p = .002, 𝜂𝜌

2 = .15). The 

other three dependent variables exhibited no significant univariate effect (HRACC, 

HRDEC, and TPR). Estimated Marginal Means patterns are depicted below (Figures 3.1, 

3.2, and 3.3), with covariates fixed at their mean value (Anxious Abdicating = -.037, 

Restless Fidgeting = -.175, Steady Maximizing = -.055). 
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Figure 3.1 Estimated Marginal Means for RT1 in Choice x Elements Interaction 

 

Figure 3.1. Decision-making time, RT1, pattern across six experimental cell conditions. 

Figure 3.2 Estimated Marginal Means for Stress  in Choice x Elements Interaction 

 

Figure 3.2. Single-Trial Rating of Subjective Stress, STRSS, across cell conditions. 
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Figure 3.3 Estimated Marginal Means for HRDEC in Choice x Elements Interaction 

 

Figure 3.3. Minimum Heart Rate, HRDEC, across experimental cell conditions. 

 

Covariate interaction of Choice Structure and Steady Maximizing factor score. 

A significant interaction emerged between Choice Structure and factors scores for 

the “Steady Maximizing” factor, Wilks’ λ = .73, F(10, 152) = 2.58, p = .007, 𝜂𝜌
2 = 15. 

This interaction expressed a significant trend whereby higher scores on the “Steady 

Maximizing” factor related to higher reported stress levels when engaging scenarios with 

intermediate levels of  decisional control contexts (Nc4, Cc2), followed by an 

intermediate amount of stress in extreme decisional control contexts (very little control,  

Nc2, or very much control, Cc4), and lastly, participants high on “Steady Maximizing” 

reported the least stress in scenarios with no decisional control (Nn4, Nn2). Participants 

with a higher maximizing preference appear to experience the most subjective stress in 
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intermediate control scenarios. One explanation might be that this engages the most effort 

on their part, hence creating a memory of exertion, or stress. 

Among the two independent variables, Choice Structure and Element Set Size, the 

three sets of covariate factor scores, “Anxious Abdicating”, “Restless Fidgeting”, and 

“Steady Maximizing”, and the five dependent measures, heart rate acceleration, heart rate 

deceleration, total peripheral resistance, decision-making time, and per-trial stress ratings, 

no other significant effects were revealed. It can be noted that trends appear to suggest 

sensitivity to personality variables in the psychophysiological measures, but no further 

significant results emerged. 

Confounds and Controls 

Age, trial order, sex. 

Correlation results for dependent variables of Maximum Heart Rate, Minimum 

Heart Rate, Total Peripheral Resistance, Decision-time and Stress Rating with Age, Trial 

Order, and Sex revealed only one significant correlation, between RT1 and Age, r  = 

0.27, N = 65, p = .03. This indicates that, to a weak-moderate degree, participant ages 

vary positively with reaction times. This single significant correlation is not considered 

an obstacle to validity of findings. 

Baseline and Task values. 

 The same analyses as were conducted on reactivity scores were also conducted on 

Baseline scores only and Task scores only. Recall that Reactivity scores were calculated 

as ‘Task scores minus Baseline scores’. No significant results were found for Baseline 

scores for maximum heart rate, minimum heart rate, and total peripheral resistance with 

the same 3 x 2 MANOVA design as for Reactivity scores. For Task scores, the same 3 x 
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2 MANOVA design revealed significant main effects for Choice Structure (Wilks’ λ = 

.84, F(6, 172) = 2.59, p = .02, 𝜂𝜌
2 = .08) and Element Set Size (Wilks’ λ = .82, F(3, 42) = 

2.59, p = .02, 𝜂𝜌
2 = .08) , but no significant effect for an interaction or for any covariate 

interaction effects. This pattern of results supports the main results, and indicates no 

significant confounding from Baseline scores.  

Overall, with regard to confounds and control variables, reactivity score main 

results are not reflected in the baseline scores results, but somewhat reflected in task 

score results. This is consistent with the assumption of a causal effect for the 

experimental manipulation, with added validation for the improved sensitivity of 

reactivity scores over task scores only. 

Discussion 

Addressing the Hypothesis 

 This study has allowed the examination of participant personality, behavior, and 

subjective experience as it relates to variations of nested-structure decision-making in 

stressful situations. The expectation of increased stress with reduced decisional control 

has been met, with an important qualification of a ‘v-shaped’ trend, not a strict linear 

progression. The expectation of increased stress with increased information processing 

has been met to some degree. An interaction of choice structure and number of elements 

in specified decisional control arrangements has been validated, with particular emphasis 

on the difference between the Cc and Nc conditions. Overall, this study strongly supports 

1) the validity of the decisional control model a predictor of response to decision 

structures, 2) the effective relation of decisional control to reaction times, stress ratings, 
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and psychophysiological measurements, and 3) the utility of decisional control in 

providing a theoretical integration of otherwise potentially disparate results.  

The detailed design, involved data collection and analysis, and extensive 

interpretation of results have arguably advanced the understanding of decision scenarios. 

The relative impact of decision scenario features (choice architecture, number of choices) 

on psychophysiological, reaction time, and subjective response data in the context of 

multi-dimensional psychometric profiles and model-driven theoretical expectations is 

supported as relevant and able to serve as a cohesive knowledge framework in stress and 

coping research. 

 Construct-validation results. 

 Choice Structure main effect. 

 Our first hypothesis was that Choice Structure (Cc, Nc, Nn) would have a 

significant impact on psychophysiological response. Research has been done in this area 

in terms of the impact of experimentally manipulated stress on psychophysiological 

variables (e.g., Blascovich, et al, 2004; Tomaka, Blascovich, et al., 1997), but the use of a 

decisional control paradigm as the independent variable for predicting differences in 

stress induction still decidedly novel. Recent work has extended the theoretical 

(Shanahan & Neufeld, 2010) and applied theoretical side of this approach (Levy, Yao, 

McGuire, Vollick, Jetté, Shanahan, Hay, & Neufeld, 2012). The decisional control model 

quantifies stimulus properties directly bearing on potential sources of stress, such as 

challenge-stress activation and associated individual differences. As such, several 

measures were considered for detecting experimental effects. Reactivity scores were used 



131 

 

as the principal dependent variable, calculated by subtracting psychophysiological 

readings taken during the Baseline period from the same readings during the Task 

completion. 

Particular sensitivity for the decisional control conditions emerged for minimum 

heart rate, also called heart rate deceleration (HRDEC; Morrison, Neufeld & Lefebvre, 

1988). Other measures used in previous formats showed little relation to the hypothesis of 

interest in preliminary analyses. Some indications exist for the relevance of maximum 

heart rate (HRACC), total peripheral resistance (TPR), and other measures such as stroke 

volume (SV), cardiac output (CO) and pre-ejection period (PEP) as contributing to 

discriminability of personality and cognition-related variables. Although these measures 

were examined, they do not appear in the present design and research sample to interact 

meaningfully with the hypotheses. 

The main effect of Choice structure indicates a ‘v-shape’ if arranging levels 

sequentially as Cc, Nc, Nn. The pattern can be re-arranged in this order to form a linear 

progression: Nc, Cc, Nn. This yields a positive linear slope for minimum heart rate 

HRDEC, and a negative linear slope for decision-making time RT1 and single-trial rating 

of subjective stress STRSS. Although more decisional control is available at the Cc level, 

the present results suggest that participants gravitate to a type of ‘bounded decision 

scenario’. As the prototype of  a ‘bounded decision scenario’, empirical indicators of the 

exercise of decisional control suggest it is most engaged in the Nc condition, even though  

more decisional control available in the Cc condition. Not in dispute in this new 

interpretation is the existing model axiom that the Nn condition contains no opportunity 

for threat reduction through decision-making. 
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Element Set Size main effect. 

The main effect of Element Set Size goes in a direction contrary to expectation, 

but instructively so. Minimum heart rate HRDEC goes up with Element Set Size. 

However, the correspondence of this rise with a decrease in Decision Time RT1 and 

Subjective Stress STRSS suggests lowered participant interest and concern with a larger 

number of items, even between Element Set Sizes in the Nn condition alone, where the 

difference in number of items might be considered ‘academic’. This suggests the 

consideration in future research of ‘decision-maker disengagement’ with an increasing 

number threat items. 

Theoretical Synthesis 

 A bilateral formulation of value for decision-making. 

Reversal in slope: A ‘v-shaped’ pattern. 

In examining the pattern of values across choice structures, a ‘v-shaped’ or 

inverted ‘v-shaped’ pattern emerges for minimum heart rate, decision-making time and 

subjective stress rating, notwithstanding some degree of interaction. More formally 

stated, when arranging the three Choice Structures from left to right as Cc, Nc, and Nn 

there is a reversal of sign in the slope at the Nc Choice Structure (middle IV level) in each 

of RT1 (positive from Cc to Nc, negative from Nc to Nn),  STRSS (same as RT1), and 

HRDEC (negative from Cc to Nc, positive from Nc to Nn). Accessing the theoretical and 

experimental paradigm accounting for the cost and expenditure of stress, an integration of 

these two related patterns (‘v’ and ‘inverted v’) across three modalities 

(psychophysiological, reaction time, and subjective ratings) into of a model-based unity 

is reported below.  
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 In examining the ‘v-shape’ and the inverted ‘v-shape’, the idea of one latent 

quantity cresting as a second latent quantity decreases becomes apparent. In combination, 

two latent linear patterns acting together can be reflected in a ‘v-shape’ on a dependent 

measure. In examining the values generated from a priori quantities within the decisional 

control model, there are two candidate trends within the modeled quantities across the 

Cc, Nc, Nn choice structures that increase and decrease in converse fashion. Namely, at 

the Cc level where decisional control (related to RSS and Pr(t1) ) is highest, expectation 

of threat ( E(t), in the wake of implementing available decisional control) is lowest. The 

converse also holds at the Nn level: where decisional control is lowest, highest post-

scenario expectation of threat prevails. 

An ‘economy of probabilistic stress’. 

If either minimizing threat or minimizing efforts at control were unilaterally 

salient to the decision-maker, then either Cc or Nn, respectively, should be unequivocally 

preferred. However, participant “focus” (operationalized below as amount of decrease in 

minimum heart rate, varying inversely with HRDEC), decision-making time (reaction 

time allotted to information processing), and subjective report of stress (subjective 

experience of increased arousal and task demand) all crest “in the middle” at the Nc 

condition. This pattern points to some combination of the expenditure of mental effort 

and the psychophysiological cost of exposure to threat as helping to determine the degree 

of participant investment in negotiating a given decision scenario. The concept of 

competing desirable quantities has been present since the inception of the decisional 

control model, as a ratio between stress and counter-stress activity (Neufeld, 1982), an 
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“economy of probabilistic stress” (Morrison, Neufeld, & Lefebvre, 1988), and “the 

‘costs’ of coping” (Benn, 1992). 

Use of the ‘modus’: method-driven data. 

Extensive modeling work has been done both on formulations for mathematical 

expectancies and exploration of model properties through large-scale simulation 

(Shanahan & Neufeld, 2010; Shanahan, Nguyen, & Neufeld, 2012). As a result of this 

work, the prospect of using ‘modus’ data, or ‘method-data’ as a principled predictor of 

experimental values is feasible. This type of data, when generated by theoretical 

formulation, can create an extensive set of expectancies that become so numerous as to 

warrant their treatment in some ways as data. Being theoretically-based however, they are 

more like a very large number of inter-linked predictions. Using these as the detailed and 

intricate theoretical expectancy for experimental results allows for a more robust test of 

the model, and of the underlying assumptions. Given so many ‘working parts’, even 

partial confirmation of expectancies will confer support to model design validity. 

Psychological meaning and relations between model quantities. 

The quantities of response set size RSS and probability of access to the least 

threatening option Pr(t1) can be used as indicators of information processing demand 

(cognition) and available threat reduction (control), respectively. These are perfectly 

correlated, but RSS can be considered a more discrete index of cost of cognition, 

reflecting directly the whole positive number of items to evaluate. The Pr(t1) measure can 

be considered an index of degree of control attendant to a specific decision structure, 

because it is calculated as the number of items to evaluate as a fraction of the entire range 

of potential threat items, specifically Pr(t1) = RSS / pq.  
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More relevant for comparisons to be made with E(t), Pr(t1) is a proportion, like 

E(t), whereas RSS is a count of a discrete number of items. Although RSS and Pr(t1) vary 

together, these two types of quantities (positive whole numbers and proportions) exhibit 

different properties, for example in their upper limit (unlimited for RSS, 1.0 for Pr(t1) ). 

A concomitant feature of ‘control’ is a global or comprehensive perspective of the 

situation within which control is exercised. As a proportional value, Pr(t1) has an implied 

upper limit of 1.0, and tends to conform as a measure to an index of ‘control’ (a value in 

larger context). By contrast, cognitive work in this case aligns with the individual items 

and with RSS as the constituent evaluation of options rather than a situationally-relative 

assessment, or again, as raw number of cognitive operations and the effort involved in 

completing mental work, rather than constituent evaluations in proportion to all 

evaluations.  

The quantity of cumulative expectation of threat E(t) remaining (after 

implementation of available decisional control) can be used as an indicator of the 

magnitude of threat that will remain to be faced after information processing demands are 

fulfilled. This is a kind of ‘pay-off’ marker’, indexed to investment of cognitive and 

coping costs. More generally, it is an indicator of the threat-exposure that will remain 

after the decisional-control scenario is negotiated. The reduction of E(t) acts as a reward 

for increased cognition, specifically engagement of RSS and its information processing 

demands. A higher E(t) typically reflects low-level cognitive demands and coping 

expenditure (exercise of control), namely a lower RSS and lower Pr(t1). 
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Two sources of ‘stress cost’ to the decision-maker. 

A further element of this theoretical synthesis specifies the calculation of the two 

sources of ‘stress cost’: cognitive effort and threat exposure. Cognitive cost relates RSS 

and E(t) as a fraction, where the quotient indicates the cognitive cost in terms of mental 

effort of  RSS per unit of post-decisional E(t). For its part, threat-exposure E(t) after the 

exercise of decisional control is divided by the amount of decisional control Pr(t1) 

afforded by or characteristic of the scenario, and can be considered the threat-exposure 

requirement that is accepted by the participant in exchange for a certain degree of control, 

or the concomitant of control, responsibility.  

Another, way to conceptualize these two quantities is, first, anchoring E(t) as the 

denominator with RSS pivoting around it in the numerator: “How valuable is the thinking 

I will have to do (information processing per unit of threat-exposure)?” ( RSS / E(t) ). 

Second, Pr(t1) acts as the anchor with E(t) pivoting around it in the numerator: “How 

much risk am I exposed to in exchange for my thinking responsibility (threat-exposure 

per unit of control)?” ( E(t) / Pr(t1) ). 

Tabular illustration of procedure for obtaining Decision Value. 

In Table 5, primary quantities from theoretical considerations described above are 

listed, with the relevant dependent measures that successfully discriminate expected main 

effects and interaction of Choice Structure and Element Set Size. In Table 6, and 7, 

below, the theoretical prediction and empirical measures can be rendered comparable by 

standardizing them across all measurements proper to their own quantity throughout the 3 

x 2 experimental condition levels.  

 



137 

 

Table 5 

Relevant quantities for comparison between model-driven and empirically measured data 

Quantity Quantity 
Abbreviations 

Cc2 Cc4 Nc2 Nc4 Nn2 Nn4 

Response Set Size RSS* 4 8 2 4 1 1 
Prob. Access to t1 Pr(t1)* 1.00 1.00 .500 .500 .250 .125 
Expected threat E(t)* .300 .300 .400 .351 .525 .525 

        
Min. H.R. - Reactivity HRDEC 5.79 7.19 3.79 5.78 5.98 7.82 
Decision-making Time RT1 2814.6 2094.9 2865.5 2664.6 1712.4 1675.6 

Subjective Stress STRSS 1.60 1.43 1.64 1.61 1.39 1.39 
* Calculated as in Shanahan & Neufeld (2010); Shanahan, Nguyen, & Neufeld (2012). 

Examining Table 5, relative increase and decrease can be observed in converse 

patterns in both the modeled and experimental quantities. Information processing 

demand, represented in the RSS measure, tends to decrease moving towards the right in 

Table 5. Decisional control Pr(t1) decreases similarly. Expectation of threat E(t), for its 

part, tends to increase moving to the right in Table 5 as the decision-maker has less 

decisional control and must face an increasingly random assignment of threat values. 

Note that in Table 5 above, t1 = 0.30 and tmax = 0.75 for both the model and experiment 

quantities. Intervals in the model calculations are evenly spaced according to a full set of 

element values (t1 to t4 for q = 2, t1 to t8 for q = 4). The selection has been done for these 

hypothetical values to obtain E(t) values, following maximax and other model 

assumptions, stated above in the introductory section. 

Observable in Table 5, also, is a decrease and then an increase across HRDEC, 

left to right, and an increase and decrease in both RT1 and STRSS. Quantities are scaled 

in different units, however, and thus not immediately comparable. The quotients 

mentioned earlier are presented in Table 6 below. 
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Table 6 

Quotients for Costs of Cognition and Threat-Exposure by Experimental Condition 

Quantity Quantity Short form Cc2 Cc4 Nc2 Nc4 Nn2 Nn4 
RSS Items per Unit-Threat RSS / E(t) 13.33 26.67 5.00 11.38 1.90 1.90 

E(t) Threat per Unit-Control E(t) / Pr(t1) 0.300 0.300 0.800 0.703 2.100 4.200 
        

In Table 7 below, the values in Table 6 are made proportional across the sum of 

quantity values in each condition, in order to make quantities comparable. This 

proportional approach results in a sum of 1.0 across the six experimental conditions for 

both of the two ‘cost’ quantities, and each value can also be thought of as a percentage of 

the sum total across all six cells, such that proportion of information processing demand 

IPDp = [RSS/E(t)]/∑[RSS/E(t)] and proportion of threat-exposure TEp = 

[E(t)/Pr(t1)]/∑[E(t)/Pr(t1)]. Note that the denominator terms in the two equations above 

function as a kind of normalizing factor, contextualizing the individual cell condition 

value in terms of the aggregate value across comparable cells. 

Also in Table 7 below, the proportion of information processing demand (IPDp) 

and the proportion threat-exposure (TEp) are averaged. This results in a theoretical 

account of relative threat from two sources, information processing and exposure to 

threat, apportioned across the six experimental conditions. This sum is named Threat-

Control Expenditure, as it is the required ‘expenditure’ from the participant to exercise 

control and minimize threat.  

One further quantity is listed in Table 7, Decision Value. In what appears to be a 

promising approach to two-source decision stress, Decision Value is the inverse of the 

Threat-Control Expenditure (proportion), and they vary as perfect negative correlates. 

The inversion procedure used is akin to a 180 degree rotation of the graph that would 

depict Threat-Control Expenditure – Decision Value is Threat-Control Expenditure 
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“upside down” (see procedure explanation below Table 8). Substantively, Threat-Control 

Expenditure represents the combination of cost of cognition for threat-reduction and the 

cost of threat-exposure for control, after the exercise of maximax-driven decisional 

control in the scenario. This value is at a maximum for the Nn4 condition in Table 7, and 

this condition may be considered the ‘most expensive’ when considering cognition and 

threat-exposure. Decision Value is the perfect inverse of the Threat-Control Expenditure 

proportion (TEp), and is at a maximum at Nc2; this appears to be the ‘best value for 

combined cognition and threat-exposure’. This metric has identified, through 

theoretically available quantities and theoretically meaningful calculations, a feasible 

distribution of relative preference. Depicted further below (Table 9), the empirical 

measurements of minimum heart rate, time of decision-making, and stress rating attest to 

this pattern of preference as reflecting the tendencies of participant decision-making in 

our sample. 

Table 7 

Proportional Quantities and Averaged Effort Cost for Cognition and Threat-Exposure 
Quantity Quantity Short form Cc2 Cc4 Nc2 Nc4 Nn2 Nn4 

Info. Processing Demand IPDp   .2215 .4430 .0831 .1891 .0316 .0316 
Threat Exposure TEp .0357 .0357 .0952 .0836 .2499 .4998 

        
Threat-Control Expenditure (IPDp + TEp)/2 .1286 .2394 .0891 .1364 .1408 .2657 

Decision Value [(IPDp + TEp)/2]inv .2047 .0940 .2442 .1970 .1926 .0676 

In Table 7, above, the most ‘information processing demand’ IPDp, or, 

proportionalized RSS/E(t), is located in Cc4, Cc2, and Nc4. The most ‘threat-exposure’ is 

found in the Nn conditions. Averaging these proportions and weighting them equally as 

sources of stress results in a specific allocation of stress expectation for each 

experimental condition, Threat-Control Expenditure. The inverse of this list of 
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proportions may be considered to reflect the amount of ‘threat-control’ obtained for the 

investment of decision resources (information processing and threat-exposure). This 

proportional quantity is termed Decision Value, as above in Table 7. 

