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Abstract 

Engineered nanoparticles are widely used and will eventually be released to the subsurface 

environment and contaminate groundwater resources. However, the transport of engineered 

nanoparticles through soil is currently not well understood and cannot be modelled in any 

fundamental manner, placing groundwater resources at risk from nanoparticle contamination. 

This inability to accurately simulate transport is due to a lack of experimental information on 

nanoparticle interactions in the pore spaces of real soils. 

This thesis illuminates the pore-scale processes governing silver nanoparticle transport through 

soil. In addition, it examines the influence of surface chemistry and grain/pore distributions on 

those processes. For the first study, a method was developed and validated which employs 

Synchrotron X-ray Computed Microtomography (SXCMT) to experimentally quantify 

changing concentrations of silver nanoparticles, both spatially and temporally, within real soil 

pore spaces during transport. For the second study, the SXCMT imaging method was employed 

to experimentally investigate the role of pore-scale processes on silver nanoparticle transport 

through different soils representing different surface chemistries and grain distributions. The 

experiments found that nanoparticle transport and retention is significantly impacted by small 

regions of low fluid velocity near grain-grain contacts (termed ‘immobile zones’). For the third 

study, the experimental SXCMT datasets from the second study were coupled with 

Computational Fluid Dynamics to estimate the pore-scale nanoparticle mass flux and flow 

rates. The estimated distributions of mass flux and flow rates suggested that the current 

approach to modelling nanoparticle retention was incapable of considering mass flow in the 

centers of soil pores, rendering it unable to accurately predict the rate at which nanoparticles 

will be retained by soil.  

Overall, this thesis presents the first experimental datasets of pore-scale nanoparticle 

concentrations during transport. These previously unobtainable datasets provided the first 

direct confirmation of ‘immobile zones’ and their contribution to anomalous nanoparticle 

transport behaviour. In addition, they provided some of the first evidence as to why current 

modelling approaches are unable to predict nanoparticle retention rates.  
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Chapter 1 

 

1 Introduction 

1.1 Background 

Engineered nanoparticles are becoming ubiquitous in consumer and industrial technology 

with applications ranging from UV absorption in sunscreen (TiO2 and ZnO 

nanoparticles), reinforcing carbon fiber materials (carbon nanotubes), and anti-microbial 

bandages and clothing (silver nanoparticles embedded in textiles). The conceptual origins 

of modern engineered nanoparticle technology are typically attributed to Richard 

Feynman’s now-famous lecture ‘There’s plenty of room at the bottom’ [Feynman, 1960], 

however the historical usage of nanoparticles extends back to the bronze age where they 

were used to create vibrantly coloured materials such as the stained glass windows of the 

medieval era [Colomban, 2009]. Despite this extended history, only recently have 

nanoparticles been produced in large enough quantities to pose risks to human and 

environmental health. Recent estimates of industrial nanoparticle production rates range 

from 5000 tons/year for TiO2 nanoparticles, 500 tons/year for silver nanoparticles and 

350 tons/year for carbon nanotubes [Mueller and Nowack, 2008]; although these 

estimates are at least 7 years out of date and production rates are now likely higher.  

Environmental exposure modelling of diffuse (i.e. non-point source) releases suggests 

that these production rates are sufficient to yield detectable quantities of engineered 

nanoparticles in air, soil and water resources, which are potential vectors for human 

exposure [Mueller and Nowack, 2008; Nowack and Bucheli, 2007].  In addition, point 

source releases such as accidental industrial spills and leakages may potentially yield 

localized regions of highly concentrated engineered nanoparticles in the environment. 

More recently, it has been suggested that engineered nanoparticles present in water may 

not be completely removed by drinking water treatment processes [Tiede et al., 2015]. 

Thus a multi-barrier approach is required to protect drinking water from nanoparticle 

contamination and to minimize human exposure and potential health effects. The multi-
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barrier approach involves minimizing nanoparticle exposure to drinking water source 

zones (e.g., groundwater and surface water bodies), treatment processes, and distribution 

systems. 

Of particular interest is the risk engineered nanoparticles may pose to groundwater source 

zones. Groundwater is widely used as a source of drinking water, approximately 25% of 

Canadians rely on groundwater for drinking water [Statistics Canada, 2010] and a third 

of the public water supply in the U.S.A. is provided from groundwater sources [Kenny et 

al., 2009]. As such, protecting groundwater resources from contamination by engineered 

nanoparticles is key to protecting large portions of the population from possible adverse 

health effects. However, these groundwater resources have historically been susceptible 

to contamination from industrial pollution; there are an estimated 30,000 sites across 

Canada which are contaminated with hazardous chemicals [NRTEE, 2003].  

A key component in protecting groundwater resources from contamination by engineered 

nanoparticles is understanding the transport, and ultimate fate, of nanoparticles released 

to the subsurface. Once released to the subsurface environment, nanoparticles will be 

transported along with the groundwater flow. Understanding the processes which govern 

their transport, such as attachment onto the soil, is necessary to predict how far the 

nanoparticles will be transported through the subsurface and, ultimately, the risk 

nanoparticles pose to groundwater source zones.  

1.2 Research Objectives 

The overall goal of this study was to develop an improved understanding of how 

nanoparticles are transported through soils. Specifically, this study develops a new 

experimental methodology for observing nanoparticle transport within real porous media 

and subsequently employs that methodology to examine the influence of surface 

chemistry and grain distribution on the pore-scale processes governing the transport of 

silver nanoparticles. The first objective was to develop and validate a method for using 

Synchrotron X-ray Computed Microtomography (SXCMT) to quantify nanoparticle 

concentrations within real pore spaces. Nanoparticle solutions of varying concentrations 

were emplaced within glass bead-packed water saturated columns and imaged via 
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SXCMT. The resulting SXCMT datasets were then examined to develop an 

understanding of the accuracy and uncertainty of the technique.  

The second objective was to link so-called ‘anomalous’ transport behaviour of 

nanoparticles with specific pore-scale transport processes and to examine the influence of 

surface chemistry and pore geometry on these processes. This was conducted by 

employing SXCMT to examine pore-scale silver nanoparticle distributions during 

transport through different sand columns.  

The third objective was to quantify the distributions of nanoparticle mass flux and flow 

rates through a soil’s pore space and to ascertain how well the conceptual model 

employed by mechanistic computer models approximated these distributions. This was 

conducted by coupling the SXCMT datasets of the silver nanoparticle/uniform quartz 

experiment with computational fluid dynamics modelling of the SXCMT dataset.  

1.3 Thesis Outline 

The thesis is written in integrated article format. A brief description of each chapter is 

listed below.  

Chapter 1 provides a brief overview of nanoparticles in the environment and outlines the 

scope of the thesis. 

Chapter 2 reviews the current literature on predicting nanoparticle and colloid transport 

through the subsurface environment.  

Chapter 3 presents a new method which employs Synchrotron X-Ray Computed 

Microtomography to quantify pore-scale nanoparticle concentrations during bench-scale 

transport experiments.  

Chapter 4 employs the method presented in Chapter 3 and examines the impact of 

‘immobile zones’, regions of low or no flow velocity, on nanoparticle transport through 

soil. 
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Chapter 5 couples the method presented in Chapter 3 with Computational Fluid 

Dynamics to examine why Colloid Filtration Theory is unable to accurately predict 

nanoparticle retention rates during transport through soil.  

Chapter 6 summarizes the major conclusions of the thesis, discusses the limitations and 

identifies areas requiring further research.   
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Chapter 2 

[Molnar et al., 2015b] 

2 Predicting colloid transport through saturated porous 
media: A critical review 

2.1 Introduction 

The introduction of Colloid Filtration Theory (CFT) [Yao et al., 1971] sparked four 

decades of research at the pore, macroscopic, and field scales to develop predictive 

capabilities for colloid transport and retention in porous media.  Significant strides have 

been made in the development of mechanistic models and their upscaling that link pore 

scale colloid transport processes to predictions of field scale behavior.  This thesis 

represents an ideal opportunity to review the major contributions in this evolving, highly 

relevant field.  It is also an opportunity to critically reflect on how the accuracy of field-

scale predictions may be constrained by the simplifying assumptions built into 

mechanistic models, correlations equations and their relationship to our growing 

understanding of actual, pore-scale colloid behavior.  

Prediction of colloid transport through the subsurface is important for a wide range of 

environmental and human-health related risk scenarios.  For example, predictive colloid 

transport models are necessary to assess and minimize the risk of pathogen transport in 

groundwater.  Among numerous examples is the Walkerton Ontario, Canada tragedy 

[O’Connor, 2002] in which the town’s drinking water supply well was contaminated by 

E. coli transported in groundwater flow through the subsurface.  Colloid transport from 

septic systems, agricultural runoff, and other sources through near-shore soils may lead to 

elevated concentrations of pathogenic colloids in beach sands [e.g. Lipp et al., 2001] and 

transport across the groundwater/surface water interface may be the cause of frequent 

beach closures [e.g. Russell et al., 2012].  A wide array of research into pathogen 

transport has been undertaken including virus transport [Jin and Flury, 2002; Ryan et al., 

1999; Schijven et al., 1999] and column-scale bacteria transport [e.g. Albinger et al., 

1994; Baygents et al., 1998; Simoni et al., 1998; Torkzaban et al., 2008], bacteria 
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transport in the field [Bales et al., 1989; Blanford et al., 2005; DeBorde et al., 1999; 

Harvey et al., 1995; Powelson et al., 1993; Ryan et al., 1999; Ryan et al., 2002; Scheibe 

et al., 2011; Schijven et al., 1999; Wielen et al., 2008; Zhang et al., 2001b] and phage 

persistence in soils [e.g. Yates et al., 1985] among many others; numerous reviews of 

pathogen transport in groundwater are available [Bitton and Harvey, 1992; Harvey, 1997; 

Sen, 2011; Taylor et al., 2004]. 

Engineered nanoparticles (ENPs), another class of colloids, are of significant interest for 

their transport in porous media.  On one hand, ENPs are an emerging environmental 

contaminant.  Industrial production of engineered nanoparticles, such as carbon 

nanotubes and nanosilver, has increased significantly in recent years [Christian et al., 

2008; Gao et al., 2013; Majestic et al., 2010; Marambio-Jones and Hoek, 2010; Nowack 

and Bucheli, 2007; Petersen et al., 2011; Wiesner et al., 2006] and it is expected that 

their presence in the environment will increase.  This can occur through diffuse ENP 

release [Mueller and Nowack, 2008], including ENP dispersal in aerosols, in exhaust 

emissions, and in land application of wastewater sludge containing nanoparticles 

originating in consumer products.  Point sources of ENPs include leakage from landfills 

and accidental industrial releases.  Prediction of ENP transport in porous media is 

important for assessing the risk from ENP migration in aquifers and the contamination of 

wells used for drinking water supply.  ENP studies have involved modeling [Bai and Li, 

2012; Cullen et al., 2010; Taghavy et al., 2013], pore scale experiments [Dunphy Guzman 

et al., 2006; May et al., 2012; May and Li, 2013; Molnar et al., 2014] and column 

experiments [Jaisi and Elimelech, 2009; Lecoanet et al., 2004; Liang et al., 2013; Lin et 

al., 2011; Liu et al., 2009a; Neukum et al., 2014; Ren and Smith, 2013; Torkzaban et al., 

2010; Uyusur et al., 2010; Wang et al., 2008; Zhang et al., 2012] .  Numerous review 

papers exist, including Petersen et al. [2011] who present a review of the transport and 

environmental risks of carbon nanotubes. 

ENPs are also being considered as a remediation strategy for sites contaminated with 

industrial organic liquids.  For example, nano-zero-valent iron (nZVI) particles are 

injected into the subsurface at contaminated sites for the in-situ reduction of chlorinated 

solvents in groundwater [Johnson et al., 2013; O'Carroll et al., 2013; Tosco et al., 
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2014a].  This novel approach has been evaluated at both the laboratory [e.g. Berge and 

Ramsburg, 2009; Kocur et al., 2013; Phenrat et al., 2009; Raychoudhury et al., 2010] 

and pilot field scales [Johnson et al., 2013; Kocur et al., 2014].  Recent advances include 

the tailored design and synthesis of novel ENPs including bimetallic composites and 

polymer coatings [Bennett et al., 2010; Gastone et al., 2014; He and Zhao, 2008; 

Sakulchaicharoen et al., 2010; Tosco et al., 2014b], which can influence surface charge, 

fluid viscosity, and other properties atypical of traditional colloid suspensions.  The 

design and optimization of these ENP-based remediation schemes require accurate 

predictive models of ENP transport in porous media, and users of existing CFT need to 

understand how and where it is possible to change parameters appropriately for non-

traditional suspensions.  

Colloids can also enhance the transport of dissolved contaminants in groundwater via 

their sorption onto colloid surfaces.  Colloid-facilitated transport has been studied for a 

wide range of contaminants including radionuclides [e.g. Kersting et al., 1999; Novikov et 

al., 2006], hydrocarbons [e.g. Qi et al., 2014] and pesticides [e.g. de Jonge et al., 1998; 

Sprague et al., 2000]. Research in this area includes modelling the reduction in 

contaminant retardation [Corapcioglu and Jiang, 1993; Flury and Qiu, 2008; Johnson et 

al., 1995b]. Several reviews and special journal sections have provided reviews of 

colloid-associated contaminant transport [de Jonge et al., 2004; McCarthy and Zachara, 

1989; Ouyang et al., 1996; Ryan and Elimelech, 1996; Sen and Khilar, 2006].  Further 

understanding of colloid transport mechanisms are required to predict the risk posed by 

colloid-enhanced transport mechanisms.  

The predictive tools developed to explore column and field scale colloid transport 

phenomena are primarily continuum-based numerical models that solve the advection-

dispersion equation for solute transport in porous media.  Terms employing rate 

coefficients to drive colloid mass transfer to the stationary (solid) phase and back are 

used to describe the macroscopically observed transport behavior of colloids as described 

by breakthrough-elution concentration histories and profiles of retained concentration as 

a function of distance.  Rate constants for colloid transfer to the stationary phase may be 

independently determined using upscaled predictions from mechanistic models that 



8 

A version of this chapter has been published [Molnar et al., 2015b] 

employ relevant force and torque balances to determine colloid trajectories in flow fields 

corresponding to representative pore (collector) geometries.  Relevant forces include 

fluid drag, diffusion, gravity, as well as colloid-surface forces including van der Waals 

and electric double layer as described by DLVO theory [Derjaguin and Landau, 1941; 

Verwey and Overbeek, 1948] and its derivatives.  The upscaled mechanistic predictions 

provide good prediction of colloid transport at the continuum scale for spheroidal colloids 

in uniform media when colloid-collector repulsion is absent (so-called ‘favorable’ 

conditions), as is typically the case for oppositely charged surfaces [e.g. Elimelech, 

1991].   

In the environment, however, the typical condition is that both colloids and collector 

surfaces carry negative charge.  Colloids exhibiting net negatively-charged surfaces 

under environmental pH conditions include: bacteria [e.g. Bradford et al., 2006a; Foppen 

and Schijven, 2006; McClaine and Ford, 2002], protozoa [e.g. Liu et al., 2009b; Ruohola 

et al.], viruses [e.g. Mondal and Sleep, 2013; Ryan et al., 1999] and engineered 

nanoparticles [e.g. Jiang et al., 2012; Kocur et al., 2014; Liang et al., 2013; Molnar et al., 

2014; Torkzaban et al., 2010].  Common minerals exhibiting negatively charged surfaces 

at typical pH include quartz, silica, feldspars, mica and certain clays [Molnar et al., 2011, 

Table 1].  The combination of both colloids and collectors carrying a negative charge 

leads to electric double layer repulsion (as well as steric repulsion from surface 

macromolecules), thereby yielding ‘unfavorable’ conditions for attachment. 

Repulsion between colloids and porous media collectors results in complex transport 

behavior that is mediated by the topology of the pore domain and the flow field, via such 

features as low flow (diffusion-limited) zones that may be generated in non-spheroidal or 

non-uniform media, such as many environmental sediments and soils.  In recognition of 

these complexities, mechanistic models have been adapted to address more complex 

scenarios [Long and Hilpert, 2009; Long et al., 2010; Ma et al., 2009; Ma and Johnson, 

2010; Ma et al., 2011; Ma et al., 2013; Pazmino et al., 2014a].  However, upscaling of 

these types of models for implementation into advection-dispersion or other transport 

equations represents an important ongoing research opportunity.   
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Whereas mechanistic predictions regarding the above complexities are not yet readily 

implemented into continuum scale transport models, advances have occurred in 

descriptive continuum-scale colloid transport models describing these complexities [e.g. 

Bradford et al., 2009; Bradford et al., 2011; Katzourakis and Chrysikopoulos, 2014; Leij 

and Bradford, 2013; Šimůnek and van Genuchten, 2008; Tufenkji and Elimelech, 2004b; 

2005a; b].  These models employ parameters fitted to column-scale breakthrough-elution 

concentration histories, and provide a method to infer potential pore-scale mechanisms 

driving complex transport behavior.  There is clearly an important ongoing research 

opportunity associated with obtaining high resolution, pore-scale information on the 

behavior of colloids and its generalization into continuum-scale models in order to further 

improve predictive approaches to incorporating colloid interaction with soil and flow 

heterogeneity.  

This chapter provides a critical review of colloid transport literature with a specific focus 

on linking pore-scale processes to column and field scale observations as well as 

continuum-scale transport models across a range of relevant subsurface scenarios.  This 

review exclusively discusses colloid transport through water saturated media and aims to 

help distinguish and clarify the roles of different pore and continuum-scale modeling 

approaches, focusing on post-1990 colloid transport work.  The chapter is structured so as 

to (i) provide an introduction to the fundamentals and review existing knowledge and 

knowledge gaps for those who are relatively new to the field, and (ii) provide a more 

detailed, critical assessment of the state of the art.  In Section 2.2, a brief review is 

provided of mean-field DLVO interactions and experimentally observed colloid transport 

phenomena, focusing on the contrasting transport behaviors observed under favorable 

versus unfavorable conditions for attachment.  Section 2.3 describes strategies by which 

kinetic parameters have been used in continuum models to infer mechanisms from 

experimental observations.  Section 2.4 reviews the current and emerging ability of 

mechanistic approaches to independently predict kinetic parameters used in continuum 

models (e.g. retention coefficients) in favorable conditions with unfavorable conditions 

discussed in the Appendix 7.3. In addition, the Appendix 7.4 examines upscaling of 

mechanistic predictions to rate constants, explores the role of topology in upscaling 

strategies, and highlights opportunities for future research.     
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2.2 Mean-field DLVO interactions and experimental 
observations 

2.2.1 Mean-field DLVO forces  

As mentioned, the mechanistic models that underpin predictive tools for colloid transport 

depend upon DLVO interactions. Classic DLVO theory [Derjaguin and Landau, 1941; 

Verwey and Overbeek, 1948] attempts to describe the colloid-collector interactions in 

terms of adhesive and repulsive forces. By summing the adhesive (negative) and 

repulsive (positive) energies between a colloid and collector over a range of separation 

distances, an interaction energy profile – the net energy versus separation distance – is 

constructed. Figure 2.1 presents two typical, classic DLVO interaction energy profiles for 

favorable (silver colloid – iron oxide) and unfavorable interaction conditions (silver 

colloid – quartz).  The Figure 2.1 illustrates a number of distinct features or regions that 

are typical of colloid-surface interaction profiles. In unfavorable conditions a repulsive 

barrier exists that either limits colloid attachment to the surface (experimental 

observations) or prevents attachment (for energy barriers exceeding several kT in 

mechanistic simulations).  

Outward from this repulsive barrier exists a small region of attraction where colloids may 

accumulate in a secondary minimum at separation distances tens of nm from the collector 

surface.  In situations where colloids either possesses enough energy to overcome the 

barrier, or no barrier exists (i.e., favorable conditions), they can enter the primary 

minimum (Figure 2.1) and physically attach to the surface.  

The ‘near-surface fluid domain’ is defined, for the purposes of this review, as the region 

between the collector surface and the distance over which van der Waals attraction is 

significant, i.e., secondary minimum and closer (see Figure 2.1). The ‘bulk fluid domain’ 

is defined as the area beyond the near-surface fluid domain beyond which colloid-

collector DLVO interactions are insignificant.  For typical colloid-collector systems, the 

interface between the bulk fluid domain and the near-surface domain occurs in the range 

of several to hundreds of nm [e.g. Johnson and Hilpert, 2013].  
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It is worthwhile mentioning that the energy barrier also influences colloid detachment 

from the primary minimum. In classic DLVO theory, the primary minimum is an 

infinitely deep well and the height of the energy barrier is inconsequential to colloids 

entrapped within the minimum. However, short range forces such as Born repulsion serve 

to limit the depth of the well to finite values [Ruckenstein and Prieve, 1976]. In this 

finite-depth scenario, the energy barrier now contributes to the effective depth of the 

energy well and acts as a barrier to both colloid attachment and detachment [Ryan and 

Elimelech, 1996]. Increasing the height of the energy barrier via perturbations in solution 

chemistry will deepen the energy well holding the colloid on the surface of the collector 

[Hahn et al., 2004].  

The forces acting on the colloids are the derivative of the energies with respect to 

separation distance, such that both energy and force profiles exhibit the same features: 

primary minimum, repulsive barrier, and secondary minimum. Using this sign 

convention, attractive forces are negative and repulsive forces are positive. The 

separation distances of these features differ slightly between the force and energy 

profiles, but this is not important to this discussion. This review refers to the features 

illustrated in Figure 2.1 without distinguishing specifically between force and energy. 

Traditional mechanistic colloid transport and retention models describe colloid-collector 

interactions (i.e., repulsion, physical contact and retention in the secondary minimum) by 

considering the above-described DLVO theory.  A shortcoming of this theory (as 

presented above) is that it considers the surfaces to be monolithic (homogeneous). It is 

worthwhile emphasizing that this monolithic DLVO approach does not represent a ‘mean 

interaction energy’ of colloids, but rather it is an interaction calculated from the bulk 

surface properties of colloids and collectors. This so-called mean-field DLVO approach 

is an over-generalization of the surface characteristics of colloids and collectors, since it 

does not account for micro- to nano-scale heterogeneity that is expected to exist on real 

surfaces (as discussed in the Appendix 7.3).  Hence, while we review below the great 

utility of mean-field DLVO interactions for interpreting the transport behavior of colloids 

in porous media, we also discuss in subsequent Sections the emerging opportunities 

offered by the incorporation of heterogeneity into colloid-surface DLVO interactions.  
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Figure 2.1: Two examples of classic DLVO interaction profiles  for favorable conditions (dashed red 

line) and unfavorable conditions (solid black line) for a 0.3 µm diameter silver colloid interacting 

with an iron oxide surface and quartz surface respectively in a 300mM ionic strength solution.  The 

calculation was performed using the sphere-plate Surface Element Integration technique 

[Bhattacharjee et al., 2000] with representative literature values for zeta potentials (silver colloids: -

28 mV [Molnar et al., 2015a], quartz: -55mV [Liang et al., 2013], iron oxide: -25 mV [Molnar et al., 

2015a]) and Hamaker constants (silver colloids: 15x10-20 J [Pinchuk, 2012], quartz: 7.93x10-20 J [Ross 

and Morrison, 1988], iron oxide: 23.2x10-20 J [Faure et al., 2011].  

2.2.2 Experimental observations: Influence of favorable versus 
unfavorable conditions  

While DLVO forces are significant over small (nanoscale) separation distances (see near 

surface fluid domain in Figure 2.1), the presence or absence of a repulsive energy barrier 

controls the transport and retention of colloids at column and field scales. A large number 

of column-scale transport experiments have demonstrated the implications of these small 

scale interactions that yield field scale consequences, as described below.   
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A note on terminology: ‘attachment’ is herein defined as the immobilization, via physical 

contact, of the colloid onto the collector surface within the primary energy well.  As 

continuum scale experiments typically cannot distinguish attachment from other retention 

mechanisms (such as occupancy in the secondary energy minimum), the term ‘retention’ 

will be employed to describe colloids that do not exit the system during the term of the 

experiment.  Likewise, continuum scale experiments that observe delayed exit of colloids 

from the experiment typically cannot distinguish between colloids that detached from a 

collector surface or colloids that were temporarily retained without attachment. Thus, the 

term ‘re-entrainment’ will be employed to avoid attributing a particular mechanism to the 

colloids’ delayed exit during these experiments.  To be clear, the processes of attachment 

versus retention, and detachment versus re-entrainment are indeed distinguishable in 

many pore scale direct observation experiments, as well as in pore scale mechanistic 

simulations (they must be distinguished in the latter).  In those contexts we will refer 

specifically to attachment and detachment as appropriate.   

Column experiments conducted under favorable conditions typically exhibit relatively 

simple colloid transport behavior: as seen in Figure 2.2 (C), colloid breakthrough during 

injection reaches a steady-state (i.e., temporally constant) plateau [Elimelech et al., 2000; 

Li et al., 2004; Li et al., 2005; Tufenkji and Elimelech, 2004b; 2005b].  
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Figure 2.2 Experimental data (symbols) for the breakthrough-elution behavior (A–C) and retained 

profiles (D–F) of polystyrene latex microspheres in quartz sand in unfavorable and favorable 

conditions described in [Li and Johnson, 2005] . Lines are continuum model descriptions with a 

single deposition rate coefficient. The single deposition rate coefficient was used to generate a 

probabilistic deposition distribution. Adapted from [Li and Johnson, 2005]. 

During the elution phase in favorable conditions, the concentration of colloids exiting the 

column decreases sharply with time indicating that there is negligible re-entrainment of 

previously retained colloids [Li et al., 2004; Tufenkji and Elimelech, 2004b; 2005b]. The 

corresponding profiles of retained colloid concentrations with column length show a 

classic log-linear decrease under favorable conditions (Figure 2.2, F), as predicted by 

analytical solutions of the advective-dispersive-colloid transport equation (discussed in 

Section 2.3) [Han et al., 2014; Li et al., 2004; Tufenkji and Elimelech, 2004b; 2005b]. 

These simple, well defined column-scale behaviors are due to the straightforward colloid-

collector interactions at the pore scale under favorable conditions. Colloids that approach 

the collector experience no repulsion and come into physical contact with the collector 

surface (immobilize) [Johnson et al., 2010; Kuznar and Elimelech, 2007].  These colloids 

do not typically detach, since the strong attractive forces exceed fluid drag forces 

[Bergendahl and Grasso, 2000]. 
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Column experiments conducted under unfavorable conditions exhibit significantly 

different behavior from those conducted under favorable conditions (Figure 2.2, 

A,B,D,E).  Depending on the experimental conditions, unfavorable breakthrough 

behavior may also reach a steady state plateau (Figure 2.2 A,B) [Elimelech et al., 2000; 

Jiang et al., 2012; Li et al., 2005].  However, non-steady state behavior may also occur. 

The effluent concentration may gradually increase over time, suggesting that a limited 

number of sites for colloid retention exist and are progressively filled (i.e., blocking) 

[Camesano et al., 1999; Johnson and Elimelech, 1995; Liang et al., 2013; Lin et al., 

2011; Liu et al., 2009a; Mattison et al., 2011; Wang et al., 2012].  Decreasing 

concentration during breakthrough (called ripening) suggests that favorable colloid-

colloid interactions allow already retained colloids (presumably due to inferred ‘favorable 

’ heterogeneity as described in the appendix Section 7.3) to serve as additional sites for 

further colloid retention[Jiang et al., 2012; Tong et al., 2008].  

Extended tailing may occur during the elution phase of unfavorable experiments (Figure 

2.2 A,B). Tailing is defined by the slow release of colloids from the column (illustrated in 

Figure 2.2) and is indicative of significant re-entrainment, as observed for microbes in the 

laboratory [Fontes et al., 1991; Harter et al., 2000; Hendry et al., 1997; 1999; 

Hornberger et al., 1992; Johnson et al., 1995a; Li and Johnson, 2005; Li et al., 2005; 

Lindqvist et al., 1994; McCaulou et al., 1994; McCaulou et al., 1995], field  [DeBorde et 

al., 1999; Harvey et al., 1995; Ryan et al., 1999; Schijven et al., 1999; Scholl and Harvey, 

1992] and non-biological colloids [Johnson et al., 2007; Li et al., 2004; Li et al., 2005; 

Tong et al., 2005; Tufenkji et al., 2004].  The re-entrainment behavior under unfavorable 

conditions is sensitive to solution chemistry and fluid flow as shown for re-entrainment 

with perturbations, including: variation in ionic strength [Jiang et al., 2012; Mattison et 

al., 2011; Ryan et al., 1999; Shen et al., 2007; Shen et al., 2012; Tufenkji and Elimelech, 

2004b; 2005b], variation in pH [Ryan et al., 1999; Tufenkji and Elimelech, 2004b; 2005b] 

and variation in fluid velocity [Pazmino et al., 2014b; Shang et al., 2008].  Traditionally, 

such release has been attributed to colloids that were retained in secondary minima, 

although more recent mechanistic simulations incorporating heterogeneity indicate that 

detachment from primary minima may contribute as well (as described in the Appendix 

7.3).  
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The resulting retention profiles from unfavorable condition experiments (Figure 2.2, D,E) 

have shown non-log-linear (e.g. non-monotonic or hyperexponential) decreases in 

concentration as function of distance [Li et al., 2004; Liang et al., 2013; Tong and 

Johnson, 2007; Tufenkji and Elimelech, 2004b; Tufenkji et al., 2004; Tufenkji and 

Elimelech, 2005a; b].  Hyper-exponential and non-monotonic profiles have also recently 

been described for engineered nanomaterials [Liang et al., 2013; Wang et al., 2014a]. 

