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Abstract

This work addresses the challenging problem of accurate vessel structure analysis in high reso-
lution 3D biomedical images. Typical segmentation methods fail on recent micro-CT data sets
resolving near-capillary vessels due to limitations of standard first-order regularization models.
While regularization is needed to address noise and partial volume issues in the data, we argue
that extraction of thin tubular structures requires higher-order curvature-based regularization.
There are no standard segmentation methods regularizing surface curvature in 3D that could be
applied to large 3D volumes. However, we observe that standard measures for vessels struc-
ture are more concerned with topology, bifurcation angles, and other parameters that can be
directly addressed without segmentation. We propose a novel methodology reconstructing tree
structure of the vessels using a new centerline curvature regularization technique. Our high-
order regularization model is based on a recent curvature estimation method. We developed a
Levenberg-Marquardt optimization scheme and an efficient GPU-based implementation of our
algorithm. We also propose a validation mechanism based on synthetic vessel images. Our
preliminary results on real ultra-resolution micro CT volumes are promising.

Keywords: medical imaging, vascular tree, centerline estimation, curvature regularization,
Fréchet distance, validation

ii



Acknowledgments

First of all, I would like to express my deepest gratitude to my advisor, Professor Yuri Boykov
for his support and enthusiasm. He always can explain complex ideas in simple way. Thanks to
him I understood now how graph-cuts work and what is the difference between submodular and
supermodular set functions. I look forward to learn even more from him during PhD studying.

I appreciate the hard work of the thesis committee, professors Maria Drangova, Marc
Moreno Maza and John Barron. Their advises helped me a lot to improve this work before
the final submission. Specifically, I would like to thank Professor Marc Moreno Maza for ex-
plaining the GPU acceleration techniques and the concurrent algorithm analysis, and Professor
John Barron for spending enormous amount of time for correcting mistakes during the revision
of this thesis. I also would like to give special thanks to Professor Maria Drangova for a lot of
good advice and for providing us with ultra high resolution micro-CT data. Indeed, this project
would not even exist without this unique data.

I would like to thank other members of Computer Vision Group, including Dr. Olga Vek-
sler, Dr. Lena Gorelick, Dmitri Marin, Yuchen Zhong, Hossam Isaac and Meng Tang for their
invaluable help. Special thanks to Yuchen, who helped me a lot during my first days in Canada
and his contribution to this work.

Last but not least, I would like to thank my family – my parents, sister and my lovely wife
Katy. I would not be able to come to Canada without their huge support, understanding and
love they are giving to me.

iii



Contents

Abstract ii

Acknowledgments iii

List of Figures vi

List of Appendices xi

1 Introduction 1
1.1 Biomedical Vascular Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Imaging Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Technical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Vascular Analysis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Centerline Extraction vs Segmentation . . . . . . . . . . . . . . . . . . 7

1.2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Overview of Vessel Centerline Estimation 12
2.1 Vessel Enhancement Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Standard Centerline Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Our Curvature Regularization Framework . . . . . . . . . . . . . . . . . . . . 17

3 Fast Curvature Regularization 24
3.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Outline of Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Levenberg-Marquardt Algorithm . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Inexact Levenberg-Marquardt Algorithm . . . . . . . . . . . . . . . . . 28

iv



3.2.3 LSQR: Sparse Linear Equations and Least Squares Problems . . . . . . 29
3.3 Jacobian Matrix: Storage and Evaluation . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Compressed Row Storage . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Parallelization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 GPU and CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Validation 38
4.1 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Matching Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Chapter 1

Introduction

3D imaging is playing an increasingly important role in modern diagnostics and medical re-
search. Modern imaging methods, such as computed tomography and magnetic resonance are
capable to produce 3D images at microscopic resolution. Despite availability of various med-
ical imaging software, exploration of certain parts of the body, such as blood vessels, remains
a challenging task. For example, Figure 1.1 shows a recent 3D CT cardiac image that can re-
solve vessels at a capillary level. As a consequence of super high resolution in new acquisition
methods, there is a need for highly accurate robust analysis methods.

This chapter outlines the biomedical motivation for reconstruction of vascular tree structure
from the state-of-the-art 3D volumes (Section 1.1) and describes computational challenges
for the image analysis algorithms (Section 1.2). Our technical contributions are described in
Section 1.3.

1.1 Biomedical Vascular Imaging

This section outlines the use of modern biomedical imaging modalities (Subsection 1.1.1) for
vascular analysis applications (Subsection 1.1.2). We also discuss main technical challenges
arising in the specific context of recent ultra high resolution micro-CT data (Subsection 1.1.3).

1.1.1 Imaging Modalities

There are different imaging modalities used for blood vessels analysis. X-ray is the oldest
medical imaging method. Two-dimensional images with x-ray are taken by sending a small
dose of ionizing radiation though the body. X-ray has been used for many years to explore
large blood vessels.

1



2 Chapter 1. Introduction

(a)

(b) (c)

Figure 1.1: Visualization of mouse cardiac micro-CT scan. The bright voxels correspond to
blood vessels and the dark voxels correspond to other tissue (e.g. heart muscles). (a) The whole
volume. (b,c) Zoomed-in views of the volume demonstrate capability of micro-CT to resolve
capillary vessels.
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Magnetic Resonance Imaging (MRI) uses a very strong magnetic field and radio waves
to produce three-dimensional images of the inside of the body. MRI can produce additional
information about the structures in the body that can be obtained using a standard x-ray, or
computed tomography. Diffusion MRI, also referred to as diffusion tensor imaging (DTI) pro-
duces three-dimensional tensor images (i.e. images whose voxels are represented by tensors,
multidimensional arrays of numerical values).

While the vascular analysis methods we propose in this work are general, we primarly
apply them to Computed Tomography (CT). This imaging modality generates 3D volumes of
visual data from 2D x-ray images taken from different positions. Modern CT imaging can
produce 3D views showing excellent detail of certain parts of the body, such as blood vessels
and the heart. Current microcomputed tomography (micro-CT, µCT) is able to provide ultra
high resolution (voxel size ≤ 20µm3).

1.1.2 Applications

Advanced analysis of vasculature requires accurate measurement of its properties, such as the
vessel diameter and length, the angle between bifurcating branches, and the topological struc-
ture of the tree [13, 14]. Existing methods, such as optical measurement are extremely time-
consuming processes and demanding a large amount of manual work [13]. Consequently, there
is a need for a more efficient vascular tree extraction framework. The method has to be robust
with respect to the wide range of vessels scales and the complicated topological structure of
vasculature.

1.1.3 Technical Problems

CT image generation is nonideal process and almost every image acquired by CT scanner
contains various artifacts. There are various causes of image artifacts. One of the most common
is an incorrect calibration [1]. There are methods that can either reduce artifacts, or prevent
them. Artifact avoidance are mainly the concern of CT manufacturers. These methods are
proprietary and are not publicly available. On the other hand, CT artifact reduction is an active
research area.

Common ring artifacts are induced by CT hardware. As suggested by their name, they
appear as rings centered around some axis in the middle of the volume. Figure 1.2a and Fig-
ure 1.2b demonstrate ring artifacts on cross-sectional slices of computed-tomography volume.

In general, the newer microscopy CT imaging generates data with significantly improved
signal-to-noise ratios (SNR). However, such data is needed to solve significantly more chal-
lenging image analysis problems. In particular, the goal is to analyze blood vessels at near
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(a) (b)

(c) (d)

Figure 1.2: Ring acquisition artifacts caused by improperly calibrated CT scanner [1]. (a,b)
Concentric circles on cross-sectional slices of micro-CT scan, also known as ring artifacts.
(c,d) Result of ring reduction algorithm proposed by Sijbers and Postnov [2].
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(a) (b)

(c) (d)

Figure 1.3: (a,c) Small contrast between thin vessels and the background makes it practically
impossible to distinguish them by raw intensity value alone. (b,d) Vessel enhancement fil-
tering [3] significantly increases contrast between vessels and the background, but this is not
good enough for near-capillary vessels with severe partial voluming as it is shown in (d) and
in Figure 1.5.
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(a)

(b)

Figure 1.4: The partial volume effect is caused due to the limited resolution of the acquiring
system. (a) The pixels on the border between the black circle and the white background at
given pixel resolution appear at certain gray value. (b) Using of simple thresholding can not
segment such circle for any threshold level. 1

capillary level. While this was practically impossible before, even the new micro CT data have
relatively weak signals for such vessels corresponding to low SNR with respect to background.
As seen in Figures 1.3a and 1.3c, it is hard to distinguish thin near-capillary vessels by intensity
value alone.

This issue is exacerbated by partial volume effect due to the limited spatial resolution of
the scanning system (see Figure 1.4). Since each voxel of a CT image represents an average
signal value within voxel’s volume, such averaging could mix intensities of different tissues
near organ boundaries. For example, the partial volume effect manifests itself as a blur on
the boundary of blood vessel. This problem is particularly severe for thin vessels making it
practically impossible to accurately segment the surface of near-capillary vessels.

0http://www.scanco.ch/index.php?id=299

http://www.scanco.ch/index.php?id=299
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1.2 Vascular Analysis Overview

This section reviews standard general computational methods used in vascular analysis. The
noise reduction methods are described in Subsection 1.2.1. Standard segmentation methods
and their limitations are discussed in Subsection 1.2.2. This section also motivates our center-

line extraction approach that avoids explicit vessel surface segmentation.

1.2.1 Noise Reduction

Special filtering procedures are commonly used to pre-process CT volumes in order to improve
SNR and reduce various specific artifacts discussed earlier. Such pre-filtering techniques can
significantly improve the quality of vessel structure extraction algorithms.