Table 8 

Proportional Allotment of Empirically-Measured Quantities, with Respective Inverse 
Quantity Quantity Short form Cc2 Cc4 Nc2 Nc4 Nn2 Nn4 

Distraction HRDECp .1593 .1978 .1042 .1589 .1646 .2152 
Attention RT1p .2036 .1515 .2072 .1927 .1238 .1212 

Effort STRSSp .1764 .1572 .1812 .1778 .1538 .1535 
        

Calming Focus HRDECp-inv .1741 .1355 .2292 .1744 .1687 .1182 
Task Avoidance RT1p-inv .1298 .1818 1261 .1406 .2095 .2122 
Task Aversion STRSSp-inv .1569 .1761 .1521 .1555 .1795 .1798 

 

The values in Table 8 above report the relative apportioning within a given 

variable of the quantity represented by the proportionalized empirical quantities of 

HRDECp, RT1p and STRSSp, as well as the inverse of their proportional quantities, 

HRDECp-inv, RT1p-inv and STRSSp-inv. The highest relative minimum heart rate 

reactivity occurs in the Nn conditions, and somewhat in the Cc4 condition. The lowest 

heart rate deceleration occurs in the Nc2 condition.  

Inversion procedure example for HRDECp and HRDECp-inv: ‘Calming Focus’. 

Presented in Table 8 is also the inverse proportion of heart rate deceleration,   

HRDECp-inv. This preserves a full summation value of one, and variance properties. 

‘Calming Focus’ HRDECp-inv is the inverse of HRDECp, calculated as a ‘flip’ or by 

subtracting HRDECp proportional values from a value of 1. If a graph of HRDECp were 

produced, HRDECp-inv is already depicted, but is upside down. The inverting 

transformation of HRDECp reflects relative variation in the data according to a construct 

involving a type of effortful, physiologically de-arousing but cognitively-intensifying 
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focus. This would appear to be analogous to the physiological calming that biathletes 

must make to their heart rate as they increase their mental focus for the marksmanship 

component required between Nordic skiing intervals on their course. This measure, to be 

called ‘Calming Focus’ for HRDECp-inv, varies positively with an increase in 

information intake and in perception of taxing effort, as seen in similar variation in 

decision-time and subjective stress. 

Derivation of ‘Task Avoidance’ RT1p-inv and ‘Task Aversion’ STRSSp-inv. 

Similarly to HRDECp and HRDECp-inv, the inverse for RT1p  is termed “Task 

Avoidance” RT1p-inv, in that as time of cognition on a given decisional scenario 

decrease, task avoidance can be considered to increase. The inverse for STRSSp, labeled 

STRSSp-inv reflects decreased experience of subjective stress. This has been termed 

Task Aversion. Although stress is typically considered undesirable, the behavioral 

evidence in our experiment is that subjective stress is highest when the most time and 

most focus is given to a decisional scenario. As such, the effort furnished is another 

conception that follows the stress experienced. Despite the usually undesirable aspect of 

experiencing stress (cf., Lazarus & Launier, 1978), nonetheless, where investment of 

effort is to some degree voluntary, it appears to be most invested where perceived reward 

is most worth the invested effort. As such “Task Aversion” and “Task Attraction” are 

counterpoised as directly related to “Low Stress” and “High Stress” in this context. Stress 

appears to be rated more highly in scenarios where effort is perceived as worthwhile.  As 

such, the interpretation of the inverse of the proportional Stress value (STRSSp-inv) is 

that it increases with Task Aversion, or, with ‘disinterest in furnishing an effort’ (notably 

in the Nn conditions). 
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Threat-Control Expenditure and its inverse, Decision Value. 

In Table 9, below, an ordered arrangement and contrast is made for the same 

allotment of data with two perfectly inverse measures. The Threat-Control Expenditure 

varies with Distraction, Avoidance, and Disinterest, and the Decision Value varies with 

Focus, Time, and Effort. These are not independent patterns, but perfect complements 

with opposite variation: hopefully the result is an enlightening juxtaposition of 

psychologically substantive labels with a quantitative interpretation. 

Table 9 

 

Threat-Control Expenditure, Decision Value and Related Empirical Proportions 
Quantity Abbrev. Cc2 Cc4 Nc2 Nc4 Nn2 Nn4 

Threat-Control Expenditure IPDp+TEp .1286 .2394 .0891 .1364 .1408 .2657 
Distraction HRDECp .1593 .1978 .1042 .1590 .1646 .2152 
Avoidance RT1p-inv .1298 .1818 .1261 .1406 .2095 .2122 
Disinterest STRSSp-inv .1569 .1761 .1521 .1555 .1795 .1798 

        
Decision Value (IPDp+TEp)inv .2047 .0940 .2442 .1970 .1926 .0676 

Focus HRDECp-inv .1741 .1355 .2292 .1744 .1687 .1182 
Attention RT1p .2036 .1515 .2072 .1927 .1238 .1212 

Effort STRSSp .1764 .1572 .1812 .1778 .1538 .1535 
 

Finally, to illustrate the cohesiveness of the pattern of results in Table 9, Figure 

4.1 below depicts the quantities in the six experimental conditions ordered according to 

Decision Value, as theoretically-determined above. With this new theoretical approach, it 

appears that for predicting the ordering of participant preference for effort expenditure, 

the Decision Value calculation offers a correct, ‘unscrambled’ order for the decisional 

control scenarios that matches data patterns in our study.  The six experimental 

conditions have been ordered according to the theoretical quantity of Decision Value, 

lowest to highest. This ‘untangling’ was suggested by empirical findings, but has been 

applied by the valid technique of ‘abductive reasoning’ (see first component document in 
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this dissertation, Shanahan, Townsend, & Neufeld, 2015), the use of a priori quantities in 

theoretical re-formulation. The particular value of this method is that because it is done 

with a priori model-specified quantities, it can be applied predictively in future for the 

decisional control experiments to the same quantities in the design. 

 

Figure 4.1 Decision Structure by Decision Value, with STRSSp, RT1p, and HRDECp-inv 
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Figure 4.1. Proportionalized values for Decision Value, HRDECp-inv, (index of focus), 
RT1p (time of decision-making cognition), and STRSSp (expenditure of effort). 
Quantities have been proportionalized across 3 x 2 experimental conditions: the sum of 
all six values on a line is 1.0. 
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Figure 4.2 Cumulative Decision Value, STRSSp, RT1p, and HRDECp-inv, by Scenario 
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Figure 4.2. Progression of Decision Value, HRDECp-inv, RT1p and STRSSp values, 
largely parallel, cumulatively depicting the same values as Figure 4.1; line-point at each 
cell condition level is a sum of measures, as in the legend, starting with Decision Value. 

 

Commenting on Figures 4.1 and 4.2, what is intended as the principal highlight in 

the arrangements chosen is the emphasis on the parallel nature of the progression across 

the experimental cell conditions re-arranged according to the theoretically-generated 

Decision Value in each decisional control scenario level. Expressed as Decision Value 

only (blue diamond line in Figure 4.1 and 4.2), the calculation has no empirical 

relevance. Reflected in Minimum Heart Rate patterns (red square lines), a useful link is 

established to an empirically measurable quantity as indicative of changes in Decision 

Value. Reflected in both Minimum Heart Rate and Decision-Making Time (green triangle 

lines), both psychophysiological and quantitative behavioral indices now mirror the 

inherent theoretical property of decision value. Finally, the conscious experience of the 

decision-maker, as reported in subjective stress ratings (purple ‘x’ lines). Thus, the 
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subjective experience, indicated by stress ratings, the practical behavior, as indicated by 

duration of decision-making, and the psychophysiological reaction in minimum per-trial 

heart rate all act in concert with decision value expectations, a purely theoretical 

measure. An important new insight is potentially revealed in this analysis. Mindful not to 

overstate the case, the prospect nonetheless exists that with replication and extension, this 

study might serve as a type of ‘Rosetta Stone’ for research on stress and decision-making. 

 Correlational validation. 

 Finally, the condition averages and the theoretical Decision Value align at a high 

or very high correlation level. The cell condition averages (Cc2, Cc4, Nc2, Nc4, Nn2, 

Nn4) correlate to the following degree with RT1, STRSS, and the task values for 

HRDEC, labelled HRDECt. The task values for HRDEC were used in a correlational 

analysis of raw data values, because they are comparable to the RT1 and STRSS scores in 

relating direct empirical quantities, and not difference scores as the reactivity score 

calculation requires.  

Correlations are reported as pseudo-R2 because they are correlations between 

theoretical predictions and averaged values; as such, correlations should be taken as 

indications of relation between the fundamental patterns within the respective measures, 

but cannot be strictly interpreted in the same sense as bivariate correlations between two 

raw data samples. The correlations emerged as follows: Decision Value and RT1, 

pseudo-R2 = .72, N = 6, p = .053 (one-tailed), Decision Value and STRSS, pseudo-R2 = 

.77, N = 6, p = .037 (one-tailed), and Decision Value and HRDECt, pseudo-R2 = -.92, N = 

6, p = 0.005 (one-tailed).  The pseudo-R2 values (cf., Cobb, 1981; Jammernegg & 
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Fischer, 1986), again, are used because they are linking a set of highly involved 

theoretical calculations and sets of highly aggregated empirical values. 

It appears that the single Decision Value theoretical calculation is a novel and 

potentially valuable positive predictor of variation in average time spent in a decisional 

control scenario (RT1), of subjective stress in a decisional control scenario (STRSS), and 

a very powerful negative predictor of minimum heart rate during task completion 

(HRDECt, not a reactivity score in this case).3 

 Bilateral appraisal of inherent decision value. 

 The use of proportion for comparing experimental conditions of decisional control 

‘quantities’, and the application of the analogous procedures on scores representing 

experimental indices of information processing, production of individual effort, and calm 

for increased concentration reveals a potentially valuable connection to model 

predictions. With the inverse of the proportionalized data adjusting for opposite direction 

of variation and relative distribution across experimental cell conditions, the time of 

processing, effort, and focus of participants can be depicted as functioning in parallel to 

                                                 

3 The task values for minimum heart rate were used for the condition averages 

because it maintains raw values that are all of the same sign (positive valence). Where 

sign differs in reactivity scores (some positive, some negative), calculation of valid 

proportions becomes complex. 
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the bilaterally-derived perception of value of given decisional scenarios assembled from 

inherent properties of the decision scenarios.  

In this sense, a candidate principle behind the two kinds of ‘currency’ in 

Morrison, Neufeld and Lefebvre’s ‘economy of probabilistic stress’ (1988) have been 

identified: the information processing exchanged per unit of eventual threat to be faced, 

and the amount of scenario-dependent ultimate threat-exposure per unit of decisional 

control afforded in that particular scenario. Using these two ‘currencies’, the value of a 

given decision scenario’s properties appears to be acted on by the participants in a pattern 

that reflects a comparable premium (similar weighting) both for reduced information 

processing and for reduced threat-exposure. Adding these two ‘costs’ with equal 

weighting, Nc2 that emerges as the best value for what participants evidently perceive as 

the investment required to negotiate a decision scenario in order to get best returns, 

namely, the least information processing for the most threat reduction. The sequencing of 

the six experimental conditions according to Decision Value, yields a parallel progression 

for the theoretically-derived decision value and empirically-derived proportions for 

decision time (time of decision-making cognition), decision effort (per-trial self-report of 

subjective stress), and decision focus (information intake, a decrease in minimum heart 

rate) as seen in Figure 4.2. 

Decision-Making Style: Maximizing, Satisficing, Simplifying 

 Although presented more extensively in other contexts (Shanahan, Pawluk, Hong, 

& Neufeld, 2012), the information processing proclivities of participants has registered a 

significant interaction with Choice Structure. This represents a vindication for the 
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Maximizing score as a driving variable in the interacting covariate factor “Steady 

Maximizing” (factor loading: 0.79), with the more detailed pattern suggesting that 

participants high on maximizing show longer decision time and report most stress in 

intermediate decisional control scenarios (Nc4, Cc2), less so in scenarios of highest or 

lowest decisional control (Cc4, Nc2), and least in situations of no decisional control (Nn4, 

Nn2). As a validity consideration, it can be noted, as earlier in this document, that threat 

levels were evenly distributed in the sample, both in the theoretical derivations and within 

the experimentally presented threat options. This ‘attraction of effort’ (indicated by 

higher stress reports) on some of the best decision value conditions (Nc4, and Cc2, for 

example) by participants who tend to score higher on Maximizing is consistent with 

payoff for good decision-making in these conditions and what would be expected as 

reflecting an individual preference for ‘maximizing’ in decision-making. 

Future Investigations 

 Validation work is an enticing prospect for this type of approach. The pattern of 

results found in the present study can potentially inform a variety of new experimental 

programs. In particular, the metric developed for Decision Value works very well in 

describing empirical results within the present dataset. Other metrics like it could inform 

future work with the various data types used in this study. The decision value is derived 

entirely from the structural properties of the decision scenarios, and as such is open to 

deliberate, purposeful manipulation and prediction for future investigations. Even the 

discovery of attenuation of this effect would advance stress and decision-making science, 

because of the formal decisional-control specifications backdrop. 
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 More immediately, analysis of a second data set designed with the same quantities 

and decisional control model paradigm has revealed that replication is not easily 

obtained. This dataset provides the basis for an independent test of these calculations. A 

list of expected ‘threat-control expenditure’ by scenario for this experiment has been 

generated and, within a limited context of comparison, did not replicate results.  

Limitations 

Study limitations include standard challenges in the use of psychophysiological 

variables. Within the analyses, some results for HRACC and TPR approached or met 

marginal significance (p < .10), but a more developed theoretical approach to their 

specific action in decision contexts will help in testing for effects not detected, or 

detectable, in the current study. This new round of testing could involve a priori work 

suggested by the current decision value approach. 

Several types of data were incorporated within this study. Their successful 

integration is a testament to the value of formal modeling of psychologically meaningful 

quantities. Further research would nonetheless likely benefit from some ‘specialization’ 

research in model properties investigated, targeting specific modalities to refine 

techniques and methods conferring greater sensitivity to decisional control quantities. 

After such  refinements, new ‘integrative’ studies like our own would again be in order. 

Although detailed and methodical, our study has an exploratory and inaugural character. 

Finally, a limitation of this study was attritional loss of about 16 

psychophysiological sets of readings, across the full range of 65 eligible participants. 

This affected power in the analyses involving psychophysiological readings. Even with 
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the use of the state-of-the-art technology and methodology (e.g., Blascovich, 2008; 

Blascovich et al., 2004), this can be somewhat expected in a psychophysiological 

research context. Future examiners do well to practice electrode application and monitor 

results throughout data collection. Individual adaptations may emerge as to optimal 

placement of electrodes for certain common individual differences within participant 

samples.  

Conclusions 

 As observed by their impact on psychophysiological variables, quantities 

reflecting decisional control constructs are confirmed as informative. There appears to be 

a strong influence of element set size, or, number of choices, on the stress reaction in 

participants. There also are indications of a “v-shaped” pattern of variation, whereby the 

stress responses of participants to full free choice or to no free choice at all are more 

similar to each other as experimental conditions than they are to the ‘mixed choice’ 

situation of Nc, composed of super-ordinate external assignment (N) and subordinate 

choice (C). Finally, the specific calculation of decision value, as highly predictive of time 

of decision-making cognition, subjective stress, and decrease in minimum heart rate, is 

potentially of value for research in the decisional control paradigm. 

 Deep structure modeling of theoretical quantities can permit a much-improved 

grasp in understanding human perception of interlocking and reciprocal constructs. 

Reduced information processing demand for maximum threat reduction are confirmed by 

reaction time, psychophysiological, and subjective ratings data to represent competing 

but interdependent interests for the human decision-maker. 
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4.3 Comment: “Information Processing (…)” 
The refreshing result in the paper presented above is that the decisional control model 

does indeed affect the decision-making of regular human participants, in concert with 

extensive work in the theoretical and simulation domains. With such an intricate degree 

of modeling, it is inevitable that in some aspects, under certain conditions, the model will 

hold to a greater or lesser degree, as the operative mechanisms can and will vary 

depending on the context and independent variable levels.  

The proximate study, reported in Chapter 5, details a considerable research effort to map 

out those variable confluence zones, model assumptions, and other model-prescribed 

phenomena that affect the degree to which model expectations hold or do not. This, in 

turn, informs a more general appreciation of the decision-making phenomena under 

study, and suggests where other important influences may come in to affect decision-

maker behavior. 
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4.4 Ethics for “Information Processing (…)” 
 
Note that this project was conducted as a subset of research in the ethics submission 
entitled “Coping with stress through decisional control (…)”. 
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5 Decisional Control Modeling for Choice Type, Structure, 
and Number Predicts Patterns of Stress Response  

5.1 Introduction to the Fifth Component Document 

The fifth component document, a second empirical study, is the culmination of many 

stages of previous work. This study is extensively informed by model structure (Neufeld, 

1982; Shanahan, Nguyen, & Neufeld, in preparation, see Chapter 2; Shanahan & 

Neufeld, in preparation, see Chapter 3), simulation findings (Shanahan, 2007; Shanahan 

& Neufeld, 2010a, 2010b), and previous study designs (Morrison, Neufeld, & Lefebvre, 

1988; Kukde & Neufeld, 1994; Benn, 1995, 2001; Shanahan, Pawluk, Hong & Neufeld, 

in preparation, see Chapter 4 in this dissertation). Based on these beginnings, this study 

examined whether the expected theoretical relations between decisional-control model 

properties would hold as predicted under empirical testing. Briefly: yes, they did. 

As an empirical validation of relations between theoretical quantities, this investigation 

is an ambitious and now-vindicated implementation of a constellation of expectancies 

generated by the decisional-control model. For a scientific statement to be respected as 

intelligently describing observed phenomena, it must necessarily be exposed in some 

kind of objective evaluation to the possibility of being wrong (cf. ‘falsifiability’ in 

Popper, 1935/2002). A delightful chain of interdependence is legitimized when 

mathematical intricacy provides falsifiability via detailed expectancy prescriptions, 

falsifiability of experimental predictions provides meaningful interpretation for 

anticipated results, and obtained findings are consistent, at least to some extent, with 

experimental predictions and theoretical expectancies. Obtained findings then 

communicate validity to the design, support to the hypothesis, and realism to theoretical 

constructions. As a touchstone for the meaning of findings and validity of experimental 

method, we call the pursuit of a strong presupposed theoretical result with novel and 

highly speculative experimental design an ‘invisible-goaled standard’.  

5.2  “Decisional Control Modeling for Choice Type, 
Structure, and Number” 

The manuscript-form of this experimental study follows, below. 
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Abstract 
 

Previous decisional control research theoretically predicts three potentially observable 

phenomena. First, simulation results and empirical study of decision-making situations 

suggest a reliable strong negative correlation between assessed likelihood of obtaining 

the lowest threat Pr(t1) (‘best option’) and calculated reduction in overall threat E(t) 

proper to a decision-making structure. More specifically, the correlation between Pr(t1) 

and E(t) is also expected to predictably attenuate with larger numbers of items to 

evaluate. Second, simulation work predicts a statistically explicable impairment in threat-

reduction effectiveness when ‘uncertainty’ (unknown external assignment of selection at 

a hierarchy level: a ‘node’) is subordinate to ‘choice’ (information and executive power 

at that node) in a decision hierarchy. This unique obstructiveness of choice architecture 

‘CU’ (choice at the higher node, uncertainty at the lower node) to threat-reduction 

contrasts significantly with both of its nearest structural counterparts, ‘UC’ (‘uncertainty’ 

node over a ‘choice’ node)  and ‘CN’ (‘choice’ node over ‘no-choice’ node; no-choice 

‘N’ is known external assignment of selection). Contrasting CU with UC and with CN 

experimentally is a novel undertaking. Third, previous research suggests a ‘two-source 

model of stress’, arising from scenario-specific, nonconscious but behaviorally 

observable bilateral evaluation by the decision-maker of information processing demands 

and degree of exposure to a negative outcome. This pattern has been observed previously 

with minimum heart rate, duration of decision-making, and subjective stress as dependent 

measures. Theoretical synthesis successful in previous research is used to analyse results 

as an independent test of the proposed theoretical mechanisms. 

Keywords: stress and coping, decisional control, threat reduction, two-source model. 
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Investigations into decisional control, the ability to influence one’s stress status via 

decision-making, have yielded certain findings consistently. These include findings that: 

(a) choice does decrease objective threat in decision-making situations, and participants 

perceive this, (b) there are psychophysiological indications of participant perception of 

threat, and (c) participants’ behavior is sensitive to the architecture and features of 

decisions arranged in a different hierarchical patterns. The present study is anchored in 

this decisional control research (listed following), particularly research done under the 

governing paradigm of a formal model of decisional control developed by Neufeld and 

colleagues (Neufeld, 1982; see also Kukde & Neufeld, 1994; Morrison, Neufeld, & 

Lefebvre, 1988, Shanahan & Neufeld, 2010a, 2010b). 