Column-scale experiments have been described using continuum-scale models employing 

rate constants and other parameters.  Trends in these parameters as a function of fluid 

velocity, solution ionic strength (IS), among others, allow inference of the mechanisms 

responsible for observed differences in colloid transport and retention in favorable versus 

unfavorable conditions, as described in the following Section.  

2.3 Continuum-scale models: Inferring mechanisms from 
kinetic coefficients 

Continuum scale models of the transport of species in groundwater solve mass balance 

equations at the macroscopic scale.  At this scale, microscopic properties are averaged 

over a representative elementary volume (REV) and the averaged property (e.g., porosity, 

fluid pressure, colloid concentration) is treated as a value that represents the property 

throughout the REV [Bear and Cheng, 2010].  Continuum models necessarily blur 

microscopic details and employ simplifying assumptions in the averaging process.  The 

result is partial differential equations that describe spatial and temporal rate of change of 

key macroscopic properties (e.g., fluid velocity, colloid concentration) at a practical 

scale.  These equations are typically discretized and solved on a numerical grid that 

correlates REVs to nodes.  The advection-dispersion equation (ADE), which describes 

the transport of a non-reactive solute tracer in groundwater, is a typical example (see 

Figure 2.3, tracer equation).  Additional continuum scale (averaged) terms are 

incorporated as additional mechanisms, processes, and reactions and are necessary to 

describe the behavior of a solute or colloid at this scale (e.g., partitioning to surfaces, 

filtration, degradation; examples for colloids provided in Figure 2.3 and further discussed 

below).  The values (or functions) assigned to the coefficients of these terms depend on 

the specific solute/colloid-soil-groundwater conditions being considered and are often 
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determined through batch studies (e.g., for sorption) or model fitting to experimental 

column effluent results (e.g., colloid retention). 

The treatment of colloid retention in continuum scale models differs significantly from 

that of solutes due to their interactions with the surface being kinetic (colloids) rather 

than equilibrium (solutes) [Schijven and Hassanizadeh, 2000; Tufenkji, 2007]. However, 

it is worth noting that solute adsorption is not always strictly equilibrium-based as there is 

evidence that adsorption can, in some circumstances, also be a kinetic process [Bahr and 

Rubin, 1987; Cvetkovic and Dagan, 1994; Dusek et al., 2015; Espinoza and Valocchi, 

1997; Fujikawa and Fukui, 1991; van Kooten, 1996; Zhang and Selim, 2006]. In many 

scenarios, the high diffusion rates of solutes allows them to reach surfaces (adsorb) and 

leave (desorb) readily, at rates that are typically high relative to groundwater fluid 

velocities (i.e., low Peclet numbers).  Thus, solute-surface interactions can be represented 

as a local equilibrium process that can often be represented using a linear proportionality 

(partition constant). Partition constants are empirical (experimentally measured), 

independently determined from continuum scale experiments, and the one representing 

distribution of solute between water and sediment is often referred to as Kd (defined as Cs 

= Kd×Cw where Cs is the solid-phase concentration and Cw is the aqueous phase 

concentration).   

In contrast, colloids exhibit relatively low diffusion, which limits their ability to reach 

surfaces (but also makes the likelihood of colloids reaching surfaces mechanistically 

predictable as described in Section 2.4).  Colloid transfer to surfaces (filtration) is 

therefore described using kinetic retention coefficients [Harvey and Garabedian, 1991; 

Schijven and Hassanizadeh, 2000; Tufenkji, 2007].  The resulting breakthrough behaviors 

of solutes versus colloids are quite distinct (Figure 2.3) in that partitioning (specifically 

the proportionality between concentrations in water and sediment) retards transient 

breakthrough of the solute relative to a conservative tracer  and yields complete steady-

state breakthrough (effluent and influent concentrations equivalent, C = C0).  In contrast, 

filtration (and other predominantly one-way processes such as degradation) yield reduced 

steady-state breakthrough (C < C0), and transient breakthrough is not generally retarded 

relative to a conservative tracer (Figure 2.3) [e.g. Foppen and Schijven, 2006]. It is noted 
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that transient breakthrough of colloids may occur earlier than for tracers if Taylor 

dispersion (intra-pore fluid velocity variation), or size-exclusion of colloids from small 

pores (inter-pore fluid velocity variation), yields enhanced advection of colloids relative 

to solutes [e.g. Bales et al., 1989; Chrysikopoulos and Syngouna, 2014; Keller et al., 

2004; Powelson et al., 1993; Zhang et al., 2001a]. 

The classic ADE for a non-reactive solute tracer (see Figure 2.3, tracer equation) is 

commonly modified for solute partitioning behavior (see Figure 2.3, partitioning 

equation) as well as colloid transport (see Figure 2.3, filtration equation). The modified-

ADE commonly employed for colloid transport incorporates a single kinetic retention 

coefficient for colloid retention. The single-rate description of colloid transport yields 

continuum-scale behavior that, in the absence of colloid aggregation, generally provides 

an excellent match to the colloid transport and retention behavior discussed in Section 2.2 

for favorable conditions (Figure 2.2)[e.g. Li et al., 2004; Tufenkji and Elimelech, 2004b; 

2005b]. 
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Figure 2.3: Typical breakthrough curve profiles that illustrate how equilibrium partitioning (i.e., 

retardation) (solid green line) and filtration (i.e., kinetic removal) (dashed blue line) impact 

breakthrough behavior relative to a conservative tracer (dotted red line). The variables in the 

equations are defined as: C, effluent concentration; v, advective velocity; t, time; x, position; θ, 

porosity; D, dispersivity; Kd, partitioning coefficient; ρb, bulk density; R, retardation coefficient; k, 

kinetic retention coefficient; Co, initial (injection) concentration; L, travel length. 

In unfavorable conditions, the single-rate description of colloid transport often fails to 

capture experimentally observed breakthrough and retention behavior (the non-steady 

state breakthrough and non-log-linear retention profiles described in Section 2.2; see 

Figure 2.2). The hyper-exponential retention profiles often observed in unfavorable 

conditions suggest that there is a high deposition rate near the porous medium inlet 

followed by a region with low deposition rates. A number of studies have inferred that 

this depth-dependent retention rate is due to a distribution of retention rates that are 

present within the experimental system [Chatterjee et al., 2011; Foppen and Schijven, 

2006; Foppen et al., 2007; Li et al., 2004; Schijven and Hassanizadeh, 2000; Schijven 

and Šimůnek, 2002; Tong and Johnson, 2007; Tufenkji et al., 2003; Tufenkji and 

Elimelech, 2004b; 2005a; b].  To describe this observation, a second, additional kinetic 
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retention coefficient is often employed – termed ‘dual-deposition’ or ‘two-site’ models – 

to better fit the experimental retention profiles (discussed in Section 2.2).  The two 

kinetic retention coefficients represent: a) a ‘fast’ kinetic retention coefficient to describe 

the early, sharp decrease in retained concentration, and (b) a ‘slow’ kinetic retention 

coefficient to describe the later, more gradual decline in retained concentration 

[Chatterjee et al., 2011; Mattison et al., 2011; Mondal and Sleep, 2013; Schijven and 

Šimůnek, 2002; Tufenkji and Elimelech, 2004b; 2005a; b].  This results in an improved 

model fit to experimental hyper-exponential profiles (Figure 2.2). 

The hyper-exponential profiles (initially observed for bacteria and protozoa) were 

attributed to heterogeneity among the bacterial population such that “stickier” individuals 

were retained upgradient of “less sticky” individuals [Albinger et al., 1994; Baygents et 

al., 1998; Bolster et al., 1999; Bolster et al., 2000; Harvey et al., 1995; Hendry et al., 

1997; Schijven et al., 1999; Simoni et al., 1998].  Distributions in colloid size, surface 

charge, coatings and hydrophobicity have been inferred to yield heterogeneity among 

colloid populations, and hyper-exponential retention profiles as illustrated in Figure 2.2 

[Chatterjee et al., 2011; Foppen et al., 2007; Li et al., 2004; Schijven and Hassanizadeh, 

2000; Schijven and Šimůnek, 2002; Simoni et al., 1998; Tong and Johnson, 2007; 

Tufenkji et al., 2003].  

Other studies have attributed the inferred ‘fast’ and ‘slow’ dual-deposition behavior to 

differences in interactions energies between colloids and collectors emanating partially 

from localized soil heterogeneities as well as deep secondary energy minima, the latter 

yielding ‘fast’ retention, and the former yielding ‘slow’ retention [Tufenkji and 

Elimelech, 2004b; 2005a; b] on the basis that the former mechanism requires overcoming 

the repulsive energy barrier prior to retention.  Additional studies have also suggested 

that soil heterogeneities, such as heterogeneities of attractive iron oxyhydroxide situated 

within bulk repulsive silica, can create “fast” and “slow” deposition rates in the favorable 

and unfavorable regions [Schijven and Hassanizadeh, 2000; Schijven and Hassanizadeh, 

2002].   
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Whereas the above studies implicate soil heterogeneity in generating fast versus slow 

retention rates, they do not articulate how this would generate preferential up-gradient 

versus down-gradient retention (hyper-exponential profiles) [Johnson and Li, 2005]. 

Assuming that inferred heterogeneity is distributed throughout the column (not 

predominantly located near the column inlet), then the kinetic retention coefficient across 

the column would be uniformly increased or decreased across the column by the presence 

of heterogeneity.  Based on similar reasoning, a number of studies have concluded that 

soil heterogeneity alone is likely not the primary cause of this behavior [Foppen et al., 

2007; Li et al., 2004; Schijven and Šimůnek, 2002; Tong and Johnson, 2007].   

The above review demonstrates the utility of continuum scale models for inferring colloid 

transport, retention, and re-entrainment mechanisms; however, it should be noted that the 

kinetic parameters used in these models tend to be descriptive rather than predictive.  For 

example, currently only the filtration rate constant under favorable conditions can be 

independently predicted (for spheroidal uniform colloids and media).  No independently-

derived mechanistic basis currently exists for predicting ‘fast’ and ‘slow’ rate coefficients 

present in these dual-deposition models; rather, they require fitting to experimental 

breakthrough and retention profile data. Thus, dual-deposition rate models cannot be used 

to predict colloid transport without conducting detailed experiments a priori.  The 

corollary is that, while this dual-deposition approach successfully produces hyper-

exponential profiles, the underlying mechanism(s) can only be inferred, and are not 

proven by a fit to data.  For example, the observed decrease in attachment rate coefficient 

with increasing transport distance has been attributed to both: (1) straining [Bradford et 

al., 2002; Bradford et al., 2003; Bradford et al., 2004; Bradford et al., 2006b] and (2) 

heterogeneity among the colloid population [e.g. Tong and Johnson, 2007] which are 

very different mechanisms for achieving this phenomenon.   

Another common example of mechanisms inferred from fitting to continuum-scale data 

are the dual-region or multiporosity models. The classic ADE for a one-dimensional 

system employs a single average pore water velocity. This single-velocity approach relies 

on the assumption that the velocity distribution within the porous medium can be 

approximated by a single, or volume-averaged, velocity term that predicts, in the absence 
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of retardation, a classic breakthrough curve with C/Co = 0.5 at the location of the 

advective front.  It also predicts a symmetrically sharp decrease in concentration during 

the elution phase of the experiment. As discussed in Section 2.2, this approach provides 

an excellent description of colloid transport through uniform, homogeneous and simple 

(i.e., glass bead) porous media in favorable deposition conditions.  

However, the anomalous early breakthrough and extended tailing behavior discussed in 

Section 2.2 suggests that this average-velocity approach may not be appropriate for a 

wide range of water saturated soils in both favorable and unfavorable conditions. These 

behaviors have been modeled at the continuum-scale by employing a distribution of 

permeabilities (e.g., dual-porosity or dual-permeability models). While these models are 

commonly employed for solute transport behavior in the presence of preferential 

pathways/low permeability regions and fractures/rock matrix [e.g. Haggerty and 

Gorelick, 1995; Haggerty et al., 2000; Rotter et al., 2008; Šimůnek et al., 2003; Šimůnek 

and van Genuchten, 2008] they have also been adapted for use in colloid transport, 

although to a relatively limited extent.  Specifically, these studies have suggested that 

early-time colloid breakthrough and bi-modal breakthrough curves may be linked to 

preferential flow [Leij and Bradford, 2013; Subramanian et al., 2013] which may occur 

in both physically heterogeneous [e.g. Wang et al., 2014b; Zheng and Gorelick, 2003] 

and uniform media [e.g. Berkowitz et al., 2006; Scheibe et al., 2013] and also due to size 

exclusion effects discussed in Section 2.2.  

Continuum-scale solute modeling studies have suggested that extended tailing is linked to 

the presence of low permeability zones, and is described via dual-porosity (i.e., dual-

region) or multiporosity models [e.g. Haggerty and Gorelick, 1995; Haggerty et al., 

2000].  Colloid transport models typically describe tailing by assuming that a fraction of 

colloids are temporarily (i.e., reversibly) retained [Johnson et al., 1995a; Landkamer et 

al., 2013; Mondal and Sleep, 2013; Schijven and Hassanizadeh, 2002; Schijven and 

Šimůnek, 2002; Zhang et al., 2001b]. Conceptually, this treatment is similar to dual-

region models to describe solute tailing as the retention still occurs in regions with below-

average velocity, although for colloid transport in uniform media this is typically 

assumed to be the near-surface zone [Johnson and Hilpert, 2013]. Attribution of 
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temporary colloid retention to residence in the near surface fluid domain (i.e., secondary 

minima) can be inferred, but is not proven by the match of continuum-scale models to 

column experiment observations.  Notably, recent pore-scale modeling studies have 

suggested that below-average velocity regions in the bulk pore space may also 

temporarily retain colloids [Cardenas, 2008; Li et al., 2010a; Li et al., 2010b; 2012; 

Torkzaban et al., 2008] suggesting that the near-surface fluid zone may not be the only 

contributor to extended tailing.     

Mass transfer coefficients used in continuum models are often fitted parameters, 

determined by inverse modelling of experimental data [Köhne et al., 2009a; b; Wang et 

al., 2014c].  Results from these continuum models are powerful tools for identifying 

potential mechanisms and demonstrating the influence of physical heterogeneity (mobile 

versus immobile zones) and solution chemistry (e.g., favorable versus unfavorable 

attachment conditions). For example, trends in kinetic parameters describing colloid 

retention and re-entrainment show qualitative agreement with DLVO predictions (barrier 

height and secondary minimum depth) as a function of ionic strength [e.g. Elimelech and 

Omelia, 1990a; Elimelech and Omelia, 1990b; Elimelech, 1991; Petosa et al., 2010]. 

Although quantification of rate constants through experimentation is useful, a priori 

determination of mechanisms, and independent derivation of rate constants, would enable 

prediction of colloid transport in a range of scenarios but requires mechanistic modelling 

as will be discussed in the next Section. 

2.4 Mechanistic prediction of retention in favorable and 
unfavorable conditions 

Differences between molecular (e.g., solute) and colloidal transport processes in porous 

media drive differing modeling approaches to describe their transport. Specifically, 

solutes exhibit much greater random motion and lack a deterministic trajectory so their 

likelihood of reaching a surface is determined empirically by laboratory analyses (e.g., 

batch equilibration tests).  By contrast, colloids exhibit relatively limited diffusive (i.e., 

Brownian) motion and possess largely deterministic trajectories, enabling 

mechanistically-based prediction of the likelihood of colloids reaching surfaces.  

Although for nano-sized colloids the distinction between deterministic colloidal 
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trajectories and random diffusive solute behaviour is blurred as these colloids exhibit a 

large degree of Brownian motion.  The simulation of deterministic trajectories as well as 

quantification of the likelihood of colloids reaching surfaces is encompassed in CFT.    

Most CFT approaches have two major components: (i) a mechanistic force/torque model 

that describes colloid trajectory and attachment (described in Section 2.4.1), (ii) 

correlation equations that approximate the results of the mechanistic models (described in 

Section 2.4.2). A typical predicted model parameter, be it from a mechanistic model or 

correlation equation, is the ‘collector contact efficiency’, �, defined as the fraction of 

colloids entering the mechanistic model geometry that contacts the collector.  Both 

mechanistic models and the resultant correlation equations have largely been successful 

in predicting η for micron-sized colloids in ‘favorable’ conditions [e.g. Rajagopalan and 

Tien, 1976; Tufenkji and Elimelech, 2004a; Yao et al., 1971].  It is also important to note 

that these approaches are subject to error arising separately at the mechanistic model and 

correlation equation level.  In the case of mechanistic models, errors may result from 

employing incorrect physicochemical parameters and numerical approximations.  In the 

case of correlation equations, errors may be due to the extent to which they are able to 

approximate mechanistic model results. Mechanistic models and correlation equations for 

unfavorable conditions, the subject of considerable recent research, are discussed in 

Appendix 7.3.  The following Section will discuss model assumptions and their 

implications for the prediction of colloid and nanoparticle transport.  For a conceptual 

and mathematical summary of the major mechanistic models discussed, including all of 

the relevant force/torque equations employed by each model, the reader is referred to 

Tables 7.1 to 7.6 in Appendix 7.1.  

2.4.1 Mechanistic simulations: Favorable conditions 

There are more than ten different CFT mechanistic models, each employing different 

environmental conditions, model geometries or force/torque mechanisms [Burganos et 

al., 1992; Burganos et al., 1994; Cushing and Lawler, 1998; Long and Hilpert, 2009; Ma 

et al., 2009; Nelson and Ginn, 2011; Paraskeva et al., 1991; Payatakes et al., 1974a; 

Payatakes et al., 1974b; Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004a; 

Yao et al., 1971]. Each of these mechanistic models is associated with one or more 
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approximating correlation equations. Given the large number of mechanistic models and 

correlation equations, some of which are simple extensions or variations of previous 

models and correlation equations (discussed below), there may be some confusion related 

to which mechanistic model or correlation equation is applicable in a given scenario.  

2.4.1.1 The Geometry of mechanistic models  

The first CFT model proposed by Yao et al. [1971] considered colloids approaching a 

single, isolated collector that was perfectly spherical and surrounded by an infinite fluid. 

This approach, as noted by Yao et al. [1971], produced velocity distributions that were 

likely poor representations of realistic porous media. The isolated-sphere approach was 

subsequently modified to employ a Happel Sphere-in-Cell geometry [Happel, 1958] that 

included porosity, as well as constricted tube geometry [Burganos et al., 1992; Burganos 

et al., 1994; Paraskeva et al., 1991; Payatakes et al., 1974a; Payatakes et al., 1974b].  

The most popular, the Happel sphere-in-cell approach, considers the collector, otherwise 

isolated from the influence of other collectors and perfectly spherical, to be surrounded 

by an envelope of fluid that is associated with the collector. Tables 7.1 and 7.2 in the 

Appendix illustrate some of the model geometries that are employed in the most popular 

mechanistic models. This CFT-Happel approach was first employed by Rajagopalan and 

Tien [1976] and has been employed in more recent CFT models [Nelson and Ginn, 2011; 

Tufenkji and Elimelech, 2004a] as it is conceptually straightforward and simple to 

upscale the results. Figure 2.4, adapted from [Molnar et al., 2015a], illustrates the 

Happel-sphere in cell geometry along with the boundary conditions that would be 

employed by Eulerian mechanistic models [e.g. Tufenkji and Elimelech, 2004a].  The 

flow field around the collector is assumed to be equivalent to Stokes (i.e., creeping) flow 

around a sphere and undisturbed by the presence of nearby collectors (approximate 

velocity vectors are illustrated in the Figure).  vo and Co are the fluid velocity and colloid 

concentration upstream of the collector, respectively, and are considered uniform over the 

projected area upstream of the collector (A1 in the Figure).   

Because an actual porous medium includes grain-grain contacts, it may yield flow 

phenomena inconsistent with Stokes flow around a Happel collector, including 

recirculation/vortex zones [Cardenas, 2008; Li et al., 2010b; Torkzaban et al., 2008] and 
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low-flow zones [Li et al., 2010a; Li et al., 2012]. While Stokes flow incorporates low 

fluid velocities adjacent to the collector’s surface, the low/recirculating flow phenomena 

induced by grain-grain contacts likely extends this characteristic further outwards.  Thus, 

the flow field illustrated in Figure 2.4 and used in many mechanistic models is simplified 

relative to the expected actual flow field within a porous medium.  It is important to 

understand the conditions under which this simplification is acceptable and when it may 

result in poor predictions of the rate at which colloids contact the surface.   

 

Figure 2.4: Illustration of a typical CFT model employing a Happel sphere-in-cell model with 

boundary conditions (only applicable to Eulerian models). The geometry of the model is defined by 

as, the radius of the collector, b, the radius of the Happel cell and r, the thickness of the fluid 

envelope.  The red arrows on the right-hand side of the model represent approximate flow vectors 

around the sphere. Cb and Cas represent the Eulerian constant concentration boundary conditions at 

the edge of the fluid envelope and collector surface where Co represents the concentration of 

approaching colloids. Adapted from Molnar et al [2015a].  

Predictions from mechanistic models for medium-to-larger sized colloids (e.g., >100 nm) 

are generally in excellent agreement with experiments performed for favorable conditions 

[Nelson and Ginn, 2011; Rajagopalan and Tien, 1976; Tong and Johnson, 2006; Tufenkji 
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and Elimelech, 2004a; Yao et al., 1971]. However, there is evidence that smaller colloids 

(e.g., <100 nm, including viruses and engineered nanoparticles) are potentially impacted 

by grain-grain contact flow phenomena in even favorable conditions [Boccardo et al., 

2014; Long and Hilpert, 2009].  Mechanistic single-collector models have been observed 

to over-predict η for Brownian particle transport experiments in favorable conditions [e.g. 

Elimelech and Omelia, 1990b; Long and Hilpert, 2009; Nelson and Ginn, 2011; Tong 

and Johnson, 2006]. Hypothesizing that this is due to the simplified geometries employed 

by single-collector CFT models, Long and Hilpert [2009] and Long et al [2010] explicitly 

incorporated the impact of grain to grain contacts by performing Lattice Boltzman (LBM) 

colloid transport and retention simulations in randomly-generated collector packings. The 

Long and Hilpert [2009] mechanistic model produced η predictions for Brownian 

particles that were in better agreement with experimental results relative to single 

collector models [Nelson and Ginn, 2011]. This improved prediction may result from 

including grain to grain contacts and the resulting low flow or recirculation/vortex zones 

that increase the distance particles must diffuse to reach certain surfaces.  

The mechanistic model that incorporates grain to grain contact using a Hemisphere-in-

cell approach [Ma et al., 2009; Ma and Johnson, 2010] does still somewhat over-predict 

η [Nelson and Ginn, 2011]. This may be due to the orientation of the contacting grains. In 

the hemisphere-in-cell model the flow direction is always perpendicular to the line 

connecting adjoining grain centers (see Figure 2.4). In a randomly packed porous 

medium, the flow direction occurs at many orientations relative to the line connecting 

adjoining grain centers, which is expected to yield a significantly larger low 

flow/recirculation zone [Torkzaban et al., 2008].   

Nelson and Ginn [2011], employed a Happel sphere mechanistic model to achieve a 

similarly good match to experiments for Brownian particles. This was likely due to an 

improved correlation equation (discussed in Section 2.4.2) that better approximated the 

mechanistic model, notably in the low fluid velocity (i.e., diffusive) regime, as opposed 

to employing a better mechanistic model. Noting the improved prediction accuracy, Ma 

et al [2013] subsequently adjusted their correlation equation to extend to the diffusion-

dominated velocity regime.   



28 

A version of this chapter has been published [Molnar et al., 2015b] 

2.4.1.2 Modeling diffusion in mechanistic models 

Complexities associated with describing, or predicting, colloid trajectories that exhibit 

significant Brownian motion are also likely a contributing factor to over prediction of η 

by mechanistic models.  The size of small nanoparticles (e.g., 5 – 50 nm), and the 

mechanisms governing their transport, fall between that of molecules and larger 

nanoparticles (e.g., > 50 nm); thus, they exhibit large Brownian motion relative to 

colloids but possess trajectories that are more deterministic than solutes.  While the 

trajectories of larger, non-Brownian, colloids have been adequately described since the 

early numerical description by Rajagopalan and Tien [1976], the treatment of Brownian 

motion has varied considerably. Yao et al [1971] solved for diffusive flux by employing 

the Levich [1962] solution of the convective-diffusive equation for an isolated sphere in 

an infinite fluid. The Levich [1962] solution is a simplified description of diffusion as it 

does not incorporate mechanisms such as anisotropic diffusion. Anisotropic diffusion 

describes the decrease in colloid diffusivity that occurs within several particle diameters 

of the surface. As such Brownian motion perpendicular to the surface becomes small 

relative to the tangential motion [Eral et al., 2010]. Mechanistic models that ignore 

diffusive mechanisms such as anisotropic diffusion or hydrodynamic retardation (defined 

as the decrease in colloid velocity near the collector surface due to resistance from the 

near-surface fluid) could also yield over estimates of η for Brownian particles as the 

models cannot account for the decrease in particle velocity that occurs near collector 

surfaces. 

Rajagopalan and Tien [1976], despite using a numerical solution to solve for the 

trajectories of large colloids (i.e., a Lagrangian approach), solved diffusion by employing 

an analytical method similar to that of Yao et al. [1971] but specific to the Happel 

Sphere-in-cell geometry [Cookson, 1970] which ignores anisotropic diffusion. Tufenkji 

and Elimelech [2004a] employed the Eulerian numerical model of Elimelech [1994] 

which solves the advective diffusive equation and included anisotropic diffusion and 

hydrodynamic retardation. Long and Hilpert [2009] similarly solved diffusion 

numerically via the ADE but did not include anisotropic diffusion.  Nelson and Ginn 

[2011] added a scaled randomly oriented translation of the colloid to mimic Brownian 
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motion. Ma et al. [2009] employed a scaled Brownian force so that diffusive movement 

was subjected to the effects of hydrodynamic retardation equivalent to other governing 

forces.  Tables 7.1 to 7.6 in the Appendix present the equations employed to describe 

Brownian motion in the most commonly used mechanistic models.   

2.4.1.3 Eulerian and Langrangian numerical solution frameworks 

Strategies to numerically solve the mechanistic models fall broadly into two categories: 

Eulerian and Lagrangian frameworks. The exception is the Rajagopalan and Tien [1976] 

model which employed both approaches, depending on whether the trajectory of the 

colloid was mostly deterministic (Lagrangian approach) or Brownian (Eulerian 

approach).  Early models tended to be Eulerian [Elimelech, 1992; Tufenkji and Elimelech, 

2004a], and with increased computational power, Lagrangian mechanistic models have 

been adopted [Ma et al., 2009; Ma and Johnson, 2010; Ma et al., 2013; Nelson and Ginn, 

2011]. 

While both categories of mechanistic models have successfully described colloid 

transport and attachment in certain scenarios, Eulerian mechanistic models have 

limitations, especially within the Happel Sphere geometry. For Happel sphere 

mechanistic models employing an Eulerian or analytical framework [Rajagopalan and 

Tien, 1976 - diffusion only; Tufenkji and Elimelech, 2004a] a constant concentration 

boundary condition is specified at the outer fluid envelope surrounding the collector. The 

concentration at this boundary is assumed to be the concentration within the bulk fluid 

upstream of the collector (i.e., Cb = Co, Figure 2.4).  This constant concentration 

boundary condition represents the distance at which the collector ceases to exert an 

influence on colloid distribution in the pore space.  

For Brownian colloid systems with very high removal rates and low Peclet numbers the 

constant concentration boundary condition on the downstream half of the Happel fluid 

envelope may be inappropriate [Nelson and Ginn, 2011; Song and Elimelech, 1992]. In 

these circumstances, the colloid concentration at the downstream boundary would be 

lower than that of the upstream boundary. As a result there would be an implicit 
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discrepancy between the mechanistic model and what would occur in reality.  This would 

result in overestimates of η for Brownian colloids [Song and Elimelech, 1992]. 

The concentration boundary conditions also implicitly assume a concentration gradient of 

������
�  (see Figure 2.4) which describes diffusive flux towards the collector surface. The 

gradient imposed by these boundary conditions may not be representative of the actual 

concentration gradient within a realistic porous medium as Cb might not be equivalent to 

Co.  The pore-scale flow phenomena resulting from grain to grain contacts (discussed 

earlier) may yield larger low velocity zones than predicted by Stokes flow. This extended 

low flow zone may yield distances between the collector surface and boundary C = Co 

that are larger than the thickness of the Happel sphere fluid envelope. If the distance is 

larger in reality than in the Happel sphere model, the resulting concentration gradient 

would be smaller than is predicted. As such the diffusive flux towards the collector 

surface may be lower than predicted by Eulerian mechanistic models.  