Ring artifacts can be reduced while preserving the boundaries of thin vessels by the algo-
rithm proposed by Sijbers and Postnov [2]. Main idea of this algorithm is to transform an image
to polar coordinates, where ring artifacts become line artifacts. Then, a mean or a median filter
is applied to reduce them. Next, the difference of the images before and after such filtering is
used to do the final correction. Finally, image is transformed back to Cartesian coordinates.
Figure 1.2c and Figure 1.2d show two results of applying this algorithm.

Multiscale vessel enhancement filter by Frangi et al. [3] is commonly used to increase
the signal-to-noise ratio. This standard method significantly improves vessel data contrast by
emphasizing tubular structures and de-emphasizing everything else. The details of this method
are discussed in Section 2.1. While this method is very effective, see Figure 1.3b, it is not
sufficient to completely disambiguate the vessels from the background and additional robust
regularization techniques are necessary to extract the vessel structure. In particular, this filter
does not work well for near-capillary vessels with severe partial volume problems (as seen
in Figure 1.3d). Moreover, such vesselness filters may create new artifacts, e.g. small gaps

near bifurcations. Indeed, vesselness filter [3] is designed to respond specifically to tubular
structures, but bifurcations deviate from this model.

1.2.2 Centerline Extraction vs Segmentation

One straightforward approach to vessel extraction would be volumetric segmentation. For
example, it is possible to apply a number of standard segmentation techniques for comput-
ing a binary mask separating interior and exterior of the vessels. The simplest methods (e.g.
thresholding or region growing) fail due to partial volume at thinner vessels (see Figure 1.5).
It is technically possible to apply standard first-order regularization methods robust to weak-
contrast boundaries (e.g. graph cuts, level-sets). But, such methods optimize the weighted
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(a) (b) (c)

Figure 1.5: The simplest segmentation method (binary thresholding) fails due to partial volume
effect at thin vessels. (a) The original volume. (b) Higher threshold removes thin vessels (e.g.
those inside the red circles) while (c) lower threshold gets the vessels back, but keeps the noise.

surface area of the segmentation boundary and have implicit bias to compact shapes, blobs,
or spheres[15], which is also known as shrinking bias (see Figure 1.6). Therefore, the use of
common first-order regularization methods for segmenting thin elongated structures (see Fig-
ure 1.6b) is fundamentally flawed.

We believe that second-order surface regularization minimizing (Gaussian) curvature would
be appropriate for vessel segmentation. While it is possible to use second-order deformable
models, this would require good initialization (e.g. see Figure 1.6a) based on known vessel
topology, which is unrealistic for large complex vessel trees (see Figure 1.6b). In fact, es-
timation of the tree structure is our main problem. While there are curvature regularization
segmentation methods [16, 17, 18, 19], they are too expensive for large 3D volumes and they
have strong discretization artifacts due to restricted angular resolutions on grids or grid com-
plexes (see Figures 1.7a and 1.7b).

We propose a method directly estimating the vessel tree by regularizing the curvature of
vessel centerline using the energy formulation introduced by Marin et al. [20], rather than
the curvature of the vessel surface (see Figure 1.7c). While our approach is related to medial
axis estimation methods [21], they require segmentation of the object boundary. Our approach
avoids solving the segmentation problem explicitly.

1.2.3 Related Work

The majority of vessel analysis methods work with the volumetric output of the various vessel-
ness filters, commonly run in scale spaces. Some vessel extraction methods apply threshold-
ing [22, 23] or region growing [24, 25]. As outlines in Figure 1.5, such methods are limited to
relatively thick vessels where signal is much stronger than the noise. There is a large body of
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(a) compact shape (ventricle) (b) non-compact object (vessels)

Figure 1.6: First-order segmentation methods using non-parametric surface representation (e.g.
graph-cuts [4] or level-sets [5]) regularize weighted length (or surface area in 3D) of segmen-
tation boundary. These methods have implicit bias to blobs or spheres appropriate for compact
shapes like the heart ventricle in (a). Such first-order non-parametric methods display well-
known shrinking bias for thin structures like in (b). Note that standard parametric deformable
surface methods [6] require good initialization like the dashed blue circle in (a), which is prac-
tically impossible in case of complex tree structure with unknown topology (b).

(a) non-compact shape (drawing) (b) min-curvature segmentation (c) min-curvature center-lines

Figure 1.7: Higher-order non-parametric methods using curvature-regularization of the bound-
ary would be appropriate for segmenting thin structures like vessels in Figure 1.6b or an object
of interest in (a). However, the state-of-the-art second-order segmentation methods, e.g. [7],
are very slow even for 2D images. Moreover, they produce strong discretization artifacts (b)
due to restricted angular resolutions. In contrast, our method directly estimates object center-
line by regularizing its curvature (c).
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regularization methods attempting to segment relatively weak vessels using first-order regular-
ization of their boundary [26, 27, 28, 29]. Such methods can use only very weak regularization,
since first-order smoothness corresponds to surface minimization producing shrinking bias in-
appropriate for thin structures, see Figure 1.6. A useful overview of common regularization
methods for vessels can be found in [29].

Second-order surface regularization [7] is largely out-of-reach for large volumetric data due
to efficiency and artifacts, see Figure 1.7. Moreover, we are not aware of methods for Gaussian
curvature required for tubular structures in 3D.

Another way to cope with limitations of standard regularization methods is to use inter-
active methods [30]. Such methods, as well as the standard deformable model methods, are
not feasible for our high-resolution data since good initialization is not possible for detailed
analysis of near-capillary vessels.

We use curvature to directly regularize the centerline after Canny-like extraction. One inter-
esting related high-order method [23] uses curvature-like regularization for binary partitioning
of arteries from veins after initial thresholding. In contrast, we use curvature to regularize the
centerline.

1.3 Contributions

Our vascular tree extraction framework (see Figure 1.8) uses several standard algorithms: the
ring artifact reduction algorithm by Postnov and Sijbers [2], the vessel enhancement fitler (also
known as vesselness filter) by Frangi et al. [3]. The centerline extraction procedure is inspired
by the ideas of the Canny edge detector [31]. Zhong et al. [12] described in details and im-
plemented these parts of our algorithm. The curvature regularization is based on the curvature
estimation formula proposed by Olsson et al. [32]. The general thin structure estimation model
using this approximation formula is formulated by Marin et al. [20].

This thesis presents two distinct contributions. First, we provide an algorithm where the
ill-posed vessel centerline extraction problem is solved by optimizing an objective function
combining data alignment and curvature-based smoothness prior. We propose an efficient im-
plementation with a GPU as a target computing platform. Our CUDA-accelerated algorithm
exploits sparsity of the optimization problem and allows to estimate vessel centerline from ultra
high resolution volumes (see Figure 1.1) in reasonable time. Second, we developed a valida-
tion mechanism based on a new formulation of a tree matching problem minimizing Fréchet
distance. Using this optimal matching we compare three methods for centerline estimation
from 3D synthetic vascular volume: accurate fast marching algorithm for skeleton-based esti-
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Figure 1.8: Vascular tree centerline extraction algorithm.

mation2, centerline estimation method [12] inspired by the ideas of Canny-edge detector, and
our centerline estimation method with curvature-based regularization.

1.4 Thesis Structure

The remainder of the thesis is organized as follows. Chapter 2 outlines the parts of our vessel
centerline estimation framework. Chapter 3 addresses challenging problem of the curvature
regularization. We discuss implementation details, using optimization algorithms and target
computing platform. Chapter 4 presents validation mechanism. We transform validation prob-
lem to matching problem and solve it by applying an efficient algorithm. We demonstrate
promising results of experimental evaluation based on synthetic generation of vascular vol-
umes [33, 34]. Chapter 5 concludes the thesis and introduce possible directions of future work.

2http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching

http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching


Chapter 2

Overview of Vessel Centerline Estimation

This chapter outlines the basic elements of our vessel extraction approach (see Figure 1.8). The
ring artifacts reduction technique [2] was described in Subsection 1.2.1. Vessel enhancement
filtering [3], a standard mechanism to reduce noise and address low contrast in volumes, is dis-
cussed in Section 2.1. Standard skeleton-based centerline approaches and their problems in the
context of the partial volume effect are discussed in Section 2.2. Our curvature-based regular-
ization framework for vessel centerline estimation (see Section 2.3) avoids pre-segmentation.
It directly uses the output of the vesselness filter (Section 2.1). Besides the scalar measure of
vesselness, our algorithm also uses its vessel direction estimate for initialization. Then, we
compare results of our method and results obtained by skeleton-based estimation algorithm.
More detailed validation is presented in Chapter 4.

2.1 Vessel Enhancement Filtering

This section describes multi-scale vessel enhancement algorithm developed by Frangi, et al. [3].
The objective of applying this algorithm is threefold: to remove random noise in an image data,
to increase contrast between voxels belonging to blood vessels and nonvascular structures (e.g.
muscle tissue), and to estimate directions along vessels centerlines.

Consider an intensity function I(p) giving the intensity at each voxel p of an image. Ap-
proximate its value by Taylor expansion up to second order in the neighborhood of p = (x, y, z)

I(p + δp) ≈ I(p) + δpT∇I + δpT Hδp, (2.1)

where ∇I and H are the gradient vector and the Hessian matrix of I computed at p, respectively.

12
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The Hessian H describes the second-order intensity variations around p:

H =

∣∣∣∣∣∣∣∣∣∣∣
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂z

∂2I
∂y∂x

∂2I
∂y2

∂2I
∂y∂z

∂2I
∂z∂x

∂2I
∂z∂y

∂2I
∂z2

∣∣∣∣∣∣∣∣∣∣∣ . (2.2)

Consider the eigenvalue/eigenvector decomposition of the Hessian H:

Hϕk = λkϕk, k = 1, 2, 3 (2.3)

where ϕ1, ϕ2, ϕ3 are its eigenvectors and λ1, λ2, λ3 are the corresponding eigenvalues. With-
out loss of generality assume that eigenvalues are ordered: |λ1| ≤ |λ2| ≤ |λ3|. The eigenvector
ϕ3 represents the direction along which the second derivative is maximum. Similarly, ϕ1 repre-
sents the minimum second-derivative value direction.