Findings come under three major headings: modeling of expected cognitive operations, 

detection of decisional control through its impact on behavioral, subjective, 

psychophysiological variables, and interaction with a backdrop of published 

psychometric instruments representing constructs with a known relation to decisional 

control. Recent analyses suggest that theoretical expectation of ‘return on investment’ for 

a decision may influence participant responses in terms of duration of decision-making, 

subjective experience of stress and heart rate deceleration within an experimental trial. 

This study examines the validity of the model of decisional control put forward by 

Neufeld and colleagues (e.g. Neufeld, 1982; Shanahan & Neufeld, 2010a). Refinements 

include the use of a wider and more complex array of experimental levels than any array 

previously researched empirically, and the coordination of psychophysiological, reaction 

time and subjective stress data on a per-trial basis. Together with certain psychometric 

instruments new to the decisional control paradigm, this study creates, deepens, and 
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improves understanding of the probabilistic expectancies of modeled hierarchical 

decision-making as observed in participant behavior. 

Decisional Control Model Concepts and Quantities 

Decisional control as a form of coping with stress has been delineated in a mathematical 

modeling approach to threat reduction (e.g. Morrison, Neufeld, & Lefebvre, 1988). The 

model is a formally-defined platform for quantifying concepts within decisional control, 

such as information-processing load, and threat reduction. Specific constructs become 

tractable for simulation work, in turn generating precise predictions open to falsification. 

The hypotheses informed by these predictions will be reviewed, as well as the 

experimental approach to them and the instruments used to measure psychophysiological, 

psychometric, and reaction time data. 

 Behavioral control, cognitive control, and decisional control. 

Appraisal of stressful situations has been proposed as fundamental to understanding the 

human stress response (Lazarus & Folkman, 1984). Central to appraisal is the role of 

cognitive evaluation of possible outcomes and of possible responses that can lead to those 

outcomes. In essence, this is decisional control. Decisional control was originally defined 

as one of three types of control that can be used in responding to stress: behavioral 

control, cognitive control, and decisional control (Averill, 1973). 

The first and simplest form of control, behavioral control, describes the reduction of 

stress by a participant's direct action on the participant's environment. Turning down the 

volume on a sound system if it is painfully loud is an example of exercising behavioral 
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control. A second, more abstract form of control is cognitive control. This describes the 

reduction of stress by altering one's interpretation of a noxious stimulus. Learning that a 

large number of people in a university dormitory can tolerate loud music without much 

consternation may help a new student reinterpret such a stressful situation so as to 

experience less stress, especially from ego-based personal irritation. Gaining information 

and using it in this way exemplifies cognitive control available to a person under stress. 

The third and most relevant form of control for our study is decisional control. 

Decisional control combines aspects of behavioral control and cognitive control, and it 

adds the supplementary dimension of their interaction whereby a course of action (or a 

decision, similar to behavioral control) is selected through information-processing 

(similar to cognitive control). Decisional control has the unique distinction of informing 

behavioral control with considered options, and of bringing perspective to cognitive 

control in terms of a principled estimation of relative impact of outcomes. Ideally, a 

measure of increased realism is introduced to the stressful situation from both avenues. 

To extend the examples given, a student might evaluate the chances of success on an 

upcoming exam offered by either: (a) using earplugs and studying at the dormitory, or (b) 

studying at a library site with extended hours. 

Choice type, structure, and number. 

Decisional control is applied in the context of decision hierarchies, where a set of 

decisions govern underlying, ‘nested’ sets of decisions. In this study, a single level of 

nesting (also called ‘first-order scenarios’) only is assessed experimentally. These consist 

of a group of ‘bins’ within which groups of ‘elements’ are nested. Considerable 
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theoretical work has been done on two-levels of nesting (‘second-order’), but this degree 

of nesting is more complex and was not included in this experiment. Each level of 

decision-making can be called a ‘node’, and at each node a specific type of choice 

condition can be available. These are: free choice (“C”) among options at a given 

hierarchy node; no-choice (“N”), whereby selection is done externally, but the selected 

option is communicated to the decision-maker (DM), and uncertainty (“U”), where the 

selection is done externally and is not communicated to the DM. When describing the 

nine possible arrangements of three choice conditions (C, N, U) at the ‘bin-level’ and the 

‘element-level’, the convention is to list the bin-level first as super-ordinate in the 

hierarchy and the element-level second as subordinate. Thus, a scenario with bin-wise 

choice and element-wise no-choice is structurally described as ‘CN’. Again, bin-wise 

uncertainty and element-wise choice is labeled ‘UC’. This structure is important for the 

mathematical-combinatoric logic governing the probability of obtaining a better or worse 

threat value in a given situation. Finally, the decisional control model uses algebraic 

quantities for numbers of bins and elements: p “bins” each nesting q “elements” (by 

comparison, second-order structures use P “bin-sets”, each nesting p “bins”, each in turn 

nesting q “elements”). These are important operationalizations within the model, 

allowing for the formulation of structurally-based indices of number of options, cognitive 

judgments, and probabilistic expectancies of obtaining particular threat values. This 

process determines probability of occurrence of an undesirable outcome (the “threat”). 

 Decisional control, information-processing demand, and threat reduction. 

These phenomena are described more extensively, together with simulation-based 

explorations, by Shanahan and Neufeld (2010a) in a simulation-based study that 
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expanded previous findings and theory (Kukde & Neufeld, 1994; Morrison, Neufeld, and 

Lefebvre, 1988). Developed in the initial formulation (Morrison et al., 1988; Neufeld, 

1982), the model relies on three major constructs: decisional control, information-

processing demand, and threat reduction. Each of these is indexed to specific 

quantifications within the model.  

The first construct is decisional control, the degree to which individual decision-making 

affects the likelihood of facing an undesirable event. The quantity used to represent the 

construct of decisional control is response set size (RSS). This quantity, RSS, is the 

number of potential selections available to the decision-maker. In a situation with fully 

external assignment (no freedom of choice), RSS is 1; there is only one ‘option’. The 

logic for indexing this quantity to decisional control is that number of potential selections 

(and, more pointedly, exclusions) increases the degree of influence available for reducing 

stress through decision-making. 

The second construct is information-processing demand, a construct related to cognitive 

load or degree of intellectual effort required to evaluate available options. The quantity 

used to represent the construct of information-processing demand is outcome set size 

(OSS). This quantity, OSS, is the number of potential encounters with distinct threat 

levels that the DM may have to face. The quantity OSS differs from RSS in that the model 

assumes the threat level involved in relevant situations is enough to induce the DM to 

evaluate those possibilities that still may be assigned but over which the DM has no 

control (Condition U; discussed at greater length in Kukde & Neufeld, 1994; Morrison, 

Neufeld, & Lefebvre, 1988; also addressed in Monat, Averill, & Lazarus, 1972, and 

Gaines, Smith, & Skolnik, 1977, as cited in Neufeld, 1982). For example, if a situation 
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has a CU configuration (super-ordinate node has Choice and subordinate node has 

Uncertainty), with a p = 2 and q = 2, then response set size RSS = 2 (choice between 2 

bins at the ‘C’ node), and outcome set size OSS = 4 (4 potential encounters, or, threat 

level values: 2 elements in each of 2 bins). 

The third construct of particular interest is threat reduction. The degree of reduction in 

threat facing the DM can be calculated by comparing the expected threat E(t) between 

situations with different parameters. Expected threat is calculated with mathematical-

combinatoric formulations proper to each particular arrangement of C, U, and N in a 

decision scenario. These are available in previously published material (Shanahan, 2007; 

Shanahan and Neufeld, 2010a, 2010b). The expected threat calculation yields a 

probability that the adverse event a DM wishes to avoid will still occur (bounded by 0, 

impossibility of occurrence, and 1, certainty of occurrence). With this quantity, the 

objective degree of potential threat reduction can be ascertained by comparing the 

expected threat calculation for different p and q parameter values (or P, p, and q 

parameter values), for different threat levels ti, and for different scenario architectures 

(e.g., CC vs. CN). 

 Relations between model quantities. 

Specific relations between the above-described quantities have been found and explored 

(Morrison et al, 1988; Shanahan and Neufeld, 2010a, 2010b). The use of response set size 

(number of choices available) as a reliable predictor of the expected threat the subject 

will have to face (also known as mathematical expectation of threat) was validated across 

a comprehensive range of scenario parameters, in both two-level and three-level 
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hierarchies. Additionally, explanations for individual differences in decisional-control 

preference presented by Morrison and colleagues (1988) have been confirmed and further 

developed by Shanahan and Neufeld (2010a). In particular, a negative low moderate 

correlation between the model's measure for information-processing load (outcome set 

size) and expected threat after optimal decision making supports the observed divergence 

in decisional-control profiles (Kukde and Neufeld, 1994; Morrison et al., 1988). To put it 

succinctly, there is no "clear winner" among strategies related to total number of possible 

outcomes. Specifically, exhaustive evaluation of prospects confers some benefit, but 

exhaustive evaluation may prove more "exhausting" to some individuals than to others, in 

terms of expenditure of cognitive effort (see Townsend & Ashby, 1978, as cited in 

Neufeld, 1990; see also, Neufeld, Townsend, & Jetté, 2007). At the level of the analysis 

conducted, there is no best strategy apparent for a sizeable random sample of individuals. 

Hypothesis I: Chance at ‘Best Option’ Predicts Lower Expected Threat, Predictably 

New sets of predictions that remain to be tested are twofold in type. The first type of 

prediction concerns a more refined mapping of the strong negative correlation between 

the amount of decisional control available and expected threat. The second type concerns 

the uncertainty condition in relation to the choice condition, especially by contrast with 

the no-choice condition. For the first set of predictions, the quantity metric used for 

decisional control is the objective calculation of the probability of access to the least 

threatening option, assuming a maximizing decision strategy (DM makes selections with 

the intent of obtaining the lowest threat value, the ‘best option’). The extensive 

simulations in Shanahan and Neufeld (2010a, 2010b) create a vast, parameter-defined 

expanse of correlation values to be examined and considered. A specific pair of 
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parameter values p, q (where p is number of bins within each of which q elements are 

nested) will have a specific predicted correlation between amount of available decisional 

control (tied directly to number of available responses), and mathematical expectation of 

threat. This correlation holds within this model for a given pair (p, q) of set size values, 

independent of specific threat ranges or values.4 

The first general hypothesis to be explored will be the prediction of the correlation of 

decisional control to threat reduction, as discussed above. Here again, the end-points and 

representative specific mid-points will be selected and tested in a similar way. These 

points are mapped not by scenario structure (CC, NC, etc.) but rather by nodal set size 

parameters (p, q pairs). Table 1 below illustrates the selected test points, chosen for 

regular decrements of about 10% in predicted percentage of variance (r-squared) 

accounted for by the correlation between Pr(t1) and E(t), or, the probability of access to 

the least threatening option and the mathematical expectation of threat. The calculation of 

these values was done individually, but the computational aids (decisional control 

spreadsheets) that are available online and described in Chapter 3 allow for rapid 

calculation of the value sets for any p and q values that form a pq product of 100 or less, 

when values for p and for q are 2 or higher. 

 

 

                                                 
4 The use of correlation measures between decisional control and expected threat result in the exemption of 
this relation from scaling effects of specific threat levels. Thus, all necessary information to describe degree 
of association is contained in the parameter values (P), p, q (see online supplement at 
http://publish.uwo.ca/~mshanah). This assumes values are averaged across all combinations of C, U, and N 
for a given hierarchy size of interest.  
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Table 1 

Proposed Pairs for Empirical Exploration of Pr(t1) -- E(t) Correlation 

 
First-Order Pair Pr(t1)  α E(t) 

r value  

R2 x 100%, or  
% variance 

accounted for 
2,2 -.9527 90.76% 
7,2 -.8951 80.12% 
4,3 -.8360 69.89% 
4,5 -.7737 59.86% 
5,7 -.7080 50.13% 
9,7 -.6321 39.96% 

In Table 1, above, note that both the magnitude and the trend of correlation and 

percentage of variance accounted for in E(t) by Pr(t1) is being predicted. This is a 

particularly ‘bold’ conjecture (cf., Popper, 1935/2002), in that it is open to being wrong 

both in the expected strength of correlation and the expected pattern of attenuation. Even 

partial confirmation of these expected values and predicted trend should be considered an 

important success for our research and a vindication of decisional control model utility. 

Hypothesis II: ‘Choice into Uncertainty’, CU, as Comparatively Highly Stressful 

The second type of predictions concerns the effect of uncertainty as detrimental to the 

successful exercise of decisional control. Uncertainty is defined in this model as the 

external assignment of a selection at a given node in the decision hierarchy, where the 

knowledge of this external selection is not available to the decision-maker when 

decisional control is being exercised at other nodes within the same decisional scenario. 

In particular, making choices "into uncertainty", whereby choice by the decision-maker at 
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a higher node is followed by external unknown assignment at a dependent (subordinate) 

node is predicted to particularly hamper most of the benefit from available choice. 

As can be observed in Table 2 below , there are different scenario architectures that 

comparatively facilitate or impair threat-reduction (a lower value for E(t)). Of particular 

scientific interest are those scenarios with mixed choice conditions (different decision-

making power at different hierarchy nodes). Comparing these structurally-embedded 

differences yields an informative profile of threat-reduction potential. 

Table 2      

List of first-order scenario architectures by increasing mean E(t) 
First-order 
scenarios 

equivalent in  
mean E(t) 

Mean E(t), 
exhaustive 
p, q list * 

Maximum 
E(t) for 

single set, 
p, q values 

p, q values for 
maximum 

E(t) 

Minimum  
E(t) for 

single set, 
p, q values 

p, q values for 
minimum E(t) 

CC .1000 .1000 all values .1000 all values 
CN,UC,NC .2242 .3937 2,50;50,2;50,2 .1088 50,2;2,50;2,50 
CU .4625 .5405 2,50 .3247 21,2 
UU,UN,NU,NN .5450 .5450 all values .5450 all values 
* For t1 = .1, max ti = .99, ∆ ti = (max ti - t1) / (pq-1), exhaustive p, q values (all 283 
possible pairs within specified constraints). Table adapted from Shanahan (2007). 
 

In Table 2, the mean level of expected threat for NC/UC scenarios is .2242, whereas the 

comparable mean level of expected threat for a CU scenario is .4625 (absolute boundaries 

are 0.0000 and 1.0000). This can be interpreted as a 22% chance of the undesirable 

outcome in NC or UC decisional control hierarchies, but a 46% chance of the undesired 

outcome under CU hierarchies, calculated across a balanced array of different parameter 

values (p, q). Note that the most important leverage in decisional control occurs with 
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increase in the set size (p or q value, as the case may be) at the node where choice ‘C’ is 

operative.  

With parameter values balanced across a large range however, as reported in Table 2, the 

fundamental structural disadvantage of a ‘CU’ pattern emerges. The obstruction to 

decisional control associated with a lack of information under subordinate uncertainty 

can be evaluated by comparing the CU condition and the UU, UN, NU, and NN family of 

homogenous threat expectancy conditions. The eventual threat value (and outcome) 

under CU becomes much more subject to a random distribution of occurrences, as is fully 

the case in the four structures with no ‘choice’ available at all (UU, UN, NU, NN). 

Specifically in Table 2, it can be observed that under a CU structure generally, the 

probability of the undesirable outcome is 0.4625 (about 46%), thanks to some decisional 

control from selection at the bin-level ‘C’ node. This is, however, only a slight 

improvement over an expectancy of 0.5450 (about 55%) for outcomes determined by 

random distribution of untoward occurrences (i.e., 0.5450 is the exact mid-point between 

the lowest threat value of 0.100 and 0.990). 

In terms of E(t) comparisons, note that the ‘CC’ scenario will always return a value equal 

to t1 because this is the best option and full choice to obtain it is granted at both the bin 

and element level. In generating Table 2, t1 was set to 0.1, as per the table caption. 

Similarly at the other ‘end-point’, scenarios with no nodes offering choice ‘C’ at all (NN, 

NU, UN, UU) operate by purely random allotment of threat values. As such, their E(t) 

value is the exact mean value between t1 and tpq, the minimum and maximum threat 

values in an evenly dispersed threat list. These first and last threat values were set to 0.1 

and 0.99, respectively, and the average of these two values is the depicted E(t) value, 
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0.5450. As such, the more ‘interesting’ values, subject to non-trivial variation are the CN, 

NC/UC and CU values. Note that in a fully balanced array of p and q values, CN and 

NC/UC have the same expectation. Note, however, that a greater decrease in E(t) will 

occur in the decision scenario with the larger set size value at the ‘C’ node. The related 

scenarios NC/UC are calculated identically, and so can be grouped together for E(t) in all 

circumstances. Their bin-choice analog, CN, however, will benefit from a higher p value 

for number of bins, whereas NC/UC will lower E(t) more effectively with a relatively 

higher q value for number of elements. 

Test of Theoretical Formulation 

One more assessment will be done in this study. Bearing on a theoretical mechanism used 

to explain findings in a related study (see Chapter 4), a specific procedure for generating 

expectancies in decision-making preference among participants will be used. The 

expectation of decision-maker preference is based on a two-source conceptualization for 

stress in decision-making: the stress of the threat being faced, and the anxiety regarding 

the demands of information processing to reduce this threat. This procedure emerges 

from the most recent empirical study using the decisional control model (Chapter 4), and 

is also described in the Results section, further below. 

Dependent Measures  

The measures of stress used will be Likert-type ratings of subjective stress (as per 

methodology in Hong, Shanahan, Pawluk, and Neufeld, 2008). The other indicators of 

stress will be duration of decision-making, with more time indexing greater stress, and a 

psychophysiological measure of cardiac reactivity, heart rate deceleration. Heart rate 
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deceleration, also known as minimum heart rate per-trial (HRDEC) has been found in 

previous research (see Chapter 4 in this dissertation document) to vary meaningfully with 

expected model-driven variations in situational threat. This value is found by subtracting 

the lowest sampled heart rate during a rest period between trials from the lowest sampled 

heart rate associated with task completion during trials. In addressing evidence a strong 

negative correlation between the reactivity score of HRDEC and Decision-Making Time 

(RT1) and Single-Trial Rating of Subjective Stress (STRSS), it is possible to invert the 

sign of the reactivity scores, if it is simpler to align all three measures. This is most easily 

accomplished by subtracting scores recorded during task completion from baseline 

scores. Something like this procedure will be conducted later in this study to allow 

simplification of the inspection of visual patterns of results without the need to invert 

HRDEC values. 

Study Design, Hypothesis Statements, and Provisional Expectations 

The goal of the current research is to validate, with empirical findings, predictions 

derived from simulations based on the decisional control model of stress and coping 

(Shanahan & Neufeld, 2010a, 2010b). Comprehensiveness beyond existing levels of 

empirical support (Kukde & Neufeld, 1994; Morrison et al., 1988) is one of the main 

aims of the present study in particular. To this end, scenarios instantiating the extreme 

anchor points in which decisional control is theorized to act will likely either be most or 

least effective. Selected points between these predicted extremes (in an arrangement of 

increasing predicted decisional control) will be tested for validation. Anchor points in the 

case of uncertainty scenarios are defined by scenario architecture. 
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In order to test both Hypotheses I and II, a 9 x 6 experimental grid of cell conditions was 

developed. The nine possible choice structures that emerge by permuting the three choice 

types in the two levels of first-order hierarchies are all represented (CC, CN, CU, NC, 

NN, NU, UC, UN, and UU). The six pairs of p and q parameter values depicted in Table 

1 are the six independent variable ‘levels’ that vary ‘choice number’ as a key research 

question in this study. At each of these levels, standard decisional control methodology 

with situational vignette, decisional control hierarchy presentation, and response 

registration is used while recording duration of decision-making, psychophysiological 

readings, and participant rating of per-trial subjective stress. 

The specific hypotheses to be tested are:  

1. The percentage of variance accounted for in E(t) by Pr(t1) will be similar to the 

pattern observed in Table 1, using decision-making time RT1, single-trial rating 

of subjective stress STRSS, and heart rate deceleration reactivity HRDEC as 

empirical proxies for E(t), reflective of participant stress. 

2. The uncertainty effect will be observable in comparisons between choice 

structures such that for each of RT1, STRSS, and HRDEC, higher stress will be 

registered according to choice structure as follows: 

a. Stress(CU) > Stress(UC) 

b. Stress(CN) < Stress(CU) 

c. Stress(CC) < Stress (NN) 

d. Stress (NN) = Stress (UU) 

These four comparisons are designed  to assess model assumptions either directly 

(a., b.) and indirectly (c., d.) regarding the uncertainty choice condition. 
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3. Theoretical formulations for ‘decision value’ can be used to predict and describe 

stress patterns in the current experiment. Where the decisional control model 

applies, the two-source model of stress for ‘decision value’ will also apply. Two 

pairs of parameter set values (2, 2) and (7, 2), and (4, 3), and (4, 5) will be used in 

an attempt to replicate findings in Chapter 4. 

Methods 

Participants 

 Sample and recruitment. 

Participants were recruited from a mainly undergraduate sample in the summer of 2011. 