With Lagrangian mechanistic models, issues related to boundary conditions are largely 

avoided by introducing individual particles on the upstream outer fluid envelope 

boundary. The trajectories of the individual colloids (i.e., attachment or exiting the 

system) are determined without imposing a concentration at the downstream boundary of 

the fluid envelope.  

2.4.1.4 Stokes flow in mechanistic simulations  

As discussed above, mechanistic CFT models assume that the flow regime around a 

collector can be modeled by assuming Stokes, or creeping, flow [Nelson and Ginn, 2011; 

Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004a; Yao et al., 1971] (Tables 

7.1 and 7.2 in the Appendix detail the governing flow equations for the most commonly 

used models). Stokes flow occurs at very low Reynolds numbers (Re << 1) where inertial 

forces become insignificant relative to viscous forces. This assumption is likely 

appropriate at the low flow rates typically associated with filtration and ambient 

groundwater (i.e., no pumping) in non-fractured systems.  
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The application of Stokes flow results in streamlines that are mirrored on the forward and 

rear flow sides of the collector. At low flow rates this results in downstream velocity 

distributions that are approximately similar to the upstream flow distribution (uniform vo 

over area A1 in Figure 2.4). However, in situations of high flow where Re > 1 [Potter and 

Wiggert, 2002], the flow is no longer strictly within the Stokes regime. Under these 

conditions, the point at which flow separates from the rear side of the collector will 

change (i.e., it will produce a wake) and the rear flow stagnation point will widen relative 

to the forward flow stagnation point [Potter and Wiggert, 2002].  This could yield 

discrepancies between experimental results and mechanistic simulations of colloid 

transport and retention. 

Non-Stokes flow is likely in laboratory experiments conducted at high flow rates. 

Surveying the literature, and assuming reasonable parameters when values were not 

available (i.e., viscosity = 1×10-3
  Pa·s, T = 293K), suggests that many experiments were 

conducted with Re close to or exceeding 1 [e.g. Elimelech and Omelia, 1990b; Elimelech, 

1991; Lecoanet et al., 2004; Lecoanet and Wiesner, 2004; Phenrat et al., 2007; Phenrat 

et al., 2010a; Yao et al., 1971]. Given this finding, conclusions derived from studies 

where a CFT conceptual model was adopted, but Re was also high, need to be considered 

with caution.   

nZVI experiments typically employ high flow rates with the justification that velocities 

near the injection well may be very large [Kocur et al., 2013]. Given that non-Stokes 

flow may occur near the injection well, CFT mechanistic models and correlation 

equations for prediction of nZVI transport must be used with caution.  Overall, this 

suggests that careful consideration of Reynolds numbers and flow regime is required 

when designing column-scale transport experiments, interpreting model fits to the data, 

or modeling field-scale nZVI injection.  

2.4.2 Correlation equations derived under favorable conditions  

The above discussion focuses on the mechanistic models underlying CFT. However, 

these models are time consuming to run, and so require approximation via 

phenomenological expressions to allow easy implementation.  To this end mechanistic 
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models are run under a range of environmental conditions (see Table 2.1). Results from 

simulations conducted using the mechanistic models are then fit to a phenomenological 

expression composed of dimensionless groups of relevant physicochemical parameters. 

This expression serves as a correlation equation thereby serving as a simple predictor for 

η.  Such correlation equations currently exist only for favorable attachment scenarios 

since the underlying mean-field mechanistic models predict no attachment in unfavorable 

scenarios; attempts to adapt mechanistic models for unfavorable conditions are discussed 

in Appendix 7.3.   

Table 2.1: Range of parameter values employed to derive recent η correlation 
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aη correlation equations: TE 2004, [Tufenkji and Elimelech, 2004a]; LH 2009, [Long and Hilpert, 
2009]; Long et al 2010, [Long et al., 2010]; MPFJ 2009, [Ma et al., 2009]; MHJ 2013, [Ma et al., 

2013]; NG 2011, [Nelson and Ginn, 2011]. 
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The correlation equations divide colloid transport to the surface into three distinct 

dimensionless numbers representing inter-related mechanisms: interception via fluid drag 

interactions alone, diffusion-enhanced interception, and sedimentation-enhanced 

interception. A separate contribution to the overall η is determined for each 

dimensionless number (i.e., ηI, ηD and ηG, respectively), such that the overall collector 

efficiency is described as: η = ηI + ηD + ηG.  In the absence of diffusion or sedimentation, 

ηI is greater for larger colloids, since the number of streamlines that approach the surface 

to within 1 colloid radius increases as the colloid size increases. Diffusion enhances 

interception since it allows colloids to move across streamlines and come into contact 

with the collector.  Because Brownian motion is greater for smaller colloids, ηD is greater 

for smaller colloids.  Because settling allows colloids to move across the streamlines and 

come into contact with the collector, ηG is greater for larger colloids. The superimposed 

contributions from these inter-related mechanisms yield a trend of η with colloid size that 

matches mechanistic simulations and experimental observations wherein a minimum 

value of η occurs corresponding to colloid diameters of ~ 1 µm, due to smaller colloids 

undergoing greater diffusion, and larger colloids undergoing greater settling.  As an 

example, the correlation equation of Rajagopalan and Tien [1976] is (corrected version 

presented in [Logan et al., 1995]): 

 � ≈ γ
�4
��/�����
/� + 
�����/�����/� + 0.00338
����.
��� .!" 2.1 

where the dimensionless parameters (i.e. NR, NPE,NLO, NG) are defined in Table 2.2 

below, and As is a porosity-dependent parameter defined as: 

  2.2 

where γ = (1-θ)1/3.  As accounts for the influence of neighboring collectors on the fluid 

flow field in the Happel sphere-in-cell geometry and ε  represents the porosity of the 

porous medium. Tables 7.1 and 7.2 in the Appendix list the correlation equations for the 

six most commonly used models.    
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Table 2.2: List of dimensionless parameters in predicting colloid filtration 

Parameter Definition Description 

NR #$/#� aspect ratio 

NPE %&'/()* Peclet number 

NLO +/,9./#$
%0  London number 

NG 2#$
,2$ − 2405/69/%7 Gravity number 

a ap and as are the colloid and collector radii; dc is the collector diameter, U is the approach 

velocity; DBM is the bulk diffusion coefficient (described by Stokes-Einstein equation);µ is the 
fluid viscosity, ρf and ρg are the fluid and colloid densities, respectively; g is the gravitational 
acceleration constant. 

Figure 2.5 illustrates how well the correlation equations listed in Table 2.1 predict the 

experimental kinetic retention coefficient 8. Figure 2.5 compares experimental and 

predicted values of k (the upscaled η) since the definition of η differs among the different 

collector geometries (Appendix Tables 7.1 and 7.2 provide the equation for k for each 

model). As can be seen, the currently existing correlation equations generally provide 

very good predictions of η for micron-sized colloids in the range of conditions for which 

the correlations were developed [e.g. Nelson and Ginn, 2011; Tong and Johnson, 2006].  

However, they generally over predict η for Brownian particles (Figure 2.5, the 

‘nanoparticles’ region). While a number of possible causes for this over prediction were 

identified in the discussion related to mechanistic models, another possible source of 

error may be the approximating correlation equations themselves.  Many of the flow and 

transport scenarios for Brownian particles involve parameter values that are outside of the 

limited range of conditions employed to derive the correlations [e.g. Gastone et al., 2014; 

Kocur et al., 2013; Kocur et al., 2014; Krol et al., 2013; O'Carroll et al., 2013; Quinn et 

al., 2005; Tosco et al., 2014b].   
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Figure 2.5: A comparison of experimentally determined retention rate coefficients vs. correlation-

equation predicted retention rate coefficients (k) for a number of different correlation equations on a 

semi-log plot. While correlation equations predict η, these values have been converted to k to allow 

comparisons between different model geometries. The experiment numbers on the x-axis are taken 

from [Nelson and Ginn, 2011]. As indicated on the chart, low experiment numbers correspond to 

smaller colloids. The solid horizontal line at y = 1 represents an exact match between correlation 

equation predictions and experimental observations. The dashed horizontal lines at y=0.5 and y=2 

represent factor of two differences (i.e., where the correlation equation predication is half as large 

and twice as large as the experimental observation). RT:[Rajagopalan and Tien, 1976], TE: [Tufenkji 

and Elimelech, 2004a], LH: [Long and Hilpert, 2009], [Ma and Johnson, 2009], NH: [Nelson and Ginn, 

2011]. Adapted from [Nelson and Ginn, 2011]. 

This is often the case for the prediction of engineered nanoparticle transport. For example 

a limited range of viscosities, similar to water, have been used in mechanistic model 

simulations used in the development of correlation equations (Table 2.1). Long and 

Hilpert [2009] and Tufenkji and Elimelech [2004a] derived their η correlation equation 

using a single value of water kinematic viscosity at 25oC (0.8×10-6 m2/s) and  Nelson and 

Ginn [2011] employ a range of viscosities, but for a range of water temperatures from 

5oC to 30oC. However, ENPs are often stabilized in a polymer solution to prevent 

aggregation and settling [e.g. Hotze et al., 2010; Kocur et al., 2013; Phenrat et al., 

2010b; Phenrat et al., 2010c].  These stabilized ENP solutions tend to be much more 
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viscous than water: 2×10-3-1.3×10-2 Pa·s [Krol et al., 2013], 7×10-3 Pa·s [Kocur et al., 

2014], 6×10-3 Pa·s [Sakulchaicharoen et al., 2010], 1.2×10-2-8.8×10-2 Pa·s [Gastone et 

al., 2014; Tosco et al., 2014b] and upwards of 1.942 Pa·s [Quinn et al., 2005].  Since 

current η correlation equations were not derived for this range of viscosities, caution 

should be used in applying existing correlations to engineered nanoparticle subsurface 

applications.  Extending CFT models to include a wider range of viscosities should be 

considered for future research.  

Similarly, η correlation equations, with the exception of Ma et al [2013], were derived for 

a relatively small range of colloid densities (i.e., 1 - 1.8 g/cm3) (Table 2.1). While viruses, 

bacteria and protozoa likely fall within this near-neutrally buoyant range, aggregates of 

metallic ENPs may have significantly higher densities. No correlation equation has been 

derived using a mechanistic CFT model that explicitly considers high density colloids 

such as aggregates of metallic ENPs. Nor have existing correlation equations been 

experimentally validated for high density colloids.  

2.5 Conclusions 

In this chapter we have presented the many advances in our understanding of colloid 

transport in porous media in the past 25 years.  There is an increasingly sophisticated 

understanding of the applications of employing short-range DLVO forces to describe 

colloid transport through porous media. The favorable and unfavorable deposition 

conditions that arise from DLVO interactions yield significantly different experimental 

transport and retention behaviors. However, the experimentally observed behaviors often 

differ from mean-field DLVO predictions; this is especially true for colloid retention in 

unfavorable conditions.  A large amount of recent research has successfully elucidated a 

number of causes for these discrepancies such as grain and colloid heterogeneity, 

secondary minimum interactions, and site blocking.  A large portion of our understanding 

of these mechanisms has arisen from column-scale transport experiments coupled with 

continuum-scale models that, by fitting various rate parameters, can successfully describe 

experimental transport behavior.  
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There have also been significant advances in Colloid Filtration Theory, a two-component 

method for predicting the colloid attachment rate parameter, 8. The first component, a 

detailed mechanistic model of colloid transport and attachment onto a unit-cell collector 

by way of a force-torque balance, has become increasingly advanced with modern 

computational power. Particularly, successes have occurred with describing Brownian 

motion and moving towards a mechanistic approach to predicting colloid retention (and 

detachment) in unfavorable conditions, the prevailing condition in the environment. The 

second component of CFT, correlation equations that summarize the results of the 

detailed mechanistic models, have also improved significantly and can, for the most part, 

accurately predict retention of larger colloids in favorable conditions.  

Despite the large number of advances and successes, there remain many gaps in our 

current understanding, limiting our ability to predict colloid transport in a range of porous 

media systems.  Many of the mechanisms invoked to describe discrepancies between 

DLVO-predicted colloid transport behavior and experimental observations arise from the 

use of fitted kinetic retention parameters in continuum-scale models. However, fitted 

parameters can only infer mechanisms, not prove those mechanisms are responsible for 

the fit. As such, many of the mechanisms attributed to colloid transport and retention 

behavior remain inferred. There are substantial opportunities available to develop 

mechanistic approaches to validating, and predicting, the influence of these mechanisms. 

Relatively new tools, such as XCT, will prove invaluable in this as they are capable of 

quantitatively extracting pore and grain details (i.e., pore body/throat sizes and 

distributions, void topologies and grain shapes and mineralogy) as well as directly 

observing colloid distribution in the pore space and coupling with high-fidelity 

simulations of the flow fields. 

Mechanistic CFT models and their respective correlation equations still struggle to 

predict nanoparticle transport and retention. It is still unclear if the unit-cell CFT 

approach is valid for highly diffusive materials. While fitting the α parameter effectively 

overcomes the discrepancy between theoretical predictions and experimental 

observations for nanoparticle transport, true prediction of nanoparticle transport and 

retention will require accurate mechanistic models and correlation equations. Likewise, 
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existing correlation equations are only derived for a limited range of environmental 

conditions that are not applicable to many nanoparticle scenarios such as a viscous 

solution of nano-Zero Valent Iron stabilized with polymer.  

Finally, while mechanistic models are now able to quantitatively predict colloid 

attachment and qualitatively predict detachment under unfavorable conditions, these are 

limited to idealized systems involving carboxylate modified polystyrene latex 

microspheres on silica (which reflect the vast majority of existing colloid transport 

experiments). Even in these simple systems, the need to account for influences such as 

roughness in addition to charge heterogeneity is well noted and warrants further research. 

Furthermore, experiments looking at non-silica surfaces and non-ideal colloids, as well as 

size-distributed porous media present major opportunities to address environmental 

conditions in a more comprehensive manner.  

Together, the above listed challenges represent a significant opportunity for advances that 

will undoubtedly lead to more informed decisions and design regarding colloids in the 

environment for the protection of human and ecological health. 
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Chapter 3 

[Molnar et al., 2014] 

3 A Method for Obtaining Silver Nanoparticle 
Concentrations Within a Porous Medium via 
Synchrotron X-Ray Computed Microtomography 

3.1 Introduction 

Nanoparticles are playing an increasingly important role in manufacturing and consumer 

technology. Worldwide investment in nanotechnology has increased by approximately an 

order of magnitude between 1997 and 2005, from $432 million to $4.1 billion 

[Baalousha and Lead, 2009] and this number is expected to increase rapidly in the 

coming years. Up to $1 trillion worth of engineered nanoparticle products are expected to 

be in use globally by 2015 [Baalousha and Lead, 2009], with many of these products 

exhibiting toxicological properties [Borm et al., 2006; Niazi et al., 2011; Song et al., 

2011; Stone et al., 2009; Sycheva et al., 2011]. This proliferation of nanotechnology has 

led to significant interest in understanding the fate of engineered nanoparticles if released 

to the subsurface environment. Nanoparticles might either be a) injected deliberately into 

the subsurface for contaminant remediation [O'Carroll et al., 2013] b) accidentally 

released to the subsurface environment or c) already present in the subsurface 

environment as naturally occurring colloids. In the case of an accidental release, 

engineered nanoparticles might remain mobile long enough to enter and contaminate 

aquifers used for municipal drinking water. When used for remediation of contaminants, 

the behaviour of nanoparticles in the subsurface will dictate design of a site-specific 

remediation strategy.  

Despite the need to better understand the behaviour of engineered nanoparticles in the 

subsurface, few tools exist that are capable of quantitatively assessing their behaviour in 

soil.  Currently, the most common approach is to inject a nanoparticle solution into a soil 

column and compare the influent/effluent concentrations as a function of the amount 

injected [See Petosa et al., 2010, Table 3]. While this method offers insights into 
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nanoparticle mobility and deposition, it is unable to provide direct information about how 

the nanoparticles are interacting with the soil grains and what role pore-geometry might 

play. Variations of this method have been used to conduct 2-dimensional experiments 

[Phenrat et al., 2010] but suffer similar shortcomings due to an inability to quantify in-

situ nanoparticle concentrations without destructive sampling. Other studies investigate 

nanoparticle fate and transport by studying individual characteristics related to mobility 

(ie. aggregation, sedimentation, dissolution) in realistic aqueous solutions without relying 

on column experiments [Ma et al., 2012; Piccapietra et al., 2012; Thio et al., 2012]. 

However, a number of studies have proposed novel methods for quantitatively studying 

nanoparticle transport in-situ and non-destructively: Ramanan et al. [2012] demonstrated 

the viability of using Magnetic Resonance Imaging to track the transport of 

superparamagnetic nanoparticles through coarse soil. Other methods employ fluorescent 

optical-probes [Shang et al., 2010] and time-lapse fluorescent imaging [Bridge et al., 

2006] to track colloids in a porous medium. 

Synchrotron x-ray computed microtomography (SXCMT) is a non-destructive, three-

dimensional imaging method commonly used in the field of water resources, 

environmental and petroleum engineering. It is typically used to extract and model 

realistic pore-network structures [ie. Al-Raoush and Willson, 2005a; Bhattad et al., 2011; 

Thompson et al., 2008] and non-aqueous phase liquid (NAPL) distributions [ie. Al-

Raoush and Willson, 2005b; Russo et al., 2009; Schnaar and Brusseau, 2006]. Colloid 

transport studies have used x-ray computed microtomography datasets to characterize the 

structure of porous media used in transport experiments [Pazmino et al., 2011; Sagee et 

al., 2012], and as inputs for Lattice-Boltzmann modelling [Li et al., 2012; Long et al., 

2010; Pazmino et al., 2011]. 

SXCMT has been used to successfully track the transport of micron-sized colloids 

through porous media [Chen et al., 2008; Chen et al., 2001; Gaillard et al., 2007; Li et 

al., 2006] and to map the distribution of biofilm in porous media using silver 

microspheres [Iltis et al., 2011]. Previous studies have coupled SXCMT with 

nanoparticle solutions to monitor nanoparticle accumulation within biological tissues 

[Giuliani et al., 2011; Lee et al., 2013; Marinescu et al., 2013; Shilo et al., 2012; 
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Torrente et al., 2006] and agglomeration within fluidized beds [Jenneson and Gundogdu, 

2006]. X-ray computed microtomography techniques have also been used to quantify 

heavy metal concentrations in plants [McNear et al., 2005] and salt tracers in dolostone 

samples [Agbogun et al., 2013]. While the aforementioned studies have successfully 

extended the applicability of XCMT techniques, SXCMT’s potential to create high-

resolution, three-dimensional maps of nanoparticle or chemical concentrations within a 

porous medium have been relatively unexplored. 

While the resolution of typical SXCMT datasets currently available (ca. 2 to 12 μm) is 

too coarse to detect individual nanoparticles, it is hypothesized that the concentration of 

nanoparticle solutions can be determined within a porous medium. Silver nanoparticles 

(nAg), due to their x-ray absorption characteristics, are especially suited to imaging with 

SXCMT and are of interest due to the increasing concern regarding their transport and 

mobility in the subsurface environment. To the best of the authors' knowledge there have 

been no studies published to-date that use SXCMT to examine nanoparticle behaviour in 

a porous medium.  

This study outlines a method for imaging and quantifying aqueous silver nanoparticle 

solutions in a glass bead porous media using absorption-edge SXCMT. While this study 

focuses specifically on employing SXCMT to determine concentrations of silver 

nanoparticles, it is hypothesized that this method can be applied more generally to 

quantify elemental constituents (either colloidal or dissolved) in a porous medium. 

Similarly, it is hypothesized that the method can be applied equally well to quartz grains 

and mineral oxide-coated quartz grains. The process used to extract dissolved phase 

concentrations is the same as the method presented herein. It should be noted that this 

proposed method is unable to distinguish between the dissolved and colloidal phases for 

the element of interest. Given the inability to distinguish between phases, this method is 

intended to be used in experimental conditions under which the presence of the dissolved 

phase is minimized [e.g. El Badawy et al., 2013; Liang et al., 2013; Torkzaban et al., 

2012] and thus would not interfere with attempts at quantifying the colloidal phase (or 

vice versa). This method is, to the best of the authors' knowledge, the first study that uses 

only absorption-edge SXCMT to quantify the spatial distribution of elemental 
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constituents (dissolved or nano) either within an aqueous phase or a water-saturated 

porous medium.  

This method can extract nanoparticle concentrations from a porous media column during 

nanoparticle injection and elution via SXCMT imaging. The nanoparticle concentrations 

determined from the reconstructed 3-dimensional datasets represent the physical 

distribution of nanoparticles within that column at the pore-scale, and even within 

individual pores. Experimental data on the pore-scale distribution of nanoparticles has 

been typically obtained via micromodels or open-faced visualization flow cells with a 

mono-layer of grains [Ochiai et al., 2006]. However these techniques are limited to 2-

dimensional or quasi-2-dimensional systems, limiting their applicability when studying 

complex natural soils. The presented SXCMT method overcomes this limitation with its 

ability to determine nanoparticle concentrations throughout real 3-dimensional pore-

networks.    

The first part of the study examines the accuracy of the method by studying static, known 

concentrations of silver nanoparticles in a simple liquid-only sample (L-O) as well as 

within the pore space of a liquid-porous media sample (L-PM). These static L-O and L-

PM samples were also used to investigate: sources of uncertainty in the method, methods 

for reducing uncertainty, optimizing the imaging process and understanding the sources 

of error in the images.  The second part of this study analyzes a series of datasets of nAg 

invading a water saturated glass-bead column (hereafter referred to as IL-PM, injected 

liquid-porous media). A nanoparticle solution was injected into the 0g/L L-PM column 

and the column was imaged after every 7.6 minutes of injection time. After 45 minutes of 

injection, the source was switched to a non-nAg aqueous solution which was used to 

flush nanoparticles out of the column. These datasets were used to investigate the ability 

of the method to quantify nAg within a porous medium when the concentration and 

distribution is unknown. Both parts of the presented study demonstrate the usefulness and 

potential of SXCMT when attempting to elucidate the role of pore-network geometry in 

nanoparticle transport.  
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3.2 Materials and Methods 

3.2.1 Silver Nanoparticle Synthesis 

The nAg solutions used in this study were synthesized at the Argonne National Lab's 

Advanced Photon Source (APS) in the GeoSoilEnviro Center for Advanced Radiation 

Sources (GSECARS) wet lab the day before the allotted synchrotron x-ray beam time. 

The nAg solution was synthesized via chemical reduction using a method similar to 

Wang et al. [1998] and was stabilized in a 1% solution of Sodium carboxymethyl 

cellulose (CMC90k) (Aldrich Chemistry). Prior to synthesis all aqueous solutions were 

de-oxygenated by bubbling nitrogen through the solutions for at least 2 hours. This 

deoxygenation procedure was conducted to minimize the dissolution of silver 

nanoparticles occurring during the experimental procedures. A 70mL 0.1N Silver Nitrate 

(AgNO3) solution (Alfa Aesar) was mixed with 70mL of the CMC90k solution and 

titrated with nitric acid (Environmental Grade, Alfa Aesar) to dissolve  a gel-like 

substance that had formed. The CMC90k/AgNO3 solution was stirred continuously while 

70mL of a 0.4M solution of Sodium Borohydride (NaBH4) (Granulated, 97+%, Alfa 

Aesar) was added dropwise to reduce the Ag+
aq to silver nanoparticles. A jet black 

solution formed immediately following the addition of NaBH4 indicating that silver 

nanoparticles had indeed formed at a very high concentration (target concentration = 3.6 

g/L). The target concentration of 3.6 g/L was chosen as it was believed to be the highest 

concentration at which stable nanoparticles could be synthesized at the GSECARS 

wetlab. At the target concentration of 3.6 g/L there are approximately 3.6×104 silver 

nanoparticles within each voxel in the reconstructed datasets.   

After synthesis, the pH of the nanoparticle solution was determined to be 8.7. A CMC90k 

solution containing no nanoparticles was titrated with NaOH (10N, Fisher Scientific) to 

the same pH and used for both dilution and in the transport experiment. Ionic strength 

was controlled to 0.12M with Sodium Nitrate (Certified A.C.S, Fisher Scientific) for both 

silver nanoparticle and CMC90k solutions. 

The yield of the nanoparticle synthesis procedure was determined by passing a 

synthesized sample through an Amicon 8400 ultrafiltration unit and it was found that 
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98% of all silver had been reduced to silver nanoparticles (see Appendix 8 for details). 

The target silver nanoparticle concentration (3.6 g/L, 0.36%) is high relative to typical 

nanoparticle transport studies [See Petosa et al., 2010, Table 3]. However the target 

concentration is much lower than the concentration of dopants typically used in 

absorption-edge imaging (~10%) [Al-Raoush and Willson, 2005b]. The resulting nAg 

solution was very stable and no settling was observed between the time of synthesis and 

the end of the allotted beam time. Silver nanoparticle samples were shipped back to the 

University of Western Ontario, Canada for analysis.  

Due to the complication of shipping nanomaterials across the US-Canada border, 3 weeks 

elapsed between synthesis and analysis; however, the solutions had not visibly changed 

during that time nor had any major settling occurred. The measured d50 was 27.5 nm 

(ZetaPlus Zeta Potential Analyzer, Brookhaven). This parameter was monitored over 

several months and was found to stay relatively constant. The measured zeta potential of 

the silver nanoparticles was -17.9 mV (ZetaPlus Zeta Potential Analyzer, Brookhaven). 

3.2.2 L-O/L-PM Experimental Procedure 

The L-O and L-PM samples were prepared by creating several dilutions of the nAg 

solution. The samples were diluted in a 1% CMC90k mixture with the same pH and ionic 

strength. The following nAg concentrations were used: 0g/L (no nAg), 1/3rd dilution, 

2/3rd dilution, and undiluted nAg. For the L-O samples, the solutions were injected into a 

bundle of glass capillary tubes (ID: 1.1 - 1.2 mm). For the L-PM samples, glass beads 

were chosen as a standard first step due to their simplified geometry. The L-PM samples 

were housed in small aluminum columns (ID: 5.6 mm, length: 5cm, see Figure 8.2). The 

soda-lime glass beads (class V; diameter, 425-500 μm; MO-SCI Corporation) were acid-

washed prior to packing. The columns were wet-packed, using the aforementioned 

solutions, by maintaining a meniscus of solution on top of the column and slowly adding 

glass beads to the column.  

The silver concentrations of the L-O/L-PM samples were determined via inductively 

coupled plasma optical emission spectrometry (ICP-OES), a technique used to determine 

elemental concentrations. The ICP-OES was calibrated with an elemental silver standard 
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stabilized in nitric acid. The L-O/L-PM samples were digested in concentrated nitric acid 

to dissolve the nanoparticles because ICP-OES cannot quantify solid-phase particulates. 

The concentrated nitric acid/Ag solution was diluted to 2% nitric acid in Milli-Q water 

and passed through the ICP-OES to quantify the amount of Ag present in each sample; 

hereafter referred to as “ICP-determined [nAg]”.   

3.2.3 Imaging 

Imaging for this study was conducted at the APS 13-BM-D beamline with the GSECARS 

research group.  The L-O and L-PM samples were imaged approximately 2.5 cm above 

the base of the columns. A double Si(111) crystal monochromator was used to select X-

ray energies with a resolution of ΔE/E= 10-4, meaning the monochromator selected the X-

ray energy to within 0.01%. The x-rays were converted to visible light via a 100 μm thick 

lutetium aluminum garnet (LAG) scintillator crystal and the resulting projections were 

captured on a Princeton Instruments CoolSnap HQ-2 CCD camera. Imaging was 

performed above and below the silver (Ag) K-edge of 25.5 keV [M.J. Berger et al., 

2010]. The L-O samples were imaged at 4 different energies and the L-PM samples were 

imaged with 3 energies: 25.414, 25.614, 25.814 keV and 25.914 keV (L-O only). The 

sample was rotated through 180o while 1440 projections were captured. The exposure 

time for each projection was 0.26 seconds. Pixels were binned together (2x2) to increase 

imaging speed and preliminary imaging suggested that binning pixels also reduced noise 

in simple, homogeneous samples. The number of pixels in each projection was 696 x 520 

(horizontal x vertical). The pixel resolution of the projections was measured to be 10.47 x 

10.47 μm. The resolution (10.47 μm) was selected to optimize practical considerations 

(e.g. larger column size, ease of column packing, accurate effluent sampling) with image 

capture time (limiting nAg diffusion).  

3.2.4 Reconstruction 

After imaging, the projections were reconstructed with GSECARS-specific 

reconstruction software [Rivers et al., 2010] in IDL 8.1 (ITT Visual Information 

Solutions). The reconstruction software transforms the series of two-dimensional 

projections into a three-dimensional map of x-ray mass linear attenuation values. Each 
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10.47 × 10.47 × 10.47 μm voxel within the image represents 1 x-ray mass linear 

attenuation value. The software used filtered back projection with a Radon transform and 

linear interpolation enabled. A general Hamming filter was selected and was set to be the 

width of the image. Images were not normalized to match the sinogram. The dark current 

correction was set to its default value of 100.  

Following reconstruction, subvolumes were extracted from the L-O and L-PM datasets 

for analysis. The extracted L-PM and L-O subvolumes were, respectively, 350 × 350 × 

450 volume elements (ie. voxels) and 20 × 20 × 520 volume elements in size.  