Three following second-order local structures can be identified by analyzing eigenvalues:
a plate-like structure (|λ1| ≈ 0, |λ1| ≈ |λ2|, |λ2| ≪ λ3), a line-like structure (|λ1| ≈ 0, |λ1| ≪
|λ2|, |λ2| ≈ |λ3|) and a blob-like structure (|λ1| ≈ |λ2| ≈ |λ3|).

Frangi, et al. [3] defined vesselness measure

V(p) =

0 if λ2 > 0 or λ3 > 0(
1 − exp

(
− R2

A
2α2

))
exp
(
− R2

B
2β2

)(
1 − exp

(
− S 2

2c2

))
otherwise

(2.4)

based on the composition of the following three features:

RB =
|λ1|√
|λ2λ3|

,

RA =
|λ2|
|λ3|

and

S =
√
λ2

1 + λ
2
2 + λ

2
3.

(2.5)

RB distinguishes between a blob-like structure (RB ≈ 1) and a line-like (e.g. vessel) or a
plate-like structure (RB ≈ 0). RA distinguishes between a line-like (RA ≈ 1) and a plate-like
(RA ≈ 0) structures. The Frobenius norm S has a maximal response at high contrast region and
low response at the background. Hence the vesselness function in Equation (2.4) discriminates
between voxels belonging to blood vessels (characterized by small |λ1| and large |λ2|, |λ3|) and
other voxels. The eigenvector ϕ1 indicates the direction along the vessel (minimum intensity
variation). α, β, c are parameters which control the sensitivity of the vesselness measure to
features RA,RB, S , respectively.
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In practice, vesselness measure is computed at different scales for a scale-space represen-

tation of an image:
I(p, σ) = G(p, σ) ∗ I(p), (2.6)

where symbol ∗ denotes convolution over x, y, z and

G(p, σ) =
1√(

2πσ2)3 exp
(
− x2 + y2 + z2

2σ2

)
(2.7)

is the three-dimensional Gaussian kernel. Then, the maximum response,

V(p) = max
σmin≤σ≤σmax

V(p, σ), (2.8)

is chosen to be a final estimate of vesselness measure at voxel p. The scale σ with a maximum
response, V(p, σ), approximates the size of the vessel. Note that σmin and σmax have to be
chosen to cover the expected range of vessel radiuses.

Figures 2.1 and 2.2 illustrate the result of applying vessel enhancement filtering to a CT
image. Note that while this method is very effective, it is still not enough to completely dis-
ambiguate the vessels from the background. In particular, the filter does not work well on
near-capillary vessels with severe partial volume problems (see Figures 2.2c and 2.2d).

2.2 Standard Centerline Extraction

One of the most popular approaches for centerline estimation is medial representation of ob-
jects, also known as skeleton or medial axis [35, 21, 8, 9, 10]. Formally, a skeleton is defined
as the set of points that have more than one closest point on the boundary [35]. Generally, a
skeleton is not robust to irregularities of object’s boundary (see Figure 2.3), thereby additional
regularization is required. Moreover, these methods require binary segmentation of the image.
Straightforward methods of binary segmentation (e.g. thresholding) produce unreliable results:
often thin vessels disappear, while noise is labeled as a part of the vessel (see Figure 2.7c). Fig-
ure 2.7 illustrates the result of skeleton extraction from an image enhanced by Frangi, et al. [3]
filter.

In contrast, our approach directly estimates the smooth centerline and thus does not require
intermediate binary mask processing.
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(a) (b)

Figure 2.1: Vessel enhancement filtering. (a) shows the 3D rendered original volume while (b)
shows the volume after applying the multi-scale vessel enhancement algorithm developed by
Frangi et al. [3].
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(a) (b)

(c) (d)

Figure 2.2: Vessel enhancement filtering. (a) and (c) show the 3D rendered volume at different
scales while (b) and (d) show the volume after applying the multi-scale vessel enhancement
algorithm developed by Frangi et al. [3]. Note that the thin vessels and the background in (d)
are indistinguishable by intensity values alone.
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.

Figure 2.3: Example demonstrates instability of non-regularized medial axis to small distur-
bances of the object boundary.1

2.3 Our Curvature Regularization Framework

In this section we are concerned with curvature-based regularization of the centerline estima-
tion problem. Due to unknown topology and the presence of noise and the outliers, the problem
of centerline estimation is ill-posed. We impose a smoothness prior on model parameters defin-
ing centerline in order to solve this problem.

Zhong [12] implemented curvature extraction algorirthm that adopted two important ideas
from Canny edge detector [31]. First, they applied the non-maximum suppression procedure,
see Figures 2.4a and 2.4b, to the vector field of the estimated vessel directions (determined
by eigenvector ϕ1 corresponding to eigenvalue λ1 with the smallest absolute value in Equa-
tion (2.3)) obtained by the vessel enhancement filter described in Section 2.1. Then, they used
a double threshold to extract points that are most likely located near the centerline (see Fig-
ures 2.4c, 2.4d and 2.4e). We use the result of these two steps as an input for our regularization
framework.

Let L denote some abstract hypothetical centerline. We make two assumptions: first, that
measurements

{
p̃
}

estimates the position of the centerline L with some accuracy and second,
that the centerline L is “smooth”. Figure 2.5a illustrates an example of such centerline L along

1http://www.agg.ethz.ch/research/medial_axis

http://www.agg.ethz.ch/research/medial_axis
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(a) (b)

(c) (d)

(e)

Figure 2.4: Our method adopted two ideas of Canny-edge detector. First, non-maximum sup-
pression. (a) The input volume of the method. (b) Result of the non-maximum suppression
procedure applied for the volume in (a). Second, double thresholding, also known as hystere-
sis. (c) Result of double thresholding are more robust that single-threshold approach. (d) A
threshold limit set too high can reject some parts of vessel tree. (e) On other hand, threshold
limit set too low will falsely identify noise as a part of vessel.
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Figure 2.5: Centerline definition. (a) illustrates an example of the noisy measurements
{
p̃
}

along with original centerline L. (b) shows displacements between points p and q on centerline
L and their noisy measurements p̃ and q̃.

with measurements
{
p̃
}
.

Our objective is to find the “smooth” centerline L that lies in the neighborhood of its noisy
measurements

{
p̃
}
. In other words, we incorporate smoothness prior knowledge with noisy

measurements data and look for the centerline L that satisfies both. This can be represented
formally by introducing two cost functions: Esmooth(L) and Edata(L). Function Esmooth(L) pe-
nalizes for L being non-straight, while Edata(L) is a cost for the displacement with respect to
measurements

{
p̃
}
. Thus, we look for centerline L that minimizes the following energy function

E(L) = Esmooth(L) + αEdata(L) (2.9)

where α > 0 controls trade-off between smoothness prior term Esmooth(L) and data consistency
term Edata(L).

Let p denote orthogonal projection of its measurement p̃ onto the centerline L and lp de-
note the tangent direction of the centerline L at p (see Figure 2.5b). Thus, we parameterize
the centerline L by introducing its tangent directions

{
lp
}
. We define a data consistency term

Edata(L) as follows:

Edata(L) =
∑

p

1
σ2

p
||p − p̃||2, (2.10)

where σp is level of noise.

Curvature is a natural measure of regularity or non-linearity of a curve. Geometrically, the
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Figure 2.6: Curvature approximation. (a) demonstrates a definition of curvature as reciprocal
of osculating circle radius. (b) illustrates pairwise interaction between p and q, their noisy
measurements p̃ and q̃, and distances between points p, q and tangent lines lq, lp, respectively.

curvature of a circle is the reciprocal of its radius. The curvature of a straight line is defined
to be zero. The curvature of any sufficiently smooth curve L at a point can be defined as the
curvature of the circle that most closely approximates L at this point (see Figure 2.6a).

We approximate the smoothness term, Esmooth(L), by an equation proposed by Olsson et al.

[32, 36]. They approximate absolute curvature as follows:

κ(lp, lq) =
dist(lq, p) + dist(lp, q)

||p − q|| , (2.11)

where dist(lp, q) denotes the distance between point q and its orthogonal projection onto the
tangent line lp (see Figure 2.6b). Similarly, the following approximates the squared curvature:

κ2(lp, lq) =
dist2(lq, p) + dist2(lp, q)

||p − q||2 . (2.12)

We estimate the centerline tangents
{
lp
}

from noisy measurements
{
p̃
}

by minimizing the
following objective function

∑
p

∑
q∈N(p)

dist2(q, lp)
||p − q||2 +

∑
p

α

σ2
p
|| p̃ − p||2, (2.13)

whereN(p) denotes the neighborhood of p and σp denotes the radius of vessel. In other words,
we assign tangent line lp to each noisy measurement p̃ that minimizes the squared distances
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to the point p and the non-smoothness of the centerline defined by the curvature between
neighboring points. Note that σp in Equation (2.10) is defined as the noise level and here
we assume that this is proportional to the scale of vessel. Figure 2.8 illustrates the result of
centerline regularization.
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(a) (b)

(c) (d)

Figure 2.7: Application of a skeleton-based algorithm for vascular tree extraction. (a) Original
volume. (b) Result of vessel enhancement filtering. (c) Binary segmentation (thresholding) of
(b). (d) Skeleton extracted from (c) by an accurate fast marching algorithm [8, 9, 10] imple-
mentation of Kroon.
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(a) (b)

(c) (d)

Figure 2.8: Curvature-based centreline extraction. (a) The vector field of vessel directions
produced by vessel enhancement filtering. (b) The neighborhood graph defined by N(p) in
Equation (2.13). The graph reflects our assumption about centreline topology (we assume k-
nearest neighbors connectivity). (c) The minimum spanning tree extracted directly from the
graph in (b). (d) The result of centreline regularization (minimizing the objective function in
Equation (2.13)) followed by minimum spanning tree extraction.