We recruited participants via a summer contact list and a poster. Requirements were: 

right-handedness, no known hearing problems, and good English reading comprehension. 

Approximately 1.5 to 2.0 hours participation was advertised, and a sum of 15$ was to be 

given as remuneration. Interested readers were to contact the research team by email (a 

dedicated Gmail account), and were then referred to a online scheduling website 

(SignUpGenius) for further instructions and to sign-up for established appointment slots. 

Sample characteristics. 

Overall, 77 participants completed our study (35 males, 42 females). After exclusions for 

age (35 or older) and poor data quality, a total sample of 69 participants (34 males, 35 

females) remained, with one male not indicating a value for Age. This final sample had a 

mean age of 21.9 years (range, 17 to 31) and was not kurtotic or skewed. 
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Apparatus 

The various equipment used consisted of three separate hardware and software platforms, 

one each for psychometric, cognitive, and psychophysiological data collection modes. 

 Psychometric and questionnaire research platforms. 

Psychometric data collection was done via a programmed set of questionnaire screens in 

SurveyGizmo, an online questionnaire website. These questionnaires were completed in 

the data collection area of the research laboratory. One psychometric measure was 

collected prior to the experiment, the Wonderlic Personnel Test - QuickTest (WPT-Q; a 

brief measure of cognitive ability). This 8-minute timed test was administered via the 

participants’ own computer platform ahead of data collection, on a site hosted by the 

Wonderlic Corporation. Once recruited to our study, the participant was advised to expect 

notification by email for login to the Wonderlic online site and complete the WPT-Q as 

instructed. 

 Cognitive research platform for stimulus presentation. 

Cognitive data collection was accomplished via an E-Prime 2.0 software platform. Sets of 

stimuli involving complex presentations were programmed and presented so as to 

engender cognitive processing and decision-making within rules consistent with the 

decisional control paradigm. It must be noted that programming a decisional-control 

paradigm into E-Prime 2.0 was highly intensive, and on several occasions, initial 

programming exceeded E-Prime parameter limits for number of lines of code. The efforts 

of the second author in this regard are specially acknowledged. 
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 Psychophysiological apparatus. 

The psychophysiological data collection equipment used was manufactured by Biopac. 

The particular unit, used previously in this type of research, is the MP-150 Data 

Acquisition System, with addition of the STP-100 module for this study. This 

combination of equipment allows for monitoring of heart rate acceleration and 

deceleration, which have been respectively associated with covert processing and with 

stimulus intake. Monitoring involves placing electrodes bilaterally on 5 sites: at the top 

and base of the neck, chest, at the top and bottom of the lower torso – altogether, 10 

electrode placements. Specific cardiac impedance channels are registered and 

transformed to produce values for Cardiac Output (CO), Total Peripheral Resistance 

(TPR), and Heart Rate (HR; including heart rate deceleration, HRDEC). The software 

package AcqKnowledge 4.1 was used as the standard accompaniment to the Biopac 

equipment. 

Desktop computer speakers were used to generate white noise for informed consent and 

feedback accumulated conditionally according to task performance. A video camera was 

used to collect facial expressions in view of possible future analysis of facial reactions. 

Measures 

 Published measures of psychometric properties for cognitive ability, intolerance 

of uncertainty, internal locus of control, coping style, and decision-making style were 

administered via computer terminal to obtain personality characteristics of participants 

relevant to decisional control. Additionally, a control measure for participant stress was 
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also administered at three time points: before the experimental session, after training but 

before experimental trials, and at the end of the experimental session. 

 Wonderlic Personnel Test. 

The short form of the Wonderlic Personnel Test, the “Wonderlic QuickTest” (WPT-Q, 30 

items, 8 minutes timed) is a brief online version of a well-validated test of cognitive 

ability. The Wonderlic QuickTest is supported as predictive of the Wonderlic Personnel 

Test and a useful abbreviation of the paper-and-pencil measure. A correlation of r = 0.77 

is reported between the WPT-Q and WPT (Wonderlic, 2004; as cited in Wright & Meade, 

2011).The online site for the WPT-Q is hosted by the Wonderlic Corporation, and is 

represented to researchers by this major psychometric measurement company as secure. 

Cognitive ability is an important control variable for our decision-making research. 

The original Wonderlic Personnel Test (WPT; Wonderlic & Hovland, 1939) was a 12 

minute paper-and-pencil test of cognitive ability. The WPT is a standard industrial 

psychology assessment tool and provides a good prediction of general intelligence, as 

supported by comparison with other standard measures such as the Wechsler Adult 

Intelligence Scales (e.g., .93 correlation with WAIS FSIQ in Dodrill, 1981; .92 

correlation with WAIS-R in Hawkins, Faraone, Pepple, Seidman, Tsuang, 1990; all the 

preceding, as cited in Restrepo, 2008). Construct validity emerged in our sample with a 

mean of 25.2 (see Results section). Average intelligence is theoretically anchored at 25 

on the WPT, the equivalent of 100 on a standard IQ test. 
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 Intolerance of Uncertainty Scale. 

The Intolerance of Uncertainty scale (IUS, 27 items; Freeston, Rheaume, Letarte, Dugas, 

& Ladouceur, 1994) was developed to assess emotional, cognitive, and behavioral 

reactions to contexts of uncertainty in life situations, implications of life situations, and 

the future. Although several areas of possible uncertainty are included, the IUS measure 

is used as a single summary score. Supporting such use is a reported internal consistency 

of α = 0.91.  Items include, for example: “I should be able to organize everything in 

advance”, “When I am uncertain, I can’t go forward”, and “When it is time to act, 

uncertainty paralyses me”. These are rated on a Likert-type scale from 1 “Not at all 

representative [of me]” to 5 “Completely representative [of me]”. Convergent validity is 

reported (Freeston, et al., 1994) with correlations on related measures of 0.63 with the 

Penn State Worry Questionnaire (PSWQ), 0.57 with the Beck Anxiety Inventory (BAI), 

and 0.52 with the Beck Depression Inventory (BDI). Reliability in our sample, calculated 

across 62 participants with answers for all 27 items, was associated with an internal 

consistency of α = 0.92. 

 Internal Control Index. 

The Internal Control Index (ICI, 28 items; Duttweiler, 1984) was developed as a 

refinement of the locus of control put forward by Rotter (1954). Locus of control is an 

extensively researched concept, and Patricia Duttweiler argues for a unipolar approach to 

it. She proposes that an internal sense of control that is more or less present as a 

personality trait, rather than a bi-polar concept of an internal and an external locus of 

control. As such, internal control is the degree to which an individual perceives personal 
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responsibility and effective influence on his or her life surroundings and outcomes. 

Internal reliability is reported as α = 0.84 and 0.85 for two large samples. Evidence of 

convergent validity is reported as a negative correlation of r = -0.385 with Mirels’ Factor 

I of Rotter’s I-E Scale (a factor related to attribution of personal outcomes to luck or 

chance – ‘external’ controlling forces). Items from the Internal Control Index include, for 

example: “If I want something I work hard to get it,” and “I let other peoples’ demands 

keep me from doing things I want to do.” (reverse scored). Items are rated by use of an A 

through E endorsement of each item, where (A) is anchored to “RARELY (less than 

10%) of the time”, (B) is “OCCASIONALLY (About 30% of the time)”, (C) is 

“SOMETIMES (About half the time)”, (D) is “FREQUENTLY (About 70% of the time)” 

and (E) is “USUALLY (More than 90% of the time)”. These endorsement levels are 

scored with a value of 1 to 5 from A to E, or 5 to 1 for reverse scored items. A high score 

in the Internal Control Index is interpreted as a strong sense of personal influence over 

one’s own circumstances and outcomes. Reliability in our sample, calculated across 63 

participants with answers for all 28 items, was associated with an internal consistency of 

α = 0.83. 

Ways of Coping scales. 

The Revised Ways of Coping Inventory (WC, 66 items; Folkman and Lazarus, 1985) is 

an adaptation of an instrument first used by Folkman and Lazarus in earlier research 

(1980). This inventory is meant as an assessment of an individual’s coping process. As 

such, it is not originally intended to be used to capture coping style as a trait. 

Nonetheless, endorsement of use of coping strategies on eight separate scales gives an 

indication of a participants’ stress process and strategies with regard to a specific, 
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significantly stressful event encountered within the previous month. Based on a student-

specific sample, the eight scales (with reliability coefficient value) are: Problem-focused 

Coping (.88), Wishful Thinking (.86), Detachment (.74), Seeking Social Support (.82), 

Focusing on the Positive (.70), Self-blame (.76), Tension Reduction (.59), and Keep to 

Self (.65). Rating is done on a 0 to 3 scale, with 0 described as “Not Used”, 1 as “Used 

Somewhat”, 2 as “Used Quite a Bit”, and 3 as “Used a great deal”, with regard to the 

coping strategy item. Item statements include, for example: “I know what has to be done, 

so I am doubling my efforts to make things work.” (Problem-focused Coping), “I 

daydream or imagine a better time or place than the one I am in.” (Wishful Thinking), 

and “Realize I brought the problem on myself.” (Self-blame). 

We calculated internal consistency statistics in the present sample for each of the WC 

scales: Problem-focused Coping (α = .71, 11 items, 65 cases), Wishful Thinking (α = .81, 

5 items, 68 cases), Detachment (α = .60, 6 items, 68 cases), Seeking Social Support (α = 

.70, 7 items, 66 cases), Focusing on the Positive (α = .71, 4 items, 65 cases), Self-blame 

(α = .75, 3 items, 69 cases), Tension Reduction (α = .05, 3 items, 68 cases), and Keep to 

Self (α = .51, 3 items, 67 cases). Note that Tension Reduction here presents essentially no 

reliability (α = .05), such that the items “Got away from it for a while; tried to rest or take 

a vacation”, “Try to make myself feel better by eating, drinking, smoking, using drugs or 

medication, etc.,” and “I jog or exercise” appear to covary not at all. This is the scale with 

the lowest reliability reported by Folkman and Lazarus (α = .59; 1985). The subscale 

“Tension Reduction” should not be considered a reliable subscale in this sample; as such, 

it will be kept in analyses for completeness in using the Ways of Coping Scales, but it 

will not be interpreted. For its part “Keep to Self” shows some degree of cohesion, but a 
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lower reliability coefficient than is usually acceptable (α = .51) for personality research 

purposes. 

 General Decision-Making Style questionnaire. 

The General Decision-Making Style questionnaire (GDMS, 25 items; Scott & Bruce, 

1995) categorizes five patterns of decision-making: Rational, Intuitive, Dependent, 

Avoidant, and Spontaneous. Internal consistency is reported for each of the five styles 

across four large samples as ranging from .68 to .94, an acceptable range for personality 

research purposes. Sample items include, for example: “My decision making requires 

careful thought” (Rational), “When making decisions, I rely upon my instincts.” 

(Intuitive), “I rarely make decisions without consulting other people.” (Dependent), “I 

postpone decision making whenever possible.” (Avoidant), and “I generally make snap 

decisions,” (Spontaneous). Items are rated on a five-point Likert-type scale from strongly 

disagree to strongly agree. Content validity is reported by Scott and Bruce (1995) as 

deriving from an extensive search of theoretical and empirical research literature. 

Independent researchers reviewed items for face and logical content validity. Concurrent 

validity is supported by differential proportions of decision-making style endorsements, 

in expected directions, between samples of military officers, MBA students, and 

undergraduate. Construct validity is supported by a higher endorsement of rational 

decision-making style and lower endorsement of avoidant decision-making style among 

individuals with a higher internal control orientation (cf. Duttweiler, 1984, ICI mentioned 

above). Interestingly, individuals rated as internally controlled and those rated as 

externally controlled endorsed similar levels of intuitive decision-making. 
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We calculated the internal consistency values for the five styles: Rational (α = .68, 4 

items, 68 cases), Intuitive (α = .82, 5 items, 68 cases), Dependent (α = .82, 5 items, 66 

cases), Avoidant (α = .92, 5 items, 68 cases), and Spontaneous (α = .85, 5 items, 67 

cases). These values correspond closely to the range of reliability coefficients reported by 

Scott and Bruce across the five styles (from α = .68 to α = .94; 1995). 

 Stress Adjectives Checklist. 

The Stress Adjectives Checklist (SACL, 18 items; Cruickshank, 1984; King, Burrows, & 

Stanley, 1983) is an adaptation of MacKay and colleagues’ Mood Adjective Checklist 

(1978). Cruickshank (1984) shortened the list of stress adjectives to remove low 

frequency words (often unfamiliar to the participant) and to equalize the number of 

positive and negative stress words. Cruickshank reported internal consistency alpha of 

0.94. Research by King, Burrows, and Stanley (1983) further refined and validated the 

use of the Stress Adjective Checklist for discriminating between groups. The Stress 

Adjective Checklist is used as a control measure in our study, assessing for individual 

differences in stress levels at the beginning of the experimental session, the beginning of 

experimental trials (after the training required), and at the end of the experiment. 

Participants endorse 18 stress-related words with ratings of two ‘plus signs’ (“+ +”: 

‘definitely yes’) indicating strong endorsement, one plus-sign indicating endorsement 

(“+”: ‘slightly yes’), a question mark indicating no endorsement (“?”: ‘not sure or don’t 

understand’), or a negative sign (“-“: ‘definitely not’) indicating lack of clear presence of 

the stress-related concept. Scoring can be done with four points given to ‘definitely yes’, 

three for ‘slightly yes’, two for ‘not sure or don’t understand’, and one point for 

‘definitely not’. A higher value is indicative of higher stress. 
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In our sample, an alternate scoring method was used (as per Cruickshank, 1984). The 

reasoning for this alternate method was that presence and absence of the stress-related 

word is more clearly registered by 1or 0 values. By comparison, using four positive 

natural numbers, 1, 2, 3, 4,  to reflect absence, uncertainty, slight and strong endorsement 

( “definitely not”, “not sure / don’t understand”, “slightly yes”, “definitely yes”) seems a 

less numerically authentic mapping. Instead, positive item endorsement (slight or strong) 

was coded a ‘0’, absence, a ‘1’; conversely, negative item endorsement (slight or strong) 

was given a ‘1’, absence a ‘0’. This yields a SACL with higher scores indicating higher 

stress (lack of low-stress endorsements and presence of stress-word endorsements). 

Positive items for stress include, for example: “Tense”, “Uneasy”, and “Bothered”; 

negative stress items include: “Relaxed”, “Peaceful”, and “Cheerful”. Replication of 

similar results on British and Australian samples, two English-speaking countries with 

different histories and some variation in semantic content is offered by King, Burrows, 

and Stanley (1983) as evidence of usefulness and generalizability of the SACL 

instrument. In our sample of 69 participants, the SACL-A (start of the session) had 

internal consistency of α = .76, the SACL-B (end of training portion), α = .88, and the 

SACL-C (end of session), also α = .88. 

Procedure 

Participants were directed by email prior to the participation in the main research session 

to complete a brief assessment of general cognitive ability through a link to the 

Wonderlic Personnel Test short form (WPT-Q, 30 items, 8 minutes timed). This was 

conducted on a secure site hosted by the Wonderlic Corporation. The first stage of 

participation involved questionnaires presented at a laboratory computer terminal. 
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Questionnaires related to intolerance of uncertainty, locus of control, coping style, and 

decision-making style.  

 Initial phase: preliminaries and explanations. 

Participants were presented with a letter of information, offered the chance to ask 

questions, and given a two second sample of the white noise involved in the experiment. 

Levels were kept below 95 dB, the loudness of a subway train at 200 ft., consistent with 

our provincial labour standards and approved by institutional ethics review. Informed 

consent process was followed. After a brief introduction to the experimental apparatus, 

including roughly 2 minutes of practice on sample problems similar to experimental 

stimuli, participants were fitted with 10 electrodes, two on the neck, one in the pectoral 

area, and two along the lower rib cage, on both the left and right side. Several points of 

explanation were presented to the participants, as described, following. Electrodes were 

explained as disposable and discarded after use with only one participant. These 

electrodes were to be used to detect a physical signal, not to deliver a shock. Participants 

with more body hair were reassured care would be taken during removal of the electrodes 

to cause no more discomfort than the removal of a common adhesive bandage (such as a 

Band-Aid). All participants were fitted with a blood pressure cuff on their left arm. The 

blood pressure cuff intermittently inflated to take readings. Its design was explained as 

being such that a full, tight inflation would be necessary only at the beginning of the 

experimental sequence. Partial, differential inflation then allows calculation of blood 

pressure and there is no more discomfort after the initial tightness of a full inflation (as at 

a physician’s office). 
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 Second phase: Training and habituation. 

The second phase involved answering decision scenario questions presented by 

computer. At this point, psychophysiological measurement equipment was applied to the 

participant. Once the electrodes, heart monitor, and blood pressure cuff was attached, the 

research assistant confirmed signal acquisition for calculation of relevant measures 

(stroke volume, cardiac output, total peripheral resistance, and heart rate 

acceleration/deceleration). Participants were instructed through a series of tutorial screens 

on the computer how to make selections in the decisional control paradigm, and reminded 

of white noise administration, with duration based on performance, at the end of the 

experiment. They were presented with 2 seconds of white noise as a mild aversive 

stimulus to motivate performance. The threat-oriented nature of this research supports the 

non-injurious, non-noxious use of a slightly aversive stimulus for paradigm validity. A 

set of "dummy trials" were presented to familiarize the participant with the apparatus and 

answering questions, after which the official hypothesis-oriented experimental data 

collection began. 

 Third phase: Decisional control experiment trials. 

Each trial consisted of an initial baseline period. The word "Rest" appeared on the screen 

for 15 seconds, and the participant was instructed to sit back and take a relaxed, deep 

breath at this stage. Then, the computer screen showed the message: "Press and hold the 

Spacebar when ready". The participant pressed and held the spacebar, triggering the 

presentation sequence. First, a stressful vignette was presented. This included prompts at 

the end of the vignette asking three simple questions designed to raise stress levels, 
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focusing on consequences, people involved, and other situational features. Vignettes are 

included in the Appendix. An example of each type of vignette used is: 

 

Credit Card Problem [Financial] 

 You are facing the loss of your credit card. This would also harm 

your credit rating. You need to make payment arrangements, and also 

manage future expense patterns. Your parents are the co-signers and they 

support half of your monthly payments. As such, they have an important 

say in what approach you can take, so this may limit your choices. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of losing your credit card? 

Relationship Scenario [Social] 

 You are in a romantic relationship that means a lot to you. Your 

boyfriend/girlfriend has complained that you don't spend enough time 

together. You are working hard at school and other priorities, but this 

person is also important to you. Your romantic partner has conditions for 

you staying together, but you only have so much time to work with, and 

this may limit your choices. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of breaking up with your 

boyfriend or girlfriend? 
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Driving / Icy Roads [Physical] 

It is a winter night and you need to get home. The roads are icy, winding 

and hilly. You are concerned about getting into an accident. You must 

make some important decisions about the way to get home, and how fast 

to drive. You are on the outskirts of town, and some roads have been 

closed, so this may limit your choices. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of having an accident? 

Participants were instructed to keep depressing the spacebar as the scenario was 

presented, make a selection mentally, and then and only then remove their finger to press 

another key endorsing a specific selection on the screen. The experimental aim is to 

measure the time for information processing as separately as possible from the time for 

the visual-motor activity of choice registration. 

A total of fifty-four trials were presented, with randomized ordering. These arose from 

the 9 x 6 choice structure by parameter pair design described in the Introduction. The 

convention for presenting choice type was a green box for Choice, a grey box for 

Uncertainty, and a series of red boxes for No-choice, with a single green box indicating 

the external selection given to the decision-maker at the No-choice level. 

Presentation conventions were consistent with those used to represent the same constructs 

in the study reported in Chapter 4. The Uncertainty condition however, and the grey box 



193 

 

convention used to depict it, were not part of the Chapter 4 experimental Choice 

Structure conditions. 

Under UC scenarios, putative choices of elements under ‘Choice’ are made. The first 

response (selecting the best available element, in advance) was used as the comparative 

decision-making time RT1 with other choice structure responses. For paradigm 

consistency, participants nonetheless continued making all possible putative selections, in 

order of preference, until an ordered preference of p elements (one element per bin 

potentially-assigned under Uncertainty) were completed. Considerations of paradigm 

veracity were deemed likely to influence participant response, in requiring more 

information processing under UC than under NC, for example. 

 Proxy depiction of threat via two-letter pairs. 

Each scenario’s sets of elements were populated by letter-pairs, such as “CJ” or “QR”. 

These were explained as ranked according to alphabetical order, from left to right for 

letter ordinal positioning, as in a dictionary. These letter-pairs were necessary to populate 

the parameter pair scenarios where (p, q) were (5, 7) and (9, 7), as the 26 letters of the 

English alphabet would be insufficient to depict 35 and 63 discrete threat levels, 

respectively. These proxy stimuli were used as requiring some degree of evaluation 

(allowing for ‘decision-making time’), but as having a specific canonical ordering. 