3.2.5 Segmentation and Pore-Network Extraction 

The reconstructed L-PM datasets were segmented into grain and water phases via an 

indicator kriging method to separate the phases [Bhattad et al., 2010; Oh and Lindquist, 

1999]. Custom software [Thompson et al., 2006; Thompson et al., 2008] was used for the 

grain characterization and pore-network extraction processes.  The grain identification 

and pore-network extraction algorithms (fully described in [Bhattad et al., 2010; 

Thompson et al., 2008]) identified each unique pore and grain within the reconstructed 

volume and then associated every voxel with either an identified pore or grain. These 

pore identifiers were employed to capture pore-average nAg concentrations.  

Care was taken to ensure all L-PM and IL-PM datasets had consistent grain and pore size 

distributions as it is possible to overestimate or underestimate grain sizes during the 

solid/void segmentation process. Misestimating the grain sizes in various datasets could 

then interfere with attempts to compare SXCMT-determined silver concentrations 

between datasets. Consistency was ensured by iterating the segmentation/pore-network 

process until the average grain inscribed radii for each dataset was within 1 voxel (10.47 

μm) of all other datasets. Table 8.1 in the supplementary information demonstrates the 

consistency of the grain and pore-network statistics for each of the imaged subvolumes.  

3.2.6 Analysis 

Upon completion of the reconstruction and segmentation/pore-network extraction 

process, Beer’s law was modified (eq. 3.1) and applied to the L-O and L-PM datasets to 
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convert the x-ray mass linear attenuation value in each water voxel to silver (Ag) 

concentrations. A derivation of eq. 3.1 can be found in Appendix 8.  

 

;�<=>�� =
∆
A − B6∝D−∝E72FGDH��

6∝D−∝E7�<=>��   3.1 

This process provided a silver concentration at each voxel in the pore space; it is assumed 

that the silver concentration is equal to the nAg concentration due to the redox conditions 

of the synthesized silver solutions.  The nAg concentration at one or more voxels is then 

averaged, excluding those immediately adjacent to grains (details on averaging and the 

exclusion process provided in the Results and Discussion: Accuracy section).  Each 

average value is hereafter referred to as the “SXCMT-determined [nAg]” for the voxels 

in the pore space over which the averaging occurred. It should be noted that, due to the 

resolution of the images, this method cannot detect individual nanoparticles, but rather 

quantifies the concentration of the nanomaterial solution at each voxel in the 

reconstructed volume. 

Figure 3.1 illustrates and describes the major steps of the analysis procedure listed above. 
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Figure 3.1: A pictorial representation of the quantification process for one slice of the 3.6g/L L-PM 

sample. (a) The column is scanned at 1 energy below the silver k-edge and at 2 energies above the 

silver k-edge. These images are then reconstructed to create a 3-dimensional map of the x-ray mass 

attenuation values. (b) The above and below edge datasets are subtracted to create 2 difference 

datasets. (c) eq. 3.1 is applied to each pore space voxel within the 2 difference datasets. The 2 datasets 

are then averaged to obtain the SXCMT-determined [nAg] map for the pore space (legend given in 

g/L).  

3.2.7 IL-PM Experimental Procedure 

The nanoparticle injection (IL-PM) experiment was identical to the L-PM experiments 

except for the following details. 3.25 g/L nAg was injected into the column (ID 5.6 mm, 

length=5cm, see Figure 8.2), initially at 0g/L nAg, using a syringe pump at 1.2 cm/min 

(i.e., 16.9 m/day) for 45 min (total active pump time).  The column was then flushed for 

an additional 30 min (total active pump time) with an identical solution (CMC90k 

concentration, ionic strength) but containing 0g/L nAg.  Imaging occurred at t=0 and then 

after every 7.6 min of active pump time for the entire experiment, resulting in eleven 

three-dimensional images.  Note that the injection pump was stopped during the 

acquisition of each image, which lasted approximately 40 min. There was an approximate 

1-2 minute delay between injection and imaging due to the safety procedures required to 

secure the imaging hutch. A conservative tracer test was not performed due to concerns 

that Br- and Cl- may form insoluble complexes with Ag+. 
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Effluent samples were collected every 7.6 minutes for analysis. Inlet samples were 

collected at the beginning and end of the experiment to assess whether the influent nAg 

concentration was steady. The silver concentrations of the collected IL-PM samples were 

analyzed via ICP-OES in the same manner as the L-O/L-PM samples.  

3.3 Results and Discussion 

To aid the discussion in the following sections, the terms ‘accuracy’ and ‘uncertainty’ are 

defined as follows: since averaging is involved in each SXCMT-determined [nAg] value, 

'uncertainty' quantifies the 99% confidence interval on the average value; in other words, 

the true average of the underlying population of voxel-specific nAg values is expected to 

lie within this interval with 99% certainty.  'Accuracy' considers how closely the 

SXCMT-determined [nAg] matches the ICP-determined [nAg]; this is quantified as 

'error'. Considering uncertainty and accuracy necessarily requires discussions of precision 

(i.e., repeatability), noise (random fluctuations in the underlying dataset), and signal 

discrepancy (apparent absorption, the difference between the actual amount of x-ray 

attenuation and what is observed via the CCD).  

3.3.1 Accuracy  

The global accuracy of the technique for the L-O and L-PM samples is presented in 

Figure 3.2. The SXCMT-determined [nAg] values were obtained by averaging every 

water voxel within each dataset (approximately 200,000 water voxels in each L-O dataset 

and 20,000,000 water voxels in each L-PM dataset). As shown, the accuracy for the L-O 

columns is good, with a linear relationship (R2=0.9986).  The presented slope deviates 

from unity by 8%, and the y-intercept error is 0.06 g/L.  It is noted that the SXCMT-

determined [nAg] for the L-PM samples are less accurate, with a slope 22% below unity 

and a y-intercept error of 0.4 g/L.  However, the SXCMT-determined [nAg] is still 

linearly related to the ICP-determined [nAg] (R2=0.9983).  The linearity in both the L-

PM and L-O data indicate that this method detects differences in aqueous silver 

concentration and that these relationships can be employed as calibration curves.  In other 

words, the presented linear functions can be used to transform the SXCMT-determined 
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concentration into the actual (i.e., ICP-determined) nAg concentration within the range of 

concentrations presented here.  

 

Figure 3.2: The average SXCMT-determined [nAg] for all water voxels in both L-O columns and L-

PM columns vs. the concentration of silver determined via ICP analysis. The SXCMT-determined 

[nAg] values were calculated from datasets captured at 25.414, 25.614 and 25.814 keV.  The size of 

the 99% confidence interval (L-O:  +/- 0.01g/L   L-PM:  +/- 0.002g/L) is smaller than the data point 

icons. 

The standard deviation associated with the SXCMT-determined [nAg] for each dataset is 

large (L-O: 1.9g/L, L-PM: 3.5- 4.2 g/L); this reflects the wide distribution of values in the 

underlying, voxel-specific population (e.g., Figure 3.1c).  However, due to the large 

number of water voxels averaged to generate the single SXCMT-determined 

concentration for each sample, the 99% confidence intervals on the SXCMT-determined 

concentrations shown in Figure 3.2 are small (L-O: 10-2 g/L, L-PM: 10-3 g/L).  Thus, a 

high degree of confidence in the SXCMT-determined [nAg] is obtained by averaging the 

voxel-specific values.  The large number of water voxels in each image and within each 

pore is one of the major strengths of this technique.  

As mentioned above, the SXCMT-determined concentrations were calculated using 

energies of 25.4, 25.6, 25.8 keV and 25.9 keV (L-O only).  Increasing the number of 
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energy-pairs from 1 to 3 decreased the standard deviation in the SXCMT-determined nAg 

concentration in the L-O samples by 19% (2.3 to 1.9g/L). Over-determination with the L-

PM samples led to a similar reduction in standard deviation. Previous studies have 

successfully employed a similar method of over-determining Beer's law with x-ray 

microtomography to quantify fire retardants dispersed throughout various materials 

[Barnett et al., 2010; Ham et al., 2004].  

There are a number of reasons why the calibration curves for the L-PM and L-O columns 

are different. These reasons are discussed in turn below, but mostly relate to two main 

factors: (a) x-ray refraction increases in the presence of a porous medium (causing 

increased noise) and (b) apparent absorption decreases in the presence of a porous 

medium (causing decreased signal:noise ratio).  

The accuracy of the SXCMT-determined concentrations is limited by two assumptions 

that are fundamental to the application of Beer’s law. The first assumption is that the 

compound of interest is infinitely dilute. While the solution is not infinitely dilute, the 

linear relationships in Figure 3.2 suggests that it remains a reasonable approximation. The 

second assumption is that the compound of interest is the only absorbing compound 

within the sample. As indicated by eq 3.1, both silver and water absorb x-rays within the 

L-O and L-PM samples. However, by incorporating the terms for water in eq. 3.1 it is 

possible to minimize the impact of this assumption on the accuracy of the technique.  

Figure 3.3, a plot of SXCMT-determined [nAg] as a function of distance from a grain 

surface, illustrates one of the major sources of error in the SXCMT datasets. The figure 

reveals that water voxels close to a grain surface (<18.1 μm distant) have relatively lower 

SXCMT-determined [nAg] values than the more distant voxels with a relatively constant 

concentration. The distance between each pore space voxel in the L-PM datasets and the 

nearest voxel in the outer surface of a grain was calculated by measuring the actual 

distance between the centers of these two voxels.  For example, a water voxel with 1 face 

contacting that of a grain voxel has a “distance to grain” of 10.47 μm (1 voxel).  The 

algorithm used to find the closest glass bead surface for each pore space voxel, and 

measure the distance between them, is detailed in Appendix 10.1. Each point in Figure 
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3.3 represents the average of all water voxels within a narrow range of distances to grains 

(i.e., 10.47-18.11 μm, 18.11-26.17μm, etc.).  

The lowered concentrations observed near grain surfaces are likely artifacts from the 

tomography process and not real concentration gradients. The L-PM samples involve a 

porous medium emplaced within a stable, static, homogeneous nanoparticle solution (i.e., 

no transport processes) so no bulk concentration gradients throughout the pore space 

were expected. The same effect is observed at 0g/L, so it cannot be a real concentration 

gradient. Indeed, Figure 3.3 confirms that the nAg concentration is, on average, invariant 

throughout pore space.  In fact, the SXCMT-determined concentration remains relatively 

uniform until at least 160 μm average distance from the nearest grain (data not shown); 

larger distances cannot be evaluated since the number of voxels within the L-PM 

subvolumes available for averaging falls below 100.  

 

Figure 3.3: SXCMT-determined [nAg] as a function of distance to closest glass bead illustrates the 

interference a glass bead may have on neighboring water voxels due to x-ray refraction.  The 

concentrations have been calibrated via the curve in Figure 3.2. The distances were rounded to the 

nearest integer and the calculated concentrations were averaged. The vertical black line represents 

the threshold distance for the ‘shadow zone’ effect, 18.11 μm (ie. 1.73 voxels) away from the nearest 

grain surface. The horizontal bars represent the range of voxels (by distance) that were binned to 

create an average SXCMT-determined concentration value at each data point. The size of the 99% 

confidence interval is smaller than the thickness of the data points and has thus been excluded.  
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The source of error leading to the lowered SXCMT-determined concentrations, and also 

partially accounting for the differences between the L-O and L-PM calibration curves in 

Figure 3.2, is the refraction of x-rays passing through the porous medium in the L-PM 

samples.  At grain-water interfaces, x-rays refract slightly. This refraction is used 

advantageously when imaging systems with low-absorption contrast  as this refraction 

will enhance visibility of the material interface, with the level of contrast enhancement 

dependent on the distance between the point of refraction and the scintillator [Cloetens et 

al., 1996].  This is referred to in the literature as “propagation phase contrast”. However, 

in this application, the contrast enhancement decreases the reconstructed x-ray absorption 

values of voxels close to grain surfaces because x-rays are bent away from the grain into 

the liquid, leading to an excess intensity in the liquid immediately adjacent to the grain.  

As a result, it was hypothesized that the water voxels in these "refraction zones" belong 

to a separate population of absorbance values than the rest, and excluding them would 

decrease the error in the SXCMT-determined [nAg].  The refraction zone was determined 

to extend 18.11 μm (1.73 voxels) outwards from a grain surface. This refraction zone 

thickness is based on the data presented in Figure 3.3; voxels that were 18.11 μm distant 

from a grain surface did not appreciably lower the average SXCMT-determined silver 

concentration in the 18.11 to 26.17 μm bin and were hence determined to not be within 

the refraction zone. Discarding all the water voxels within the refraction zone resulted in 

an improved L-PM calibration curve; the slope increased from 0.78 to 0.81 and the y-

intercept error reduced from -0.4g/L to -0.3g/L.  It should be noted that the thickness of 

this refraction zone (18.11 μm) is specific to this experimental setup and is present in 

both L-PM and IL-PM experiments as it depends on the distance from the sample to the 

scintillator. 

Another source of error is the non-uniform distribution of x-ray intensity throughout the 

sample coupled with x-ray scattering.  A non-uniform vertical distribution of SXCMT-

determined nAg concentrations is observed in the L-PM columns (Figure 8.4).  This is 

because the x-ray intensity is highest in the center of the beam and lower near the top and 

bottom.  Note how all four L-PM columns in Figure 8.4 exhibit the same pattern of 

deviation with height regardless of concentration, underscoring the common source of 
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error in the energy distribution.  The higher intensity center x-rays are likely to scatter 

and interfere with the observed x-ray attenuation nearer the top and bottom of the 

datasets.  The L-O columns exhibit little to no influence of the x-ray intensity variability 

even though it is constant for all experiments.  This is because the L-PM samples are 

more absorbing due to thicker column walls and the presence of porous media; the higher 

absorption decreases the total signal received by the CCD, and thus the vertically 

scattered x-rays exert a larger impact on the SXCMT-determined nAg concentration. 

Scattering of light within the scintillator can further increase the error. The vertical 

profile of x-ray intensity also creates a vertical profile in the standard deviation of 

SXCMT-determined [nAg] (Figure 8.3), with the highest standard deviations near the top 

and bottom of the dataset where the x-ray intensity is the lowest.  

The error associated with intensity distribution and scattering can be, in part, corrected in 

the pre-processing step of the dataset reconstruction. Increasing the level of the dark 

current correction for each dataset will increase the average SXCMT-determined [nAg] 

and will change its vertical distribution, potentially smoothing out the curve observed in 

Figure 8.4, it will also increase the standard deviation of the dataset's SXCMT-

determined [nAg]. However, due to the laborious nature of the trial-and-error approach 

required for finding the proper level of dark current correction for each dataset, the 

calibration curve in Figure 3.2 was used instead.   

3.3.2 Sources of Uncertainty 

All of the sources of refraction/noise discussed above result in significant variation in the 

SXCMT-determined [nAg] values at the voxel level.  Thus, it is essential to treat the 

voxel-specific values statistically, averaging to attain a reasonable level of confidence in 

a determined mean concentration that applies to a specific subvolume of the pore space.  

The number of voxels averaged is directly related to the magnitude of uncertainty, an 

important consideration for distinguishing between real and artificial nAg distributions.  

The magnitude of uncertainty for SXCMT-determined [nAg] in the L-PM datasets was 

investigated for voxels that are averaged spatially (referred to as box sampling) as well as 

voxels that are randomly distributed throughout the dataset (referred to as random 
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sampling).  Box sampling is analogous to considering a range of representative 

elementary volumes, such as a mean [nAg] for a single pore as well as for different 

subvolume sizes within a pore.   

The above error analysis provided two additional steps in the methodology employed for 

these subsequent investigations.  First, only data between the two horizontal black lines 

in Figure 8.4 were considered since this corresponded to where the SXCMT-determined 

[nAg] was considered approximately constant as a function of height.  In addition, all 

voxels to the left of the vertical black line in Figure 3.3 (i.e., within 18.1 μm of the outer 

surface of a grain voxel) were excluded due to the refraction effect around grains.   

Box sampling was conducted by considering a randomly chosen three-dimensional 

subvolume (dimensions of 3 voxels on all sides) within a pore and averaging the voxel-

specific SXCMT-determined [nAg] values within; then the box was expanded (by 1 

voxel on all sides) and the average recalculated. This process was continued until the box 

filled the pore (i.e., until all voxels within the pore were included in the box, excluding 

the voxels in the refraction zone).  This process was repeated for every pore within the 

subvolume.  The results of this box sampling procedure for the 3.6g/L L-PM column is 

shown in Figure 8.5a.  The 99% confidence interval (CI) on the mean I̅ as a function of 

the number of voxels averaged (n), shown by the thick black lines in Figure 8.5a, is given 

by: 

 I̅ ± 3.0 M N$
√PQ  3.2 

where σp represents the standard deviation of the population, initially assumed to be 

equivalent to the standard deviation of all of the pore space voxels in the subvolume and 

is independent of sample size and type. Under that hypothesis, the standard deviation of 

each sample (N�) is related to N$ by: 
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 N� = N$
√P 3.3 

However, the σp   assumption caused Equations 3.2 and 3.3 to significantly underestimate 

the spread of boxed sample means shown in Figure 8.5a. This discrepancy is due to the 

fact that N$ for the boxed samples was not equivalent to the standard deviation of the 

pore space voxels (3.29g/L); likely due to spatial artifacts introduced by imperfections in 

the imaging equipment (e.g. scintillator crystal defects) and has already been discussed 

elsewhere for the APS 13-BM-D beamline [Rivers et al., 2010]. Equation 3.3 was applied 

to the data shown in Figure 8.5a to back-calculate N$ over a range of boxed sample sizes 

using n and N� from the data in Figure 8.5a; σp  was found to be inversely related to n, 

increasing from 8g/L at n=40,000 voxels up to 20g/L for n=100 voxels.  

This process was repeated for random sampling, with voxels being chosen randomly 

within the pore space with the sample size ranging from 30 to 1,000,000 voxels. The 99% 

confidence interval for the random sampling data set in Figure 8.5b was back-calculated 

using the above method and compared to the confidence interval calculated using 

equations 3.2 and 3.3. It was found that the confidence intervals for the random samples 

can be approximated using σp =3.29g/L regardless of sample size.  The smaller σp, and 

confidence interval size, observed for random sampling is attributed to the random 

distribution of voxels mitigating the influence of the spatial artifacts mentioned earlier.  

The size of the back-calculated confidence intervals (i.e., margin of error), presented in 

Figure 8.6 for box and random sampling, provides a quantitative measure of the 

uncertainty for the presented SXCMT method, depending on whether random or co-

located voxels are employed in the averaging.  For example, the values in Figure 3.3, 

which presented SXCMT-determined [nAg] as a function of distance from the nearest 

grain, which is equivalent to averaging random voxels, exhibited an uncertainty of ± 

0.03g/L at a distance-to-grain of 104.7 μm (number of voxels averaged = 150,000) and an 

uncertainty of ± 0.003g/L at a distance-to-grain of 20.94 μm (number of voxels averaged 

= 4x106).  Thus, any concentration differences that exceed these confidence intervals can 
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be attributed to real differences in [nAg] due to physical phenomena and not a result of 

the method.  

The authors are confident that, having accounted for the sources of error and uncertainty 

within the datasets, it is possible to distinguish between physical phenomenon occurring 

within the sample of interest and any artifacts introduced by the aforementioned sources 

of noise and uncertainty.  

3.3.3 Silver nanoparticle injection experiment 

The effluent breakthrough curve for the IL-PM experiment is presented in Figure 3.4, 

illustrating how the normalized effluent concentration (C/Co) changed as a function of 

injection time. Where C refers to the effluent or SXCMT-determined concentration and 

Co refers to the influent concentration or SXCMT-determined concentration from Figure 

3.2.  After 45 minutes of nAg injection, the source was switched to a non-silver solution 

and another 30 minutes of water was injected. The average SXCMT-determined [nAg] 

from each of the collected datasets has been plotted also as a function injection time. The 

‘improved’ L-PM calibration curve has been applied to the determined concentrations in 

Figure 3.4.  

The breakthrough curve generated using the effluent data and the SXCMT-determined 

data are similar indicating that this method is an acceptable way of tracking quasi-

dynamic concentrations of nanoparticles in a porous medium. The difference between the 

SXCMT-determined and effluent concentrations at the early injection time point (7 

minutes) is due to the spatial separation of the two sampling points. The SXCMT 

imaging window was at the approximate mid-point of the column while the effluent 

samples were collected at the column’s end. The figure reveals, as expected, the 

nanoparticle solution reached the mid-point of the column prior to reaching the end of the 

column.    

A potential source of uncertainty in IL-PM experiments is diffusion occurring within the 

sample during imaging.  Note that this does not apply to the L-O or L-PM samples 

because they have an equal concentration everywhere.  This is a potential issue for 
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experiments involving transient nAg concentrations.  The optimized imaging process 

required flow in the column to be turned off for at least 40 minutes while the four three-

dimensional datasets were obtained (every 7.6 minutes). However, the impact of 

diffusion on the distribution of SXCMT-determined [nAg] can be minimized by imaging 

above the silver K-edge prior to below K-edge imaging. The imaging order of energies 

will determine whether the SXCMT-determined [nAg] distribution will more closely 

match the pre-diffusion or post-diffusion pore space distribution of nAg.  

 

Figure 3.4: Concentration curve for silver nanoparticles exiting the column and for silver 

nanoparticles within the SXCMT imaging window. The two curves have been plotted so that each 

point represents the concentration of silver (either from effluent or SXCMT) after a certain amount 

of time spent injecting liquid into the column. Co for the effluent curve was determined to be 3.25g/L. 

For the SXCMT-Determined silver nanoparticle curve, Co was assumed to be 3.25 g/L and C was 

determined using the ‘improved’ L-PM calibration curve.   

3.3.4 Range of Suitable Nanomaterials 

The range of nanomaterials suitable for quantification with the proposed imaging method 

is limited by 1) x-ray attenuation of the porous media and column material and 2) the 

monochromator. Below energies of approximately 22 keV, the L-PM samples attenuate 

too many x-rays for the high quality reconstruction necessary for the proposed method; 

this corresponds to the K-edge of Ruthenium [M.J. Berger et al., 2010]. The upper limit 
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of energy possible at the APS 13-BM-D beamline is set by the monochromator which has 

a limit of 70 keV (Tungsten K-edge [M.J. Berger et al., 2010]). While the upper limit is 

70 keV, the scintillator efficiency decreases at higher energies [Koch et al., 1999] and 

this is expected to increase both the uncertainty and error in the SXCMT-determined 

concentration values at energies approaching the monochromator limit. It should be noted 

that this range is specific to the APS 13-BM-D beamline and may be different at different 

SXCMT stations depending on the imaging equipment.  The usable energy range 22 keV 

to 70keV suggests that the presented method is suitable for imaging a range of 

nanomaterials such as quantum dots, cesium and palladium nanoparticles. 
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Chapter 4 

[Molnar et al., 2015] 

4 The impact of immobile zones on the transport and 
retention of nanoparticles in porous media 

4.1 Introduction 

With nanotechnology becoming a $1 trillion industry [Baalousha and Lead, 2009], risk 

assessments associated with transport to groundwater wells are needed when 

nanoparticles are accidentally released into the environment. Also, engineered 

nanoparticles, such as nano-Zero Valent Iron (nZVI), are being deliberately injected at 

contaminated sites to remediate chlorinated solvent source zones [Bennett et al., 2010; 

Kocur et al., 2014; O'Carroll et al., 2013].  Whether for assessing a health risk or 

designing an optimal remediation strategy, accurate tools for predicting subsurface 

nanoparticle transport are required.  

Colloid Filtration Theory (CFT), commonly used to predict nanoparticle transport 

through a porous medium [El Badawy et al., 2013; Jaisi and Elimelech, 2009; Krol et al., 

2013; Lecoanet et al., 2004; Lin et al., 2011; Liu et al., 2009a; Mattison et al., 2011; 

Phenrat et al., 2010a; Phenrat et al., 2010b; Ryan et al., 2002; Taghavy et al., 2013; 

Tong and Johnson, 2006], often over predicts nanoparticle retention rates in favorable 

deposition conditions [Long and Hilpert, 2009; Nelson and Ginn, 2011; Tong and 

Johnson, 2006] despite accurately predicting retention rates for micron-sized colloids in 

similar conditions [Nelson and Ginn, 2011; Tong and Johnson, 2006]. Favorable 

deposition conditions refer to scenarios where adhesive forces dominate colloid-collector 

interactions and there is no repulsive energy barrier hindering deposition. Favourable 

conditions apply to some environmental scenarios, such as silver nanoparticles and iron-

oxide soils [Lin et al., 2011], where the nanoparticles and soil surfaces have oppositely 

charged surfaces. Over-predicting retention rates – i.e., predicting more colloids retained 

than occurs in a given time or distance from the injection point - in favorable conditions 
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can lead to under-predicting risk due to accidental nanoparticle release and ineffective 

remediation scheme design. 

While the over-predicted retention rates were observed for favorable conditions, it is 

difficult to ascertain whether the causes of over-prediction in favorable conditions would 

also influence retention rates in unfavorable conditions. Unfavorable deposition 

conditions refer to scenarios where electrostatic forces create a repulsive energy barrier 

that hinders colloid deposition. Unfavorable conditions apply in many environmental 

scenarios: for example, between silver nanoparticles and quartz sands, where 

nanoparticles and collectors both possess negatively charged surfaces [El Badawy et al., 

2013].  Nanoparticle attachment will still occur in unfavorable deposition conditions, 

although fewer nanoparticles will attach than in favorable conditions [Petosa et al., 

2010].   

CFT predicts retention in favorable conditions using ‘contact efficiency’ (η), the fraction 

of colloids approaching a collector that will contact and subsequently attach to the 

collector by assuming that every contact event results in attachment. However, CFT 

requires a fitted parameter, termed ‘attachment efficiency’ (α), to adjust the prediction for 

unfavorable conditions. Attachment efficiency is defined as the fraction of colloid-

collector contact events that result in attachment and is typically determined by fitting a 

CFT-based model to experimental results. Fitting attachment efficiency to experimental 

results effectively masks any over-prediction of η for unfavorable systems. However it is 

hypothesized that the sources of η over-prediction in favorable conditions would also 

impact η in unfavorable conditions and would interfere with attempts at developing 

predictive transport and retention models for unfavorable conditions.         

Over-predicted nanoparticle retention rates have been hypothesized to be due to CFT’s 

reliance on oversimplified grain and pore geometry, with these geometries unable to 

account for complex nanoparticle/fluid/collector interactions in a realistic three-

dimensional pore space [Boccardo et al., 2014; Long and Hilpert, 2009; Long et al., 

2010].  The original CFT formulation considered colloids approaching a single, isolated 

sphere surrounded by an infinite fluid [Yao et al., 1971]. This collector is considered to 
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be independent of any neighboring collectors; i.e., there are no collector-collector contact 

points and the velocity and concentration of colloids approaching the collector is assumed 

to be unaffected by the presence of other collectors. More recent CFT models [Nelson 

and Ginn, 2011; Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004a] have 

replaced the isolated sphere geometry with a Happel Sphere-in-cell geometry [Happel, 

1958] where the thickness of the fluid envelope is not infinite but is defined by the 

porosity of the porous medium. This finite fluid envelope thickness allows Happel-based 

models to account for the effects of flow constriction from nearby collectors. However 

the Happel Sphere-in-cell geometry does not consider the influence of grain-grain 

contacts. 

A number of studies have employed Happel and isolated-sphere geometries to create η 

correlation equations for a wide range of colloid sizes and flow conditions [Nelson and 

Ginn, 2011; Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004a; Yao et al., 

1971]. Despite being derived from simple single-collector geometries, the correlation 

equation-predicted retention rates are generally in excellent agreement with 

experimentally observed retention rates for micron-sized colloids in favorable deposition 

conditions. However, as mentioned above, these η correlation equations over predict 

nanoparticle retention rates relative to experimental observations [Nelson and Ginn, 

2011; Tong and Johnson, 2006]. Recently, other CFT models have been proposed that 

employ non-standard geometries such as hemisphere-in-cell [Ma et al., 2009] and 

random packings of spherical [Long and Hilpert, 2009]and non-spherical [Long et al., 

2010] collectors. These non-standard CFT models, while maintaining good agreement 

with experimentally observed retention rates for micron-sized colloids, still generally 

over predict η for nanoparticle transport [Nelson and Ginn, 2011]. 

Nanoparticles differ from micron-sized colloids in that their particle diameters are orders 

of magnitude smaller and possess higher surface areas per unit mass. Few studies have 

attempted to understand why these differences between nanoparticles and micron-sized 

colloids lead to CFT’s over-predicted nanoparticle retention rates. In addition, there have 

also been few studies attempting to understand how the pore-space near collector-

collector contact points contributes to predicted retention rates. This study will test the 
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hypothesis that one important component of over predicted CFT-based nanoparticle 

retention rates are flow regimes that are much more complicated than that represented by 

a simple isolated sphere or Happel sphere approach. Specifically, immobile zones (areas 

of low flow) may be dominating the rate of diffusive flux towards the collectors’ surfaces 

and these zones may play a much more significant role for nanoparticles than larger 

colloids. The hypothesis will be tested by examining nanoparticle elution at the column-

scale and nanoparticle concentration distributions and gradients at the pore-scale; relevant 

literature is reviewed below. 