Chapter 3

Fast Curvature Regularization

In this chapter we review optimization algorithms addressing a large scale non-linear least
squares problem of the form minx∈Rn

∑m
i=1 f 2

i (x) for which the Jacobian is sparse. Problems
of this type appear in the context of curvatude-based regularization. The following two algo-
rithms are discussed in Section 3.2: an inexact Levenberg-Marquardt algorithm [37] and an
algorithm called LSQR by Paige and Saunders for sparse linear least squares [38]. We also talk
about sparse matrix storage methods and automatic differentiation [39], a method for numeri-
cal evaluation of the derivatives in Section 3.3. Then, we present our GPU implementation of
the non-linear least squares solver for the parallel computing platform CUDA in Section 3.4.

3.1 Problem Overview

The curvature-based regularization problem is formulated as an optimization problem of the
following form:

min
lp

∑
p

∑
q∈N(p)

V2(lp, lq) +
∑

p

D2(lp), (3.1)

where:
D2(lp) =

1
σ2

p
|| p̃ − p||2, (3.2)

is unary cost function penalyzing the discrepancy between the measurement p̃ and its denoised

version p and

V2(lp, lq) =
dist2(q, lp)
||p − q||2 (3.3)

is the pairwise cost function penalyzing the curvature between tangent lines lp and lq at neigh-
boring points p and q.

We parameterize the tangent line lp by introducing two distinct points sp, tp ∈ R3 on that

24
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line. Thus, we can describe any point rp ∈ lp by parametric equation:

rp(α) = sp − α(sp − tp), (3.4)

where α ∈ R is a parameter. For example, the orthogonal projection p of p̃ onto the line lp is

p = sp − α⊥(sp − tp), α⊥ =
(sp − p̃)(sp − tp)
||sp − tp||2

. (3.5)

One can notice that Equation (3.1) is an unconstrained non-linear least squares problem of the
form:

min
x

F(x) = || f (x)||22 = f (x)T f (x), (3.6)

where variable x concatenates coordinates of points sp and tp

x =



...

sp

tp
...

sq

tq
...


∈ Rn, f (x) =



...

D(lp)
...

D(lq)
...

V(lp, lq)
...


∈ Rm. (3.7)

There is a variety of numerical methods that have been developed to solve Equation (3.6).
Note that our application yields problems with from thousands to millions of variables. Hence
computational and storage costs become a critical selection criteria of an optimization ap-
proach.

3.2 Outline of Optimization Algorithms

In this section we are concerned with the numerical algorithms for solving non-linear least
squares of the form in Equation (3.6). According to Nocedal and Wright [11], all algorithms
for solving the non-linear least squares can be classified as:

1. Line Search: Line search algorithms at each iteration generate a search direction pk,
and then determine step size αk (how far one should move along that direction). The
next iteration is given by formula

xk+1 = xk + αk pk. (3.8)
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Figure 3.1: Trust region and line search optimization strategies [11]. Note that neither New-
ton’s step (red arrow) nor gradient descent (blue arrow) go in direction of global optimum.
Quadratic function mk approximates the objective function F accurately only in a small neigh-
borhood of xk where the approximation mk can be trusted (so-called trust region). In other
words, trust region is defined as a region where the decreasing of the model function mk im-
plies the sufficient decreasing of the objective function F.

One straightforward choice for a search direction is pk = −∇F(xk), which is the negative
of the gradient.

2. Trust Region: Trust region algorithms generate steps with the help of another so-called
model function mk that approximates the objective function F(x) in the neighborhood
of the current iterate xk. They first define a region around the current iterate xk within
which they trust the model function mk to be an adequate approximation of the objective
function, and then choose the step to be an approximate minimizer of the function mk in
this region. In effect, they choose the direction and length of the step, simultaneously.
If a step does not lead to a sufficient decreasing of the objective function value, the trust
region is contracted and they find a new minimizer mk.

Figure 3.1 illustrates difference between trust-region and line search methods.

3.2.1 Levenberg-Marquardt Algorithm

Levenberg-Marquardt algorithm [40, 41] is an algorithm for solving non-linear least squares
problems. The algorithm adopts the trust region approach and approximates the objective
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function:
F(x) = f T (x) f (x) (3.9)

in Equation (3.6) with the model function:

mk(x) = f̃ T
k (x) f̃k(x), (3.10)

where:
f̃k(x) = f (xk) + JT (xk)(x − xk), (3.11)

is an approximation of f (x) by its first-order Taylor expansion in the neighborhood of xk. J(xk)
denotes the Jacobian matrix of f (x). Hence mk(x) is defined by:

mk(xk + δx) = f T (xk) f (xk) + 2δxT JT (xk) f (xk) + δxT JT (xk)J(xk)δx. (3.12)

Note that although mk(x) is a quadratic approximation of F(x), this is not the same as the
second-order Taylor expansion of F(x):

F(xx + δx) ≈ f T (xk) f (xk) + 2δxT JT (xk) f (xk) + δxT H(xk)δx. (3.13)

where H(xk) denotes the Hessian matrix of F(x) computed at xk. The computation of H(xk) can
be expensive for higher dimensional problems, thereby the Hessian matrix H(xk) is approxi-
mated in Equation (3.12) by the Jacobian matrix square JT (xk)J(xk).

In order to find the minimum of the model function mk

min
δx

mk(xk + δx) (3.14)

we compute the gradient ∇mk(xk + δx) first as:

∇mk(xk + δx) = 2JT (xk) f (xk) + 2JT (xk)J(xk)δx (3.15)

and then, setting the latter to zero gives us the system of linear equations:

JT (xk)J(xk)δx = −JT (xk) f (xk). (3.16)

Levenberg [40] proposed using a damping parameter λk > 0 that implicitly controls the
size of trust region in Equation (3.14) at each iteration of the method:

min
δx

mk(xk + δx) + λk||δx||22 (3.17)
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thereby replacing the system of equations in Equation (3.16) with the following damped version

(JT (xk)J(xk) + λkI)δx = −JT (xk) f (xk). (3.18)

There are various strategies describing how to choose the parameter λk at each iteration [41].

The standard implementation of this algorithm computes the Jacobian square JT (xk)J(xk)
and, then, solves the linearized subproblem given in Equation (3.18) at each iteration. This
can be prohibitive for problems involving real CT data of large size. For example, when we
solve the regularization problem for our data, the matrix JT (xk)J(xk) in Equation (3.18) has
size of million rows by million columns. Furthermore, we show that the Jacobian J(x) for
Equation (3.1) is a sparse matrix. We conclude that there is a need for an optimization method
that takes into consideration the sparsity and the large-scale of our problem.

3.2.2 Inexact Levenberg-Marquardt Algorithm

We review the inexact Levenberg-Marquardt algorithm [37], a method based on the Levenberg-
Marquardt strategy for solving large sparse non-linear least squares problems. The algo-
rithm internally uses the iterative method LSQR [38] for solving linear least squares in Equa-
tion (3.17), that can be explicitly written in the following way:

min
δx
||J(xk)δx + f (xk)||22 + λk||δx||22. (3.19)

The inexact Levenberg-Marquardt algorithm does not compute JT (xk)J(xk) at all. In contrast,
LSQR iteratively solves the linear least squares problem given in Equation (3.19) using only
the operations of the matrix-vector multiplications of the form JT u and Jv where u and v are
vectors. These operations are significantly cheaper (in meaning of computational and memory
complexity) than the operations of matrix-matrix multiplication of the form JT J.

Wright and Holt [37] have shown that to achieve a substantial reduction in the sum of
squares and avoid extra computational effort one can apply only a few iterations of LSQR to
Equation (3.18).

A simplified version of algorithm [37] is listed in Figure 3.2. Parameters π1, π2, E, D and
λmin control the choice of damping parameter λk. LSQR minimizes Equation (3.19), thereby
predicting the possible step xk+1 = xk + δx. Wright and Holt [37] propose to make the decision
about whether the step is accepted or not by the calculating of the ratio:

ρ =
actual reduction

predicted reduction
=

F(xk) − F(xk + δx)
F(xk) − mk(xk + δx) − λk||δx||22

. (3.20)



3.2. Outline of Optimization Algorithms 29

Input: x0

Parameters: 0 < π1 < π2 < 1, E > 1,D < 1, λmin > 0

1 evaluate J(x0)

2 k ← 0
3 repeat
4 δx← LSQR minimizes ||J(xk)y + f (xk)||22 + λk||δx||22
5 ρ← (F(xk) − F(xk + δx))(F(xk) − mk(xk + δx) − λk||δx||22)−1

6 if ρ < π1 then step does not sufficiently decrease the objective function value, the
trust region is contracted

7 if λk = 0 then
8 λk ← λmin

9 else
10 λk ← Eλk

11 end
12 else an algorithm “trusts” the model function and the step is accepted
13 xk+1 ← xk + δx

14 evaluate J(xk+1)

15 if ρ > π2 then the trust region is expanded
16 λk+1 ← Dλk

17 if λk+1 < λmin then the occurrence of Gauss-Newtow step
18 λk+1 ← 0
19 end
20 end
21 k ← k + 1
22 end
23 until convergence is achieved to the desired tolerance;

Result: xk

Figure 3.2: An inexact Levenberg-Marquardt algorithm.

Note that in case λk = 0 the step xk+1 of Levenberg-Marquardt algorithm is identical to the
step of Gauss-Newton algorithm, an algorithm for solving non-damped non-linear least squares
as given in Equation (3.14).

Note also that most of the computational effort in each iteration lies in solving the linear
Equation (3.18) with LSQR and evaluating the Jacobian matrix J(x).