Excluded from the list of all possible pairs of 26 letters were all stimuli beginning with 

A- or Z-, as too easily processed as best or worst in ordinal ranking. Also eliminated were 

letter pairs with commonly perceived semantic content such as “BE”, “IQ”, or “IT”, to 
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prevent confounding of processing by inadvertent processing of meaning, irrelevant in 

this decision-making context.  

 Supportive study for subjective perception of threat by two letter proxies. 

Important to note with regard to these letter-pairs is the extensive work of the third 

author, Melanie King, who conducted a distinguished honours thesis investigation of the 

threat perception of a comprehensive sample of these letter-pairs. This thesis (King, 

2013) was able to uncover situations of ‘stretch’, ‘compression’, or ‘leapfrogging’ in the 

distance and ordering of participant perception of letter-pairs. She accomplished this by 

Thurstonian psychological scaling of threat perception of the two-letter stimuli in a large 

undergraduate sample, using established methodology (Torgerson, 1958; see especially 

Chapter 9, “Law of Categorical Judgments”). 

 Some effects this study found included the perception of letters nearer to the beginning 

and end of the alphabet in a more canonically anchored way (closer to ‘dictionary 

ordering’) than letters in the middle range. She also reported (King, 2013) that the second 

position letter could have an undue influence, beyond simply playing the ‘tie-breaker’ 

when identical letters were found in the first position. This was more pronounced with 

second letters found towards the end-points of the alphabet, especially with first-position 

letters in the middle range of alphabet positioning (e.g., J to S). For example, the letter-

pair perceived as least threatening in her sample of 160 stimuli was “CB”, with a very 

low scaled value of 0.08; a few rank positions lower, “BD”, at a 0.58 scaled value, which 

should have been in first place in this sample. Again, “KG” (scale value, 1.18) ranks 

ahead of “FZ” (scale value, 1.34), as another example.  
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Despite this interesting variation, ordering of stimuli was on the whole, correct, such that 

participant perception of letter-pairs as proxies for an ordered set of threat values is 

considered paradigm-valid. The correlation of participant Thurstonian-scale values with 

canonical ordering was r = 0.94 for the 160 letter-pairs selected by stratified sampling. 

For example, ‘BH’ had a scale value of 0.53 (for threat perception as harmonized with 

across participant response sets), and a canonical position or ‘dictionary ordering’ of 34; 

‘HN’ had a scale value of 1.33 and a canonical position of 196, and ‘XF’, 3.04 and 604, 

respectively). With regard to letter-pair use in the main study, an alphabet ranking task of 

ten words with a comprehensive range of starting letters was used to ensure prior 

participant knowledge of alphabetical order. Three participants did not pass this task, and 

their data was also removed from the analysis.  

The methodology used by King (2013) assessed subjective perception of threat when 

comparing letter-pairs to a sample of recently viewed letter-pairs together and then 

presenting them individually, asking for a ranking from 1 to 9 for likelihood of triggering 

the undesirable event described in a stress vignette. The subjective aspect of the 

perception of threat as transmitted through these letter-pair proxies was the objective of 

this methodologically rigorous study. However, in the main study, participants were not 

asked to follow their impressions, but a clearly instructed and made to practice a 

deliberative process, using the ‘dictionary order’ priority ranking for the two-letter pairs. 

 Stress ratings. 

Subsequent to each trial, after the participant released the spacebar (ending the ‘decision-

making time’) and entered the two-letter pair selection made, they were also prompted to 
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enter a stress rating for the previous trial. Specifically, they were asked to rate on a 1 to 5 

Likert-type scale how stressful they had found the previous trial:  1 - “Not at all”, 2 - 

“Slightly”, 3 - "Moderately”, 4 - “Considerably”, and 5 - “Extremely”. 

 Performance feedback and debriefing. 

There is a "correct" response for all scenarios presented and a simple yes/no count was 

kept of correct responses. With a view to providing gently aversive response motivation, 

the participant was given from 0 to 10 seconds of white noise at a controlled decibel level 

(approved by Ethics review as non-harmful) over computer speakers to create ecological 

validity with stress negotiation scenarios. Performance was evaluated such that 100% 

correct answers corresponded to 0 seconds of white noise, 90-99% correct - 1 second, 80-

89% - 2 seconds, and so on, with 0-9% correct corresponding to 10 seconds of white 

noise. Experimenters reported no administrations longer than 5 seconds were given. 

After computer trials were completed, the participant was given a debriefing letter and a 

receipt for participation, and signed their names in acknowledgment of this receipt. They 

were offered a copy of this record, and one copy was kept on file. 

Results 

Results are reported under several headings and subheadings below. Psychometric and 

demographic data are first presented, with specific scales and values. Correlations are 

then presented for context and background. Following this, a sizeable section is included 

that calculates ‘method data’, or quantities deriving from theoretical formulations. 
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Finally, results of testing for Hypothesis I, Hypothesis II, and for a possible Theoretical 

Synthesis are presented. 

Psychometric and Demographic Data 

Wonderlic Personnel Test – QuickTest (WPT-Q). 

WPT scores range from 1 to 50; a score of 25 is considered equivalent to an IQ score of 

100 for the same population. Participant scores for the WPT were normally distributed (N 

= 67, M = 25.1, SD = 3.6; range: 18 to 33). For two participants, test values were not 

considered valid due to timing out of the online session. 

Intolerance of Uncertainty Scale (IUS). 

Scores on the Intolerance of Uncertainty Scale have a theoretical range of 27 to 135. 

Scores were normally distributed (N = 69, M = 62.0, SD = 17.2, range: 28 to 107).  

Ways of Coping scales (WC). 

The Ways of Coping Inventory generates scores on eight scales for styles of coping. The 

eight scales can be computed based on a community sample or student sample. For this 

research, we used the student sample calculation, with student-specific sets of items for 

each particular scale’s calculations. All 69 participants had valid values for the eight 

scales, and all were normally distributed. 

Internal Control Index (ICI). 

The Internal Control Index yields a single score estimate of disposition towards an 

internal locus of control. The theoretical minimum and maximum for the 28 item 5 point 
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Likert-type scale are 28 and 140 respectively. Scores were normally distributed (N = 69, 

M = 97.9, SD = 12.6; range: 71 to 123). 

General Decision-Making Scale (GDMS). 

The Decision-Making Scale yields a score for five styles of decision-making. In the 

original scale publication (Scott & Bruce, 1995), one item was missing, for the Rational 

scale: “I explore all of my options before making a decision.” (as reported by Appelt, 

Milch, Handgraaf, & Weber, 2011; note, the present study was designed prior to 2011). 

Our research was conducted with 24 of the 25 items on the scale, five items for each 

scale, but with four items on the Rational decision-making style scale. Scores on all five 

scales were distributed normally. A novel calculation was also made, the sum of all 

endorsements. The measure, the GDMS aggregate, was used as an indicator of a tendency 

to identify highly with several decision-making styles. 

Stress Adjectives Checklist (SACL). 

Scores on the Stress Adjectives Checklist were compiled for time points A (start of the 

session), B (start of the experimental trials), and C (end of the experiment). Adding 

positive and negative items (dichotomous scoring) yielded normally distributed scores for 

all six sets of nine positive and negative nine items at time points A, B, and C. This 

alternate scoring method, suggested by Cruickshank (1984), dichotomizes the scale 

between endorsement and no endorsement. Because of the nature of the two non-

endorsement levels (‘not sure, don’t know’ and ‘definitely not’), the numerical meaning 

most supportive of this semantic content is ‘0’. As such, scores were re-calibrated as “1” 
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or “0” for endorsement or no endorsement for the upper two levels and lower two levels 

of responses, reverse coded for positive (non-stressful) items. 

Correlations 

In Table 3, below, a pattern of significant moderate to high moderate negative 

correlations occurs between the Internal Control Index (ICI) and several measures, 

namely: the General Decision-Making Scale (GDMS aggregate, -.57), GDMS-Dependent 

(-.52), GDMS-Avoidant(-.61), and to a lesser degree, the GDMS-Spontaneous (-.30), 

GDMS-Intuitive (-.26), as well as the Ways of Coping-Wishful Thinking scale (WC-WT, 

-.44), WC-Self-Blame (WC-SB, -.32), and the WC-Detachment scale (WC-D, -.25), and 

the Intolerance of Uncertainty Scale (-.32). This list of correlations supports the construct 

validity of internal control, in that it relates negatively with several indices often 

considered maladaptive, whereas a strong sense of internal control is considered adaptive 

(see Duttweiler, 1984). By contrast the ICI correlates significantly to a moderate positive 

degree with WC-Problem-focused [coping] (WC-PF, .38), cognitive ability (WPT-Q, 

.26), and to a high moderate positive degree with the GDMS-Rational scale (.53). Each of 

these is consistent with standard expectations from the internal control construct. 

Interestingly, there is a significant weak moderate correlation between ICI and Age, such 

that younger participants are tending to report higher internal control. 
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Table 3 

Correlation among Psychometric Variables 

 IUS ICI 
GDM

S 
GDM
S-R 

GDM
S-I 

GDM
S-D 

GDM
S-A 

GDM
S-S 

WPT-
Q Age Sex 

WC-
PF 

WC-
WT WC-D 

WC-
SS 

WC-
FP 

WC-
SB 

WC-
TR 

ICI -.32                  
GDMS .24 -.57                 

GDMS-R .20 .53 -.25                
GDMS-I -.03 -.26 .68 -.26               
GDMS-D .19 -.52 .67 -.19 .32              
GDMS-A .30 -.61 .75 -.38 .27 .40             
GDMS-S -.04 -.30 .62 -.37 .44 .12 .29            
WPT-Q -.04 .26 -.16 .20 -.07 -.17 -.10 -.19           

Age .10 -.27 -.06 -.25 .05 -.15 .00 .09 -.03          
Sex -.09 .14 .03 -.05 .04 -.24 .02 .27 .30 .09         

WC-PF .10 .38 -.06 .40 .14 -.15 -.29 .00 -.07 -.05 .07        
WC-WT .37 -.44 .47 -.04 .22 .33 .43 .21 -.04 -.03 .10 .18       
WC-D .25 -.25 .44 .07 .19 .22 .32 .32 -.06 .05 .13 .04 .46      

WC-SS .23 -.23 .29 .04 .31 .32 .18 -.06 -.10 .05 -.25 .23 .43 .12     
WC-FP .05 .20 .04 .25 .05 -.04 -.10 .10 -.10 .08 .06 .57 .16 .08 .26    
WC-SB .35 -.32 .47 -.03 .24 .32 .43 .18 -.05 -.10 .02 .17 .65 .22 .43 .23   
WC-TR .20 -.10 .13 .19 -.04 .08 .07 .09 -.04 -.01 .19 .27 .34 .17 .19 .34 .22  
WC-KS .28 -.14 .19 .11 -.03 -.08 .19 .30 -.05 .11 .20 .14 .38 .43 -.10 .24 .16 .23 

Underline indicates p < .05 (2-tailed); Boldface indicates p < .01 (2-tailed). 
IUS: Intolerance of Uncertainty; ICI: Internal Control Index; GDMS: General Decision-Making Scale (full score aggregate), -R: Rational, -I: Intuitive, -D: Dependent, -A: Avoidant, -S: Spontaneous; 
WPT-Q: Wonderlic Personnel Test-QuickTest; Sex is coded as male,1, female, 0; WC-PF: Ways of Coping-Problem-Focused, -WT: Wishful Thinking, -D: Detachment, -SS: Seek Social Support, -FP: 
Focus on the Positive, -SB: Self-Blame, - TR: Tension Reduction, -KS: Keep to Self [bottom row]. 
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In Table 3, notable significant correlations occur between the aggregated score of the 

General Decision-Making scales and measures often considered maladaptive: WC-

Wishful Thinking, WC-Detachment and WC-Self-Blame; note this aggregate correlates 

highly with four of the five GDMS separate scales, but to a weak though significant 

degree with the GDMS-Rational scale. It appears the four ‘other’ decision-making styles, 

Intuitive, Avoidant, Dependent and Spontaneous, are not as desirable in relation to 

coping styles considered more adaptive. There appear to be both a passive and an agentic 

‘cluster’ of variables, with other variables retaining a mixed set of associations. The 

passive cluster, conceivably more maladaptive, loads especially on measures of wishful 

thinking, avoidant decision-making, detachment, self-blame, and high aggregate ratings 

on multiple decision-making styles, suggesting identification with multiple styles; these 

measures also correlate negatively with an internal control disposition.  

The converse profile in Table 3 associates high internal control, rational decision-making, 

problem-focused coping, and a focus on the positive in what appears by canonical 

standards in personality psychology as a more adaptive cluster of preferences and 

personality features. Note that control variables of Age, Sex, and cognitive ability (WPT-

Q) are not significantly correlated to any other psychometric measures at the p < .01 level 

(no boldface type values for control variables). This indicates that these potential 

nuisance variables are likely not introducing a major confounding effect. 

Experimental stress measures (SACL). 

The Stress Adjective Checklist data was used as a secondary indicator of proneness to 

stress reactivity. Scoring was done as per Cruickshank’s (1984) method of allotting one 
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‘stress point’ for actual endorsement (high or moderate) of stress words (e.g., “Tense: 

definitely yes”, or “Bothered: slightly yes”), and a ‘stress point’ for ignorance or denial of 

non-stress states (e.g., “Calm: don’t know/not sure”, or “Peaceful: definitely not”). The 

other two points on the response scales received a zero towards the total summation 

(reverse scored for positive stress-related phrases, such as Calm, Peaceful, or At Rest). 

Table 4 

Correlations for Time A, B, and C on Stress Adjective Checklist, including subscales 

 SACL-A SACL-B SACL-C SACL-
neg. A 

SACL-
neg. B 

SACL-
neg. C 

SACL-
pos. A 

SACL-
pos. B 

SACL-B .28        

SACL-C .23 .50       

SACL-neg. A .69 .07 .05      

SACL- neg. B .07 .78 .35 .12     

SACL-neg. C .11 .39 .77 .25 .49    

SACL-pos. A .82 .32 .26 .15 -.01 -.06   

SACL-pos. B .38 .89 .48 .01 .41 .20 .49  

SACL- pos. C .30 .45 .88 -.09 .14 .37 .48 .57 
Underline indicates p < .05 (2-tailed); Boldface indicates p < .01 (2-tailed). 

In examining Table 4, above, values for the Stress Adjective Checklist are within 

expectations and support confidence in experimental proceedings. Stress endorsed at 

three time points, A, B, and C are correlated to suitable degrees. Time-point A represents 

the start of the experiment. Time-point B represents the end of the training periods, which 

were of 10 to 20 minutes duration. Time-point C represents stress after all experimental 

trials of the same list of 18 stress-related words. The measures reported in Table 4, above, 

include the positive and negative facets only (nine words of each kind), together with 

their summed measure, scored such that a higher value indicates more stress. 
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As seen in Table 4, the three time-points appear to be suitably inter-related. Stress ratings 

at entry (SACL-A) and after training (SACL-B) are significantly correlated to a low 

moderate degree (.28). Stress at entry and endpoint shows no significant correlation 

(“.23”, not significant). Stress at the end of training (SACL-B) and at the end of the 

experiment (SACL-C) show a high moderate correlation (.50). Both the negative and 

positive facets correlate highly with the overall scales at all time-points; the positive 

stress-related words show a higher magnitude correlation with their associated full scale 

than the negative, but all magnitudes are high. Outside of sub-scale affiliated scores for 

the same time-point (e.g., A, positive A, negative A), the best predictors of stress between 

time-points were between time-points B and C (end of training, end of experiment) for 

non-endorsement of positive stress-related words (e.g., “Calm”, “At Rest”, “Relaxed”). 

These scores involved coding with a ‘stress point’ if participants either did not know or 

were unsure, or did not experience these subjective states. Similar magnitudes appear for 

the negative endorsements and overall scales, such that stress at time-point B, after 

familiarization with the decisional control paradigm is the best predictor of stress at time-

point C after completion of decisional control trials. 

Decisional Control Method Data 

Response set size (RSS). 

Response Set Size for the nine decision scenarios in our study are shown in Table 5. 

These values represent the number of possible responses for the participant in each 

decision-scenario, or, Choice Structure by Parameter Pair experimental cell condition. 
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Table 5 

Response Set Size by decision scenario 

Scenario RSS(p, q) RSS(2, 2) RSS(7, 2) RSS(4, 3) RSS(4, 5) RSS(5, 7) RSS(9, 7) 

CC pq 4 14 12 20 35 63 

CN p 2 7 4 4 5 9 

CU p 2 7 4 4 5 9 

NC q 2 2 3 5 7 7 

NN 1 1 1 1 1 1 1 

NU 1 1 1 1 1 1 1 

UC q 2 2 3 5 7 7 

UN 1 1 1 1 1 1 1 

UU 1 1 1 1 1 1 1 

Probability of the Lowest Threat Option (Pr(t1)). 

Probability of Lowest Threat Option for the nine decision scenarios are shown in Table 6. 

It is calculated by dividing Response Set Size (RSS) by the factorial Element Set Size 

(fESS). Factorial Element Set Size is the full number of elements in a scenario, in first-

order scenarios, fESS has a value of pq (bins x elements), as opposed to Element Set Size 

(ESS), the number of elements in a given bin, with value q.  
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Table 6 

Probability of Lowest Threat Option by decision scenario 

Scenario (p, q) (2, 2) (7, 2) (4, 3) (4, 5) (5, 7) (9, 7) 

CC pq / pq 1.000 1.000 1.000 1.000 1.000 1.000 

CN p / pq 0.500 0.500 0.333 0.250 0.143 0.143 

CU p / pq 0.500 0.500 0.333 0.250 0.143 0.143 

NC q / pq 0.500 0.143 0.250 0.250 0.200 0.111 

NN 1 / pq 0.250 0.071 0.083 0.050 0.029 0.016 

NU 1 / pq 0.250 0.071 0.083 0.050 0.029 0.016 

UC q / pq 0.500 0.143 0.250 0.250 0.200 0.111 

UN 1 / pq 0.250 0.071 0.083 0.050 0.029 0.016 

UU 1 / pq 0.250 0.071 0.083 0.050 0.029 0.016 

Outcome Set Sizes (OSS). 

Table 7 below shows Outcome Set Sizes for the experimental cell conditions. 

Table 7 

Value for Outcome Set Size in 9 x 6 experimental cell conditions 

Scenario (p, q) (2, 2) (7, 2) (4, 3) (4, 5) (5, 7) (9, 7) 

CC pq 4 14 12 20 35 63 
CN p 2 7 4 4 5 9 
CU pq 4 14 12 20 35 63 
NC q 2 2 3 5 7 7 
NN 1 1 1 1 1 1 1 
NU q 2 2 3 5 7 7 
UC pq 4 14 12 20 35 63 
UN p 2 7 4 4 5 9 
UU pq 4 14 12 20 35 63 
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Mathematical Expectation of Threat ( E(t) ). 

In Table 8, below, the mathematical expectation of threat E(t) is depicted. These values 

are calculated using  a standard vector of threat value with equal increments. 

Table 8 

Mathematical Expectation of Threat E(t) by decision scenario 

Scenario (2, 2) (7, 2) (4, 3) (4, 5) (5, 7) (9, 7) 

CC 0.2000 0.0667 0.0769 0.0476 0.0278 0.0156 
CN 0.3333 0.1250 0.2000 0.2000 0.1667 0.1000 
CU 0.4000 0.3000 0.3846 0.4286 0.4444 0.4375 
NC 0.3333 0.3333 0.2500 0.1667 0.1250 0.1250 
NN 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
NU 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
UC 0.3333 0.3333 0.2500 0.1667 0.1250 0.1250 
UN 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
UU 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Note, see Chapter 2 – Appendix, p. 56, for formulations of E(t) by p and q. 

Threat-Exposure (TE) and Decision-Making Value (DMV). 

Threat-Exposure TE is a metric derived for the first time in Chapter 4 (see p.136-139). In 

this context, this study was not designed to evaluate for this new metric, but as the same 

paradigm is used, an approximate comparison can be made between procedures used in 

Chapter 4 and the same procedures used on nearest comparable levels of decision 

scenarios within this chapter (Chapter 5). The Threat-Exposure metric was twinned with 

Information-Processing Demand to obtain a Threat-Control Expenditure, which can be 

inverted to provide an indication of Decision Value. Decision Value was found in 

Chapter 4’s study to be a valuable, entirely theoretical, predictor of participant behaviour 
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in terms of time spent on decisions, reduction in heart rate indicative of increased 

information intake (akin to ‘focusing’), and a higher proportional endorsement of a given 

trial with higher ‘Decision Value’ as stressful, controlling (as the derivation of Decision 

Value does) for the size of the sets being evaluated.  