4.1.1 Favorable vs. unfavorable deposition: column scale elution 
behaviour 

A general CFT model using a Happel Sphere-in-cell geometry is illustrated in Figure 

4.1a. The model in Figure 4.1a is only valid for favorable deposition scenarios as CFT 

models are currently not able to predict retention in unfavorable deposition scenarios 

without the fitting parameter ‘α’ [Nelson and Ginn, 2011].  The CFT model in Figure 

4.1a has been upscaled to consider two collectors to illustrate how traditional CFT 

considers each collector isolated from other collectors by not incorporating grain-grain 

contacts (but including flow constriction). The velocity fields, based on Stokes flow 

around the Happel spheres in Figure 4.1a, are shown by the red velocity vectors. Due to 

the assumption of isolated collectors, the flow regime around each collector in Figure 

4.1a is not affected by the presence of the other collector.  

CFT models consider colloid-collector contact events arising from interception (ηI), 

gravitation (ηG) and diffusion (ηD). While diffusion is relatively minor for micron-sized 

colloids [Yao et al., 1971], the dominant mechanism for nanoparticle-collector contact is 

diffusion arising from Brownian motion (i.e., ηD >> ηI, ηG)[Yao et al., 1971].  The rate of 

diffusion towards the collector is a function of the concentration gradient, arising from 

the boundary conditions defined in Figure 4.1a (Cb = C1, Cas = 0), and the flow regime 

around the collector.  

A more realistic porous medium may have a substantially different flow regime than the 

CFT model presented in Figure 4.1A due to the presence of collector-collector contact 
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points.  Figure 4.1B presents a more realistic conceptual model of two collectors that are 

contacting each other (i.e., no assumption of isolation). A comparison of the conceptual 

models in Figures 4.1A and 4.1B illustrates potential reasons for discrepancies between 

experimental observations and CFT predictions. The traditional CFT model in Figure 

4.1A does not account for the presence of the grain-grain contact point, whereas Figure 

4.1B illustrates how these contact points may yield zones of circulating flow [Torkzaban 

et al., 2008] or immobile zones with low or no flow [Li et al., 2010a; Li et al., 2010b; 

2012].  Immobile zones may be particularly important for Brownian particles (i.e., 

nanoparticles) with implications for both retention and elution (i.e., flushing particles out 

of a porous medium). 

In favorable deposition scenarios, CFT-based advective-dispersive transport models 

predict elution as a sharp decrease in concentration with time.  This is typically ascribed 

to CFT’s assumption of irreversible attachment as colloids are attached in the primary 

energy well and will not be released under typical groundwater pore water velocities 

[Bergendahl and Grasso, 2000].  
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Figure 4.1A: Visualization of a traditional single-collector colloid filtration theory model upscaled to 

consider two collectors. The traditional upscaled CFT model considers each collector to not have any 

grain-grain contacts, such that is the flow field around a collector is not influenced by other 

contacting collectors. An approximate visualization of Stokes flow around the two isolated collectors 

is depicted by red arrows on the right side of the model. The red arrows represent a velocity field 

with length of the arrows illustrating velocity magnitude. The CFT model is utilizing the Happel 

sphere-in-cell geometry and there is no energy barrier to deposition (i.e., favorable conditions). The 

radius of the fluid envelope is given by b, as is the radius of the collector, r is the thickness of the fluid 

envelope and Cb and Cas are boundary conditions applied by CFT models. The thickness of the fluid 

envelope (r) has been exaggerated for ease of interpretation. The velocity of the approaching fluid is 

given by vo, C1 and C2 are the concentrations of colloids approaching the first and second collectors 

and A1 is the projected area of the collector + fluid envelope.  

Figure 4.1B: Visualization of two collectors identical to the traditional CFT model in Figure 4.1A but 

with collector-collector contacts. In this scenario, the flow field is influenced by the presence of the 

extra collector which may yield flow phenomena such as immobile zones near grain-grain contacts 

(gray shaded region). An approximate visualization of flow around the two collectors is depicted by 

red arrows on the right side of the model.  
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In the case of micron-sized colloids there is both experimental and modeling evidence 

that extended tailing (i.e., release of colloids leading to a gradual decline in eluted 

concentrations) can occur in unfavorable deposition scenarios [Cortis et al., 2006; 

Johnson and Hilpert, 2013; Landkamer et al., 2013; Li et al., 2004; Li et al., 2005] but 

not favorable conditions[Li et al., 2004; Li et al., 2005].  Extended tailing behaviour has 

been attributed to colloids re-entraining into the bulk pore space from the secondary 

minimum (i.e., reversible retention) [Johnson and Hilpert, 2013; Landkamer et al., 2013; 

Li et al., 2005] due to hydrodynamic forces (e.g., torque) acting on the colloids that can 

cause rolling or skimming of the colloids across the secondary minimum [Bradford et al., 

2011; Li et al., 2005; Torkzaban et al., 2007; Torkzaban et al., 2008]. It has also recently 

been shown that perturbations in ionic strength and flow rate may release colloids from 

the primary minimum [Pazmino et al., 2014a]. A study by Cortis et al. [2006] examined 

extended tailing of C. Parvum oocysts out of a uniform, homogeneous sand over several 

thousand pore volumes and, by fitting the results to a continuous time random walk 

(CTRW) model, identified that both complex pore geometries and physicochemical 

heterogeneities (i.e., reversible and irreversible retention sites) contributed to tailing. 

Cortis et al. [2006] concluded that the physicochemical heterogeneities (i.e., 

reversible/irreversible retention) contributed more to oocyst tailing than pore geometry. 

Additionally, pore-scale modeling studies have shown that immobile zones and 

recirculating flow zones can act as temporary hydraulic retention mechanisms in 

unfavorable scenarios, contributing significantly to overall retention [Li et al., 2012; 

Petosa et al., 2010; Torkzaban et al., 2008] and lead to tailing [Li et al., 2010a; Li et al., 

2010b; 2012; Torkzaban et al., 2008].  The micron-sized colloids in the pore-scale 

modeling studies predominantly entered the immobile zones via translation along the 

secondary energy minimum[Li et al., 2010a; Li et al., 2012]. In favorable conditions (no 

secondary energy minimum) temporary hydraulic retention and tailing was minimal [Li et 

al., 2010a; Li et al., 2012]. The studies noted that direct mass transfer between the 

mobile/immobile porosities, which would theoretically yield tailing regardless of 

favorable/unfavorable conditions, was relatively minor and unlikely to lead to tailing in 

favorable scenarios [Li et al., 2010a; Li et al., 2012]. 
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The finding that tailing is unlikely to occur in favorable conditions likely arises due to 

almost exclusive consideration of micron-sized colloids which, as discussed above, 

require a secondary minimum to enter immobile zones in significant quantities. Diffusive 

mass transfer between mobile and immobile zones, a mechanism that exists in both 

favorable and unfavorable conditions relies on Brownian motion to transport colloids into 

the immobile zone. The limited Brownian motion of micron-sized colloids suggests that 

they are unlikely to diffuse into immobile zones in sufficient quantity to yield tailing.  

The pore-scale modeling studies mentioned previously [Li et al., 2010a; Li et al., 2012] 

noted that diffusive mass transfer between mobile/immobile porosities was not a 

significant contributor for hydraulic retention of larger colloids. However, nanoparticles, 

with greater Brownian motion, are more likely to have significant diffusive mass transfer 

between mobile and immobile porosity. If a sufficient quantity of nanoparticles diffused 

into immobile zones, the differences in tailing behaviour between favorable and 

unfavorable conditions would not be significant.   

In the case of solutes, pore-scale transport modeling studies have noted that extended 

tailing can arise from diffusive mass transfer between mobile and immobile zones 

[Scheibe et al., 2013] and from vortices near grain-grain contacts [Cardenas, 2008]. 

While nanoparticle diffusive flux is less than solute molecules, the results of Scheibe et 

al. [2013] suggest that diffusive transfer between mobile/immobile zones could be 

significant for nanoparticles.  

Extended solute tailing has been observed experimentally from homogenous media such 

as glass beads and uniform sand packs [Cortis et al., 2004; Cortis et al., 2006] and have 

been attributed to heterogeneities present in the pore-scale geometry which yield 

immobile and mobile regions. Other pore-scale solute transport studies, both modeling 

and experimental, have examined the relationships between heterogeneous pore space 

geometry, velocity distributions and anomalous transport behaviour (i.e., behaviour not 

describable by the classic advective-dispersive equation) [Bijeljic et al., 2011; Bijeljic et 

al., 2013a; Bijeljic et al., 2013b; Scheven et al., 2005]. These studies have observed that 

the complexity of the pore space – with glass beads and uniform sand packs being less 

complex, and media such as sandstones and carbonates being more complex – is directly 
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linked to increasingly anomalous transport behaviour, large stagnant concentrations and 

extended tailing.  Other studies have also examined how the aforementioned 

heterogeneities in the pore geometry can influence reactive transport [Edery et al., 2013].  

Solute transport studies often employ a continuous time random walk (CTRW) approach 

to modeling the discussed anomalous behaviour such as early breakthrough and extended 

tailing [Berkowitz et al., 2006; Edery et al., 2014]. While the CTRW approach has also 

been extended to colloid transport [Cortis et al., 2006], CFT combined with variations of 

the advective-dispersive equation remain the most common approach to modeling colloid 

transport[Bradford et al., 2009; El Badawy et al., 2013; Jaisi and Elimelech, 2009; Krol 

et al., 2013; Lecoanet et al., 2004; Lin et al., 2011; Liu et al., 2009a; Mattison et al., 

2011; Phenrat et al., 2010a; Phenrat et al., 2010b; Ryan et al., 2002; Taghavy et al., 

2013; Tong and Johnson, 2006; Tufenkji and Elimelech, 2004b; Tufenkji, 2007].  This is 

likely due to CFT’s use of physically-based force/torque balances to describe colloid 

attachment onto the collector surface. The force/torque balance approach is powerful as 

the generalized correlation equations derived from these balances can accurately predict 

retention rates. However, quantitatively describing elution and tailing from the 

force/torque balances remains a challenge for even the well-studied micron-sized colloids 

discussed earlier.    

The mechanisms governing the elution of nano-sized colloids are poorly understood and 

have received little attention in the colloid transport literature. It is common for 

nanoparticle transport studies to only present breakthrough and to not discuss elution 

behaviour [El Badawy et al., 2013; Ko and Chen, 2000; Kocur et al., 2013; Lecoanet and 

Wiesner, 2004; Lin et al., 2011]. One study does present evidence of extended tailing 

during nanoparticle elution [Uyusur et al., 2010], with tailing observed in both saturated 

and unsaturated porous media and in both favorable and unfavorable deposition 

conditions, but did not discuss the tailing in depth.  As such, more work is needed to 

assess the impact of more realistic flow regimes on nanoparticle retention and elution.  
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4.1.2 Favorable vs. unfavorable deposition: pore-scale 
concentration gradients 

An improved understanding of pore scale nanoparticle transport and retention phenomena 

will ultimately improve the ability to predict larger scale nanoparticle transport.  As 

discussed, Figure 4.1a is commonly used as a conceptual model for the derivation of 

theoretical and pore scale modeling studies.  Under both favorable and unfavorable 

conditions, the dominant mechanism transporting nanoparticles to the collector surface is 

diffusion arising from Brownian motion (i.e., ηD (diffusion) >> ηI (interception), 

ηG(gravitation))[Yao et al., 1971].  As such, this discussion will focus on diffusion.  The 

boundary at the edge of the fluid envelope in Figure 4.1a is assumed to have 

concentration C1 (i.e., Cb = C1), the concentration in an upstream area where the flow is 

unaffected by the collector [Yao et al., 1971]. For favorable conditions it is assumed that 

the surface at the collector boundary is a perfect sink. The rate of diffusion towards the 

collector is a function of the concentration gradient between the fluid envelope boundary 

(Cb = C1) and collector surface (Cas = 0) and the flow regime around the collector.   

As discussed previously, the model in Figure 4.1a is only valid for favorable deposition 

scenarios as CFT models are not currently able to predict retention in unfavorable 

deposition scenarios [Nelson and Ginn, 2011].  A considerable volume of literature has 

attempted to understand the mechanisms of colloid retention in unfavorable conditions.  

These mechanisms include: deposition into a secondary energy minimum [Hahn and 

O'Melia, 2004; Kuznar and Elimelech, 2007; Qiu et al., 2012; Shen et al., 2007; Tufenkji 

and Elimelech, 2005], surface roughness [Saiers and Ryan, 2005], geochemical 

heterogeneities that create localized zones of unfavorable/favorable deposition conditions 

[Johnson et al., 1996; Johnson et al., 2010; Lin et al., 2011; Liu et al., 2009b; Pazmino et 

al., 2014b; Tufenkji and Elimelech, 2005], straining at pore-throats [Bradford et al., 2004; 

Bradford et al., 2006], and adsorption site-blocking [Cullen et al., 2010; Johnson and 

Elimelech, 1995; Li et al., 2008; Liu et al., 2009a].  These mechanisms likely yield a Cas 

boundary condition greater than 0 (i.e., C1 > Cas > 0).  Because Cas > 0 in unfavorable 

scenarios, the concentration gradient driving diffusive flux towards the surface should be 

smaller than the gradient in a favorable deposition scenario. 
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The concentration gradient in the CFT Happel sphere model is given as 6TE − TD�7/U 

where r is the thickness of the fluid envelope. With immobile zones, r depends on the 

distance from the edge of the immobile porosity (Cb = C1) to the collector surface (Cas =0 

in favorable conditions). If the immobile zone is wider than the Happel fluid envelope 

(i.e., rimmobile > rHappel) then concentration gradients may be significantly lower than 

predicted by the Happel sphere model. These smaller gradients in the immobile porosity 

may dominate the overall diffusive flux towards the collectors’ surfaces and result in 

unexpectedly low values of nanoparticle retention on the collectors. In this scenario, 

where immobile zones are controlling the diffusive flux, the concentration gradients 

would depend only upon the geometry of the immobile zones and would be independent 

of favorable/unfavorable conditions.  

In this study, nanoparticle behaviour at the column- and pore-scale will be examined to 

investigate nanoparticle retention mechanisms.  Specifically, the relative importance of 

immobile zones on nanoparticle retention and elution are explored with a variety of 

complementary datasets. At the column scale, elution behaviour for both favorable 

(irreversible attachment, iron oxide-coated sand and nanosilver) and unfavorable 

conditions (reversible retention, quartz sand with nanosilver) is examined in transport 

experiments.  Different elution behaviour in the favorable/irreversible and 

unfavorable/reversible retention systems would suggest that nanoparticle interaction with 

the collector surfaces dominates elution behaviour; however similar tailing behaviours in 

both systems would suggest that temporary hydraulic retention in immobile zones (i.e., 

retention purely due to hydraulics with no nanoparticle-surface interaction) controls the 

elution behaviour instead. At the pore scale, nanoparticle concentration distributions in 

the pore space are determined from reconstructed synchrotron x-ray computed 

microtomography (SXCMT) datasets of the same column experiments. Using the pore 

space reconstructions, the potential occurrence of immobile zones is mapped using 

computational fluid dynamics modelling. Furthermore, the nanoparticle concentration in 

the pore space is mapped as a function of distance to grain-grain contact points.  Also 

quantified is the evolving mean concentration gradient from the pore centers towards the 

grain.  Finally, results in uniform sand are compared to well-graded sand in order to 
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consider the influence of pore size distribution on these metrics.  Overall, this represents 

a unique exploration of the dominant mechanisms affecting nanoparticle retention in real 

porous media systems, revealing where CFT requires further development in this context.   

4.2 Materials and Methods 

4.2.1 Silver Nanoparticle Synthesis 

Silver nanoparticles were synthesized at the GeoSoilEnviro Center of Advanced 

Radiation Sources (GSECARS) wet lab the day before the allotted 24-hour SXCMT 

beamtime. The details of the synthesis procedure are presented elsewhere [Molnar et al., 

2014; Wang et al., 1998]. Briefly, silver nitrate (0.1N, Alfa Aesar) was reduced by 

chemical reduction with sodium borohydride (Granulated, 97+%, Alfa Aesar) and 

electrosterically stabilized with a 1% solution of sodium carboxymethyl cellulose 

(CMC90k, Aldrich Chemistry). It was demonstrated that, using this method, more than 

97% of the silver is in nanoparticle form [Molnar et al., 2014].  The nanoparticles were 

synthesized in a single batch that was continuously stirred. A subsample of nanoparticle 

solution was extracted from the batch at the start of each experiment and remained in an 

air-tight plastic syringe for the duration of the experiment (approximately 6 hours per 

experiment). The pH and ionic strength of the solution were 8.4 and 120 mM, 

respectively. The resulting nanoparticles were spherical (Figure 9.1, supplementary 

information), with a hydrodynamic diameter of 29.8 nm and zeta potential of -27.97 mV 

(ZetaPlus Zeta Potential Analyzer, Brookhaven). The solution was very stable and no 

aggregation or settling was observed between synthesis, beamtime and shipment back to 

the parent lab for analysis.  

4.2.2 Column Experiments 

The quartz sand (Unimin Accusand) used in all experiments was rinsed with concentrated 

nitric acid (Environmental grade, Alfa Aesar) to remove impurities, then rinsed with 

deionised water and dried overnight. Following sieving to achieve the desired grain size 

distribution, uniform or well graded, approximately half of the uniform quartz sand was 

treated to achieve an iron oxide coating consisting mostly of hematite and goethite 

[Molnar et al., 2011].  Three columns were prepared by wet-packing the sands into small 
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aluminum columns (ID: 5.6 mm, length: 5 cm). The sand was packed into a 1% CMC90k 

aqueous suspension (no nAg present) controlled to the same pH and ionic strength as the 

synthesized nAg solution with NaOH (10N, Fisher Scientific) and NaNO3 (Certified 

A.C.S, Fisher Scientific). Characteristics of the packed columns are listed in Table 4.1. 

Porosity of the columns was experimentally determined by measuring the volume of each 

column, weighing the mass of the sand added to each column and measuring the specific 

gravity of the sands (2.65 g/cm3).   

The setup for the column experiments is shown in Figure 9.2 in the Appendices.  After 

securely mounting the column in the imaging hutch, a pre-injection image was recorded 

(i.e., 0 pore volume image). The volume of column imaged, referred to as the SXCMT 

imaging window, was at the approximate mid-point of the column. This SXCMT imaging 

window height was consistent across all 3 experiments and did not change during the 

injection/elution process for each column. Following the pre-injection image, the 

synthesized nAg solution was injected into the columns at a rate of 0.11 mL/min with a 

syringe pump. The columns were imaged after injecting 0.25, 0.5, 0.75, 1 and 2 pore 

volumes (PV) of nAg solution (except the iron oxide column was not imaged at 0.25 PV). 

A total of 3 PV of nAg solution was injected into each column, after which the injection 

was switched to a 1% CMC90k solution containing no silver nanoparticles but the same 

pH and ionic strength to examine the elution behaviour of nAg from the columns. The 

columns were imaged again after 1 PV of nAg elution. The uniform quartz sand was 

imaged an additional time following a 2nd PV of elution. The columns were then 

removed from the imaging hutch and elution continued for another 5 to 7 PV’s.  
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Table 4.1: Overview of soil and hydraulic properties of the column experiments 

 Uniform Quartz Uniform Iron Oxide Well Graded Quartz 

Experiment # 1 3 2 

Grain size (µm) 420 - 600 420 - 600 215 - 853 

Porosity 33% 31% 29% 

Pore volume 0.40 mL 0.38 mL 0.35 mL 

Pore water velocity 1.38 cm/min 1.47 cm/min 1.55 cm/min 

C
o
 average 2.6 g/L 2.4 g/L 2.0 g/L 

nAg volume injected 3 PV 3 PV 3 PV 

nAg mass injected 2.8 mg 2.7 mg 2.1 mg 

nAg retained 
(mg Ag/g sand) 

0.01 mg/g 0.2 mg/g 0.0073 mg/g 

After each injection interval was completed (e.g., 0 - 0.25 PV, 0.25 - 0.5 PV etc. ) the 

syringe pump was stopped and all valves were closed to prepare for imaging. Each 

SXCMT image required approximately 40 minutes of imaging time along with an 

additional 3 – 4 minutes for imaging hutch safety procedures.  As shown in Table 4.1, an 

equal volume of nAg solution was injected into each of the 3 columns, although the 

injected nAg concentration, and therefore injected Ag mass, differed slightly. The 

discrepancy was most likely due to minor settling/re-suspension behavior in the stock 

nAg solution over the 24 hour experiment. The influent nAg was sampled pre- and post-

injection to quantify any temporal changes in influent concentration and all of the 

effluent was collected in 0.5 PV intervals. The influent concentration in the pre- and post-

injection samples differed by less than 7%, indicating excellent nAg stability. The 

collected samples were sent back to the parent laboratory for analysis. 

A number of tracer experiments were also conducted through SXCMT-columns for each 

of the sands employed in this study including replicates: 3 for the uniform quartz, 2 for 

the uniform iron oxide and 2 for the well graded quartz. The columns were emptied, 

cleaned and re-packed between each repetition for each sand type. A pulse of 
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approximately 3 pore volumes of 1mM sodium fluorescein was injected into the SXCMT 

columns and eluted with a non-tracer solution for an additional number of pore volumes. 

The sodium fluorescein was quantified by UV/Vis spectroscopy with a peak absorbance 

at 488nm. Mass recovery from the tracer tests was excellent (96% - 100%) considering 

the very small volumes sampled from the effluent (0.08 – 0.3mL). The experiments were 

conducted under conditions identical to the nAg transport tests, but were not imaged by 

SXCMT. The experimental conditions identical to the nAg transport tests included: 

stagnant periods representing SXCMT imaging time, 1% CMC90k solution in the tracer 

and non-tracer fluids and identical mass flow rates (0.11 mL/min). The porosities and 

pore volumes of the tracer columns were also very similar to their corresponding nAg 

columns. The results of the tracer test breakthrough curves are presented in Figure 9.3 in 

the supplementary information. Simple batch experiments were also performed, in which 

fluorescein dye solution was mixed with quartz and iron oxide sands for a period of time 

equivalent to an SXCMT experiment; the excellent mass recovery (>99%) underscored 

that sorption of the dye was insignificant.  

4.2.3 ICP-determination of Ag concentration 

A mass balance on Ag was determined for each experiment.  The liquid samples were 

digested in 68-70%  nitric acid, rested for at least 12 hours, diluted to 2% nitric acid and 

analyzed for silver concentration via ICP-OES [Molnar et al., 2014]. The sand from each 

experiment was digested with nitric acid and tested for silver concentration in a manner 

similar to the influent and effluent samples.  The influent nAg mass was calculated by 

multiplying the ICP-determined Co (Table 4.1) with the injected volume programmed 

into the syringe pump. The effluent mass was calculated by multiplying the ICP-

determined Ag concentration of each effluent sample with the volume of effluent in the 

sample.  

The concentration of Ag retained by the sand was determined directly from the acid-

digested sand. Acid digestion and ICP-analysis of the nAg retained in the iron oxide sand 

was complicated due to an incomplete mass balance of Ag in the iron oxide experiment. 

This incomplete Ag mass balance is hypothesized to be due to unknown iron oxide/Ag 
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interactions that rendered part of the retained nAg non-digestible. Simple batch 

experiments with nAg in iron oxide sand proved that the incomplete mass balance was 

repeatable and thus not due to experimental error reinforcing the hypothesis that iron 

oxide/Ag interactions were responsible. Given the consistency of the batch experiments, 

the concentration of deposited nAg on the iron oxide sand reported in this study is the 

ICP-determined concentration from the acid-digestion solution + residual where residual 

is the amount of Ag required to complete the mass balance. More details regarding the 

nAg/iron oxide interactions and the batch experiments are discussed in Appendix 9.1.  

4.2.4 DLVO Calculations 

Standard DLVO (Derjaguin and Landau, Verwey and Overbeek) theory was used to 

confirm that iron oxide sand/nAg interactions were favorable and that the quartz sand had 

a primary energy barrier as well as a secondary energy minimum. The calculation was 

performed using the sphere-plate Surface Element Integration technique detailed in 

[Bhattacharjee et al., 2000] with an existing code [Liu, 2008]. The zeta potential of the 

Iron Oxide sand at pH 8.4 and ionic strength of 0.12M was determined to be -25 mV via 

a streaming potential measurement (Anton Paar SurPASS system, Saint Laurent, 

Canada). The zeta potential value for quartz was taken from the literature as -55 mV 

[Liang et al., 2013] as it was found to have relatively little impact on the DLVO profile. 

Hamaker constants were taken from the literature for quartz (7.93x10-20 J)[Ross and 

Morrison, 1988], water (5.5x10-20 J)[Fernández-Varea and Garcia-Molina, 2000], silver 

nanoparticles (17x10-20 J) [Pinchuk, 2012] and iron oxide (23.2x10-20 J)[Faure et al., 

2011]. Figure 9.4 in the Appendix shows the calculated DLVO curves.  

All of the surfaces employed by this study (i.e., silver, quartz, iron oxide) possess 

negative zeta potentials indicating that the electrostatic forces between all surfaces are 

repulsive. However, the overall interaction energy is a combination of the repulsive 

electrostatic and attractive van der Waals forces. In the silver-quartz sands systems this 

leads to regions of repulsive forces (the repulsive energy barrier) and attractive forces 

(primary energy minimum) creating unfavorable deposition conditions (illustrated in 

Figure 9.4). In the silver-iron oxide sand system the attractive van der Waals forces 
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dominate at all separation distances, yielding no repulsive energy barrier and favorable 

deposition conditions (illustrated in Figure 9.4). 

4.2.5 Imaging and Reconstruction 

Imaging was completed at the Argonne National Lab, Advanced Photon Source 

Synchrotron, 13-BM-D beamline with the GSECARS research group. The imaging 

procedure and equipment is detailed in Molnar et al [2014]. Imaging was performed 

above and below the Ag K-edge at 25.414, 25.614, 25.714 and 25.814 keV. The column 

was imaged at the 4 energies each time (i.e., 0, 0.25, 0.5 PV, etc.). During imaging the 

column was rotated 180o while collecting 1440 projections. The pixels in the projection 

were binned together (2x2) to reduce imaging time and noise. The resolution of each 

projection was 9.87µm/pixel. The bottom of the SXCMT imaging window was 2.55 cm 

above the base of the column and extended upwards approximately 0.51 cm.    

4.2.6 Reconstruction, Segmentation and Pore-Network Extraction 

The collected projections were reconstructed into 3-dimensional datasets using 

GSECARS-specific reconstruction software [Rivers et al., 2010] in IDL 8.1 (ITT Visual 

Information Solutions). The reconstruction software used filtered back projection with a 

radon transform and a general hamming filter to convert each set of 1440 projections into 

a 3-dimensional map of x-ray linear mass attenuation values. Each value in the 

reconstructed dataset is the x-ray linear mass attenuation averaged over a 9.87 × 9.87 × 

9.87 µm voxel. Following reconstruction, a consistent subvolume (350 × 350 × 450 

voxels) was extracted from all of the datasets captured at each time, providing 4-

subvolumes per time-step for each of the 6-8 time-steps.  An established segmentation 

and pore-network extraction procedure[Molnar et al., 2014] was applied to one 

subvolume; it was not repeated on the other images for a given experiment because the 

grain/pore structure in the four images were identical.  The images were checked to 

ensure that the segmentation properly identified the grain/water boundaries. In addition, 

distances between every pore space voxel and the closest, and second closest, grain 

surfaces were determined via the algorithm outlined in Appendix 10.1.  
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4.2.7 Dataset Analysis  

The x-ray linear mass attenuation values for each voxel in the extracted subvolumes were 

converted to SXCMT-determined silver nanoparticle concentrations (hereafter referred to 

as [nAg]) using the method outlined in Molnar et al [2014] and summarized in the 

supplementary information.  The method of Molnar et al. [2014] was verified at the 

beginning of the SXCMT beam time by imaging a bundle of capillary tubes filled with 

known concentrations of silver nanoparticles (determined via ICP-OES). This verification 

determined that the relationship between SXCMT-determined [nAg] and ICP-determined 

[nAg] was linear and that the method of Molnar et al. [2014] could be applied. See 

Molnar et al. [2014] for a full discussion of the method’s verification, accuracy and 

uncertainty. During analysis of the collected datasets, it was discovered that the ‘shadow 

zone’ thickness was energy dependent. The thickness of the ‘shadow zone’ increased 

with increasing distance from the Ag K-edge.  Due to this energy-dependent behavior, 

the SXCMT-determined [nAg] values for voxels 17-25 μm away from a grain surface 

were calculated using only the 25.614/25.414 keV difference dataset. Voxels > 25μm 

away from the grain surface used all datasets for [nAg] determination.  It is important to 

note that due to the voxel resolution of the SXCMT datasets being orders of magnitude 

larger than the size of the nanoparticles, this method is unable to resolve individual 

nanoparticles, but instead provides an SXCMT-determined silver concentration within 

each voxel of the three-dimensional datasets.  There are approximately 104 nanoparticles 

for every 1g/L of SXCMT-determined [nAg] within each voxel [Molnar et al., 2014]. 