3.2.3 LSQR: Sparse Linear Equations and Least Squares Problems

LSQR [38] is an iterative method developed by Paige and Saunders to find a solution to the
following problems:
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1. System of linear equations:
Ax = b

2. Linear least squares:
min

x
||Ax − b||22

3. Damped least squares:
min

x
||Ax − b||22 + λ||x||22

where A is a real matrix with m rows and n columns and b ∈ Rm is a real vector.

The method is based on the bidiagonalization algorithm of Golub and Kahan [42]. The
main idea is to generate a sequence of solutions

{
xk
}

such that the residual norms
{||b−Axk||2

}
are

monotonically decreasing. For the damped least squares problem this is equivalent to applying
the conjugate gradient method to the following equation:

(AT A + λI)x = AT b. (3.21)

However, LSQR has been shown to be more numerically reliable than other numerical methods
in the context of sparse and large systems of linear equations. We refer the reader interested in
topic to Paige and Saunders [38] for a more detailed description of the algorithm.

Note that the matrix A is used in LSQR only to compute products of the form Av and
AT u for various vectors v ∈ Rn and u ∈ Rm. These computations are much cheaper in the
sense of computational and storage costs than those required by a numerical method solving
Equation (3.18).

3.3 Jacobian Matrix: Storage and Evaluation

If the Jacobian matrix J(x) is sparse, the large-scale linear least squares problem of the form
in Equation (3.18) can be efficiently solved if the zero elements are not stored in a physical
computer memory. There are many methods for storage of the sparse matrices. We review
CSR (Compressed Row Storage) in Subsection 3.3.1, a method most suited for storage the
Jacobian J(x) that arises in the context of the problem given in Equation (3.1).

There are different ways to obtain derivatives. For example, one can go back to the function
equation and find derivatives mechanically. Despite that it works perfectly for simple functions
the process becomes complex and error-prone for functions of many arguments. Furthermore,
if the equation defining the objective function changes we have to repeat the process from
the beginning. Alternatively, numerical values of derivatives can be approximated in form of
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partial differences. However, that method can introduce round-off errors in the discretization
process. Hence we look at the more practical ways in Subsection 3.3.2.

3.3.1 Compressed Row Storage

Consider the Jacobian for the objective function in a non-linear least squares problem of the
form given by Equation (3.1), which can be represented in the following symbolic form:

J(. . . lp . . . lq . . . ) = 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D(lp)∂D(lp)
∂lp

. . . 0
...

. . .
...

0 . . . D(lq)∂D(lq)
∂lq

...
...

V(lp, lq)∂V(lp,lq)
∂lp

. . . V(lp, lq)∂V(lp,lq)
∂lq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.22)

Note that since Equation (3.1) at maximum contains only pairwise interactions between
tangent lines lp and lq, each row of the Jacobian matrix in Equation (3.22) depends only on
few variables (a row corresponding to pairwise term V(lp, lq) depends on 12 unknown variable,
since both tangent lines lp and lq are parameterized by two three-dimensional points sp, tp and
sq, tq). Consequently, most of elements in the matrix are zeros. There are a number of common
storage formats used for sparse matrices, but most of them employ the same basic technique1:
store all nonzero elements of the matrix into an array data structure and provide auxiliary data
structures to describe the position of the non-zero elements in the sparse matrix.

The CRS (Compressed Row Storage) format is represented by three arrays val, col ind,
row ptr. Array val contains the non-zero elements of a sparse matrix obtained by traversing
across each row in order. The i-th element of array col ind stores the column index of the i-th
item in array val. The k-th element of array row ptr points to the item in array val that starts
a row k.

For example, consider the following matrix:∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0 0 a13 a14 0

a21 0 0 0 a25

0 a32 0 a34 0
a41 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

1https://software.intel.com/en-us/node/471374

https://software.intel.com/en-us/node/471374
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The arrays val, col ind, row ptr for this matrix are given below

i 1 2 3 4 5 6 7

val a13 a14 a21 a25 a32 a34 a41

col ind 3 4 1 5 2 4 1

k 1 2 3 4 5

row ptr 1 3 5 7 8

By convention, we add an extra item row ptr[5] in the array row ptr that contains the
value length(val) + 1.

3.3.2 Automatic Differentiation

In this section we are concerned with a numerical algorithm for the evaluation of derivatives.
Since

d f
dx
= lim
ϵ→0

f (x + ϵ) − f (x)
ϵ

(3.23)

one can easily approximates derivatives with some form of finite difference

d f
dx
=

f (x + h) − f (x)
h

+ ϵ(h) (3.24)

where h > 0 is some positive constant and ϵ(h) ∈ O(h) is an approximation error.

However, the important question here is the choice of the “right” value h. Although one
can follow Equation (3.24) and choose h as small as possible, that approach leads to round-off
error on a computer with floating-point arithmetic. There is a trade-off between round-off error
and approximation error ϵ(h).

Automatic differentiation is an exact method, meaning that the derivative value can be
obtained with an accuracy comparable to the symbolic inference of the derivatives followed by
the calculating their numerical values. The fundamental idea behind automatic differentiation
is the decomposition of the functions by the chain rule:

( f ◦ g)′ = f ′(g)g′. (3.25)

There are two modes of automatic differentiation: forward mode and reverse mode. The
forward mode can be explained by introducing an algebra of dual numbers. A dual number is a
number that can be expressed in the form x + ys, where x, y ∈ R are real and dual components,
correspondingly, and s is a nilpotent element (i.e. an element that satisfies the property s2 = 0).



3.4. Parallelization Strategy 33

The operations of addition and multiplication of dual numbers are defined as follows:

(x1 + y1s) + (x2 + y2s) = (x1 + x2) + (y1 + y2)s

(x1 + y1s)(x2 + y2s) = (x1x2) + (x1y2 + x2y1)s + y1y2s2

= (x1x2) + (x1y2 + x2y1)s.

(3.26)

Furthermore, any smooth function f : R → R can be extended to the dual numbers by
introducing its Taylor series:

f̄ (x + ys) = f (x) + f ′(x)ys +
f ′′(x)y2s2

2!
+

f ′′′(x)y3s3

3!
+ . . .

= f (x) + f ′(x)ys,
(3.27)

where f̄ denotes the extended to the dual numbers version of the function f .

The composition of functions f ◦ g is extended to the dual numbers in the following way:

( f̄ ◦ ḡ)(x + ys) = f̄ (ḡ(x + ys)) = f̄ (g(x) + g′(x)ys) = f (g(x)) + f ′(g(x))g′(x)ys

= ( f ◦ g)(x) + ( f ◦ g)′(x)ys
(3.28)

Note that
f (x)|x=a + s f ′(x)|x=a = f̄ (a + s). (3.29)

Hence, Equation (3.29) gives us a numerical method for evaluating derivatives values of
any smooth function or composition of such functions. First, we extend these function f to the
dual numbers. Then, we calculate the value of the extended function f̄ (a+s). The result of such
calculation is represented by a dual number. Finally, we obtain the function value f (x)|x=a and
the derivative value f ′(x)|x=a in real and dual components of the dual number, correspondingly.

3.4 Parallelization Strategy

Recall that the most of the computational resources are used by two algorithms:

1. Evaluation of the Jacobian matrix J(x);

2. LSQR for solving linear least squares subproblem (3.18).

The computational time of these algorithms can be large if their implementation does not con-
sider the Jacobian sparsity and parallel computation. However, a naive implementation using
some parallel execution techniques and sparse linear algebra libraries is unlikely to succeed.
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One must also take into account the access pattern to the data, with idea of reducing the cache
miss rate. Choice of the target computing platform is also crucial.

Note that both of these algorithms can efficiently exploit so-called data parallelism: per-
forming same operations on different pieces of source data in parallel. There are various
programming models that implements data parallelism (e.g. CUDA2, OpenCL3, C++AMP4,
OpenACC5). Most of them are oriented towards GPU-accelerated computing.

3.4.1 GPU and CUDA

Modern GPUs are not only visual data processing units now. Due to their multiprocessor
architecture they are capable to run many parallel algorithms more efficiently than conventional
CPUs.

According to the NVIDIA website6, a simple way to understand the difference between a
CPU and GPU is to compare how they process tasks. A CPU consists of a few cores optimized
for sequential serial processing while a GPU has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for handling multiple tasks simultaneously.

NVIDIA Compute Unified Device Architecture (CUDA) is a parallel computing platform,
software framework and compiler infrastructure that provides C and C++ languages exten-
sions, thereby making it easier to develop applications exploiting fine-grained and coarse-
grained data and task parallelism.

CUDA implements a wide application program interface that provides such functionality as
memory allocation, transferring and freeing, parallel execution, debugging, includes optimized
versions of mathematical functions (e.g. the Bessel functions or the normal cumulative dis-
tribution function). There are various software products based on CUDA that provide highly-
optimized algorithms such as the fast Fourier transform7, basic linear algebra subroutines8,
random number generators9 and high-level libraries of parallel algorithms and data structures10.