Threat-exposure was calculated as the exposure to post-scenario negotiation threat per 

unit of control afforded by the scenario (see Chapter 4). The calculation for TE is 

calculated as E(t) / Pr(t1). Information Processing Demand was calculated as the amount 

of discrete items of information to be processed per unit of unit of control offered by a 

scenario, and is obtained by the formula RSS / E(t) . This study was not designed to test 

these metrics, so limited evaluation of possible hypotheses will be made to indicate 

whether some level of replication is possible. However, as detailed further below in 

‘Future Investigations’, worthy prospects exist for evaluating the addition of Uncertainty 

and the associated use of OSS in metric calculations. 

In order to evaluate this new metric in a way comparable to its original formulation, two 

sets of similar parameters were selected. In the original study (see Chapter 4), the choice 

structures of CC, NC, and NN were used. The parameter pair values of (2, 2) and (2, 4) 

were the variation in set sizes. In the present study, two pairings were selected as 

comparable to the original pair of parameter set sizes. First, (2, 2) and (7, 2) was chosen 

as a pairing that retains (2, 2) as a parameter pair, and includes an unchanging parameter. 

In this case, parameter q stays constant at 2. Given that these measures use proportions, it 

is reasonable also to attempt to maintain a similar pq product, newly defined in this study 

as the factorial Element Set Size, fESS, above. 
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Secondly, (4, 3) and (4, 5) were chosen as existing experimental levels on which to test 

the newly developed metric for Decision Value, as it retains the same bin values (p = 4) 

for both pairings, just as the original study did (p = 2, for (2, 2) and (2, 4)). Additionally, 

these are also the lowest available pq product values, or fESS values, in order to maintain 

a similar range to minimize effects due to scale that may occur with larger pq values, 

such as with the largest two parameter pairs in this study, (5, 7) and (9, 7). In particular, it 

must be recalled that it is a human decision-maker upon whom this cognitive demands 

are being made, and as such, different processes and individual preferences may emerge 

as larger sets of evaluations are required for scenario navigation. This may be expected 

with fatigue, working memory limitations, and other frustrations or strategies 

incompatible with larger number of cognitive evaluations. 

In Tables 9 and 10, below, Threat-exposure and information-processing demand are 

calculated for the (2, 2) and (7, 2) and the (4,3) and (4,5) parameter pairings, respectively, 

according to the method outlined in Chapter 4. 

Table 9 

Threat-exposure, information processing demand for (2,2), and (7,2) scenarios 

Scenario TE (2, 2) (7, 2)  IPD (2, 2) (7, 2) 

CC E(t)/Pr(t1) 0.200 0.067  RSS/E(t) 20 210 
NC E(t)/Pr(t1) 0.667 2.333  RSS/E(t) 6 6 
NN E(t)/Pr(t1) 2.000 7.000  RSS/E(t) 2 2 
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Table 10 

Threat-exposure and Information Processing Demand for (4, 3) and (4, 5) scenarios 

Scenario TE (4, 3) (4, 5)  IPD (4, 3) (4, 5) 

CC E(t)/Pr(t1) 0.077 0.048  RSS/E(t) 156 420 
NC E(t)/Pr(t1) 1.000 0.667  RSS/E(t) 12 30 
NN E(t)/Pr(t1) 6.000 10.00  RSS/E(t) 2 2 

 

The values in Tables 9 and 10, above, are proportionalized to allow for comparability 

across different parameter sets, for ranges that are near one another. This method allows 

for comparison between the stress deriving from Threat-Exposure, in its relative 

allotment between different decision scenarios, and the stress deriving from Information-

Processing Demand, as allotted similarly by different decision scenarios. This method 

works in particular because all participants have responded to each cell condition trial. As 

such, relative perceptions of scenarios close in parameter ranges are potentially 

comparable. 

The procedure for deriving the proportion scores are to sum values across the 3 x 2 

experimental conditions, then divide each cell value by this sum. The result represents the 

share of ‘Threat-Exposure’ or of ‘Information Processing Demand’ that is allotted to this 

experimental cell condition as it relates to its 5 other comparable structural and parameter 

neighbours. This calculation is depicted as TE / ΣTE and IPD / ΣIPD in Tables 11 and 12. 

Table 11 

Proportional Threat-exposure, Information Processing Demand for (2, 2) and (7, 2) 

Scenario TEp (2, 2) (7, 2)  IPDp (2, 2) (7, 2) 

CC TE / ΣTE 0.01630 0.00544  IPD/ΣIPD 0.08130 0.85366 
NC TE / ΣTE 0.05435 0.19022  IPD/ΣIPD 0.02439 0.02439 
NN TE / ΣTE 0.16304 0.57065  IPD/ΣIPD 0.00813 0.00813 
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Note in Table 11, above, how the proportion of Threat-Exposure (TEp) is allotted most 

heavily to the NN(7,2) condition, and the proportion of Information-Processing Demand 

(IPDp) is heavily weighted towards CC(7,2). This is consistent with the expectation and 

the intent of these new constructs.  

The verbal interpretation of the proportion of Threat-Exposure values is as follows. First, 

the CC conditions show the least exposure to threat. This is consistent with the CC 

structure providing the most decisional control, and associated threat-reduction. Second, 

the trend from CC to NC to NN is for an increase in Threat-exposure. This is construct-

valid, in terms of the NN condition requiring the most tolerance of post-scenario threat, 

CC the least, and NC an intermediate amount. Finally, examining the Threat-Exposure 

columns on the left (for (2,2) and on the right (for (7,2), the trend where ‘N’ is present is 

an increase in threat-exposure, the trend at CC, with no ‘N’, is a decrease in threat-

exposure. This is consistent with the ‘C’ condition reducing threat, and the ‘N’ condition 

leaves threat at a maximum. 

The verbal interpretation of the proportion of Information-Processing Demand values is 

as follows. First, the CC conditions show the highest proportion of Information 

Processing Demand. This is construct-valid, as two ‘C’ nodes require the most cognitive 

operations to identify the lowest threat option. Second, the trend is for a decreasing 

proportion of Information Processing Demand from the CC to NC to NN choice 

structures. This is also construct-valid. Finally, although NC and NN show the same 

values for proportion of Information Processing Demand, across (2, 2) and (7, 2), CC 

increases considerably. This is model-consistent, in that the number of elements to 

evaluate (RSS) are 4 and 14, respectively, while the expectation of threat (E(t)) decreases 
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by a factor of 3, from 0.2000 for (2, 2) to 0.0667 for (7, 2). That is, the ultimate ‘threat’ 

faced in the wake of scenario negotiation is lower in the case of (7, 2) than it is in the 

case of (2, 2), and the concept in this framework is that this lower absolute threat 

expectation engenders decreased motivation to furnish the higher number of mental 

operations. This construct is new, and scaling is not expected to be exact. Further rounds 

of experimentation are needed for refinement of this methodology. However, what is 

confirmed is the direction of expected effects, whereby participant behavior is expected to 

mirror patterns in the theoretically modelled constructs calculated in Tables 9, 10, and 11 

above, and Tables 12, 13, 14, 15, and 16, below. This direction of expected effects 

follows certain trends that can be approximated by verbal description, but the pattern of 

expected effects can potentially be obtained by following the theoretically modelled 

properties and the procedure outlined. When relevant cognitive processes driving 

participant responses are well-approximated by model structure and settings, unusual or 

apparently idiosyncratic changes in trend lines can be predicted in an explicable manner 

at a level more intricate than linear or quadratic curvilinear trendlines only. 

Table 12 

Proportional Threat-exposure, Information Processing Demand for (4, 3) and (4, 5) 

Scenario TEp (4, 3) (4, 5)  IPDp (4, 3) (4, 5) 

CC TE / ΣTE 0.00432 0.00268  IPD/ΣIPD 0.25080 0.67524 
NC TE / ΣTE 0.05621 0.03747  IPD/ΣIPD 0.01929 0.04823 
NN TE / ΣTE 0.33725 0.56208  IPD/ΣIPD 0.00322 0.00322 

 

The values in Table 12, above, can be observed to follow a pattern similar to that in Table 

11. Notable difference are threefold. First, an attenuation in the proportion of 

Information-Processing Demand for the CC(4, 5) condition (IPDp = 0.675) in 
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comparison to the CC(7,2) condition (IPDp = 0.854). This is consistent with a reduced 

differential between the p and q values for the (4, 3) and (4, 5) combination as compared 

with the (2, 2) and (7, 2) combination. Second, the effect of changing q values (3 and 5, 

instead of being held constant at 2) can be observed to lower the value for the proportion 

of Threat-Exposure between the (4, 3) and the (4, 5) parameter pairs for both the  CC and 

NC conditions. Finally, the Information-Processing Demand can be observed to increase 

in the NC condition between the (4, 3) and (4, 5) conditions, by contrast to no change 

under NC between (2, 2) and (7, 2). This is again construct valid, since the number of 

responses possible is higher where q increases (in this case, from 3 to 5) under NC. This 

occurs because Choice ‘C’ at the element level yields more decisional control with a 

larger number of choices at that level. With increased number of elements-per-bin (q = 5, 

instead of q = 3), NC demands increased information processing, but it is also more 

powerful for threat reduction. This concomitant threat reduction can be observed by 

comparing NC(4, 3) and NC(4, 5) values for proportion of Threat-Exposure (0.0562 and 

0.03747). 

Table 13 

Threat-Control Expenditure and Decision-Making Value (2, 2) and (7, 2) 

Scenario TCE (2, 2) (7, 2)  DMV (2, 2) (7, 2) 
CC avg.(TEp,IPDp) 0.04880 0.42955  (1-TCE) 0.95120 0.57045 
NC avg.(TEp,IPDp) 0.03937 0.10730  (1-TCE) 0.96063 0.89270 
NN avg.(TEp,IPDp) 0.08559 0.28939  (1-TCE) 0.91441 0.71061 
 

In Table 13, above, the Threat-Control Expenditure is reported. Threat-Control 

Expenditure is intended as an index of threat-exposure and control efforts, and as such 

summarizes essentially in one metric the basic need for a decisional control model. 
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Threat-Control Expenditure indexes the cost of threat-reduction currency in the economy 

of probabilistic threat, valuing equally the demands of information processing and threat 

exposure. Notably, it is sensitive to interactions between choice structure and number of 

choices. For example, when comparing CC, NC, and NN with parameter pairings (2, 2) 

and (7, 2), as in Table 13 above, CC(7, 2) assumes a considerable share of the Threat-

Control Expenditure, in relation to NC(7, 2) and NN(2, 2), whereas CC(2, 2) assumes a 

share comparable to NC(2,2) and somewhat lower than NN(2, 2). 

Also in Table 13, above, Decision-Making Value is included. In previous research (see 

Chapter 4), Decision Value was the ultimate focus of the metrics developed. Note that in 

the present study, it is renamed here to Decision-Making Value in order to avoid 

confounding the acronym DV with a ‘dependent variable’. Decision-Making Value has 

also been set aside as a primary metric, in favour of Threat-Control Expenditure. This 

saves the process of inverting the Threat-Control Expenditure, which can add its own 

change in substantive meaning. There are already several stages of transformations in this 

approach. It was also felt by the first author, the designer of these metrics, that the 

decisional control model has had a long-standing focus on controlling threat, rather than 

on illustrating decision-making value. These quantities are quite closely related, but the 

consistency with fundamental paradigm priorities for Threat-Control Expenditure was 

considered greater than Decision-Making Value. A new avenue of research is open if 

threat values are converted to utility values, and obtaining some tangible ‘good’ becomes 

the new focus of the probabilistic description of flow of likelihoods in hierarchical 

structures. As such, an unreduced figure for Decision-Making Value (simply 1 – TCE, 

without removing ‘bulk’ by removal of excess area under the trendline, as in Chapter 4)  
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is provided in Tables 13 and 14. By contrast, Threat-Control Expenditure as a quantity is 

ideally minimized when the aim is threat- or stress-reduction, and is considered by our 

research team a valid focus for a single decisional control metric, in present and incipient 

research programs. 

Table 14 

Threat-Control Expenditure and Decision Value (4, 3) and (4, 5) 

Scenario TCE (4, 3) (4, 5)  DMV (4, 3) (4, 5) 

CC avg.(TEp,IPDp) 0.12756 0.33896  (1-TCE) 0.87244 0.66104 
NC avg.(TEp,IPDp) 0.03775 0.04285  (1-TCE) 0.96225 0.95715 
NN avg.(TEp,IPDp) 0.17023 0.28265  (1-TCE) 0.82977 0.71736 

 

In Table 14, above, patterns that are observed in other tables are also seen. Notably, the 

NC structure appears to demand the least combined expenditure of Threat-exposure and 

Information-Processing Demand. As well, the (4, 5) parameter pairing appears more 

‘expensive’ in terms of expenditure of threat tolerance and mental effort than the (4, 3) 

parameter pairing. Although this difference is least pronounced under the NC structure, 

where ‘C’ at the element level gives near-parity for the (4, 3) and (4, 5) pairings, 

nonetheless, the sensitivity of the model to interacting quantities provides a predicted 

superiority to the (4, 3) condition that is at the very least intriguing. The quantitative 

nature of this prediction is open to empirical test, and will be tested in the Theoretical 

Synthesis subsection within this same Results section, further below. 
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Table 15 

Threat-Control Expenditure by Choice Structure 

Scenario TCE Sum (2,2),(7,2) Sum (4,3),(4,5) 

CC ΣTCE(CC) 0.47835 0.46652 
NC ΣTCE(NC) 0.14667 0.08060 
NN ΣTCE(NN) 0.37498 0.45288 

 

In Table 15, above, the pattern of expectations for Choice Structure alone, summing the  

results of the parameter value pairings, yields similar predictions for both the (2, 2) and 

(7, 2) pairing, and the (4, 3) and (4, 5) pairing. A considerably lower Threat-Control 

Expenditure is predicted for the NC condition, and a higher Threat-Control Expenditure 

is predicted for the CC and NC conditions, as per the values in Table 15, above. This 

should be evident in a ‘dip’, or conversely, a ‘spike’ in empirical results for stress-related 

measures at the NC condition, as compared to CC and NN conditions, where similar 

stress-related values are expected. 

Table 16 

Threat-Control Expenditure by Parameter Pair Values 

Scenario TCE (2, 2) (7, 2) (4, 3) (4, 5) 

Avg. (CC, NC, NN) TEp + IPDp 0.17376 0.82624 0.33554 0.66446 
 

In Table 16 above, the last of this series of tables illustrating the Threat-Control 

Expenditure procedure, the pattern of expectation for Parameter Value pairings alone is 

presented. Values are summed across CC, NC, and NN, and are presented as the 

proportion of Threat-Control Expenditure (the full expression of this quantity) that is 

attributable exclusively to the Parameter Value pairing, as it relates to its proportional 
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‘seat-mate’, where two pairs have been twinned to apportion a share of threat exposure 

and information processing demand. Note that the values sum to a full 1.0 value across 

the two parameter value set pairings, namely, across (2, 2) and (7, 2), and also to a 1.0 

value across (4, 3) and (4, 5). These are the expectancies for the effect of parameter 

values, collapsed across choice structures. In previous research associated with that 

reported in Chapter 4, choice structure was shown to have a significant effect, but 

parameter values less so. Although collapsing was not reported in Chapter 4, the 

information directly available in table form in Chapter 4 supports an expectation for an 

independent effect of Choice Structure on Threat-Control Expenditure. Evidence 

supporting an independent effect for Element Set Size (the name of the variable used to 

refer to a change in the value for q in that previous study) exists, but is weaker. This 

evidence includes a larger effect size for Choice Structure than for Element Set Size (𝜂𝜌
2 

= .45 and 𝜂𝜌
2 = .40, respectively), and analyses with collapsed values not reported in 

Chapter 4, but apparent in the information presented in its tables. 

Decision-making time data. 

The values for Decision-Making Time were observed to be distributed over a wide range. 

Because a wide variety of decisional control scenarios were presented, inclusiveness for 

outlying values was the pre-determined bias. When low values occurred (below 100 ms), 

consideration was given to whether this was a ‘fast responder’, who had several other fast 

RT1 values (i.e. five or more); consideration was also given to the type of trial with low 

RT1, if a rapid decision was expected in such scenarios (specifically, NN scenarios of 

low pq product, such as NN(2,2), NN(7,2) ). If either case was true, the value was kept in 
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order to permit comprehensive exploration of a new range of experimental values. When 

high values occurred (exceeding 20,000 ms), the type of decisional control scenario and 

response properties in similar scenarios  (e.g., CU(5, 7), CU(9, 7) )were considered. 

Overall, less than 10 deletions were made in the dataset of 54 scenarios by 63 participants 

with valid Decision-Making Time data. This procedure was somewhat satisfactory, but 

did not systematically integrate all conditions under a single rule. 

Ultimately, the decision rule adopted for each of the empirical quantities (RT1, STRSS, 

and HRDEC) was to establish a z-score for each value in the entire sample of participants 

on a given condition. A z-score of less than 5 was the criterion for inclusion within the 

data set for that condition (e.g., RT1 times for CN(7,2)). The resulting pruning was 

favourable both to the removal of egregious outliers (RTs of several minutes), but 

preserved intact the unique features of given conditions, where several high or low values 

might be observed (i.e, high RTs under CU (9,7), and low RTs under NN (7,2)). For RT1, 

a floor of 100 ms was maintained and a ceiling of a z-score of less than +5.0. 

Subjective Stress Ratings. 

Subjective stress ratings were registered by participants after each trial. These 

were rated from 1 to 5 from “Not Stressed at All” to “Extremely Stressed”. Ratings 

ranged from an lowest average of 1.46, in the NU(9, 7) condition, to a highest average of 

2.58 in the UU(9, 7) condition. Participants reported lower stress, possibly associated 

with a kind of ‘relief’, when faced with NU and reported higher stress when faced with 

UU, possibly associated with an innate sense of work, effort, or compounding 
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uncertainty, generally. This pattern held across other parameter set values, also. Within 

the 5.0 z-score rule, no outliers were detected. 

Psychophysiological data. 

 Indications in previous research (see Chapter 4) have been that heart rate 

deceleration (HRDEC), also known as minimum heart rate, is significantly affected by 

changes in decisional control independent variable levels. Other psychophysiological 

measures can be examined, but HRDEC in particular has shown sensitivity to choice 

structure and element set size. It is one of the key markers, with Decision-Time (RT1) 

and Single-Trial Rating of Subjective Stress (STRSS), of Threat-Control Expenditure 

within the context factorial administration of decisional control cell conditions. Outliers 

were determined via the +/- 5.0 z-score rule, and values deviating from the mean (above 

or below) were deleted in order starting with absolute distance from the mean, followed 

by deletion of a value at the other end of the distribution if the dynamically updated 

maximal absolute z-score was still higher than 5.0.  

Heart Rate Deceleration was calculated by subtracting minimum heart rate during a rest 

period of 15 seconds from minimum heart rate during task completion. Intervening 

between the two was a 16 second ‘stress prompt’ period, with standardized vignette 

presentation and three standardized stress-inducing questions. As such, a baseline level of 

stress is established by use of the rest period for each trial, standard stress-induction is 

presented, randomly selected across 9 possible vignettes, and a standardized, timed 

presentation of three short stress-related questions (focusing attention on Who?, What?, 

and How?) were presented. Difference in minimum heart rate reactivity between 
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decision-making time and rest period are expected to relate to increased information 

intake during the decision-making time. 

Hypothesis I 

The first major hypothesis involved evaluating the predicted strong correlation with 

decreasing trend between Pr(t1) and E(t) as indicated in Table 1 in the introductory 

section, roughly in concert with increasing pq or, factorial Element Set Size fESS.  

Results indicate that there is partial support for Hypothesis I, with certain 

disconfirmations of expected results. Namely, the expected strong negative correlation of 

probability of access to the least threatening option Pr(t1) with empirical proxies of 

expected threat E(t) showed partial confirmation on the HRDEC and RT1 measures, and 

no support on the STRSS measure. The partial confirmations with HRDEC and RT1 were 

in the expected range and direction for each of parameter pairs (7, 2), (4, 3), (4, 5), and 

(5, 7). Parameter pairing (2, 2) showed no significant correlation (r = 0.10; R2 = 0.01, or 1 

% of variance accounted for) between Pr(t1) and RT1. As seen in Table 17, the RT1 

measure showed the expected trend in the intermediate values (non-extreme pair values). 

These fell in a pattern, for (7, 2), (4, 3), (4, 5), and (5, 7), of 64%, 71%, 67%, and 42% of 

variance accounted for. Model expectancies, as in Table 1 (introductory section for this 

chapter), were 80%, 70%, 60%, and 50%, respectively. For its part, the (9, 7) pairing 

showed a renewed strength of correlation, instead of a decrease (e.g., % variance 

accounted for of 55%, up from 42% for (5, 7). Between (7, 2) and (5, 7) , the four 

parameter value sets show a similar strength of association to that theoretically expected, 

and a generally decreasing trend in this association. Removing the upper and lower ends 
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of the 6 parameter pair test, and allowing for differences in scaling for the association, the 

trend and approximate strength is confirmed to be in line with theoretical predictions. 