4.2.8 Computational Fluid Dynamic Analysis of Pore Water Flow 

The ANSYS FLUENT 13.0 commercial software was employed to model the fluid flow 

through a subvolume of the uniform quartz dataset. FLUENT employs a finite volume 

method to solve momentum and continuity equations across a mesh. Modelling of the 

flow through the imaged subvolume essentially followed standard CFD 

methods[Boccardo et al., 2014; Cardenas, 2008]. The subvolume (150 × 150 × 350 

voxels) was meshed in ANSYS ICEM CFD 13.0 with 24 million elements, corresponding 

to approximately 10 elements for each pore space voxel. The inlet and outlet boundaries 

were set as constant pressure. The magnitude of the pressure drop from the inlet to outlet 



97 

A version of this chapter has been published [Molnar et al., 2015] 

 

boundary was adjusted until the average simulated pore water velocity approximated the 

bulk pore water velocity in the uniform quartz experiment (Table 4.1). Grain surface 

boundaries were set as no flow. The sides of the sub-volume were set to allow flow 

parallel to the boundary, but not across it. The viscosity of the simulated fluid matched 

the viscosity of the fluids used in the experiments, 14 cP.  

4.3 Results and Discussion 

The results and discussion section is divided into three subsections. The first discusses 

the column-scale results of the three experiments including overall nAg retention and the 

effluent breakthrough curves (BTC). The second examines the pore-scale distribution of 

nAg with respect to distance from grain-grain contacts for the three experiments.  The 

third subsection compares the pore-scale concentration gradients in the favorable (iron 

oxide) and unfavorable (quartz) experiments.  In all of the subsections, the results speak 

to whether immobile zones or surface chemistry controls the rate of diffusive flux to the 

grain surface and, thus, nanoparticle retention.   

4.3.1 Column-Scale Results 

The amounts of silver nanoparticles retained on the basis of acid-digestion and ICP-

determination in the different experiments are listed in Table 4.1 and are, in descending 

order: iron oxide (0.2 mg nAg/g soil) > uniform quartz (0.01mg/g) > well graded quartz 

(0.0073 mg/g). There was some concern that the nAg stabilizing agent CMC90k could 

interfere with nAg retention in this study as it has been shown that a) nanoparticle 

stabilizing agents can alter retention behaviour by competing for deposition sites [El 

Badawy et al., 2013] and b) CMC90k has demonstrated an affinity for iron oxide surfaces 

[Pensini et al., 2013]. However, the concentration of nAg retained on the quartz sand 

agrees well with previously published nAg/quartz isotherm data [Abraham et al., 2013] 

providing confidence that CMC90k was not interfering with nAg retention on the quartz 

sands.  In addition, the retention data presented above agrees with previous studies that 

have demonstrated – in absence of a stabilizer - greater retention on iron oxide sands 

compared to quartz [El Badawy et al., 2013; Lin et al., 2011] which suggests that site 

competition with CMC90k was not a significant factor here.   
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Retention is often conceptualized as a two-step system: 1) nanoparticle transport towards 

the collector and 2) nanoparticle retention by the collector. As expected, the retention 

data (Table 4.1) shows that surface chemistry (i.e., favorable/unfavorable) controls the 

second step, retention at the collector surface. This finding matches the 

favorable/unfavorable conditions predicted by the DLVO curves in Figure 4.4 in the 

supplementary information indicating the presence of an electrostatic energy barrier on 

the quartz sands but not on the iron oxide sand and confirms that the iron oxide and 

quartz sands employed by this study represent favorable and unfavorable conditions, 

respectively.  This highlights that, while immobile zones are hypothesized to contribute 

to temporary hydraulic retention of nanoparticles, attachment on the collector surface 

dominates the overall retention in favorable conditions.  

Figure 4.2 examines the nAg breakthrough in the column effluent for the three 

experiments as a function of pore volumes injected. The nAg concentration values were 

obtained via ICP-determination of each collected effluent sample normalized to the ICP-

determined influent concentration (Co). The effluent BTCs were compared to CFT 

predictions via the upscaled CFT equation: C/Co = (1-η)Nc where C is the concentration 

after passing by a number of linearly aligned collectors (Nc)[Johnson and Hilpert, 2013]. 

Assuming the average diameter of a grain is 500 μm, Nc can be calculated by 

representing the column as a long string of grains (Nc~100). The upscaled CFT equation 

was used to calculate the collector contact efficiencies for each experiment (ηexpt). To 

minimize the influence of dispersion, ηexpt was determined only for the peak C/Co values 

at 3 PV. These ηexpt values were compared to those obtained from the Nelson and Ginn 

[Nelson and Ginn, 2011] ηCFT correlation equation and are presented in Table 4.2. The 

Nelson and Ginn [Nelson and Ginn, 2011] ηCFT value (0.003) over predicts the column-

scale iron oxide ηexpt value (0.002) by 50%. This over prediction is consistent with 

previous findings that CFT-predicted η values are generally larger than experimentally-

determined η values for nanoparticles in favourable conditions [Long and Hilpert, 2009; 

Long et al., 2010; Nelson and Ginn, 2011]. This suggests that the single-collector CFT 

model presented in Figure 4.1a does not adequately account for all the relevant 

mechanisms.  
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A comparison of the quartz sands’ ηCFT and ηexpt values is complicated by the presence of 

the electrostatic energy barrier. CFT cannot predict ηCFT in unfavorable conditions and 

requires the ‘attachment efficiency’ (α) fitting parameter to compensate for the presence 

of an electrostatic energy barrier. Attachment efficiency is typically fit from experimental 

data and is calculated as: ηexpt = α × ηCFT. Table 4.2 presents the calculated α for each 

experiment. While attachment efficiency is used for unfavorable conditions, the 

overprediction of ηCFT, due to mechanisms such as immobile zones, yields α values < 1 in 

favorable conditions as exhibited by the iron oxide column experiment (α = 0.67).  As 

expected, the quartz sands’ α values are significantly smaller than the iron oxide α, 0.17 

for uniform quartz and 0.03 for well graded quartz. Both quartz sands have identical 

surface chemistries and a similar grain d50 which, according to CFT, should yield 

identical retention rates and ηCFT values. The ηexpt and α values are close to an order of 

magnitude larger for the uniform quartz than the well graded quartz despite the identical 

surface chemistries. This suggests that some physical mechanism related to the 

distribution of grain and pore sizes can inhibit nAg retention rates and influence both ηexpt 

and the accuracy of single-collector CFT models.  

Table 4.2: Comparison of Experimental and Predicted Contact Efficiency (η) at 

Maximum C/Co 

 Uniform Iron Oxide Uniform Quartz Well Graded Quartz 

Experimental (ηexpt) 0.002 0.0005 0.00009 

Nelson-Ginn [Nelson 
and Ginn, 2011] (ηCFT) 

0.003 0.003 0.003 

Attachment efficiency 
(α) 

0.67 0.17 0.03 
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Figure 4.2: Effluent sample C/Co breakthrough on a log-log scale to emphasize extended tailing in the 

samples. The grey box represents the nAg injection period and the white background represents the 

elution. The vertical dotted line indicates when the advective front reached the top of the column. 

The red, blue and black lines are the results of Equation 4.1 fitted to the elution portion of the 

uniform iron oxide, uniform quartz, and well graded quartz breakthrough curves respectively. Co 

was measured at the start and end of the 3 PV injection period. Error bars representing C/Co for the 

maximum and minimum measured values of Co are plotted but are smaller than the marker size for 

each data point and are not visible. 

The elution behaviour in Figure 4.2 was examined for evidence of extended tailing, 

specifically for evidence of power law tailing. Power law tailing appears as a linear 

decrease in C/Co on a log-log plot [Haggerty et al., 2000] and is usually described by: 

 T = W X Y�Z  4.1 

Where C is concentration, t is time or pore volumes injected, and k and b are fitted 

coefficients. As mentioned previously, tailing in colloid experiments is typically only 

associated with unfavorable conditions when colloids re-entrain into the bulk pore space 

from the secondary minimum [Johnson and Hilpert, 2013; Landkamer et al., 2013; Li et 

al., 2005]. If re-entrainment from the secondary minimum was the dominant source of 
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extended tailing, the tailing should only occur in the quartz sand experiments and not the 

iron oxide, as both the DLVO profile in Figure 4.4 and the column-scale retention data 

indicates that nanoparticles are irreversibly attached onto the iron oxide sand.    However, 

all three experiments in Figure 4.2 exhibit the linear decrease in concentration indicative 

of power-law tailing. This suggests that extended tailing of nanoparticles can occur in 

both favorable and unfavorable deposition scenarios and, in these systems, is not linked 

to reversible/irreversible retention behaviour on the collector surface. 

To compare the magnitude of tailing for the unfavorable (quartz) and the favorable (iron 

oxide) experiments, eq 4.1 was fit to the elution portion of each BTC. The fitted equation 

is represented by a line overlain on the tailing portion of each BTC in Figure 4.2. The 

parameter k from eq 4.1 represents the slope of the elution phase in log-log space.  The 

unitless fitted k values, with +/- 95% confidence intervals, are: uniform iron oxide = 

4.0+/- 0.4, uniform quartz = 3.6 +/- 0.8, well graded quartz = 3.7 +/- 0.2. Thus, the tailing 

behaviour observed in Figure 4.2 for the iron oxide and quartz experiments are 

statistically similar. This similar behaviour indicates that elution from the iron oxide and 

quartz sands are governed by a mechanism that is independent of surface chemistry, 

implying that nanoparticle re-entrainment from the secondary minimum is not an 

important mechanism in the two quartz experiments. As the tailing behaviour is 

independent of surface chemistry, a physical mechanism is likely responsible.  

The conducted tracer tests (presented in Figure 9.3) reinforce the observation that 

physical mechanisms are likely responsible for nAg tailing. The tracer tests all exhibited 

extended tailing during elution and linearly decreasing concentration in log-log space. 

The linear decrease occurred over approximately 3 orders of magnitude of concentration. 

The high repeatability of the tracer experiments indicate that this observed tailing, for 

both the tracer and the nAg, are real and consistent for the experimental systems 

employed. The unitless k values from eq. 4.1 were fitted to each of the tracer test elution 

curves and were relatively consistent across all tracer experiments (uniform quartz: 7.6 

+/- 1.2, 6.3 +/- 0.8, 7.9 +/- 0.6; well graded quartz: 7.3 +/- 0.6, 7.0 +/- 0.7; uniform iron 

oxide: 7.1 +/- 0.8, 6.4 +/- 0.6). The tracer k-values are higher than the nAg values, 

indicating a higher slope of eluted concentration and therefore less extended tailing 
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relative to the nAg. This is hypothesized to be due to the fact that the higher diffusivity of 

solutes yields higher diffusive mass fluxes relative to nanoparticle diffusion.     

Traditional CFT models (i.e., Figure 4.1a) do not include physical mechanisms that could 

yield the extended tailing behaviour in Figure 4.2. The immobile areas that were 

hypothesized to be the source of the CFT discrepancies in Table 4.2 are likely the source 

of the tailing behaviour in Figure 4.2. Specifically, diffusive mass transfer into and out of 

the immobile areas is the hypothesized source of temporary hydraulic retention. The 

quantities of nanoparticles interacting with the hypothesized immobile zones are 

significant enough to yield both extended tailing and reduced attachment rates onto the 

collectors’ surfaces at the column-scale. This suggests that the pore-scale concentration 

gradients, responsible for driving diffusive flux towards the collector surface, may be 

independent of surface chemistry and dominated by immobile zones.  The next section 

will test the hypothesis that immobile zones are present in the three experiments by 

examining pore-scale concentrations and pore water fluid velocities near grain-grain 

contacts using pore-scale SXCMT data.  

4.3.2 Pore-Scale Concentrations near Grain-Grain Contacts 

Pore-scale modeling studies have suggested that hydraulic retention in the pore space, the 

hypothesized source of the tailing behaviour observed in Figure 4.2, will typically occur 

near grain-grain contact points [Cardenas, 2008; Li et al., 2010b; 2012; Torkzaban et al., 

2008]. However, there are contradictory results in the literature regarding the governing 

mechanism that causes temporary retention in immobile zones. Pore-scale models of 

colloid transport [Li et al., 2010a; Li et al., 2012] have suggested that colloids primarily 

enter the immobile zones via translation along a secondary minimum, and suggested that 

these zones are not significant sources of retention in favorable deposition conditions. 

Solute transport studies have suggested that variations in pore-scale fluid velocity (i.e., 

mobile and immobile regions) and diffusive mass transfer between mobile/immobile 

regions are important contributors to temporary retention and extended tailing [Bijeljic et 

al., 2011; Bijeljic et al., 2013a; Bijeljic et al., 2013b; Cortis et al., 2004; Scheibe et al., 
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2013]. In addition, another study determined that solutes would always exhibit temporary 

retention and extended tailing if vortices are present in the pore space [Cardenas, 2008].  

Direct comparisons of the above studies to the nanoparticle transport experiments 

presented here is difficult due to the scale of the particles or molecules in the literature 

studies. The solute transport [Cardenas, 2008; Scheibe et al., 2013] studies consider the 

transport of aqueous molecules. The colloid modeling studies [Li et al., 2010a; Li et al., 

2012] present hydraulic retention data only for larger colloids (i.e., diameter = 1.1 μm) 

where Brownian motion is limited compared to the solute molecules. The silver 

nanoparticles employed in this study (i.e., diameter = 29.8 nm) are between the two sizes 

considered above and as such it is unknown whether immobile zones are important 

contributors to nanoparticle tailing in both favorable and unfavorable conditions.  

A computational fluid dynamics (CFD) analysis, described in section 4.2.8, was 

undertaken on a subvolume of the uniform quartz SXCMT dataset to consider whether 

regions of low- and no-flow (i.e., immobile zones) are expected.  Figure 4.3 presents a 

representative sampling of vertical cross-sectional contour plots of predicted velocity 

magnitude; it reveals that there are substantial regions of pore space that have pore water 

velocities more than an order-of-magnitude lower than the average pore water velocity 

(1.38 cm/min). These observations are in qualitative agreement with solute transport 

studies that have noted that pores in even homogenous media will possess pore-scale 

variations in velocity and immobile regions [Cortis et al., 2004; Cortis et al., 2006]. Also, 

these immobile regions appear to occur predominantly near grain-grain contacts, 

consistent with the conceptual model in Figure 4.1b. It should be noted that many of the 

low-flow locations in Figure 4.3 that appear to occur within pore throats (i.e., a narrow 

gap between neighbouring grains) are actually regions directly adjacent to grain-grain 

contacts; these contact points do not appear in the image because they are slightly offset 

from the examined cross-sections.  
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Figure 4.3: Contour plots of CFD-predicted velocity magnitude for three vertical cross-sections of the 

uniform quartz sub-volume. The velocity profiles in the three cross-sections are representative of the 

entire uniform quartz sub-volume. The colour map was cropped at 1.4 cm/min (average pore water 

velocity) to emphasize regions of low velocity. As a result, the red regions represent areas where pore 

water velocity is greater than the average pore water velocity (i.e., ≥1.4 cm/min).   A random 

selection of streamlines were visualized near each selected cross-section and have been overlain in 

black on the images. Due to the 3-dimensional nature of the sub-volume, streamlines will appear and 

disappear from the image as they approach and leave the plane of the cross-section. 

The velocity distribution observed in Figure 4.3 was examined for quantitative evidence 

that the pore space near grain-grain contacts had lower pore water velocities. This was 

examined by plotting the CFD-simulated pore water velocity as a function of distance 

from the nearest grain and as a function of distance from the second closest grain. The 

CFD-simulated velocity for each of the mesh’s cells was converted to voxel-averaged 

velocity by importing the mesh into the SXCMT sub-volume and averaging all of the 

mesh’s cells that were contained within each voxel in the sub-volume. The distance to the 

nearest grain and second nearest grain was measured for every pore space voxel in the 

dataset.  The pore space voxels >17 µm distant from a grain surface were then sorted into 

9.87×9.87 µm blocks and pore space voxels <17µm distant from a grain surface were 
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sorted into 9.87×17µm blocks. An average CFD-simulated pore water velocity for each 

block was calculated and plotted as a two-dimensional surface plot. The average CFD-

simulated pore water velocity in each block represents the average pore water velocity at 

a certain distance considering every pore in the CFD sub-volume.  

Figure 4.4 shows the CFD-simulated pore water velocity contour plot for the uniform 

quartz sub-volume. The bottom left corner of the plot represents the voxels closest to the 

grain-grain contact points, the top left corner represents voxels close to one grain surface 

but far from the next closest grain surface, and the top-right represents voxels in the 

centers of the pores. The dataset extends out to approximately 180 μm in the x-axis and 

to approximately 300 μm on the y-axis but has been cropped in the figure to highlight the 

area of interest. 

The block-averaged velocity values in Figure 4.4 are a strong function of distance from 

the nearest grain: velocities were lower near the grains’ surfaces than the centers of pores 

regardless of distance from the second closest grain. This trend was expected due to the 

no-slip boundary condition employed at the grains’ surfaces and also matches the 

predicted velocity distribution from the Stokes flow around a single sphere (visualized in 

the right half of Figure 4.1a). However, the simulated velocities in Figure 4.4 are also, on 

average, lower near grain-grain contacts than other points near the grains’ surfaces (i.e., 

velocity decreases with decreasing distance to second closest gain); this simulated 

velocity distribution closely matches the distribution visualized by the conceptual model 

in Figure 4.1b. The lower velocities observed near the grain-grain contact points in 

Figure 4.4 strongly suggests the presence of low flow/immobile zones near grain-grain 

contacts. The maximum pore velocities do not occur at the maximum distance from the 

grains; this likely occurs because the plotted values are the average values from all pores 

in the system. Given the wide range of pore sizes (with radii ranging from 10-200 µm), 

pore centers with their corresponding peak velocities will be found at a range of distances 

from the nearest grain surface (e.g., some pore centers will be 40, 50, 60, 100 µm distant 

from a grain surface). As a result, Figure 4.4 presents a generalized map of how pore 

water velocities vary with distance from two grain surfaces. 
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Figure 4.4: A contour plot of average CFD-simulated pore water velocity as a function of distance to 

the nearest grain surface (x-axis) and distance to the second closest grain (y-axis) for the uniform 

quartz experiment. It should be noted that while the voxels within the ‘shadow zone’ are not suitable 

for SXCMT-determined concentrations, they are suitable for CFD simulations of pore water velocity 

and are presented here. Each block represents an average velocity of many pore space voxels 

(>1000). The plot is triangular in shape with white space because the distance to the second closest 

grain can never be smaller than the distance to the closest grain.   

The SXCMT-datasets were examined for evidence that the immobile zones in Figure 4.3 

and 4.4 were impacting the pore space distribution of nanoparticle concentration, 

specifically if the immobile zones possessed lower nanoparticle concentrations. The 

average SXCMT-determined concentration was plotted as a function of distance from the 

nearest grain and as a function of distance from the second closest grain, similar to Figure 

4.4. The SXCMT-determined concentration plots were created in a similar manner to 

Figure 4.4 but employed the SXCMT-determined [nAg] datasets, not the cropped sub- 

volume used for CFD simulations. The distance to the nearest grain and second nearest 

grain was measured for every pore space voxel in the dataset, the pore space voxels >17 

µm distant from a grain surface were then sorted into 9.87×9.87 µm blocks. An average 

SXCMT-determined concentration for each block was calculated and plotted as a two-
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dimensional surface plot. The average SXCMT-determined concentration in each block 

represents the average concentration at a certain distance considering every pore in the 

dataset. 

Figure 4.5a shows the distance-distance concentration plot for all three experiments at 1.3 

SXCMT pore volumes. The datasets extend out to approximately 180 μm in the x-axis 

and to approximately 300 μm on the y-axis but have been cropped in the figure to 

highlight the area of interest.   

The block-averaged SXCMT-determined [nAg] values in Figure 4.5a decrease near the 

grain-grain contact points (lower left corner) and increase towards the centers of the 

pores (top right corner). Figure 4.5b plots the same data but with concentrations binned 

into 3 categories via 95% confidence intervals: significantly below average [nAg] (blue), 

average [nAg] (light green), and significantly above average [nAg] (red). Figure 4.5b 

clearly illustrates that the pore space voxels close to grain-grain contact points possess 

significantly below average nAg concentrations. While the blue region identified in 

Figure 4.5b appears to be relatively small, the pore space is not evenly distributed across 

the contour plots (i.e., some data points in Figure 4.5 represent a greater number of pore 

space voxels than others).  Approximately 40% of all pore space voxels in each dataset 

are contained within the blue region in Figure 4.5b.   
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Figure 4.5A: A contour plot of SXCMT-determined [nAg] as a function of distance to the nearest 

grain surface (x-axis) and distance to the second closest grain (y-axis) for all three experiments at 1.3 

SXCMT pore volumes. Each block represents an average concentration of many pore space voxels 

(>1000). The plotted ‘block averaged’ nAg concentrations are normalized to the average SXCMT-

detemined concentration (Cavg) in each sand at 1.3 SXCMT-PV’s. The average concentration for each 

dataset (uniform quartz, uniform iron oxide and well graded quartz at 1.3 SXCMT PV’s) was 

calculated by summing the SXCMT-determined concentration value in all usable pore space voxels 

and dividing by the number of voxels summed. Normalizing the plotted concentration to Cavg instead 

of input concentration (Co) enables comparisons of silver nanoparticle distribution between the 

datasets even though they have different input concentrations (Co) and different C/Co values at 1.3 

SXCMT PV’s. The plot is triangular in shape with white space because the distance to the second 

closest grain can never be smaller than the distance to the closest grain.  Due to the shadow zone 

extending outwards to 17μm, all data points within 17μm of a grain surface have been cropped from 

the plots. 

Figure 4.5B: A two-dimensional plot identifying each block in Figure 4.5a as being either 

significantly above the average pore space concentration (red), below the average pore space 

concentration (blue) or not significantly different from the pore space average concentration (light 

green). 95% confidence intervals were used to determine significance. 

(A) 

(B) 
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The decrease in concentration near the grain-grain contact points in Figure 4.5 coincides 

with the results in Figures 4.3 and 4.4, and suggests that the pore space near grain-grain 

contacts is relatively immobile and therefore nanoparticle access is limited by diffusion. 

The reduced concentrations relative to the centers of the pores are evidence that advective 

transport near grain-grain contacts is limited.  Nanoparticles that diffuse into these 

immobile pore spaces, do not attach to the grains’ surfaces, and diffuse back into the 

mobile porosity during elution could lead to extended tailing observed in Figure 4.2. The 

C/Cavg trends in Figure 4.5A as well as the below-average concentration zones (blue, 

Figure 4.5B) are consistent between favorable and unfavorable sands. These similarly 

sized below-average concentration zones suggest that nanoparticle diffusive flux into the 

immobile zones are relatively consistent regardless of favorable or unfavorable 

deposition conditions or the grain size distributions employed in this study. Consistent 

nanoparticle diffusive flux into the immobile zones in each of the three sands coincides 

with the similar tailing behaviours identified in Figure 4.2. This supports the hypothesis 

that diffusion, not colloid/surface interactions, is driving the temporary retention that led 

to the observed tailing. The nanoparticle interactions with immobile pore spaces appear 

to be more similar to the solute transport simulations discussed previously [Bijeljic et al., 

2011; Bijeljic et al., 2013a; Bijeljic et al., 2013b; Cardenas, 2008; Cortis et al., 2004; 

Cortis et al., 2006; Scheibe et al., 2013] than the micron-sized colloids simulations [Li et 

al., 2010a; Li et al., 2012].  

4.3.3 Pore-Scale Concentration Gradients  

To further explore the hypothesis that immobile zones controlled the rate of diffusive flux 

towards the grain surface, pore-space concentration gradients in the quartz (unfavorable) 

and iron oxide (favorable) experiments were compared. If surface chemistry controlled 

the flux then the concentration gradients in the iron oxide/favorable experiment would be 

greater than in the quartz/unfavorable experiment. However, if the immobile zones and 

diffusion were controlling the rate of flux towards the grain then the concentration 

gradients should be similar between the three experiments.  
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To simplify the analysis, one-dimensional pore-scale concentration gradients (dC/dr) 

away from the grain surface were considered. These concentration gradients were 

obtained by plotting the average SXCMT-determined concentration as a function of 

distance from the nearest grain surface (Figure 4.6). The distance to the nearest grain 

surface was measured for every pore space voxel in the dataset and then the pore space 

voxels were binned into 9.87 µm distance bins, a distance of 1 voxel.  An average 

SXCMT-determined concentration for each bin was calculated and plotted as a function 

of the average distance from the grain surface. The average SXCMT-determined 

concentration in each bin represents the average concentration at a certain distance for 

every pore in the dataset, not individual pores; by this method, the one-dimensional dC/dr 

is not for a specific direction or angle but an average over the entire pore space 

considering all angles around all grains. Lines of best fit for each time step are also 

shown in Figure 4.6; the slope of these lines represent average dC/dr for the imaged 

volume as a function of time. 

Figure 4.6 reveals that nanoparticle concentration is an approximately linear function of 

distance from the grain surface in all experiments. The small positive slopes at 0PV are 

the result of x-ray refraction away from the grain surface. While this x-ray refraction 

predominantly affects the SXCMT-determined [nAg] values close to the grain surface (< 

17 μm distant, and thus this data is excluded from this analysis), it does exert some minor 

influence throughout the rest of the pore space. This small slope at 0PV is consistent with 

the results of Molnar et al. [2014].  

 

 



111 

A version of this chapter has been published [Molnar et al., 2015] 

 

 

 

(A) 

(B) 
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Figure 4.6: SXCMT-determined [nAg] as a function of distance to the nearest grain surface for every 

time-step in each of the 3 injection experiments (A: uniform iron oxide, B: uniform quartz, C: well 

graded quartz). The labeled the pore volume numbers represent SXCMT pore volumes but were 

labeled as simply ‘PV’ for convenience.  The colored circles represent the average SXCMT-

determined [nAg] for each bin (blue: uniform quartz, red: uniform iron oxide, black: well graded 

quartz) and the thick black lines are fitted linear trends. All voxels were binned and averaged in 

9.87μm increments with the exception of the first datapoint at x = 20. Due to the shadow zone 

extending outwards to 17μm, the first datapoint only bins 17-25μm distance from a grain surface.  

Figure 4.7 plots dC/dr over time for each of the experiments normalized to the dC/dr in 

the SXCMT 0 PV datasets. In all three experiments the value of dC/dr increases during 

nAg injection and decreases during elution to background levels. It was expected that 

dC/dr would decrease to a negative value during elution, indicating nanoparticle re-

entrainment in the mobile porosity, either due to detachment from the grains or diffusive 

mass transfer out of the immobile zones, however this was not observed. A dC/dr value 

of 0 does not mean that nanoparticle re-entrainment in the mobile porosity did not occur 

(as it clearly did), but that this method of analysis was unable to distinguish between 

nanoparticles re-entrained within the SXCMT-imaging window and nanoparticles re-

entrained from immobile zones/grains upstream from the SXCMT-imaging window.       

(C) 
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The general trend and magnitude of dC/dr in Figure 4.7 is similar for all three 

experiments.  This shows that immobile zones, not surface chemistry, are controlling nAg 

concentration gradients and diffusive flux rates towards grain surfaces. As previously 

discussed, retention is conceptualized as a two-step system: 1) nanoparticle transport 

towards the collector and 2) nanoparticle retention by the collector. Section 4.3.1 showed 

that surface chemistry (i.e., favorable/unfavorable) controlled attachment at the collector 

surface (i.e., step 2).  Figure 4.6 provides further evidence for this two-step attachment 

process by illustrating that immobile zones are limiting the first step, the rate of 

nanoparticle transport towards the collector, while also acting as a temporary retention 

mechanism in both favorable and unfavorable conditions. 

 

Figure 4.7: dC/dr plotted as a function of SXCMT pore volumes injected. The plotted values of dC/dr 

are the slope of the fitted lines in Figure 4.6 normalized to the 0 SXCMT PV dC/dr so that dC/dr = 0 

at SXCMT PV = 0. The grey box represents the time during which nAg was injected into the solution  

The similarity in concentration gradients between the uniform quartz and well graded 

quartz in Figure 4.7 suggests that grain and pore size distribution does not significantly 
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influence pore-scale concentration gradients. Given the identical DLVO profiles of the 

well graded and uniform quartz sands, similar concentration gradients should yield 

similar retention rates. The retained concentrations for Uniform Quartz and Well Graded 

Quartz (Table 4.1) are similar; this similarity suggests that the differences in immobile 

zones in the uniform and well graded sands are not large enough to yield differences in 

observed concentration gradients or overall retention levels despite order-of-magnitude 

differences in α. The extended tailing behaviour (Figure 4.2) and pore-space nAg 

distribution near grain-grain contacts for the uniform and well graded quartz sands were 

also similar. The similarity in behaviour of the uniform quartz and well graded quartz 

does not necessarily suggest that immobile zones are independent of grain size 

distribution. Rather, it is hypothesized that the differences in grain size distribution 

(Table 4.1) between uniform quartz and well graded quartz were not significant enough 

to quantify differences in immobile zone extent and frequency. The grain size distribution 

of the well graded quartz was limited by the resolution of the SXCMT datasets and the 

diameter of the experimental column.  