2http://www.nvidia.ca/object/cuda_home_new.html
3https://www.khronos.org/opencl
4https://msdn.microsoft.com/en-us/library/hh265137.aspx
5http://www.openacc.org/
6http://www.nvidia.ca/object/what-is-gpu-computing.html
7https://developer.nvidia.com/cufft
8https://developer.nvidia.com/cublas
9https://developer.nvidia.com/curand

10https://developer.nvidia.com/thrust

http://www.nvidia.ca/object/cuda_home_new.html
https://www.khronos.org/opencl
https://msdn.microsoft.com/en-us/library/hh265137.aspx
http://www.openacc.org/
http://www.nvidia.ca/object/what-is-gpu-computing.html
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cublas
https://developer.nvidia.com/curand
https://developer.nvidia.com/thrust
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1 beta = norm(u);
2 if beta > 0
3 u = (1/beta)*u;

4 v = A’*u - beta*v;
5 alpha = norm(v);

6 if alpha > 0, v = (1/alpha)*v; end
7 end

(a) MATLAB

1 beta = cusp::blas::nrm2(u);

2 if (beta > 0) {
3 cusp::blas::scal(u,1/beta);

4 cusp::transpose(A,At);

5 cusp::multiply(At,u,tmp);

6 cusp::blas::axpy(v,tmp,-beta);

7 std::swap(v,tmp);

8 alpha = cusp::blas::nrm2(v);

9 if (alpha > 0)
10 cusp::blas::scal(v,1/alpha);

11 }

(b) C++

Figure 3.3: Line correspondence between LSQR codes written in MATLAB and C++.

3.4.2 Implementation Details

An inexact Levenberg-Marguardt and LSQR algorithms require effective implementation of
linear algebra operations such as vector operation (additions, multiplication by scalar, ℓ2-norm
function), sparse matrix-vector multiplication and sparse matrix transposition. We use publicly
available high-level C++ library CUSP11 that implements these and many other functions and
allows to exploit CUDA functionality without using low-level memory manipulations. CUSP
also supports different sparse matrix formats including Compressed Row Storage.

Our CUDA implementation of LSQR is based on the Matlab version available on the Sys-
tems Optimization Laboratory website [43]. Figure 3.3 illustrates the line correspondence
between code written in Matlab and C++ with CUSP. An inexact Levenberg-Marquardt algo-
rithm is independently re-implemented based on the published materials [37].

CUDA extends the C++ language and allows to define functions (called kernels) that are
intented to run on CUDA devices. Each kernel is assigned to be run by a logical computation
unit (called thread). Threads are be grouped in blocks. By defining the dimensions of the
block and the configuration of blocks (called a grid) to run programmer controls a fine-grained
and coarse-grained parallelism. The process of mapping logical computation units to physical
computational units are handled by the CUDA infrastructure. We implemented the Jacobian
evaluation in a way, where each row of the Jacobian in Equation (3.22) is computed by one
CUDA thread. Alternatively, one can implement the evaluation in a way, where each element
of the Jacobian is mapped to one CUDA thread. We tested both and found former approach
was faster than latter one. Figure 3.4a illustrates the chosen Jacobian evaluation strategy. Im-
plementation of automatic differentiation is inspired by the Google Ceres Solver12. We exploit

11http://cusplibrary.github.io/
12http://ceres-solver.org

http://cusplibrary.github.io/
http://ceres-solver.org
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the C++ template functions mechanism and operator overloading to implement an algebra of
dual numbers. Then, we use it to numerically compute each component of the Jacobian without
manual error-prone inference of partial derivatives.

The most common bottle neck of the applications using CUDA is the transfer of data be-
tween device and host. We minimize this operations and requires to copy data from host to
device and copy data back from device to host only once (see Figure 3.4b).

3.4.3 Experimental Result

We compare performance of our GPU-accelerated algorithm with performance of C++ proto-
type running on CPU. Even for quite old GPU device (NVIDIA Tesla M2070, 6 GB GDDR5)
the total running time for our volume having size of 585 × 525 × 892 voxels decreases from 2
weeks to half an hour. It is technically possible to achieve even better results by manual code
optimization targeting a specific computation device.
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(b) Algorithm Flow

Figure 3.4: GPU implementation of the curvature regularization framework. (a) Each row of
the Jacobian matrix is evaluated by a separate thread. Threads interact with data by reading
and writing from/to the global device memory. (b) illustrates the main steps of the framework.



Chapter 4

Validation

The purpose of validation is to compare the result obtained by our method with an accurate
and precise measurements so-called gold-standard. Localization errors for detected bifurca-
tions is one straightforward comparison criterion. Modern biomedical applications (see Sub-
section 1.1.2) also require accurate vascular tree topology validation. This chapter proposes
validation methodologies using synthetic volumes. Our methodologies developed for valida-
tion with respect to ground truth can also be used for parameters tuning.

First, we review a standard method for synthetic generation of 3D vascular data based on
vascular flow simulation (see Section 4.1). Then, we describe our validation procedure that
consists of two steps: we match a ground truth tree to a testing tree and then compute various
error statistics. Our matching algorithm is described in Section 4.2. The matching algorithm
uses Fréchet distance [44]. Computing Fréchet distance [45] between corresponding branches
of trees and the effective algorithm for its approximation [46] are discussed in Section 4.3. Our
specific error statistics and their experimental evaluation for the results of the vessel centreline
detection algorithm in Chapters 2 and 3 are reported in Section 4.4.

4.1 Ground Truth

This section outlines an algorithm for s generating vascular trees and synthetic 3D volumes
proposed in [33, 34]. The generation of s vascular tree is based on simulating the vascular flow
using realistic physics model and user-defined oxygen demand map. The algorithm produces
tree models by randomly generating point locations and radii values and rejecting the candi-
dates not satisfying these constraints. The generated tree data structure contains information
about bifurcations locations, point connectivity and radii of vessels. Then, this ground truth
tree is used to create 3D volumetric data by applying a special rasterization procedure. There
are various types of noise that can also be added to the final result. Figure 4.1 illustrates two

38
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synthetic vasculature volumes rendered along with ground truth trees.

4.2 Matching Problem

This section discusses the matching problem for two vascular trees: the gold-standard tree and
the testing tree obtained by an algorithm. Let T1 = (V1, E1) denotes the gold-standard tree and
T2 = (V2, E2) denotes the testing tree, where Vn ⊂ R3 are the corresponding node sets and
En =

{
(p, q) | p, q ∈ Vn

}
are the corresponding edge sets (n = 1, 2). To solve the matching

problem, we look for a matching function

f (p) : V1 → V2 (4.1)

that relates each node p ∈ V1 of the gold-standard tree to some node f (p) ∈ V2 of the test-
ing tree. Figure 4.2a shows an example of such a matching. However, none of the centerline
extaction algorithms are ideal and some parts of the vascular tree can be unrecognized (see Fig-
ure 4.2b). Hence we relax the matching function f (p) in the way where each node p can also
be associated with a special value Λ, meaning “no-matching”:

f (p) : V1 → V2 ∪ {Λ}. (4.2)

One straightforward way to define best matching between the gold-standard tree T1 and the
testing tree T2 could be an optimal solution for a minimization of an objective function, for
example:

min
f

∑
p∈V1

D(p, f (p)), (4.3)

where

D(p, f (p)) =

||p − f (p)|| if f (p) ∈ V2

α if f (p) = Λ
(4.4)

denotes cost of assigning value f (p) ∈ V2 ∪ {Λ} to node p ∈ V1. Note that ||p − f (p)|| is
the Euclidean distance between p and the corresponding point f (p). Constant penalty α >
0 defines a maximum allowed error (see Figure 4.2c). Equation (4.3) can be equivalently
represented by

min
f

∑
p∈V1: f (p)∈V2

||p − f (p)|| + α
∑

p∈V1: f (p)=Λ

1, (4.5)

where the first sum measures the total geometric error between matched nodes from two trees
T1 and T2 while the second sum measures the cardinality of the unmatched part and α defines
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(a)

(b)

Figure 4.1: Two examples of generated synthetic vascular volumes rendered along with ground
truth trees.
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a trade-off between them. Similar to Gorelick et al. [47], the unconstrained optimization Equa-
tion (4.3) for some α > 0 can be represented as a Lagrangian for the following constrained
optimization problem, for some ϵ > 0:

max
f :GE( f )<ϵ

C( f ), (4.6)

where
GE( f ) =

∑
p∈V1: f (p)∈V2

||p − f (p)|| (4.7)

denotes the total geometric error between matched pairs of nodes in V1 and V2 and

C( f ) = |{p ∈ V1 : f (p) ∈ V2}| (4.8)

denotes the cardinality of the matched part.
Note that the geometric error function in Equation (4.7) does not take into account the

connectivity of points in the ground truth and the testing trees (see Figure 4.2d). Due to spe-
cific applications of our centerline estimation method (see Subsection 1.1.2) the vascular tree
topology also has to be validated.

4.3 Fréchet Distance Measure

This section describes the Fréchet distance between two polygonal curves [45]. We discussed
earlier that the geometric error based on the trees displacement only is not sufficient for our
applications. Hence we introduce geometric error function that incorporates positions errors
and connectivity errors. This geometric error function is based on the Fréchet distance that was
introduces by Fréchet [44] as a measure of similarity between two curves in a metric space.

First, we introduce geometric error function for matching f : V1 → V2 that takes into
account connectivity of points in both trees:

GE( f ) =
∑

(p,q)∈E1: f (p), f (q)∈V2
f (p) and f (q) are connected

V(p, q, f (p), f (q)) (4.9)

The objective of the function V(p, q, f (p), f (q)) is to measure the distance between two curves:
the line starting at point p and ending at point q and the piecewise linear curve including all
points on the path from point f (p) to point f (q). This problem often arises also in a context of
object and shape recognition. The are two well-known such distance measures:

• Hausdorff distance: For two polygonal chains A and B defined by the corresponding
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Figure 4.2: (a,b) illustrates an example of assigning labels f (p) and f (q) to nodes p and q,
correspondingly. Note that path between nodes f (p) and f (q) exists in (a). (c) shows maximum
allowed error α for the matching problem given in Equation (4.3). (d) demonstrates the solution
to the matching problem given in Equation (4.3) that does not consider tree topology.
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point sequences a1, a2, . . . , an and b1, b2, . . . , bm (as it is illustrated in Figure 4.3), the
Hausdorff distance is defined as a maximum distance between each curve and the nearest
point of another curve. Thus, Hausdorff distance can be represented by

max(DA→B,DB→A) (4.10)

where

DA→B = max
1≤i≤n

min
1≤ j≤m

||ai − b j||

DB→A = max
1≤ j≤m

min
1≤i≤n
||ai − b j||

(4.11)

are the directional Hausdorff distances between curves A and B. Note that although
Hausdorff distance takes into account positions of all points defining polygonal chains, it
does not use the knowledge about the order in which their points appear in both curves.