This rudimentary but promising alignment will be returned to in the Discussion. The 

HRDEC values (reactivity scores), show a strong relation in the first parameter pair level 

(2, 2), but then taper to a largely stable percentage of variance accounted for of 

approximately 20 %, more or less, through all other  parameter pair levels. It might be 

speculated to future investigative profit that a combination of the RT1 and HRDEC 

measures might combine to equal the E(t) expectancy column more closely. 

Table 17 

Percentage of variance accounted for by Pr(t1), by parameter pair value 

 E(t) RT1 STRSS HRDEC 
(2, 2) 91% 1% 3% 71% 
(7, 2) 80% 64% 0% 18% 
(4, 3) 70% 71% 1% 20% 
(4, 5) 60% 67% 2% 24% 
(5, 7) 50% 42% 1% 12% 
(9, 7) 40% 55% 0% 19% 

Interpreting Table 17 and the results of Hypothesis I, it appears that RT1 is somewhat 

consistent with the pattern of expected threat E(t) as it relates to Pr(t1), except at the (2, 

2) parameter pair value level. The STRSS variable appears to have no relation to the 

Pr(t1) variable, and the HRDEC variable has some degree of relation to the Pr(t1) 

variable, especially at the (2, 2) experimental level, and in a stable way through other 

levels for parameter pair values. 

An important addition must also be made by reporting the correlations between 

theoretical properties Pr(t1) and E(t) and empirical measures RT1, STRSS, and HRDEC-
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Task. These are calculated over 54 bivariate pairs of theoretical expectancies or cell 

means across all participants. 

Table 18 

Correlations between theoretical quantities and empirical measures 

 Pr(t1) E(t) RT1 STRSS HRDEC 
Pr(t1)    ---     
E(t) -.70    ---    
RT1 .45 -.43    ---   
STRSS -.12 -.03 .26    ---  
HRDEC -.28 .38 -.57 -.74    --- 

The arrangement of correlations between quantities and averaged cell condition measures 

is a promising indication of relations between several of these indices. Significance 

values can be estimated, but should not be interpreted in the same way as with raw data 

that is free to vary with experimental error. Theoretical values and averaged cell values 

tend to exclude error. Nonetheless, that pattern indicates that  

1. Pr(t1) and E(t) are being calculated correctly, their correlation is expected 

2. RT1 is the experimental measure most linked to Pr(t1) in this sample 

3. E(t) and RT1 vary inversely 

4. HRDEC and E(T) vary positively, together 

5. RT1 and HRDEC vary inversely to a high moderate degree 

6. HRDEC and STRSS vary powerfully and inversely, despite STRSS not relating to 

the theoretical quantities 

These findings, although somewhat unexpected, can nonetheless be interpreted 

theoretically and inform theoretical refinements and modifications. 
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Hypothesis II 

The second major hypothesis involved the evaluation of the effect of subordinate 

uncertainty in decisional control hierarchies. This was tested using the same empirical 

proxies for stress as for the first hypothesis: HRDEC, RT1, and STRSS. 

 Planned contrasts. 

Again, results show partial and valuable confirmation, with certain qualifications and 

some disconfirmations. The four predictions evaluated regarding the presence of an 

uncertainty node were as follows: 

a. Stress for CU  > Stress for UC 

b. Stress for CN < Stress for CU 

c. Stress for CC < Stress for NN 

d. Stress for NN = Stress for UU 

The first two predictions (a. and b.) use the stress measures (HRDEC, RT1, and STRSS) 

directly to contrast recorded stress levels for the listed conditions (CU and UC, CN and 

CU). Note that HRDEC has been found  to operate in tandem with RT1 and STRSS, but 

in the opposite direction. Accordingly, testing is arranged in an opposite direction for the 

HRDEC measure, but in support of the same expected effect. The second two predictions 

(c. and d.) contrast ‘pure choice type’ scenarios, namely CC with UU and NN with UU, 

according to model expectations that use the mathematical expectation of threat, also 

called expected threat E(t) as the driver for expectation of participant stress. These 

comparisons are included for the valuable opportunity to test and potentially refine model 

assumptions for sources of threat and stress. 
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The support or lack of support from testing with each of the three dependent measures is 

listed in Table 19, below. 

Table 19 
 
Expected 

Stress 
RT1  p of H0 

(or H1) 
STRSS p of H0  

(or H1) 
HRDEC p of H0  

(or H1) 
CU > UC Support 10-54 (sig.opp.) (0.0000003) not sig. 0.60 
CN < CU Support 10-49 Support 0.0006 Support 0.001 
CC < NN (sig.opp.) (10-47) (sig.opp.) (0.0003) (sig.opp.) (0.0001) 
NN = UU (sig. diff.) .004 (sig. diff.) (10-16) (sig. diff.) (0.000007) 

 

Table 19 displays the answer to the Uncertainty Effect prediction, the second major 

hypothesis in this investigation. The answer is: yes, the Uncertainty Effect is empirically 

measurable, but it is localized especially to the CN-to-CU comparison. Using RT1 as a 

proxy for stress, the CU-to-UC comparison is powerfully vindicated. With the other two 

stress proxy measures, results are in the opposite direction (STRSS) or not significant 

(HRDEC). Other expected variations due to placement of the Uncertainty condition have 

little or no support, or support for the opposite direction of effect, as shown with results in 

parentheses in Table 19. 

Means for each of the conditions listed in Table 19 are visually depicted in Figures 5.1, 

5.2, and 5.3, below. A visually noteworthy pattern in these figures, a type of ‘scallop-

shape’ for the C and U bin-choice segments, is detailed further below. 
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Figure 5.1 
 
Reaction Time Mean Values, by Choice Structure, with 95% C.I. Error Bars 
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Figure 5.2 
 
Stress Rating Mean Values, by Choice Structure, with 95% C.I. Error Bars 
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Figure 5.3 
 
Negative Reactivity for HRDEC, by Choice Structure, with 95% C.I. Error Bars 
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Figures 5.1, 5.2, and 5.3, above, are best explained as a group. All three figures depict the 

three dependent measures of special interest in this study as collapsed across the six 

levels of Parameter Pair Values in the experiment. What remains are the column-wise 

means for Choice Structures only. These means are calculated over a maximum of 426 

individual values (6 x 71) and a minimum of 368 values (426 minus outliers and missing 

data) for the three dependent measures, supporting accurate reflection of Choice Structure 

variation. Error bars for  95% confidence interval, calculated on a t distribution are 

depicted for each column. The calculation of Figure 5.3 values is done simply inverting 

the sign of the HRDEC-Reactivity score. This yields the HRDEC-Negative Reactivity 

score, and allows for variation to be compared in alignment with the variation in RT1 and 

STRSS, as above and also presented in Chapter 4 of this dissertation volume. Note that 

the horizontal-axis for Figure 3 is placed at -5, to allow all values to register in a positive 
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direction. The aim is to allow clearest visual comparison in variance between the three 

dependent measures across the three figures. 

What is most striking to our research team with these graphs is the ‘scalloped shape’ of 

the CC, CN, CU, and again UC, UN, UU segments of the Choice Structure column 

graphs in all three figures. These are highly pronounced on Figure 5.1 for the Decision-

Time values, but are meaningfully present (and statistically significant, as per Planned 

Contrasts, below) in Figures 5.2 and 5.3. There is very little overlap between error bars 

for the ‘scooped’ or ‘scallop-shaped’ formations made by CC, CN, and CU, and UC, UN, 

and UU on Figures 5.2 and 5.3. In addressing the planned contrasts below, the CN to CU 

comparison can be placed in the context of Figures 5.1, 5.2, and 5.3, above. For its part, 

the NC, NN, and NU segments of each figure show no consistent pattern across the three 

figures, and error bars can be seen to overlap considerably. 

Theoretical Synthesis 

 Values for Threat-Control Expenditure. 

Expected values for Threat-Control Expenditure are listed in for the 3 x 2 experimental 

conditions in Tables 13 for the (2, 2) and (7, 2) pairing and Table 14 for the (4, 3) and (4, 

5) pairing. Values aggregated for Choice Structure only and for Parameter Value Sets 

only are listed in Tables 15 and 16, respectively. 

The respective data for comparison using the three stress proxies (HRDEC, RT1, and 

STRSS) are listed below, and compared the proportion of Threat-Control Expenditure 

values. For the HRDEC values, neither proportions nor patterns align in an expected way 
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with predictions. Looking at a main effect level, CC values for HRDEC are a single digit 

percentage of proportional values, whereas NC and NN take up 40% to 50%, or 50% and 

40% of the proportions in an alternating pattern (for the (2, 2)-(7, 2) pairing and (4, 3)-(4, 

5) pairing, respectively). For the Parameter Pair level analysis, proportions collapsed 

across choice structures result in an apportioning of 53%-46% for (2, 2)-(7, 2), and 54%-

46% for (4, 3)-(4, 5). These allotments bear little resemblance to the expected balances of 

17%-83% and 34%-66% for the same two sets of parameter pair value pairings. This 

result is disappointing in that it is negative, but scientifically valuable as a correct 

instantiation of a method in very early stages of development and so a useful negative 

finding. 

Discussion 

Hypothesis I: Chance of Lowest-threat-option Predicts Decreased Total Threat 

 Hypothesis I: ‘Best-option’ and ‘total threat’ correlation attenuates. 

The confirmation of an expected attenuation in the percentage of variance in stress, 

whether E(t) theoretically or RT1 and HRDEC empirically,  accounted for by availability 

of the best option, Pr(t1), is a vindication of a bold model prediction. To recap, between 

the four intermediary parameter set values of (7, 2), (4, 3), (4, 5), and (5, 7), a downward-

trending progression is observed for the duration of decision-making measure (RT1). 

Even adding the last of six pair levels, (9, 7), remains within this general trend (though at 

55%, showing a slight upswing). Only the (2, 2) pair value seems not to fit the trend at all 

(at 1%, or a negligible relation). The HRDEC measure (reactivity in minimum heart rate 

between task performance reading and baseline reading) shows a bi-modal downward 
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trend where the (2, 2) pair level shows a high percentage of variance in stress (as measure 

empirically by decrease in HRDEC) accounted for by availability of the best option – 

Pr(t1) – at 71%; as the square of the correlation coefficient, this is evidence of a powerful 

connection. The remainder of the pair levels show a fairly steady association anchored 

around an average value of 18.6%, with a maximum of 24% at (4, 5) and a minimum of 

12% at (5, 7). Despite not obtaining perfect or close replication of theoretical predictions 

(a neat 10% descending sequence across the six parameter-pair levels), retrieving a 

similar pattern from a large sample of laboratory participants is akin to finding long lost 

relatives in whom a touch of family resemblance reassures the parties involved of some 

degree of common genesis. These two empirical progressions are doing the same thing as 

the theoretical progression, for what appears to be some of the same reasons. Two of 

three dependent measures support the trend. Parcelled out more specifically, 11 of 18 

experimental predictions are associated with empirical results within trend-admissible 

expectations (excluding all of STRSS and (2,2) on RT1). With these results, there is good 

though imperfect support for validity in the prediction, the method, and the model. 

 Hypothesis I: ‘Best shot’ as ‘overall odds’ – implications and applications. 

In a more practical vein, the upshot of this research may encourage, with appropriate 

accounting of the influence of branching set sizes, assessment of threatening situations by 

rapid evaluation of the likelihood of obtaining a ‘best option’. If a ‘best option’ has a low 

chance of being obtained, a sound heuristic can conclude that the likelihood of threat 

overall – the chance of an untoward outcome – is greater. Depending on the context, it 

may be wisely considered a more dangerous, hostile, or unaccommodating environment.  
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As a nod to the effect of symbols with possible interaction with a ‘availability of best 

option’ heuristic, the ascendance to the U.S. presidency of a man of black African 

heritage (President Barack Obama in 2009) may well boost the confidence of all African 

Americans, and minority populations generally, in the possibility of attaining the highest 

levels of leadership. If the ‘best option’ heuristic can be shown to work in a utility sense, 

where chance at a positive outcome is the mindset, then a symbol like an African-

American president provides a broad revision for tens of millions of people of the 

expectancies for good options in their own lives. In mathematical terms, a single positive 

instance is incalculably more of a statistical factor than no tangible instances at all. One 

in a million is something, still. Zero in a million is nothing at all. 

Specific estimates and heuristics can be made with the decisional control model, as in 

Studies 2 and 3. Some examinations of the attenuation effect confirmed in this study have 

revealed that ‘bottleneck’ formations, whereby either p or q is minimized to 3 or ideally, 

2, with the other value maximized, create the most leveraged situations for linking Pr(t1) 

and E(t) in their association. Conversely, a ‘wide, even spread’ heuristic, where p and q 

are as close in value as possible, together with a larger product value pq, tends to 

attenuate the negative correlation of Pr(t1) and E(t) the most. 

One example of a potentially application can be found in a simple game of marbles. 

Assuming each marble has a unique rank (ordinal value), if a child has 20 marbles and he 

must expose them in groups to competition from his rival, then the child who would 

maximize his total rank does well to divide his marbles into 4 piles of 5 marbles each, 

and play first for access to a pile, randomly populated, then allow the winner to pick 

freely from a pile of 5. If an ambitious player is looking to draw down his rival’s total 
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rank of marbles, he does well to suggest the game be structured in two piles of 10 

marbles, or alternatively, 10 piles of two marbles each, assuming all piles are played for 

to obtain selection access. This ‘bottlenecking’ allows for selection from a larger set, and 

most powerfully, the excluding of a larger number of lower value marbles with each 

hard-won selection. Statistically, the attenuation expected, in terms of percentage of 

variance accounted for by the correlation of Pr(t1) and E(t) is a progression from 82% 

and 79% for (2, 10) and (10, 2), respectively, down to 60% and 59% for (4, 5) and (5, 4). 

Note, (4, 5) and its expected percentage of variance accounted for (60%) is an 

experimental level for Hypothesis I. Given the partial support of results in our 

experiment, the above allotments might well find their confirmation in measured stress 

levels in the competitors. 

Hypothesis II: Uncertainty Effect Holds in Experimental Trials, with Qualifications 

 Hypothesis II: Choice is hampered by subordinate node uncertainty. 

In terms of subordinate positioning of uncertainty, contrasting UC and CU, there is only 

support for more stress at CU using the RT1 measure. In terms of the uncertainty choice 

type as compared with the no-choice choice type, the model, there is consistent support 

across the three measurement modalities (RT1, STRSS, HRDEC) that stress levels are 

higher for participants in negotiating a CU scenario than a CN scenario.  

When considering the CU condition, certain features are valuable to highlight. In general, 

a ‘maximax’ approach to selection has appeared to be effective in reducing overall 

situational threat. Indeed, this approach helps lower expected threat E(t) in all but the CU 

structure where there is decisional control to be had. Unfortunately for the maximizing 
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decision-maker, a CU structure negotiated with a maximax strategy confers very little 

benefit for threat reduction over full entropy conditions (NN, NU, UN, UU). This occurs 

because the decision-maker is opting for t1 under a maximax strategy, but there is no 

account of its bin-neighbours, who may represent any value from t2 to tpq in the sequence 

of threat values. With the other decision structures containing at least one choice node, 

healthy elimination of some or all undesirable t values can occur. Under CU, with choice 

of bin and deferred assignment of element-within-the-bin by an external decision-making 

agency after bin selection has been made, the decision-maker is left to opt for t1 without 

regard for the subset of t values that are co-nested with it. Under UC, by contrast, p 

putative choices of element, one per bin pending deferred assignment of bin, allows the 

input of p selections worth of ‘whittling’ down the possibilities. This is what makes UC 

identical to NC in E(t) calculation, though the mechanisms are different. To evince the 

value of UC fully: even if t1’s bin is not eventually selected, the best option t in each of 

the p – 1 other bins has been identified and ‘queued up’, so to speak, pending deferred 

external assignment. A practical counsel to the decision-maker facing a CU scenario 

might be: select the bin with the lowest average indexing value i (for example, t1’s 

indexing value is i = 1). More thoroughly, if possible, selecting the lowest average bin 

value for all t values present is the best bet. 

The relevance of the above discussion, in light of our study’s findings, is that these 

expectations do manifest themselves in measurement of participant behaviors. A new 

study might contrast participants’ stress levels in CU scenarios for one group instructed 

on a maximax technique and a second group instructed to select by bin average. 
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The CU consideration is operative even in the previous section. It may be noted that 

when exactly equal dispersion of p and q is not possible (as with the example of a pq 

product of 20), the correlation and attendant percentage of variance accounted for 

decreases slightly  when bin number p is the higher of the two numbers that cannot be 

identical. This occurs for the (5, 10) and (10, 5) pairs, and again, slightly for the (4, 5) 

and (5, 4) pairs in the preceding section. This attenuation is due to CU underperforming, 

somewhat, as part of the average value across nine conditions, whereas UC, its matched 

pair is not underperforming. For CN and NC, the advantage is perfectly counterbalanced 

when p and q both can be the superior number to the same extent. For CU and UC, 

however, UC always has the proverbial “upper hand”; again, under the maximax 

assumption. 

 Hypothesis II: Model revisions – Uncertainty and No-choice differ. 

The uncertainty and no-choice conditions have been shown to differ considerably in the 

stress recordings they evoke in participants. This is an important source of information 

for updating the decisional control model. The mathematical expectation of threat, or 

expected threat E(t), is the anchor point theoretical proxy for the stress levels that 

decision-making for threat-reduction is expected to elicit. Until now, the uncertainty and 

no-choice conditions were “mathematically equivalent” in most scenarios. The CU 

asymmetry, revealed in simulation work, has also now been given partial support 

experimentally. Although CN and CU operate in the expected relation (with CU resulting 

in higher stress levels), it appears in examining CC, NN, and UU results that much more 

is at play in evoking stress from participants under uncertainty than the objective 

statistical properties of threat reduction they are facing. Proxy stress measures, for CC, 
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NN, and UU, appear in seveal instances to be behaving, in our experiment data and 

sample, in a way opposite to that expected. This reversal of expectations is an important, 

valuable, and needed though perhaps humbling contradiction of model expectancies. 

Nonetheless, because the model is rigourous, and specifications were, in a word, specific, 

this result can correct wrong assumptions and point clearly to new territory for 

investigation should the model continue to be refined. 

Decision Value 

The novel approach to Decision Value did not replicate in the new analyses. This study 

was not designed for replicating the Chapter 4 results. Nonetheless, if such a replication 

were designed, it appears that a closer control and more cautious extension is in order. 

Many factors play into extending this approach. It may be that the Chapter 4 abductive 

reasoning mechanism is a ‘lucky strike’ on a true phenomenon. If so, it may take delicate 

work to replicate it under conditions that imitate and perhaps extend the original 

experiment only slightly. This is referred to in Chapter 1 as the “titrating” necessary for 

mathematical modeling work to be effective: a laborious process of minute adjustments. 

Once the right balance is found, the various components being modeled can be 

incorporated without prejudice or to the exclusion of other quantities or components. 

Until then, a peaceful order for co-existence of known relevant variables has not 

established a system where relative impacts can be harmonized to depict and predict 

some semblance of real-world phenomena. Inspiration and further ideas for components 

of such improved modeling may be found, for example, in related work on the dynamics 

of daily stress as measured by diary sampling (Levy, Yao, et al., 2012). 
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The Decision-Value approach, use of a Threat-Control expenditure to explain participant 

stress and attraction to perceived high-return decisions stands to be a useful notion, the 

specifics of which remain to be determined. The use of a proportions approach herein, 

although convenient, may erase some irresolvable feature of dimensional units that may 

prove to be key component for modeling motivation to engage in decision-making. 

 

Whatever the cost, our choices define who we are as human beings. A sensible, simple, 

effective theory for decision-making appeal is something of potential benefit to all 

sentient beings. Appreciation of statistical context for decision-making can bring clarity 

to dilemmas faced in the course of living. The authors’ hope is that wounded persons 

with distorted decision-making skills might helped in starting to heal non-normative 

habits that impair the sustenance of suitable well-being for themselves and many others. 
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5.3 Comment on “Decisional Control Modeling (…)” 
The manuscript presented points to several potentially fruitful avenues of inquiry, and 

indicates caveats important to maintain in exploratory research. Varying parameters 

along fine distinctions is a well-established practice in cognitive psychology, a field with 

which these approaches share considerable common ground. The results reported narrow 

the predictions made by purely theoretical means towards zones of intermediate 

independent variable levels. These are the zones where model properties apply the most, 

experimentally, in the way they are expected to function, theoretically. In general terms, 

this study has found some vindication, and has exposed gaps in the interlock between 

theoretical expectation and experimental observations. 

  



241 

 

5.4 Appendix for “Decisional Control Modeling (…)” 

Financial 

1) Loss of Scholarship. 

 You are facing the prospect of losing your entrance scholarship. This money is 

important for financing your education. You must make some important decisions for 

bringing up your marks up, meeting athletic commitments and doing community service. 

Teachers, coaches, and supervisors have some say what strategies are available, and this 

may limit your choices. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of losing your scholarship? 

2) Credit Card Problem 

 You are facing the loss of your credit card. This would also harm your credit 

rating. You need to make payment arrangements, and also manage future expense 

patterns. Your parents are the co-signers and they support half of your monthly payments. 