To account for the influence of differing injection concentrations (Table 4.1, Co) and 

breakthrough curve behaviour (Figure 4.2) on pore-scale gradient formation, the 

concentration gradients were plotted as a function of average SXCMT-determined [nAg] 

(see Figure 4.8). The average SXCMT-determined [nAg] was calculated by averaging 

every [nAg] voxel value in each dataset, excluding the voxels that were <17µm distance 

from a grain surface.  Figure 4.8 illustrates that in all three experiments dC/dr increased 

linearly as nanoparticle concentration increased. This indicates that in all three 

experiments concentration gradient formation depended strongly on average pore-space 

nanoparticle concentration. The similar gradient vs. concentration trend in Figure 4.8 for 

all three experiments reinforce the results of Figures 4.2 to 4.7 that all three experiments 

were similarly impacted by immobile zones, and that this impact was independent of 

surface chemistry and grain size distribution.    
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Figure 4.8: dC/dr from Figure 4.7 plotted vs. average SXCMT-determined silver nanoparticle 

concentration. A line has been fit to all three experiments and overlain in black.  

4.4 Conclusions 

This study examined the impact of immobile zones on the transport and retention of 

silver nanoparticles through three sand columns: uniform quartz (unfavorable), uniform 

iron oxide (favorable) and well graded quartz (unfavorable).  Four major findings were 

drawn from this study: (1) Extended tailing during the elution phase occurred for all three 

sand types, representing independence from surface chemistry, (2) Numerical simulations 

of fluid flow through a uniform quartz SXCMT dataset predict the existence of immobile 

zones near grain-grain contacts, (3) SXCMT-datasets of pore-scale nanoparticle 

distribution revealed significantly below-average concentrations near grain-grain 

contacts, and (4) The pore-scale nanoparticle concentration gradients towards the grain 

surfaces were independent of surface chemistry and grain size distribution and varied 

linearly with average nanoparticle concentration in the SXCMT-datasets.  
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These observations highlight the impact immobile zones may have on nanoparticle 

transport and retention. While surface chemistry was observed to control nanoparticle 

retention at the grains’ surfaces, immobile zones impacted the transport of nanoparticles 

to the surface. Since the observed tailing was independent of surface chemistry, this 

suggests that (i) immobile zones are likely acting as sources of temporary hydraulic 

retention, and (ii) diffusive flux between mobile and immobile zones was driving the 

temporary retention, not torque-induced rolling as is typically suggested.  It should be 

emphasized that the temporary hydraulic retention occurring within this study does not 

suggest that filtration (i.e., retention by the collector surface) is insignificant for 

nanoparticles. The high, irreversible, attachment rates onto the iron oxide sand 

demonstrates that retention by the collector surface is a major component of overall 

retention in favorable conditions. Since the measured pore-scale concentration gradients 

were independent of surface chemistry, this revealed that higher retention rates did not 

create higher diffusive flux rates towards the grains’ surfaces.  This suggests that 

diffusive transport through the immobile zones was limiting the overall rate of 

nanoparticle transport towards the surfaces and thus limiting the overall rate of 

nanoparticle retention. This could explain why CFT typically over predicts nanoparticle 

retention: single-collector models in CFT are unable to account for immobile zones as 

they do not contain any grain-grain contacts. These implications, widely applicable to 

nano-sized colloids, are likely less important for micron-sized colloids (e.g., bacteria) as 

the latter exhibit limited Brownian motion relative to the nanoparticles employed in this 

study.     

Accurate prediction of nanoparticle transport will therefore likely require incorporation of 

immobile zones into continuum-scale and CFT-scale transport models. Incorporating 

immobile zones may help CFT models accurately predict η for nanoparticles and, by 

better understanding nanoparticle transport to the collector surface and temporary 

retention, may also aid the development of models that can predict nanoparticle retention 

in unfavorable conditions.  Incorporating immobile zones into these models should be 

considered a future research opportunity.   
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It is acknowledged that it was not possible to directly observe individual nanoparticles in 

real-time within the three-dimensional porous media, either in the pore space or directly 

on the grains’ surfaces as this exceeds both the spatial and temporal resolutions available 

via SXCMT.  The study instead relied on statistical averages of pore-space nanoparticle 

concentrations that were mapped by a quantitative SXCMT technique, the strength of 

which is the more than 12 million data values (i.e., voxels) available for averaging.  

While this technique is limited to quantifying nanoparticle concentrations more than 

17µm from the grain surface, it nevertheless provides unprecedented quantification of 

spatially averaged nanoparticle pore-space concentration gradients.  It is also 

acknowledged that immobile zones are not directly observed, however the weight of 

combined evidence from pore velocity modelling, column-scale elution behaviour, and 

pore scale concentrations makes a compelling case about the impact of immobile zones 

on nanoparticle transport and retention. 
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Chapter 5 

 

5 The impact of pore geometry and fluid velocity on the 
transport of nanoparticles in porous media  

5.1 Introduction 

Predicting the transport of Engineered Nanoparticles (ENPs) through the subsurface 

environment is necessary to protect groundwater resources and to efficiently remediate 

contaminated industrial sites. ENPs’ are widely used in both industrial processes and 

consumer products [Petosa et al., 2010]; their prevalence suggests that they may 

eventually be released to the subsurface environment and, if mobile in the subsurface, 

pose risks to municipal drinking water supplies or recreational surface water bodies. Bi-

metallic engineered nanoparticles, such as nano-Zero-Valent-Iron (nZVI), are also being 

purposely injected into the subsurface environment at contaminated industrial sites to 

degrade industrial contaminants [O'Carroll et al., 2013]. As a result, accurately 

predicting the transport of engineered nanoparticles through soil is valuable for both 

groundwater source zone protection and designing efficient site-remediation schemes. 

However, current modelling approaches cannot adequately simulate nanoparticle 

transport through soil. The classic approach to continuum-scale modelling of nanoparticle 

transport typically employs the Advective-Dispersive equation which predicts a 

symmetric breakthrough concentration curve and a log-linear concentration profile of 

retained nanoparticles [Molnar et al., 2015b]. While variations of this approach have 

been successfully employed to describe anomalous experimental transport behaviour 

arising from phenomena such as ‘site blocking’ [Li et al., 2008; Liu et al., 2009], a 

significant portion of nanoparticle transport experiments exhibit some degree of 

‘anomalous’ behaviour that cannot be adequately explained, or described, by current 

models.   

The observed ‘anomalous’ behaviours may involve concentration profiles of retained 

nanoparticles that are either hyperexponential [Jiang et al., 2012a; Jiang et al., 2012b; 
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Kasel et al., 2013; Lanphere et al., 2013; Liang et al., 2013a; Liang et al., 2013b; Wang 

et al., 2013a; Wang et al., 2013b; Wang et al., 2014a; Wang et al., 2008; Wang et al., 

2012] or non-monotonic [Chen et al., 2011; Kasel et al., 2013; Lanphere et al., 2013; Li 

et al., 2008; Liang et al., 2013a; Liang et al., 2013b; Solovitch et al., 2010; Wang et al., 

2013b; Wang et al., 2014a; Wang et al., 2008; Wang et al., 2014b]. In addition, 

breakthrough concentration curves will often exhibit non-symmetrical extended tailing 

behaviour during the elution phase of a transport experiment [Jiang et al., 2012a; Jiang et 

al., 2012b; Joo et al., 2009; Kanel et al., 2015; Molnar et al., 2015a; Uyusur et al., 2010]. 

While these anomalous behaviours are similar to what is often observed for larger 

micron-sized colloids [Molnar et al., 2015b], it is unknown if the processes governing the 

anomalous transport of nanoparticles are also responsible for the anomalous transport of 

micron-sized colloids. Nanoparticles may not be governed by the same processes as 

micon-sized colloids as nanoparticles possess unique physicochemical properties – such 

as a large degree of Brownian motion – due to their small size and large specific surface 

areas.    

Despite a recent attempt at developing an empirical approach to predicting nanoparticle 

transport behaviour [Goldberg et al., 2015], current nanoparticle transport models cannot 

adequately describe, or predict these anomalous behaviours. This inability to describe 

nanoparticle transport has led some to suggest that existing transport models do not 

capture pore-scale processes governing nanoparticle transport and retention [Goldberg et 

al., 2014]. As such, a better understanding of the pore-scale processes governing 

nanoparticle transport is required to develop continuum-scale models which can simulate 

the observed ‘anomalous’ transport behaviour and, in addition, rigorous mechanistic 

approaches are needed to predict the continuum-scale models’ parameters.    

The classic Advective-Dispersive equation, when applied to nanoparticle transport 

through soil, typically contains a first-order kinetic rate term which describes 

nanoparticle retention (the first-order kinetic retention rate coefficient is denoted by katt). 

The most commonly employed mechanistic model to predict katt is Colloid Filtration 

Theory (CFT). CFT has been applied to a predict nanoparticle katt for a wide range of 

nanoparticles and environmental conditions [El Badawy et al., 2013; Jaisi and Elimelech, 
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2009; Krol et al., 2013; Lecoanet et al., 2004; Lin et al., 2011; Liu et al., 2009; Mattison 

et al., 2011; Phenrat et al., 2010a; Phenrat et al., 2010b; Ryan et al., 2002; Taghavy et 

al., 2013; Tong and Johnson, 2006; Wang et al., 2012]. CFT has two distinct 

components: a mechanistic particle transport model and an η-correlation equation.  The 

mechanistic model employs a force/torque balance to determine colloid trajectories and 

attachment in the presence of a collector (or assemblage of collectors). This mechanistic 

model is run for a large number of colloids over a wide range of conditions and the 

fraction of approaching colloids which contact the collector surface (denoted as η and 

termed ‘contact efficiency’) under each condition is determined. The results from the 

mechanistic model are fit to a simplified ‘η-correlation equation’ which provides a simple 

tool for end-users to estimate η based on environmental conditions and particle type. The 

CFT-predicted η is then upscaled into the continuum-scale katt and incorporated into a 

variation of the classical advective-dispersive equation.  

There are a number of different CFT mechanistic models that employ different 

force/torque balances, environmental conditions, model geometries and η-correlation 

equations [Cushing and Lawler, 1998; Ma et al., 2009; Nelson and Ginn, 2011; 

Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004; Yao et al., 1971]. These 

models are generally successful at predicting η and katt for micron-sized colloids in 

favorable Derjaguin-Landau-Verwey-Overbeek (DLVO) conditions [Molnar et al., 

2015b]. DLVO conditions can include ‘favorable conditions’ wherein attractive forces 

(such as van der Waals and electrostatic attractive forces) between the colloid and grain 

dominate at all separation distances and there is no repulsive energy barrier preventing 

attachment of the colloid onto the grain. Unfavorable conditions refer to when repulsive 

DLVO forces (such as electrostatic repulsion) dominate at small separation distances, 

creating a potentially significant repulsive energy barrier that might prevent colloid 

deposition on to the collector surface. Soil/nanoparticle systems in unfavorable 

conditions exhibit relatively low nanoparticle retention rates compared to favorable 

conditions [Petosa et al., 2010].  

While the mechanistic models in CFT generally provide an excellent description of 

colloid retention for micron-sized colloids in porous media under favorable DLVO 
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conditions, mechanistic models and related correlation equations over predict 

nanoparticle retention in favorable DLVO conditions [Molnar et al., 2015a; Nelson and 

Ginn, 2011]. Applying these over predicted η values to nanoparticle transport at the field-

scale may result in over-predicting retention rates, under-predicting nanoparticle mobility 

and, thus, under-predicting the risk released nanoparticles would pose to nearby drinking 

water sources.  

For unfavorable conditions, CFT mechanistic models and correlation equations are 

unable to predict experimental colloid retention rates. The most common approach to 

adapting CFT for use in unfavorable conditions is to employ an additional parameter 

(commonly denoted by α) termed ‘attachment efficiency’ which is determined by fitting 

an advective-dispersion-katt model to experimental results. However, attempts at 

predicting α for unfavorable conditions, or even the studies that attempt to identify the 

influence of various parameters on α, are limited by the implicit assumption that CFT is 

able to accurately predict η.  

It is likely that many of the pore-scale processes which yield the previously discussed 

anomalous nanoparticle transport behaviour also impact CFT’s ability to accurately 

predict η and katt. Thus understanding which pore-scale processes are not adequately 

represented by CFT will not only improve CFT’s ability to predict katt, but will also 

identify the processes which are potentially responsible for anomalous transport 

behaviour.  

For instance, it has been hypothesized by pore-scale nanoparticle transport studies that 

CFT’s over prediction of η was partially linked to the mechanistic models’ pore and grain 

geometry which relies on a series of simplifying assumptions[Boccardo et al., 2014; 

Long and Hilpert, 2009; Molnar et al., 2015a]. The geometry typically assumes a 

perfectly spherical collector (or ‘grain’) surrounded by a spherical shell of fluid – termed 

the Happel-sphere-in-cell geometry (HSIC) [Happel, 1958; Nelson and Ginn, 2005; 

Nelson and Ginn, 2011; Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004]. The 

HSIC geometry also assumes that there are no grain-grain contacts, which are ubiquitous 

in nature, which leaves it unable to account for any processes linked to that feature. 



128 

 

Molnar et al. [2015a] demonstrated how CFT’s overprediction of η could be partially 

linked to ‘immobile zones’ (regions of relatively low fluid velocity) near grain-grain 

contacts as these immobile zones were limiting the rate at which nanoparticles could 

diffuse to the surface. While this immobile zone process was identified via comparisons 

to CFT, it was then shown to be responsible for anomalous extended tailing behaviour 

[Molnar et al., 2015a].  

However, the influence of other assumptions within the Happel-sphere-in-cell geometry 

on the accuracy of mechanistic CFT models and anomalous nanoparticle transport 

behaviour remains unclear. These other assumptions include whether the average flow 

field through a realistic porous medium can be approximated by the analytical solution of 

creeping flow through the Happel fluid envelope; or if approximating the entirety of the 

soil’s pore-space as spherical shell of fluid is appropriate. The latter approximation 

carries the implicit assumption that all nanoparticles are flowing through the narrow fluid 

envelope. This assumption is fundamental to the Happel-sphere geometry and it remains 

unclear if this assumption is valid for nanoparticle transport through real media. 

However, attempts at better understanding the processes governing anomalous transport 

behaviour and inaccurate CFT predictions are limited due to the difficulties of 

experimentally observing nanoparticles within realistic pore spaces. Column-scale 

transport studies are typically limited to inferring transport and retention mechanisms, 

due to their inability to observe nanoparticle behaviour within real pore spaces [Molnar et 

al., 2015b]. Pore-scale studies of nanoparticle transport, which have provided valuable 

information on nanoparticle flow and transport, are typically limited to relatively simple 

two-dimensional micro-model systems which may not adequately incorporate all 

governing processes in real soil pore spaces. For instance, laser scanning cytometry was 

employed by May et al. [2012; 2013] to observe nanoparticle retention and re-

entrainment during flow through a two-dimensional micro-model.   

Other imaging techniques, X-ray Computed Microtomography (XCMT) in particular, 

have yielded significant insights into the pore-scale processes which govern the transport 

of contaminants such as NAPL’s and micron-sized colloids. However XCMT has yet to 
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be widely applied to nanoparticle transport. XCMT imaging has been performed for 

micron-sized colloids as they can be easily observed due to their relatively high density 

and large particle diameter which can be larger than the XCMT resolution. This has been 

used to experimentally examine the deposition patterns of micron-sized colloids and 

colloidal aggregates which were then linked to reductions in the permeability of the 

porous medium [Chen et al., 2008; Chen et al., 2009; Gaillard et al., 2007]. It was 

observed that colloids in unfavorable conditions will experience significant retention at 

grain-grain contacts (termed ‘wedging’) [Li et al., 2006a; b]. Recently, Molnar et al. 

[2014] developed a quantitative-Synchrotron X-ray Computed Microtomography 

technique (qSXCMT) to accurately determine the changing pore-scale concentrations of 

nanoparticles in packed soil columns during nanoparticle transport experiments. Molnar 

et al. [2015a] employed qSXCMT to determine, as described above, that regions of low 

fluid velocity (termed ‘immobile zones’) were limiting nanoparticle rates in the soil and 

responsible for extended tailing behaviour. 

In this study, qSXCMT is employed to determine, for the first time, the averaged 

distribution of nanoparticle mass flux within a soil’s pore spaces. To do this, qSXCMT 

was coupled with CFD to characterize the averaged pore-scale nanoparticle distribution 

and flow field during a real 1-dimensional column nanoparticle transport experiment. The 

column experiment injected a silver nanoparticle solution into a uniform quartz sand in 

unfavorable DLVO conditions and was imaged via qSXCMT at regular intervals during 

nanoparticle injection and elution. First, this study characterized the distribution of pore 

space within the soil and examined how well bulk-measured lab properties (i.e., soil sieve 

analysis) described the real pore and grain geometry. Then, the distribution of fluid 

velocity through the soil was ascertained via CFD modelling and compared to analytical 

solutions for creeping flow around the idealized Happel Sphere in Cell geometry 

commonly employed by CFT mechanistic models.  Next, the distribution of nanoparticle 

mass within the pore space was determined and coupled with the CFD-simulated velocity 

distribution to estimate the distribution of silver nanoparticle mass flux and mass flow 

rates. The implications of these findings are discussed in the context of anomalous 

nanoparticle transport behaviour as well as colloid filtration theory mechanistic models.    
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5.2 Materials and Methods 

A silver nanoparticle (nAg) transport experiment was undertaken at the GeoSoilEnviro 

Center of Advanced Radiation Sources (GSECARS) 13-BM-D beamline during an 

allotted 24-hour SXCMT time slot at the Advanced Photon Source (APS) at the 

Argonnne National Lab. The experimental method is described in detail in [Molnar et al., 

2015a]; a summary of the relevant details are provided here. Note that the nAg transport 

experiment and corresponding SXCMT datasets examined here were also used in Molnar 

et al. [2015a], there described as the ‘Uniform Quartz’ dataset. The analysis presented 

here is entirely new; this paper does not re-use or re-present any results from the Molnar 

et al. [2015a] study 

5.2.1 Materials  

Silver nanoparticles were synthesized by reducing silver nitrate (0.1N, Alfa Aesar) with 

sodium borohydride (Granulated, 97+%, Alfa Aesar) and electrosterically stabilized with 

a 1% solution of carboxymethylcellulose 90k (CMC90k) [Molnar et al., 2014; Molnar et 

al., 2015a]. The synthesis procedure occurred at the GSECARS wet lab the day before 

the allotted synchrotron beam time. The synthesized silver nanoparticles had an average 

hydrodynamic diameter (d50) of 29.8 nm, a zeta potential of -27.97 mV and the final 

CMC90k stabilized solution had a viscosity of 14 cP.  

The porous medium employed for the transport experiment was a quartz sand (Unimin 

Accusand) that had been cleaned by rinsing with Nitric Acid (Environmental grade, Alfa 

Aesar) followed by rinsing with deionized water and left to dry overnight. The sand was 

sieved to achieve a specific grain size distribution (see Table 5.1) and was then wet-

packed into a small aluminum column (ID: 5.6 mm, length: 5 cm). The solution used for 

wet packing contained no nanoparticles but was controlled to the same viscosity (i.e. 1% 

CMC90k solution at 14 cP) and ionic strength (120 mM) as the nAg solution. The 

porosity of the column (see Table 5.1) was determined by measuring the specific gravity 

of the sand (2.65 g/cm3) and weighing the amount of sand packed into the column. 
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5.2.2  Silver nanoparticle transport experiment  

The packed column was loaded into the GSECARS 13-BM-D imaging hutch and a pre-

injection image was collected. Following the pre-injection imaging, the silver 

nanoparticle solution was injected into the column with a syringe pump at a rate of 0.11 

mL/min (see Table 5.1 for overview of associated hydraulic parameters). The flow 

direction was upwards through the column. A total of 3 pore volumes (PV’s) of nAg 

solution was injected into the column and qSXCMT imaging occurring at 0.25, 0.5, 0.75, 

1 and 2 PV’s of injection. All flow through the column was stopped during qSXCMT 

imaging. The concentration of silver nanoparticles in the injection solution was measured 

at the beginning and end of the nAg injection period via acid-digestion and ICP-OES 

analysis. The average silver nanoparticle concentration being injected into the column 

was determined to be 2.48 g/L (+/- 0.06 g/L). 

After 3 PV’s of injecting the nAg solution, the input was switched to a 1% CMC90k 

solution with no silver nanoparticles – controlled to the same pH and ionic strength as the 

wet packing and nAg solutions – to flush the nanoparticles out the column. The column 

was imaged after 1 and 2 PV’s of elution and elution continued for an additional 5 PV’s 

(7 PV’s of elution total) with no additional qSXCMT imaging. During injection and 

elution, samples were collected from the column’s effluent and analyzed for total silver 

concentration via ICP-OES and acid-digestion. The results from the effluent sampling are 

presented elsewhere [Molnar et al., 2015a] and will not be discussed here.  

It should be noted that the results of this study are presented in terms of SXCMT pore 

volumes (SXCMT-PV’s) injected, not total column pore volumes. An SXCMT-PV is 

defined as the pore space between the bottom of the column and the center of the imaging 

window whereas a total column pore volume (PV’s) refers to the pore volume of the 

entire column (approximately 0.4 mL). Thus ‘1 SXCMT-PV’s injected’ refers to when 

the advective front of the injected nAg solution reaches the center of the SXCMT 

imaging window. qSXCMT imaging occurred at 0.4, 0.9, 1.3, 1.8, 3.6, 7.2 and 8.9 

SXCMT-PV’s corresponding to 0.25, 0.5, 0.75, 1, 2, 4 and 5 total column pore volumes.  

The column was imaged at its midpoint which was 2.55 cm above the base of the porous 

medium. The length of column section imaged (referred to as the ‘SXCMT imaging 
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window’) was 0.51 cm and extended from 2.55 cm to 3.06 cm above the base of the 

column. 

Table 5.1: Overview of soil and hydraulic properties of the uniform quartz column 

experimenta 

Porous 

Medium 

Porosity 

(%) 

Sieved 

Grain Size 

(µm) 

Pore 

Water 

Velocity 

(cm/min) 

Volumetric 

Flow Rate 

(mL/min) 

Co 

Average 

(g/L) 

Reynold’s 

Number 

Uniform 

Quartz 
33 420 – 600 1.38 0.11 2.48 0.0079 

aThese are column-scale properties, determined via lab techniques during experimentation.  

5.2.3 SXCMT imaging, reconstruction and analysis 

The specific imaging procedure required for qSXCMT imaging of silver nanoparticles in 

a porous medium is discussed in detail elsewhere [Molnar et al., 2014; Molnar et al., 

2015a]. Briefly, during qSXCMT imaging all flow through the column was stopped and 

all hydraulic valves were closed. Each collected image (i.e., 0 PV, 0.25 PV etc…) 

required approximately 40 minutes of imaging time during which time the fluid in the 

column was stagnant. During this 40 minutes of imaging time, the column was imaged at 

4 separate energies below and above the Ag k-edge (25.514 keV). The imaged energies 

were: 25.414, 25.614, 25.714 and 25.814 keV. For each energy, 1440 2-dimensional 

projections were captured as the column rotated 180o.  The voxel resolution of the 

collected images was determined to be 9.87 μm/voxel. Image reconstruction produced a 

3-dimensional dataset of x-ray linear mass attenuation values averaged over a 

9.87×9.87×9.87 μm voxel. So each imaged time-step (e.g., 0 PV, 0.25 PV, 0.5 PV etc…) 

had 4 corresponding 3-dimensional datasets of x-ray linear mass attenuation values. 

Sub-volumes of 350×350×450 voxels were cropped from each of the 4 reconstructed 

datasets at each time-step to remove edge effects and column (i.e., aluminum) material. 

The reconstructed 25.614 keV sub volumes for each time-step underwent a segmentation 

into water and solid (i.e., grain) using an indicator kriging technique [Bhattad et al., 

2010; Oh and Lindquist, 1999]. Grain characteristics and pore-network structure within 

each segmented image were then extracted and characterized using the method of 
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Thompson et al. [2006; 2008]. This method assigns a unique identifier to every pore and 

grain within the segmented sub-volumes as well as topological properties. The three-

dimensional segmented sub-volume of the pre-injection dataset presented in Figure 5.1A 

to illustrate the structure of the porous medium within the SXCMT imaging window. A 

two-dimensional slice of the raw reconstructed gray values from the same dataset is also 

presented in Figure 5.1B to illustrate the internal structure of the medium within the 

SXCMT imaging window. In addition, the distances between every pore space voxel and 

the closest grain surface voxel was identified and measured using the unique pore and 

grain identifiers. The algorithm used to find the closest grain surface voxel for each pore 

space voxel, and measure the distance between the two, is detailed in Appendix 10.1.  

 

Figure 5.1: Images of the pre-injection uniform quartz SXCMT dataset. A:The 3-dimensional 

segmented sub volume is presented to illustrate the overall structure of the medium. B: A 

representative 2-dimensional gray-value (i.e., non-segmented) slice is presented to illustrate the 

internal structure of the medium. The grains are coloured gray while the pore space is either 

transparent (left, segmented) or black (right, gray value).  Flow direction is upwards (indicated by 

the blue arrow). 

(A) (B) 
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5.2.4 Quantifying silver nanoparticle concentrations within the 
SXCMT sub-volumes 

The method of Molnar et al. [2014] was employed to convert the 4 sub-volumes of x-ray 

linear mass attenuation to SXCMT-determined nanoparticle concentrations. For each 

time-step, the below k-edge sub-volume (25.414 keV) was subtracted from the three 

above k-edge subvolumes to create three difference images (25.614-25.414 keV, 25.714-

25.414 keV and 25.814-25.414 keV). A modified form of Beer’s law was employed to 

calculate the SXCMT-determined concentration for every pore space voxel in each of the 

three difference datasets. The SXCMT-determined concentrations in the three difference 

datasets were then averaged together and calibrated using the procedure described in 

Molnar et al. [2015a] to create a single dataset of SXCMT-determined concentration for 

each time-step.  

This qSXCMT procedure does not accurately determine nanoparticle concentration on a 

voxel-by-voxel basis due to noise associated with SXCMT imaging and reconstruction 

and is unable to determine concentrations of nanoparticles retained on the soil surface. 

However, analyzing the approximately 16 million voxels with various averaging 

techniques can accurately quantify average changes in nanoparticle concentrations within 

the bulk pore space in space and time [Molnar et al., 2014; Molnar et al., 2015a].   

Moreover,  this qSXCMT method is currently unable to accurately determine 

nanoparticle concentrations within 17.3 μm of the grain surface due to a noted ‘shadow 

zone’ effect caused by x-ray refraction occurring at the grain/pore interface (this width is 

experiment specific and should not be taken as a general value) [Molnar et al., 2014]. 

Thus, all pore-space voxels within the ‘shadow zone’ in each SXCMT-determined 

concentration dataset are discarded during this quantification and calibration process.  

5.2.5 Fluid Dynamics Modeling within the SXCMT datasets 

Computational Fluid Dynamics (CFD) modelling was employed to determine the uniform 

quartz’s fluid flow field in the 0 PV (i.e., pre-injection) SXCMT dataset. A single dataset 

was employed for CFD modeling (0 PV) as it was assumed that the flow field did not 

change throughout the injection or elution period; this is supported by the fact that the 
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extracted pore network statistics were similar for all time steps. For CFD modeling, a 

sub-section of the total SXCMT-dataset had to be created due to the large computational 

cost of obtaining a mesh-independent solution. The cropped sub-volume was 

approximately 150×150×350 voxels (1.48×1.48×3.45 mm). The porosity of the cropped 

CFD sub-volume (32%) is close to the porosity of the total column (33%) and the sub-

volume illustrated in Figure 5.1 (29%).  

CFD modeling was conducted in ANSYS FLUENT 13.0 which solves the continuity (eq. 

5.1) and Navier-Stokes equations (eq. 5.2): 

 ∇\ = 0 5.1 

 2\ ∙ ^\ = −^_ + /^
\ 5.2 

where \ is fluid velocity, 2 is the fluid density, _ is pressure and / is the fluid viscosity. 

FLUENT solves eq. 5.1 and eq. 5.2 using a finite-volume method on an unstructured 

grid. The cropped sub-volume was meshed in ICEM-CFD 13.0. The meshed volume was 

qualitatively compared to the gray-scale (i.e., raw) cropped sub-volume and segmented 

cropped sub-volume to ensure that the geometry of the pore and grain network was 

retained during the segmentation and meshing procedures. 

Constant pressure boundary conditions were applied at the inlet and outlet boundaries. 

The pressure drop was varied until the average upwards vertical velocity matched the 

pore water velocity in Table 5.1. The grain surfaces were set to ‘no flow’ boundaries and 

the sides of the domain were set to ‘perfect slip’ to allow flow parallel to the sides of the 

domain, but not across it. Convergence of the simulation was determined by tracking 

fluid mass flow rates and average velocity within the dataset. Confidence in the simulated 

flow field was developed by back calculating soil permeability based on the pressure 

drop applied across the inlet/outlet boundaries, the solution viscosity (14 cP) and the 

resulting average fluid velocity. The simulated permeability (1.4×10-6 cm2) is consistent 

with those experimentally determined for similarly sized sands (e.g., 6.4×10-7 cm2 

[O'Carroll et al., 2004]). However, it is important to note that this only ensures that the 
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average simulated flow properties are approximately consistent with the average 

experimental flow. This was deemed sufficient as this study focuses on average behavior 

and does not compare nanoparticle concentrations and simulated flow behaviour on a 

voxel-by-voxel basis.  