• Fréchet distance: According to Eiter et al. [46] the intuitive definition of the Fréchet
distance would be to picture the situation when a man is walking a dog. Their movements
constraints are as follows: the man can move on the first curve and the dog can move
on the second curve. In that case, the weak Fréchet distance is defined as a minimum of
leash length that allows both man and dog walking from one endpoints of the curves to
another. The strong Fréchet distance is similar, but backtracking is not allowed.

Let two curves A and B in a metric space are defined as a continuous functions

A(s) : [0, lA]→ R3

B(t) : [0, lB]→ R3
(4.12)

where lA, lB are lengths of curves A and B, respectively. Then, the strong Fréchet distance

is given as:
inf
α,β

max
s∈[0,1]

||A(α(s)) − B(β(s))||, (4.13)

where α : [0, 1] → [0, lA] and β : [0, 1] → [0, lB] are two continuous non-decreasing
functions. Fréchet distance measures are based on two factors: the location of points and
the position along the curves. Alt et al. [45] proposed an algorithm for evaluating Fréchet
distance between polygonal chains. However, the algorithm is quite complicated. Our
implementation uses the efficient algorithm given by Eiter et al. [46] for computing an
approximation of Fréchet distance, also known as the discrete Fréchet distance.
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Figure 4.3: Example of two polygonal chains defined by corresponding point sequences
a1, a2, . . . , an and b1, b2, . . . , bm.

4.4 Experimental Evaluation on Synthetic Data

This section describes our error statistics for the validation of centerline extraction algorithms.
We define the best matching between the ground truth tree and a testing tree as an optimal
solution of the following constrained optimization problem:

max
f :GE( f )<ϵ

L( f ) (4.14)

where the geometric error GE( f ) is defined by Equation (4.9) and is based on the Fréchet
distance measure (see Section 4.3) and

L( f ) =
∑

(p,q)∈E1: f (p), f (q)∈V2
f (p) and f (q) are connected

||p − q||, (4.15)

which defines the total length of the matched part of the ground truth tree. Thus, each value
ϵ > 0 defines the maximum allowed geometric error for matching and the best matching f max-
imizes the total length of matched part (see Figure 4.4). We additionally require the following
constraint: each node p is allowed to be assigned either to one of k nearest neighbors of point
p or to a “no-matching” value Λ. Indeed, there is a little point to look for a corresponding node
f (p) that has locations too far from p. The optimal solution of the optimization problem given
in Equation (4.14) can be found by applying an efficient version of Viterbi algorithm [48]. We
refer the interested reader to appendix A for a detailed explanation. The value k = 17 is found
adequate for all our experiments.

We use the VascuSynth software [33, 34] for generating 500 synthetic vascular trees and
3D volumes (e.g., see Figures 4.1a and 4.1b). Then, we compare the tree data structures ob-
tained by the MATLAB implementation of Kroon1 of an accurate fast marching algorithm for
skeletons computation [8, 9, 10] (see Figure 4.5), our centerline estimation methods without
(see Figure 4.6) and with (see Figure 4.7) curvature-based regularization.

1http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching

http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching
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Figure 4.4: (a) We believe that the smaller geometric error GE allowed the smaller parts of
trees can be matched. (b) On other hand, the larger geometric error GE allows more freedom
in matching and consequently the larger parts of the trees can be matched.

Figure 4.8 demonstrates the total matched length L( f ) plotted against the geometric error
GE( f ). Our estimation method for any value of the geometric error GE gives greater length
L of matched part than skeleton method. Curvature regularization shows some improvement
if compared with our method without such regularization. In the future, we plan to improve
tree connectivity by using vessel extrapolation and expect even better results. Our curvature
regularization not only removes noise, but also gives good orientations that we can use for
vessel extrapolation.

4.5 Experimental Evaluation on Real Data

We tune parameters of our algorithm using the validation results in Section 4.4. Then, we
run the algorithm for the CT cardiac volume (see Figure 4.9a). The size of the volume is
585 × 525 × 892 voxels. We reconstruct the positions of the centerpoints of the vessels as
well as an information about connectivity of these points (see Figure 4.9b). The tree structure
allows to measure angles between any two adjacent vessels, their diameter or their length. Our
algorithm is capable to reconstruct very thin vessels at near-capillary level (see Figures 4.9c
and 4.9d).
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(a)

(b)

Figure 4.5: Results obtained by the accurate fast marching algorithm implementation of Kroon
for skeleton computation. (a) Dataset 1 (see Figure 4.1a) (b) Dataset 2 (see Figure 4.1b)
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(a)

(b)

Figure 4.6: Results obtained by centerline estimation algorithm without curvature regulariza-
tion [12]. (a) Dataset 1 (see Figure 4.1a) (b) Dataset 2 (see Figure 4.1b)
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(a)

(b)

Figure 4.7: Results obtained by our centerline estimation algorithm with curvature-based reg-
ularization. (a) Dataset 1 (see Figure 4.1a) (b) Dataset 2 (see Figure 4.1b)
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Figure 4.8: Comparison results obtained by three centerline estimation methods: our centerline
estimation method with curvature-based regularization, centerline estimation method based on
ideas of Canny-edge detector [12], and accurate fast marching algorithm implementation of
Kroon for skeleton-based estimation.
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(a) (b)

(c) (d)

Figure 4.9: Results obtained by our centerline estimation algorithm for real CT data. (a) and
(c) show volume rendering of the raw data volume at the coarse and the fine scale while (b)
and (d) shows the corresponding visualizations of the output of our algorithm.



Chapter 5

Conclusion and Future Work

This thesis proposed methodologies for solving the challenging problem of vessel tree structure
centreline reconstruction from ultra high resolution micro-CT volumes. Our method avoids
explicit segmentation of vessel boundaries. In contrast, we directly extract the vascular tree by
regularizing the curvature of vessel centerline. We developed a GPU-based implementation of
the Levenberg-Marquardt algorithm and applied it to our curvature regularization problem. We
also proposed a validation technique using synthetic vessel images. Results of comparison our
approach with standard medial axis methods are promising.

In the future we plan to use our matching mechanism inside validation procedure for pa-
rameters tuning of our curvature-based tree extraction method. Also, we plan to improve tree
connectivity by using vessel extrapolation using smoothed tangent directions.
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and J. Ehrhardt, “3d cerebrovascular segmentation combining fuzzy vessel enhancement
and level-sets with anisotropic energy weights,” Magnetic resonance imaging, vol. 31,
no. 2, pp. 262–271, 2013.

[30] F. Benmansour and L. D. Cohen, “Tubular structure segmentation based on minimal path
method and anisotropic enhancement,” International Journal of Computer Vision, vol. 92,
no. 2, pp. 192–210, 2011.

[31] J. Canny, “A computational approach to edge detection,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, no. 6, pp. 679–698, 1986.



BIBLIOGRAPHY 55

[32] C. Olsson and Y. Boykov, “Curvature-based regularization for surface approximation,” in
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 1576–
1583, IEEE, 2012.

[33] G. Hamarneh and P. Jassi, “VascuSynth: Simulating Vascular Trees for Generating Vol-
umetric Image data with Ground Truth Segmentation and Tree Analysis,” Computerized

Medical Imaging and Graphics, vol. 34, no. 8, pp. 605–616, 2010.

[34] P. Jassi and G. Hamarneh, “VascuSynth: Vascular Tree Synthesis Software,” Insight Jour-

nal, vol. January-June, pp. 1–12, 2011.

[35] H. Blum, “A transformation for extracting descriptors of shape,” 1967.

[36] C. Olsson, J. Ulén, and Y. Boykov, “In defense of 3d-label stereo,” in Computer Vision

and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 1730–1737, IEEE, 2013.

[37] S. Wright and J. N. Holt, “An inexact Levenberg-Marquardt method for large sparse non-
linear least squares,” The Journal of the Australian Mathematical Society. Series B. Ap-

plied Mathematics, vol. 26, no. 04, pp. 387–403, 1985.

[38] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and
sparse least squares,” ACM Transactions on Mathematical Software (TOMS), vol. 8, no. 1,
pp. 43–71, 1982.

[39] A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algo-

rithmic differentiation. Siam, 2008.

[40] K. Levenberg, “A method for the solution of certain non–linear problems in least squares,”
1944.

[41] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,”
Journal of the Society for Industrial & Applied Mathematics, vol. 11, no. 2, pp. 431–441,
1963.

[42] G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a ma-
trix,” Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical

Analysis, vol. 2, no. 2, pp. 205–224, 1965.

[43] “Systems Optimization Laboratory.” http://web.stanford.edu/group/SOL/

software/lsqr/.

http://web.stanford.edu/group/SOL/software/lsqr/
http://web.stanford.edu/group/SOL/software/lsqr/


56 BIBLIOGRAPHY
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Appendix A

Viterbi Algorithm

This appendix overviews an efficient algorithm for solving our discrete labeling problem as
given in Equation (4.14). Although one might recognize that this is a variant of the well-
known Viterbi algorithm used in relation to hidden Markov models, we illustrate the algorithm
in the context of our matching problem, without touching on probabilistic models. We refer
the reader interested in that particular topic to the original work done by Viterbi [48].

A.1 Viterbi Algorithm for Chains

This section illustrates the Viterbi algorithm for chains. We assume that ground truth tree in
Equation (4.14) is a chain-like tree (see Figure A.1a). We do not make any assumption about
T2, so it can be any arbitrary tree (or forest).