As such, they have an important say in what approach you can take, so this may limit 

your choices. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of losing your credit card? 

3) Job Loss 

 You have a part-time job on campus. You need this income. Your boss is unhappy 

with your work. You are in a demanding program and the hours of study required are 

affecting you job performance. You will have to make important decisions to maintain an 
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income and get good grades. Your boss and your teachers have clear expectations, so this 

may limit your choices. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of losing your job? 

Social 

1) Reputation / Peer Pressure 

 You attend a party with people in your program. You are invited to take part in an 

offensive drinking game. You are not a drinker but if you don't participate, you will 

probably not be included in future activities. You need to make decisions about 

behaviour, friends and social life. Social opportunities are few in your program, so this 

may limit your choices. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of a poor quality social life? 

2) Relationship Scenario 

 You are in a romantic relationship that means a lot to you. Your 

boyfriend/girlfriend has complained that you don't spend enough time together. You are 

working hard at school and other priorities, but this person is also important to you. Your 

romantic partner has conditions for you staying together, but you only have so much time 

to work with, and this may limit your choices. 

What is the worst that could happen? 

Who will be affected the most? 
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How can you minimize your chances of breaking up with your boyfriend or girlfriend? 

3) Public Speaking 

 You are preparing for an end-of-term class presentation. You must get an 'A' 

grade to get the mark you need from this course. Other students have expressed doubt 

about your abilities in this course. You must choose a topic, do research, and deliver a 

presentation. Your instructor must approve your topic and presentation format, so this 

may limit the choices you can make. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of not making the grade you need? 

Physical 

1) Workout Injury 

 You work out regularly to keep in shape. You sprained your ankle recently, but 

without exercise, your mood and thinking skills deteriorate. If you continue exercising, 

there is a real risk of re-injury. You need to make decisions about a way to exercise. Your 

workout partner has preferences, and the fitness centre is being renovated, so your 

options may be limited. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of re-injuring yourself? 

2) House Emergency 

 The house you share with 3 roommates is old and poorly maintained. During a 

cold snap in January, you wake up in the middle of the night, and the furnace is broken. 

You have an in-class exam in the morning and you need to get some sleep. You need to 
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make decisions about sleep, getting help, and a plan. Your roommates have a say, so your 

choices may be limited.  

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of missing or failing your exam? 

3) Driving / Icy Roads 

It is a winter night and you need to get home. The roads are icy, winding and hilly. You 

are concerned about getting into an accident. You must make some important decisions 

about the way to get home, and how fast to drive. You are on the outskirts of town, and 

some roads have been closed, so this may limit your choices. 

What is the worst that could happen? 

Who will be affected the most? 

How can you minimize your chances of having an accident? 
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5.5 Ethics for “Decisional Control Modeling(…)” 
Note that original project title was “Decisional Coping Style”. 
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6 Concluding Comments 

This document has compiled advanced mathematical work, involved experimental 

apparatus, and abstract conceptions of mental work and personal motivation, with some 

success, into a compendium of approaches to decision-making under stress. As such, it is 

a volume that serves both as a chronicle of such research, and hopefully, a guidepost for 

similar avenues of inquiry. 

In terms of validation, the mathematical modeling of decisional control continues to 

prove its worth, albeit with healthy pruning to account for ranges where fundamental 

assumptions apply to a greater extent, or where unanticipated phenomena impact 

participant stress to a pronounced or even dominant degree over model expectations. 

Participants were eager, keen, and capable. Research help was competent and 

trustworthy. The application of this highly abstract, theoretical, deeply principled work 

has been a joy, and in a properly scientific sense, a success. By informing judicious and 

normative hierarchical decision-making, our own research decisions have hopefully 

provided a somewhat satisfying outcome. We hope that future researchers interested in 

decisional control will benefit from our present revision of expectancies, and may 

themselves attain a set of not-too-undesirable outcomes, as well. 

6.1 Statement of Originality 
The work presented here is intended to delineate a new method for supplementing the 

experimental process, namely, rigorous modeling of the logic of decisional hierarchies 

and the attendant vigorous production of worthwhile research hypotheses. As such, the 

inaugural and painstakingly groundbreaking character of the work is offered in all 

scientific candor for consideration as part of the scholarly merit herein.  



247 

 

Curriculum Vitae: Matthew Jacques Shanahan 
 

1 - Education 
 
2007-  Ph. D. candidate in Clinical Psychology 
  Western University, London, Ontario, Canada 
  Thesis Supervisor: Dr. R.W.J. Neufeld 
 
2005-2007 Master of Science in Clinical Psychology 
  Western University, London, Ontario, Canada 
  Thesis Supervisor: Dr. R.W.J. Neufeld 
 
2002-2004 Bachelor of Arts (Honours) in Psychology, with Highest Honours 
  Carleton University, Ottawa, Ontario, Canada 
  Thesis Supervisor: Dr. Timothy A. Pychyl 
2 - Awards 
 
2011 Richard A. Harshman Memorial Scholarship 

Inter-departmental award for work in Statistical Methods – $1000 
 
2009 London Regional Psychology Association (LRPA)’s Student of the 

Year Collectively awarded to Advocacy through Action student group for 
library talk series “Finding Your Way”, February, London Public Library  

 
2008 Ontario Psychological Association (OPA) Public Education Award 

Collectively awarded to the Advocacy through Action student group for 
library talk series “Finding Your Way”, February, London Public Library 

 
2008-2011 Joseph-Armand Bombardier Canada Graduate Scholarship  
  Social Science and Humanities Research Council of Canada (SSHRC) 
  Federal award – $105,000 ($35,000 for 3 years) 
 
2007-2008 Graduate Student Teaching Award (top 1% of Teaching Assistants) 
  Institutional Award – $500 - Western University 
 
2007-2008 Ontario Graduate Scholarship (OGS) Provincial award – $15,000 
 
2006-2007 Ontario Graduate Scholarship (OGS) Provincial award – $15,000 
 
2005-2006 Canada Graduate Scholarship – Master’s level – $17,500 

Social Science and Humanities Research Council (SSHRC) 
 

2000-2001 R.A. Wendt Prize for outstanding work in the History of Psychology 
Carleton University – $325 

 



248 

 

3 - Publications 
 
Shanahan, Matthew J., Townsend, James T., & Neufeld, Richard W.J. (2015). Clinical 

mathematical psychology. In The Encyclopedia of Clinical Psychology, First 
Edition. Edited by Robin L. Cautin and Scott O. Lilienfeld. John Wiley & Sons, 
pp. 594-603. DOI: 10.1002/9781118625392.wbecp530 

 
Abbott, Kayleigh, Shanahan, Matthew J., & Neufeld, Richard W.J. (2013). Artistic tasks 

outperform nonartistic tasks for stress reduction. Art Therapy: Journal of the 
American Art Therapy Association, 30(2), 71-78. DOI: 
10.1080/07421656.2013.787214 

 
Levy, L.R., Yao, W., McGuire, G., Vollick, Dan N., Jetté, J., Shanahan, Matthew J., Hay, 

James H., & Neufeld, R.W.J. (2012).  Nonlinear bifurcations of psychological-
stress negotiation: New properties of a formal dynamical model. Non-linear 
Dynamics, Psychology, and the Life Sciences, 16, 429-456. PMID: 22980453. 

 
Stead, R., Shanahan, Matthew J., & Neufeld, R.W.J. (2010). ‘I’ll go to therapy, 

eventually’: Procrastination, stress, and mental health. Personality and 
Individual Differences, 149(3), 175-180. DOI: 10.1016/j.paid.2010.03.028.  

 
Shanahan, Matthew J., & Neufeld, R.W.J. (2010). Coping with stress through decisional 

control: Quantification of negotiating the environment. British Journal of 
Mathematical and Statistical Psychology, 63(3), 575-601. DOI: 
10.1348/000711009X480640. 

 
Shanahan, Matthew J., & Neufeld, R.W.J. (2010). Coping with stress through decisional 

control: Quantification of negotiating the environment – Online Supplement. 
Available at http://publish.uwo.ca/~mshanah/. 

 
Shanahan, Matthew J., & Pychyl, T.A. (2007). An ego identity perspective on volitional 

action: Identity status, agency, and procrastination. Personality and Individual 
Differences, 43(4), 901-911. DOI: 10.1016/j.paid.2007.02.013. 

 
4 - Conference Presentations (refereed) 
 
Shanahan, Matthew J. (2015, November). Yes-No sieve for logical operators. Poster 

presented at the Society for Judgment and Decision-Making (SJDM), Annual 
Conference, Chicago, Illinois, U.S.A. 

 
Neufeld, Richard W.J., Shanahan, Matthew J., & Nguyen, Peter. (2014, July). Decisional 

control: A normative model of cognition-intensive coping with stress. Paper, 
Society for Mathematical Psychology (SMP), 47th Annual Meeting, Quebec City, 
QC, Canada. 

 
  

http://publish.uwo.ca/~mshanah/


249 

 

Shanahan, Matthew J., Nguyen, Peter, & Neufeld, Richard W.J. (2012, July). Coping 
with Stress through Decisional Control: The Mixture Model Side of a Quasi Game-
Theoretic Account. Paper, Society for Mathematical Psychology (SMP), 45th 
Annual Meeting, Columbus, OH, U.S.A.  

 
Abbott, Kayleigh, Shanahan, Matthew J., & Neufeld, Richard, W.J. (2012, June). 

Something beautiful: Artistic tasks outperform non-artistic tasks for stress 
reduction. Poster, Canadian Psychological Association (CPA), 73rd Annual 
Convention, Halifax, NS, Canada. 

 
Shanahan, Matthew J., Pawluk, Elizabeth J., Hong, Ryan Y., & Neufeld, Richard W.J. 

(2012, May). Decisional-Coping Styles – Maximizing, Satisficing, Simplifying: 
Information Processing and Threat-Reduction, Threat-Mitigation, or Threat-
Acceptance. Poster, Association for Psychological Science (APS), 24th Annual 
Convention, Chicago, IL, U.S.A. 

 
Shanahan, Matthew J., Bruyns, Kaitlyn, Stewart, Shannon L., & Currie, Melissa. (2011, 

June). Child/Youth and parent/caregiver experiences of intrusive measures during 
residential treatment for serious mental health issues. Poster, 72nd Annual 
Convention, Canadian Psychological Association (CPA) in Toronto, ON, Canada. 

 
Shanahan, Matthew J., & Neufeld, R.W.J. (2010, August). Mathematical expectation of 

threat, unpredictability, and mechanisms of stochastic "faint threat" in a model of 
decisional control. Paper, 43rd Annual Conference, Society for Mathematical 
Psychology (SMP), Portland, OR, U.S.A. 

 
Shanahan, Matthew J. (2009, December). ‘I can but I won't, I should but I don't ’: 

Engaging students' personal barriers to implementing learning skills. Self-
Management Strategies and Successes. Keynote speech, Learning and Study Skills 
Association (LASSA) Annual Conference, Hart House, University of Toronto, 
Toronto, ON, Canada. 

 
Shanahan, Matthew J., & Neufeld, Richard W.J. (2008, July). Modeling cognitive load 

and threat reduction: Quantitative characteristics of hierarchically-nested 
decisional control scenarios. Paper, 41st Annual Conference, Society for 
Mathematical Psychology (SMP), Washington, DC, U.S.A. 

 
Pawluk, Elizabeth J., Shanahan, Matthew J., Hong, Ryan Y., & Neufeld, Richard W.J. 

(2008, June). Preference for Decisional Control Reflected in Situational and 
Individual Differences. Poster, 69th Annual Convention, Canadian Psychological 
Association (CPA), Halifax, NS, Canada. 

 
Shanahan, Matthew J., Hong, Ryan Y., Pawluk, Elizabeth J., & Neufeld, Richard W.J. 

(2008, June). Predicting stress: Comparing multimodal stress negotiation data to 
the predictions of a normative model of decisional control. Poster, 69th Annual 
Convention, Canadian Psychological Association (CPA), Halifax, NS, Canada. 



250 

 

 
Shanahan, Matthew J., & Neufeld, Richard W.J. (2007, June). Modeling the interplay of 

cognitive load and threat reduction: An extensive investigation of the 
characteristics of hierarchically nested second-order decisional scenarios. Poster, 
68th Convention, Canadian Psychological Association (CPA), Ottawa, ON, Canada.   

 
Shanahan, Matthew J., & Neufeld, Richard W.J. (2007, May). Statistical properties of a 

model for hierarchically nested second-order decisional scenarios. Poster, 19th 
Annual Convention, Association for Psychological Science (APS), Washington, 
DC, U.S.A.  

 
Shanahan, Matthew J., & Neufeld, R.W.J. (2006, June). Modeling the interplay of 

cognitive load and threat reduction across a range of decisional scenarios: A 
gold standard for quantifying the stresses of negotiating with the environment. 
Poster, 67th Annual Convention, Canadian Psychological Association 
(CPA), Calgary, AB, Canada.  

 
Shanahan, Matthew J., & Neufeld, R.W.J. (2006, May). Modeling the interplay of 

cognitive load and threat reduction across decisional scenarios. Poster, 18th 
Annual Convention, Association for Psychological Science (APS), New York, 
NY, U.S.A. 

 
Shanahan, Matthew J., & Pychyl, T.A. (2005, June). The relation of ego identity to self-

reported procrastination among undergraduate students. Poster, 66th Annual 
Convention, Canadian Psychological Association (CPA), Montreal, QC, Canada. 

 
5 - Research Experience 
 
2012-2013 Supervision, Honours Thesis – Scaling of Threat Perception 

Honours student: Ms. Melanie King; Co-supervisor, Matthew Shanahan; 
Supervisor, Dr. R.W.J. Neufeld, Western University 

 
2012-2013 Program Review: “Building Families” Self-Care and Parenting Skills  
 Supervisor: Dr. Jeff Carter, Vanier Children’s Services/Merrymount  
 Advisor: Ms. Wendy Tapp-Moore; Data analyst: Ms. Rachel Dean. 
 
2010-2011 Supervision of Honours Thesis – Art-making for Stress Reduction 

Honours student: Ms. Kayleigh Abbott; Acting supervisor, Matthew 
Shanahan;Overall supervisor, Dr. R.W.J. Neufeld, Western University 

 
2010-2011 Applied Research Practicum – Subjective Experiences of Restraint 
 Supervisor: Dr. Shannon Stewart, Child and Parent Resource Institute 

(CPRI) 
 
2010-2012 Dissertation Research: Decisional Coping 
 Supervisor: Dr. R.W.J. Neufeld, Western University 



251 

 

 
2008-2009 Supervision of Honours Thesis – Procrastination and Mental Health 

Honours student: Ms. Rebecca Stead; Acting supervisor, Matthew 
Shanahan; Overall supervisor, Dr. R.W.J. Neufeld, Western University 

 
2007-2008 Comprehensive Exam, Nonlinear Dynamical Modeling of Agency 
 Supervisor: Dr. R.W.J. Neufeld, Western University 
 
2007 Psychophysiology of decision-making for threat reduction 

Supervisor: Dr. R.W.J. Neufeld; Collaborators: Ryan Y.S. Hong and 
Elizabeth J. Pawluk (Honours Student, co-supervised by M. Shanahan) 

  
2005-2006 Three-way ‘tensor’ approaches to Factor Analysis 
  Course instructor: Dr. Richard A. Harshman, Western University 
 
2005-2007 Master’s Thesis – Decisional Control for Threat Reduction 

Supervisor: Dr. R.W.J. Neufeld, Western University 
 
2004-2005 Experiences of adults with late learning disability diagnoses 

Researcher: Dr. Timothy Farmer, Farmer and Associates 
 
2003-2004 Honours Thesis -- Ego Identity and Procrastination 
  Research Supervisor: Dr. Timothy Pychyl, Carleton University 
 
2002-2003 The Qualities of a Hero: A Card Sort Procedure 
  Research Evaluator: Dr. Chris Davis, Carleton University 
 
6 - Clinical Experiences 
 
August 2013- Community Psychological Service. Immaculate Heart of Mary   
July 2014 Counseling Center. Catholic Social Services, Psychological Services. 

Lincoln, NE. Supervisor: Dr. Aaron Stratman. Intern within Nebraska 
Internship Consortium in Professional Psychology (NICPP), Catholic 
Social Services (CSS) site for psychology service delivery in a private, 
faith-based community organization. 

 
Summer/ Health Psychology. Cardiac Rehabilitation Program, London Health  
Fall 2012 Sciences Center, South Street Campus, London, ON. Supervisor, Dr. Peter 

Prior. Individual therapy in evidence-based cardiac rehabilitation setting. 
 
Winter/ Community/Group. Merrymount Children’s Centre. London, ON. 
Spring Supervisor, Dr. Jeff Carter, (off site at Vanier Children’s Services).  
2012 On-site supervisor: Ms. Wendy Tapp-Moore. Return placement, 

specialization with “Building Families” psycho-educational group, 
teaching personal life skills and parenting knowledge for parents involved 
with child protection authorities. 



252 

 

 
Fall 2009- Outpatient. Operational Stress Injuries Clinic, Parkwood Hospital, 
Spring 2010 London, ON. Supervisor, Dr.Charles Nelson. Therapy, assessment, and  

group work with Armed Forces members and veterans, and Royal 
Canadian Mounted Police. 

 
Summer Group / Health. Rheumatology Day Programs, St. Joseph's Health Care,  
2009  London, ON. Supervisors, Dr. Marilyn Hill and Dr. Warren Nielson. 

Progressively led most aspects of psychology role in Fibromyalgia group 
programs. Conducted assessments for rheumatology program admissions. 

 
Fall 2008- Family-focused. Merrymount Children's Centre. London, ON.  
Spring 2009 Supervisor, Dr. Barrie Evans. Therapy with parents (grief, parenting, 

depression), therapy and assessments with children. Assisted with 6-month 
personal and parenting skills-building group for parents of children 
apprehended by local child protection authorities (Children's Aid Society - 
CAS). Community practicum pilot project under Interprofessional Health 
Education and Research initiative. 

 
Fall 2007-  Inpatient psychiatric. Regional Mental Health Care, St. Thomas  
Summer  Specialized Adult Services - Psychosis Unit. St. Thomas, Ontario 
2008 Supervisor, Dr. Rod Balsom. Assessment and therapy with acute and 

chronic psychosis patients. Some forensic work. 
 
Spring 2007 Child Assessment. Child and Parent Resource Institute (CPRI). 
  London, ON. Supervisors, Dr. Jeff St. Pierre and Dianne Shanley, M.A. 

 Conducted full psycho-educational assessment for child with selective 
mutism. 

 
Spring 2007 Adult Assessment. General Adult Ambulatory Mental Health Services 

(GAAMHS). London, ON. Supervisor, Dr. Louise Maxfield. Conducted 
assessment on client with PTSD and wrote DBT referral report. 

 
7 - Professional Affiliations 
 
2009- Society for a Science of Clinical Psychology (SSCP) - Student affiliate 
2008-  Society for Mathematical Psychology (SMP) 
2007- London Regional Psychological Association (LRPA) 
2006- Association for Psychological Science (APS) – Graduate Student Affiliate 
2005-  Canadian Psychological Association (CPA) – Student Affiliate 
 


	Mathematical Modeling of Stress Management via Decisional Control
	Recommended Citation

	Abstract
	Co-Authorship Statement
	Acknowledgments
	Table of Contents
	1 Clinical Mathematical Psychology
	1.1 Introduction to the First Component Document
	1.2 First Document: “Clinical Mathematical Psychology”
	1.3 Comment: “Clinical Mathematical Psychology” as Preface to Subsequent Component Documents

	2 Towards a Comprehensive Model of Coping with Stress through Decisional Control: Exploiting Mixture-Model Properties of a Game-Theoretic Formulation
	2.1 Introduction to the Second Component Document
	2.2  “Towards a Comprehensive Model (…)”.
	2.3 Comment: “Towards a Comprehensive Model (…)”

	3 A Dynamic Catalog of Decisional Control Values
	3.1 Introduction to the Third Component Document
	3.2 Decisional Control Values: Catalog Tutorial
	3.3 Comment: “A Dynamic Catalog (…)”

	4 « Information Processing for Threat Reduction in Decisional Control Scenarios »
	4.1 Introduction to the Fourth Component Document
	4.2 “Information Processing for Threat Reduction (…)”
	4.3 Comment: “Information Processing (…)”
	4.4 Ethics for “Information Processing (…)”

	5 Decisional Control Modeling for Choice Type, Structure, and Number Predicts Patterns of Stress Response
	5.1 Introduction to the Fifth Component Document
	5.2  “Decisional Control Modeling for Choice Type, Structure, and Number”
	5.3 Comment on “Decisional Control Modeling (…)”
	5.4 Appendix for “Decisional Control Modeling (…)”
	5.5 Ethics for “Decisional Control Modeling(…)”

	6 Concluding Comments
	6.1 Statement of Originality

	Curriculum Vitae: Matthew Jacques Shanahan