Let f1, f2 . . . fn denote label variables corresponding to nodes v1, v2 . . . vn and n = |V1| be
the number of nodes in tree T1. Assume also without loss of generality that the nodes of T1 are
numbered in walking order, starting at v1 and ending at vn (e.g. as it is shown in Figure A.1a).

Consider the following labeling problem:

min
f1, f2... fn

n∑
i=1

E1(vi, fi) +
n−1∑
i=1

E2(vi, vi+1, fi, fi+1), (A.1)

where E1(v, f (v)), E2(u, v, f (u), f (v)) are some arbitrary unary and pairwise cost functions (not
necessary defined as it has done in earlier section).

We solve labeling problem (A.1) in dynamic programming way by transforming the origi-
nal problem into a sequence of simpler subproblems.
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Figure A.1: Viterbi algorithm for a chain. (a) illustrates the matching problem for the ground
truth tree T1 and testing tree T2. (b-e) subsequent steps of the forward pass calculation of the
Viterbi algorithm.

• We introduce function H1 that contains single term in Equation (A.1):

H1( f1) = E1(v1, f1). (A.2)
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Note that H1 depends only on label variable f1. Figure A.1b illustrates elements of trees
T1, T2 related to H1.

• We introduce function H2 as follows:

H2( f2) = E1(v2, f2) +min
f1

H1( f1) + E2(v1, v2, f1, f2). (A.3)

Note that H2 depends only on label variable f2, while f1 is chosen as an optimal solution
of optimization subproblem for each value of f2:

f1( f2) = arg min
f1

H1( f1) + E2(v1, v2, f1, f2). (A.4)

Figure A.1c illustrates the elements of trees T1 and T2 which are parts of H2.

• Continuing recursively (see Figure A.1d) we get:

Hn−1( fn−1) = E1(vn−1, fn−1) +min
fn−2

Hn−2( fn−2) + E2(vn−2, vn−1, fn−2, fn−1), (A.5)

where optimal choice fn−2 depends on fn−1:

fn−2( fn−1) = arg min
fn−2

Hn−2( fn−2) + E2(vn−2, vn−1, fn−2, fn−1). (A.6)

• Finally, we have function Hn that depends only on the label fn (see Figure A.1e)

Hn( fn) = E1(vn, fn) +min
fn−1

Hn−1( fn−1) + E2(vn−1, vn, fn−1, fn). (A.7)

One can see that the minimum of function Hn equals to the minimum of the original prob-
lem (A.1), is:

min
fn

Hn( fn) =

= min
fn

E1(vn, fn) +min
fn−1

E2(vn−1, vn, fn−1, fn) + Hn−1( fn−1)

= min
fn

E1(vn, fn) +min
fn−1

E2(vn−1, vn, fn−1, fn) + E1(vn−1, fn−1) +min
fn−2

Hn−2( fn−2)

= min
fn

E1(vn, fn) +min
fn−1

E2(vn−1, vn, fn−1, fn) + E1(vn−1, fn−1) +min
fn−2

E1(vn−2, fn−2) + . . .

= min
f1, f2... fn

n∑
i=1

E1(vi, fi) +
n−1∑
i=1

E2(vi, vi+1, fi, fi+1).

(A.8)
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Figure A.2: The Viterbi algorithm for a chain. (a-d) subsequent steps of the backward pass of
the Viterbi algorithm.

Our objective is to recursively solve the subproblems one by one.

• We start with the subproblem for Hn:

f ∗n = arg min
fn

Hn( fn) (A.9)

Figure A.2a shows optimal choice f ∗n .

• Since fn−1 depends on fn we can find optimal value f ∗n :

f ∗n−1 = arg min
fn−1

Hn−1( fn−1) + E2(vn−1, vn, fn−1, f ∗n ) (A.10)

Figure A.2b shows optimal choices f ∗n−1 and f ∗n .
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• We continue recursively (see Figure A.2c) until we get:

f ∗2 = arg min
f2

H2( f2) + E2(v2, v3, f2, f ∗3 ). (A.11)

• Finally, we find optimal value of last label (see Figure A.2d)

f ∗1 = arg min
f1

H1( f1) + E2(v1, v2, f1, f ∗2 ). (A.12)

A.2 Viterbi Algorithm for Tree

This section describes the same optimization technique for solving our original matching prob-
lem given in Equation (4.14), where T1 is an arbitrary tree. Felzenszwalb et al. [49] used
the same optimization approach in the context of object recognition. Consider the following
matching problem:

min
f1, f2... fn

n∑
i=1

E1(vi, fi) +
∑

{vi,v j}∈E1

E2(vi, v j, fi, f j), (A.13)

where T1 and T2 denote ground truth and testing tree, respectively. We assume that the nodes
of T1 are numbered in level-order, where we visit every node on a level before going to a lower
level ( Figure A.3a).

We decompose the original problem into a sequence of smaller subproblems in a similar
way.

• For each node vi on the lowest level, we obtain the functions as (see Figure A.3b):

H7( f7) = E1(v7, f7),

H8( f8) = E1(v8, f8) and

H9( f9) = E1(v9, f9).

(A.14)

• For each node vi on an upper level (see Figure A.3c):

H4( f4) = E1(v4, f4),

H5( f5) = E1(v5, f5) +min
f7

H7( f7) + E2(v5, v7, f5, f7) +min
f8

H8( f8) + E2(v5, v8, f5, f8),

H6( f6) = E1(v6, f6) +min
f9

H9( f9) + E2(v6, v9, f6, f9),

(A.15)
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and

f7( f5) = arg min
f7

H7( f7) + E2(v5, v7, f5, f7),

f8( f5) = arg min
f8

H8( f8) + E2(v5, v8, f5, f8),

f9( f6) = arg min
f9

H9( f9) + E2(v6, v9, f6, f9).

(A.16)

• We continue on toward an upper level (see Figure A.3d)

H2( f2) = E1(v2, f2) +min
f4

H4( f4) + E2(v2, v4, f2, f4) +min
f5

H5( f5) + E2(v2, v5, f2, f5),

H3( f3) = E1(v3, f3) +min
f6

H6( f6) + E2(v3, v6, f3, f6),

(A.17)

and

f4( f2) = arg min
f4

H4( f4) + E2(v2, v4, f2, f4),

f5( f2) = arg min
f5

H5( f5) + E2(v2, v5, f2, f5),

f6( f3) = arg min
f6

H6( f6) + E2(v3, v6, f3, f6).

(A.18)

• Finally, at the highest level (see Figure A.3e) we get

H1( f1) = E1(v1, f1)+min
f2

H2( f2)+E2(v1, v2, f1, f2)+min
f3

H3( f3)+E2(v1, v3, f1, f3) (A.19)

and

f2( f1) = arg min
f2

H2( f2) + E2(v1, v2, f1, f2) and

f3( f1) = arg min
f3

H3( f3) + E2(v1, v3, f1, f3).
(A.20)

Now, we recursively solve the subproblems in reverse order (i.e. we solve every subproblem
on a level, then go to the adjacent lower levels).

• Level 1 (see Figure A.4a)
f ∗1 = arg min H1( f1). (A.21)
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• Level 2 (see Figure A.4b)

f ∗2 = arg min
f2

H2( f2) + E2(v1, v2, f ∗1 , f2),

f ∗3 = arg min
f3

H3( f3) + E2(v1, v3, f ∗1 , f3).
(A.22)

• Level 3 (see Figure A.4c)

f ∗4 = arg min
f4

H4( f4) + E2(v2, v4, f ∗2 , f4),

f ∗5 = arg min
f5

H5( f5) + E2(v2, v5, f ∗2 , f5),

f ∗6 = arg min
f6

H6( f6) + E2(v3, v6, f ∗3 , f6).

(A.23)

• Level 4 (see Figure A.4d)

f ∗7 = arg min
f7

H7( f7) + E2(v5, v7, f ∗5 , f7),

f ∗8 = arg min
f8

H8( f8) + E2(v5, v8, f ∗5 , f8),

f ∗9 = arg min
f9

H9( f9) + E2(v6, v9, f ∗6 , f9).

(A.24)

The pseudo-code for one of the possible ways to implement this algorithm is illustrated
in Figure A.5.
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Figure A.3: The Viterbi algorithm for a tree. (a) illustrates the matching problem for ground
truth tree T1 and testing tree T2. (b-e) subsequent steps of the forward pass of the Viterbi
algorithm.
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Figure A.4: The Viterbi algorithm for a tree. (b-e) subsequent steps of the backward pass of
the Viterbi algorithm.
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Input: v1, v2 . . . vn ∈ V1

E1(v, f (v))
E2(u, v, f (u), f (v))

1 for level k starting with the lowest to the highest do
2 foreach node vi on a level k do
3 foreach label value fi of node vi do
4 cost[i][ fi]← E1(vi, fi)
5 foreach adjacent to vi node v j on a lower level k + 1 do
6 min cost← ∞
7 foreach label value f j of node v j do
8 if min cost > E2(vi, v j, fi, f j) + cost[ j][ f j] then
9 child label[ j][ fi]← f j

10 min cost← E2(vi, v j, fi, f j) + cost[ j][ f j]
11 end
12 end
13 cost[i][ fi]← cost[i][ fi] +min cost
14 end
15 end
16 end
17 end

18 for node vi on the highest level do
19 foreach label value fi of node vi do
20 opt label[i]← any label value fi

21 if min cost[i][opt label[i]] > min cost[i][ fi] then
22 opt label[i]← fi

23 end
24 end
25 end

26 for level k starting with the highest to the lowest do
27 foreach node vi on a level k do
28 foreach adjacent to vi node v j on a level k + 1 do
29 opt label[ j]← child label[ j][opt label[i]]
30 end
31 end
32 end

Result: opt label

Figure A.5: Pseudo-code of Viterbi algorithm for tree.
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