5.2.6 Fluid Dynamics within the Happel Sphere-in-Cell Geometry 

An analytical solution was employed to solve for the fluid flow through the Happel 

Sphere-in-Cell geometry. The flow regime through this geometry is assumed to be 

creeping flow and is described via the continuity (eq. 5.1) and Stokes flow (eq. 5.3) 

equations:  

 ^_ = /^
\ 5.3 

The solution to the velocity vectors in the Happel Sphere-in-Cell geometry are not 

explicitly published in any of the mechanistic model papers [Elimelech, 1994; Nelson and 

Ginn, 2005; Nelson and Ginn, 2011; Rajagopalan and Tien, 1976; Tufenkji and 

Elimelech, 2004]. However, the general stream function and Happel-specific coefficients 

published in Elimelech [1994] can be used to explicitly solve for \� and \` in the Happel 

geometry: 

 \� = %;abc d8� e#�I f� + 8

#�I + 8� + 8! M I

#�Q
g 5.4 

 \` = −%bhPc d− 1
2 8� e#�I f� + 1

2 8

#�I + 8�

+ 28! M I
#�Q
g 

5.5 

 8� = 1
j 5.6 
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 8
 = − 63 + 2_�7
j  5.7 

 8� = 62 + 3_�7
j  5.8 

 8! = − _�
j  5.9 

 j = 2 − 3_ + 3_� − 2_k 5.10 

 _ = 61 − P7�� 5.11 

where \� and \` are the fluid velocities in the radial and tangential directions, % is the 

approach (i.e., Darcy) velocity, #� is the radius of the spherical collector and I is the 

distance away from the collector surface and P is the porosity. The variables 8�, 8
, 8� 

and 8! are functions of j and _, which are dimensionless functions of porosity. It should 

be noted that the velocity vectors in 5.4 and 5.5 are only definable between x = 0 and x = 

r (i.e., within the Happel fluid envelope) where r is given by:  

 U = #�61 − P7��/� − #� 5.12 

In the analysis within this paper this analytical solution to the velocity vectors in the 

Happel Sphere model is combined to calculate the magnitude of the velocity over a range 

of c and U values (i.e., \ =  l\�
 + \
̀) .  
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5.3  Results and Discussion 

The results and discussion presented within this study is divided into three separate 

sections. The first compares the Happel Sphere-in-Cell model geometry to the pore and 

grain network extracted from the SXCMT datasets. The second compares the analytical 

solutions of fluid flow through the Isolated Sphere and Happel Sphere-in-Cell geometries 

to the CFD-simulated flow field in the SXCMT-CFD dataset. The third examines the 

distributions of nAg mass, mass flux and mass flow through the SXCMT-determined 

concentration datasets. In all three of the subsections, the results and discussions 

highlight whether the Happel Sphere-in-Cell geometry is appropriate for approximating 

nanoparticle transport through the imaged pore geometry.  

5.3.1 Happel Sphere vs. SXCMT pore and grain geometry   

The porosity of the SXCMT-dataset (29%) is lower than the overall packed column 

(33%), however the values are similar enough that the pore and grain network statistics 

can be taken as approximately equivalent to the pore and network throughout the 

experimental column. The grain and pore network statistics were compiled by examining 

329 uniquely identified sand grains, 2,139 pore bodies and 26,362 pore throats (the 

narrow region connecting two larger pore bodies) . The total number of unique grains and 

pores within the dataset is significantly larger (619 grains and 3802 pores), however the 

extra grains and pores were excluded from the pore network analysis as they were only 

partially present within the dataset. The grains within the dataset were significantly non-

spherical, as the average length of each grain’s longest axis was longer than the length of 

the grain’s shortest axis (the inscribed radius) by a factor of 1.64 (the Grain Aspect 

Ratio). This average grain aspect ratio is consistent with one previously published 

[Willson et al., 2012], suggesting that the characteristics of the sand employed in this 

study is typical of sandy media. The average grain aspect ratio is qualitatively consistent 

with the images of the SXCMT dataset in Figure 5.1. The average pore inscribed radii is 

59.4 μm and the average throat inscribed radii is 39.9μm.  

Employing any CFT-HSIC mechanistic model (or η-correlation equation) to describe the 

silver nanoparticle transport experiment assumes that all fluid flow and nanoparticle 
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transport is occurring within a fluid envelope surrounding a spherical collector 

(illustrated in Figure 5.2).  The width of this fluid envelope (r, illustrated in Figure 5.2) is 

defined so that the porosity of the Happel Sphere-in-Cell (HSIC) geometry (the volume 

ratio of fluid envelope:spherical collector) is equivalent to the macroscopic porosity of 

the porous medium and is calculated from eq. 5.12. This definition of the fluid envelope, 

along with eq. 5.12, is used throughout the CFT literature [Elimelech, 1994; Nelson and 

Ginn, 2005; Nelson and Ginn, 2011; Rajagopalan and Tien, 1976; Tufenkji and 

Elimelech, 2004] as it is a relatively simple method for accounting for porosity as well as 

the influence of neighbouring collectors on the fluid velocity.  

Applying eq. 5.12 to calculate the dimensions of the Happel Sphere-in-Cell geometry 

(Figure 5.2) requires bulk measurements of the soil’s properties from lab-scale analyses. 

Sieve analysis of the uniform quartz sand mixture (detailed in Table 5.1) determined the 

average radius of the sand (as = 255 μm), and the porosity of the packed column (as listed 

in Table 5.1, 33%) was determined during packing. From these values, and eq. 5.12, the 

calculated width of the HSIC fluid envelope was 36μm. Thus the HSIC geometry, 

applied to the transport experiment examined within this study, approximates all the pore 

space as being within a 36μm-thick fluid envelope. 
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Figure 5.2 Overview of the standard ‘Happel Sphere in Cell’ geometry commonly employed by 

Colloid Filtration Theory mechanistic models (reproduced from Molnar et al. [2015b]). Colloid 

radius: as, radius of fluid film: b, thickness of fluid film: r. The red arrows on the right side of the 

geometry approximate the fluid velocity vectors from the analytical stokes flow solution in eq.’s 5.4 

and 5.5. Cb and Cas: the concentration boundary conditions employed by Tufenkji and Elimelech 

[2004], these boundary conditions do not apply to mechanistic models employing discrete particle 

tracking. The angle θ represents the angle away from the axis running through the collector’s center 

of mass in the direction of flow. 

The width of the HSIC envelope, 36μm, is closer in size to the average pore throat 

inscribed radii than the average pore body inscribed radii in the SXCMT dataset. This 

suggests that a majority of the uniquely identified pore bodies have some volume of pore 

fluid that is at least 23μm further away from a grain surface than considered by HSIC. 

The difference between pore body width and HSIC fluid envelope width is illustrated by 

Figure 5.3.  
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Figure 5.3: A depiction of how a pore body (outlined in purple) surrounded by a four circular 

collectors will have a portion of pore space that is within the region considered by the HSIC’s fluid 

envelope (blue) and a portion of pore space that is outside of the region considered by the HSIC fluid 

envelope (outlined in orange). 

The difference between the SXCMT dataset’s pore geometry and the HSIC is further 

highlighted by plotting the pore network statistics as a cumulative percentage in Figure 

5.4. The average Grain Effective Radius (defined as the average of the grain’s short axis 

radius and long axis radius) within the SXCMT dataset is consistent with the radius of the 

spherical collector in the HSIC geometry. This is to be expected as the radius of the HSIC 

collector is determined by the results of the laboratory sieve analysis.  The consistency 

between the HSIC collector radius and the average Grain Effective Radius suggests that 

1) the image segmentation routine accurately identified the boundary of the soil/grain 

interface and 2) the grains within the SXCMT dataset are representative of the overall 

sand mixture used to pack the column. In addition, the distribution of grain effective radii 

within the SXCMT dataset ranges from roughly 200 – 300 μm (i.e., grain effective 

diameter = 400 – 600 μm) and is consistent with the sieve analysis in Table 5.1. The 
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grain effective radius tailing towards 0 μm in Figure 5.4 is likely due to the fact that the 

cropping procedure for the network analysis could not remove all partial grains from the 

statistics analysis.  

The distribution of pore bodies in Figure 5.4 suggests that of the uniquely identified 

2,139 pore bodies, approximately 80% have a radius equal to, or larger than, the width of 

the HSIC fluid envelope (36μm). This means that within 80% of pores, some fraction of 

nanoparticles will be further away from the grain surface than expected by CFT-HSIC 

models. For example, the largest pore within the dataset has an inscribed radii of 160 μm 

and therefore nanoparticles can be upwards of 124μm further away from a grain surface 

than expected by CFT-HSIC models. This trend is consistent with pore throats as well, of 

the 26,362 uniquely identified pore throats approximately 50% are larger than the HSIC 

fluid envelope and can range up to 130 μm in radius.  

 

Figure 5.4: Cumulative size distributions of the grains (black circles), pores (blue triangles) and pore 

throats (red squares) within the pore network of the 1.8 SXCMT-PV dataset. The dataset was 

cropped 175 µm on each side to minimize edge effects from grains, pores and throats that were 

partially in the SXCMT dataset. Inscribed radius refers to the radius of the largest sphere that can 
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be drawn entirely within the body. Effective radius is an average of the inscribed radius and the 

length of the grain’s longest axis. Effective radius is not definable for pore or throat bodies and is not 

plotted for them. The leftmost vertical dotted black line represents the width of the Happel fluid 

envelope (r from Figure 5.2). The rightmost vertical dotted black line represents the average radius 

of sand packed into the experimental column as measured by soil sieve analysis. 

Figure 5.5A illustrates how the volume of pore space in the 0 SXCMT-PV dataset 

changes as a function of distance from the nearest grain surface for the HSIC geometry 

and the SXCMT-dataset. For the SXCMT-dataset used in the pore space analysis, the 

distance between every pore space voxel and the nearest grain surface was measured. The 

pore space voxels were then sorted in to bins representing 9.87 μm intervals from the 

grain surface (i.e., intervals corresponding to the length of 1 voxel).  The number of 

voxels in each bin was divided by the total number of pore space voxels (approximately 

16,000,000) to determine the percentage of pore space within each 9.87 μm bin from the 

grain surface. Two SXCMT-datasets are plotted, the full SXCMT dataset and the smaller 

SXCMT-CFD dataset. A comparison of the two datasets in Figure 5.5A indicates that the 

overall geometry of the pore space is the same for the SXCMT-determined concentration 

datasets and the SXCMT-CFD dataset. To determine the distribution of pore space in the 

HSIC geometry, the volume of thin fluid shells were calculated in 9 μm intervals using 

the geometric equation for volume of a sphere (9 μm intervals were used instead of the 

SXCMT resolution of 9.87 so that 4 data points would not over-estimate the volume of 

HSIC pore space).  

Figure 5.5 reveals that the volume of pore space in the SXCMT datasets decreases with 

each increment of distance from a grain surface, indicating that there is more pore space 

near the grain surface than at the centers of the pores (this is qualitatively illustrated in 

Figure 5.3). This decreasing trend in the real porous media is the opposite of what is 

encountered within the HSIC geometry. Within the HSIC geometry, pore volume 

increases with increasing distance from a grain surface. The trend of increasing pore 

space with distance arises from the HSIC conceptual model where a collector is 

surrounded by a sphere of fluid (illustrated in Figure 5.2). Given that the volume of a 

sphere is a cubed function of radius, the pore space volume in the HSIC geometry is 

greatest near the edges of the sphere.  In Figure 5.5B, these trends are plotted as a 

cumulative percentage of total pore space (the total percentage of pore space that is closer 
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to the grain surface than a certain distance). It demonstrates that the cumulative 

distribution of the near-grain pore space is similar between the SXCMT datasets and the 

HSIC geometry. In fact, 50% of all pore space in both the porous media and HSIC model 

is approximately 20-25 μm from a grain surface. However, Figure 5.5B highlights that 

25% of the entire pore space is further away from the grain surface than expected by the 

HSIC geometry. The difference in maximum pore size between Figure 5.4 and 5.5 is due 

to the fact that no cropping was performed for Figure 5.5. 

The trends in pore size and pore space distribution highlighted in Figures 5.4 and 5.5 

suggests that the HSIC model, purely on the basis of pore geometry, will treat flow and 

transport processes as being much closer to the grain surface than they would be within 

the medium-to-larger pores in the SXCMT dataset. This is because the HSIC geometry 

approximates all pore space as being 0 – 36 μm away from a grain surface despite the 

pore space distribution in the SXCMT dataset ranging from 0 – 197 μm away from a 

grain surface in Figure 5.5. Thus flow and transport processes such as the diffusive flux 

of nanoparticles towards grain surface, which could be occurring upwards of 197 μm, 

away from a grain surface will be treated by HSIC as being within 36 μm of a grain 

surface. Approximately 80% of all uniquely identified pore bodies are affected by this 

pore space compression, and 25% of the total pore space in the SXCMT-dataset is treated 

by the HSIC geometry as being much closer to a grain surface than it actually is. Given 

the similarities in grain shape between this study and a previous study [Willson et al., 

2012], this trend is likely widely present in sand media.   

Overall, these results suggest that there is a significant volume of pore space further from 

the grain surface than allowable within the HSIC geometry. The next section will 

examine the distribution of flow velocities within the SXCMT-CFD dataset which will be 

compared to the analytical solution of flow around the HSIC envelope.  
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Figure 5.5A: The percentage of pore space as a function of distance from the nearest grain surface 

for the Happel sphere geometry (black squares), the full SXCMT-dataset (blue circle) and the 

SXCMT-CFD dataset  (red square).  Percentage refers to the amount of the geometries’ pore space 

that is within a certain range of the grain’s surface. 

Figure 5.5B: The cumulative percentage of pore space as a function of distance from the nearest 

grain surface. Cumulative percentage refers to the amount of the geometries’ pore space that is 

between the grain surface and a certain distance. For instance, the top image indicates that 20% of 

the SXCMT dataset’s pore space is within 17 - 25μm of a grain surface. The bottom image indicates 

that 50% of the SXCMT dataset’s pore space is 0 – 25 μm from a grain surface. 

5.3.2 Happel sphere vs. SXCMT flow field 

One of the major assumptions within the mechanistic CFT-HSIC model is that the fluid 

flow may be described by an analytical solution of the Stokes flow equation [Nelson and 

Ginn, 2011; Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004]. This solution is 

subject to certain flow boundary conditions described by Rajagopalan and Tien [1976]. 

By employing these analytical solutions in a mechanistic model, creeping flow is 

assumed (i.e., Re << 1) where the inertial component of flow is negligible relative to 

viscous forces. The Reynold’s number (Re) for the uniform quartz transport experiment 

(Table 5.1) indicates that flow is within the creeping regime.  
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Figure 5.6A Contour plot of CFD-simulated pore water velocity magnitude overlain with black 

streamlines overlain for a representative cross-section within the SXCMT-CFD subvolume. B: pore 

water velocity magnitude around the SXCMT-CFD dataset. C: Pore water velocity magnitude 

around the Happel sphere in cell. The direction of flow is upwards. The velocity contours in the 

middle and right images are plotted as a function of distance away from a grain surface and angle 

away from the downstream side of a grain (θ, illustrated in Figure 5.2) to illustrate how the pore 

water velocity in the left image and in the HSIC image changes from the downstream to the upstream 

side of a grain at a variety of distances. Further details on this figure are discussed in text.   

A volume-averaging technique was employed on the three-dimensional CFD-simulated 

velocities in the SXCMT-CFD dataset (see Figure 5.6Afor a representative cross-section 

of velocity contours) to examine how specific pore and grain features influenced velocity 

within the porous media. The average pore water velocity in the SXCMT-CFD dataset 

was plotted in Figure 5.6 as a function of distance from the nearest grain surface and 

angle from the downstream side of a grain (i.e., θ illustrated in Figure 5.2 which was 

measured from each grain’s center of mass). This created a velocity plot which represents 

the average fluid velocity around every grain in the SXCMT-CFD dataset. All voxels 

were sorted into 9.87 μm×1º bins and averaged to calculate an average velocity for every 

definable distance and angle around a grain. The averaged velocity in each bin represents 

the average velocity within the SXCMT-CFD dataset at that particular distance and 

(A) (B) (C) 
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angle.  For the analytical solution for flow through the HSIC model, a similar process 

was used. Eq.’s  5.4 – 5.11 were solved in increments of 9.87 μm (for distance) and 1º 

(for angle) and a nearest neighbor interpolation routine was used to generate a radial 

surface plot (Figure 5.6C).  

The CFD-simulated flow field in the SXCMT-CFD dataset illustrated in Figures 5.6A  

and 5.6B has a number of important features. At all distances, velocity in the SXCMT-

CFD dataset is a function of angle with the highest velocities observed near the midpoint 

of the grain (θ = 90º) and relatively low velocity regions near the upstream (bottom) and 

downstream (top) sides of the grain. The velocity distribution around the grain is also 

symmetric: the distribution on the upstream and downstream sides of the grains are 

similar for all distances. This indicates that there is little to no flow separation occurring 

on the downstream sides of the grains which is consistent with the typical definition of 

creeping flow. In addition, the average velocity increases with distance from a grain 

surface, consistent with highest velocities occurring in the centres of pores.    

The flow field around the HSIC model (Figure 5.6C) is in excellent qualitative agreement 

with the CFD-simulated flow field in the SXCMT-CFD dataset (Figure 5.6B) within 36 

μm of a surface. The major velocity features in the SXCMT-CFD dataset are captured by 

the HSIC flow field, including the relatively low-velocity regions on the upstream and 

downstream sides of the grains as well as the increase in velocity at θ = 90º and the 

symmetric flow behaviour.  However, the HSIC model over-estimates the extent to which 

velocity is lower in the upstream and downstream regions; the velocities in the SXCMT-

CFD dataset at 0º and 180º near 20 μm are higher than the velocities in the HSIC fluid 

envelope. The difference between these velocities increases with increasing distance, at 

0º and 180º near 30 μm the difference is larger than the difference at 20 μm.  

To more quantitatively examine the distribution of velocities within the CFD-simulated 

SXCMT-CFD dataset, Figure 5.7 plots the velocity distribution in Figure 5.6 as a one-

dimensional function of distance to the nearest grain where the velocity was averaged 

over all angles for each particular distance interval. As expected, the velocity is a strong 

function of distance from the nearest grain surface. In addition, the average pore water 
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velocities within the centers of the largest pores (~100 μm) may be as large as 2.5× the 

average pore water velocity (1.38 cm/min, Table 5.1). This trend is qualitatively 

consistent with the velocity contour plot illustrated in Figure 5.6A. The local (i.e., not 

averaged) velocities within the SXCMT-CFD dataset can be even higher; simulated 

velocities upwards of ten times the average pore water velocity were observed. The 

increasing size of the error bars with distance from the grain surface on the SXCMT-CFD 

line in Figure 5.7 is due to the decreasing volume of pore space with distance (Figure 

5.5); there are fewer pore space voxels in the centers of larger pores which results in 

larger 95% confidence intervals.    

The average velocity within the HSIC fluid envelope is also a strong function of distance 

from the nearest grain surface. In addition, the velocities as a function of distance from 

the nearest grain surface within the HSIC model and SXCMT-CFD dataset are very 

similar within the region of pore space encompassed by the HSIC fluid envelope.  

However, the magnitude of CFD-simulated velocities in the SXCMT-CFD dataset can be 

much larger than velocities within the HSIC model. Thus nanoparticles and colloids may 

be experiencing significantly higher fluid velocities than expected within Colloid 

Filtration Theory. These larger-than-expected velocities will impact the force and torque 

balances employed by the CFT mechanistic models. For instance, Figure 5.7 suggests 

that the inertial forces acting on colloids in the centers of pores will be much greater than 

the inertial forces considered within the CFT-HSIC models.  

To the best of the authors’ knowledge this represents one of the first comparisons 

between a CFD-simulated velocities in a real sand media and the Happel Sphere in Cell 

model. The observed trend of increasing velocity in both HSIC and SXCMT-CFD 

datasets matches expectations, in a viscous solution fluid velocity always increases with 

distance from a no-slip wall. In addition, the flow field in both SXCMT-CFD and HSIC 

datasets are essentially solutions to the same equation (Navier-Stokes equation), however 

inertia is explicitly ignored in HSIC and is not significant in the SXCMT-CFD dataset, so 

similar trends and behaviours were expected. It was surprising, however, that the 

irregular shape of the sand grains and their complex structure (e.g. grain-grain contacts, 

regions of fluid expansion and contraction, differing pore sizes) resulted in nearly 
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identical fluid velocities in both 1-dimension (Figure 5.7) and similar velocities in a 

radial surface plot (Figure 5.6).  

 

Figure 5.7: The average pore water velocity magnitude as a function distance from the nearest grain 

surface for both the Happel sphere geometry (black squares) and the SXCMT-CFD dataset (blue 

circles). The velocity contours presented in Figure 5.6 were employed to create this plot; at each 9.87 

μm distance interval the velocities were averaged over all 1º bins (i.e., each datapoint represents 

velocity averaged over 0 – 180 º) and weighted by the fraction of pore volume in each 1 º bin. The 

error bars on the SXCMT-CFD dataset line represent 95% confidence intervals calculated at each 

datapoint.    

5.3.3 Nanoparticle mass distribution in qSXCMT datasets 

Figure 5.8 presents the distribution of nanoparticle mass within the SXCMT dataset as a 

function of distance to the nearest grain surface for each imaged timestep. The mass 

distribution curves were calculated by first determining the nanoparticle mass in each 

voxel. The nanoparticle mass in each voxel was calculated by multiplying each voxel’s 

SXCMT-determined concentration by the volume of the voxel, approximately 961.5 µm3.  

This calculation was repeated for every voxel outside of the SXCMT ‘shadow zone’ (i.e., 
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> 17.3µm from a grain surface). Then the distance between every pore space voxel and 

the nearest grain surface in each SXCMT dataset was measured and then sorted into bins 

representing 9.87 μm intervals from the grain surface. The nanoparticle mass in each bin 

was summed and plotted as a function of nAg mass versus distance to the nearest grain 

surface (Figure 5.8, top).  

As illustrated in Figure 5.8A, most nanoparticle mass is located near the grain surface, 

this is expected as the near surface regions possess the largest volume of pore space 

(volume pore space with distance is shown in Figure 5.5). While the qSXCMT method is 

currently unable to quantify nanoparticle concentrations and mass closer than 17.3 μm 

(corresponding to 25% of the total pore space, Figure 5.5), based on the trend of pore 

volume in Figure 5.5 it is hypothesized that the total mass of nanoparticles continues 

increasing with decreasing distance to the grain surface. The term ‘quantifiable mass’ is 

used throughout this section to explicitly refer to mass, or mass flow, that is outside of the 

SXCMT ‘shadow zone’ and can be accurately quantified via the qSXCMT procedure.  

The general shape of the mass distribution curve in Figure 5.8A is approximately 

consistent with the shape of the pore space volume curve in Figure 5.5A. To 

quantitatively compare the distributions of mass and pore space volume, Figure 5.8B 

plots the cumulative percentage of quantifiable nanoparticle mass as a function of 

distance to the nearest grain surface. This represents the total percentage of quantifiable 

nanoparticle mass that is closer to the grain surface than a certain distance. This suggests 

that at every time-step, only 60% of all quantifiable nanoparticle mass is within the fluid 

region encompassed by the HSIC fluid envelope.  
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Figure 5.8A: The SXCMT-determined nAg mass plotted as a function of distance from the nearest 

grain surface (top) for each imaged time-step/SXCMT-PV. The gray box represents the thickness r of 

the Happel Sphere-in-Cell fluid envelope. To avoid cluttering the figure, ‘PV’ is used instead of 

‘SXCMT-PV’s’. 

Figure 5.8B: The cumulative percentage of SXCMT-determined nAg mass for each imaged time-

step/SXCMT-PV as a function of distance from the nearest grain surface. Cumulative percentage 

refers to the total percentage of nAg mass that is between the grain surface and a certain distance 

from the surface. 

Figure 5.5 can be employed to estimate the nanoparticle mass distribution in the pore 

space region that cannot be quantified by qSXCMT. The ‘shadow zone’ region which 

accounts for 25% of all pore space voxels. This suggests that, assuming a strictly per-

volume ratio, only 75% of the total nanoparticle mass can be quantified via qSXCMT at 

each time step. Incorporating these mass estimates into the cumulative percentages in 

Figure 5.8B yields an adjusted estimate of approximately 70% of total nanoparticle mass 

encompassed within the HSIC fluid envelope region and 30% of nanoparticle mass 

outside of the HSIC envelope. The percentage of nanoparticle mass outside the HSIC 

envelope (30%) is statistically greater than the pore volume outside the HSIC envelope 

(25%). This indicates that nanoparticles are not uniformly distributed throughout the pore 

space and that the relatively small pore-scale concentration gradients identified by 

Molnar et al. [2015a] significantly affects the overall mass distribution through the pore 

space.  

The nanoparticle mass flux rates (mass flow per unit area) through the pore space as a 

function of distance to the nearest grain surface was estimated from volume-averaged 

distributions of velocity and concentration as functions of distance to nearest grain 

surface. Specifically, the CFD-simulated velocity distribution in Figure 5.7 was separated 

into its component velocities (vx, vy and vz). These component velocities were multiplied 

by the one dimensional concentration distributions from Molnar et al. [2015a] to yield 

estimated mass flux distributions in the x, y and z directions (qx, qy and qz) as a function 

of distance from the nearest grain surface. These component mass flux distributions were 

summed to determine an overall mass flux distribution (q = qx + qy + qz) as a function of 

distance to the nearest grain surface. This mass flux distribution is illustrated in Appendix 
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10, Figure 10.1. Molnar et al. [2015a] reported nanoparticle concentrations as a function 

of distance from the grain surface in 9.87 μm intervals for each imaged time-step.   

Due to the high velocities and higher concentrations in the centers of the larger pores, 

mass flux rates were the highest at the centers of the pores for the time-steps between 0.9 

and 3.6 SXCMT-PV’s and, to a lesser extent, 7.2 SXCMT-PV’s. The mass flux rates do 

not appreciably change with distance from the grain surface for the early time-step of 0.4 

SXCMT-PV and the last time-step of 8.9 SXCMT-PV’s; this is likely due to the minimal 

concentration gradients noted by Molnar et al. [2015a] at the very early and late time-

steps in this transport experiment.  

The average mass flux distributions were employed to estimate the total quantifiable 

nanoparticle mass flow rate occurring at each 9.87 μm interval from the grain surface. 

Component mass flow rates in the x, y and z directions (Qx, Qy and Qz) were estimated by 

multiplying the distribution of component mass flux rates (qx, qy and qz) by the number of 

voxels within each 9.87 μm distance interval and by the area of a voxel face (9.87×9.87 

μm). The component mass flow rates were then summed to yield the single nanoparticle 

mass flow rate distribution (Q = Qx + Qy + Qz) plotted in Figure 5.9.   

Figure 5.9A represents the total quantifiable mass flow occurring at each 9.87 μm 

distance interval from the grain surface. As can be seen in Figure 5.9 (top), the mass flow 

rate distribution is qualitatively different from the distribution of pore space.  The 

nanoparticle mass flow rate exhibits a bi-modal distribution with one peak near the grain 

surface and a second peak 40 μm from the grain surface. The location of this second peak 

mass flow rate was unexpected as it does not occur at a region of peak nanoparticle mass, 

mass flux or fluid velocity. This second peak is likely due to an optimal combination of 

several factors such as nanoparticle concentration distribution, fluid velocity distribution, 

the complex distribution of small, medium and large pores illustrated in Figure 5.4 and 

the overall distribution of pore space illustrated in Figure 5.5. 

Figure 5.9 B plots the cumulative percentage of quantifiable nanoparticle mass flow as a 

function of distance to the nearest grain surface (the total percentage of quantifiable mass 

flow that is closer to the grain surface than a certain distance). The cumulative percentage 
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at the edge of the HSIC fluid envelope can be used to compare the distributions of pore 

space volume, nanoparticle mass and nanoparticle mass flow.  Accounting for the pore 

space volume within the SXCMT ‘shadow zone’ on a per-volume basis, approximately 

37% of total nanoparticle mass flow is occurring further away from the grain surface than 

considered by the HSIC model. Moreover, more mass flow is occurring further away 

from the grain surface than would be expected by either the pore space volume 

distribution (25%) or the distribution of nanoparticle mass (30%). The distribution of 

velocity in Figure 5.7 is primarily responsible for the distribution of mass flow that 

favours the centers of pores.  

 

(A) 
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Figure 5.9A: The estimated nAg mass flow rate as a function of distance from the nearest grain 

surface for each imaged time-step/SXCMT-PV. The gray box represents the thickness r of the 

Happel Sphere-in-Cell fluid envelope. To avoid cluttering the figure, ‘PV’ is used instead of 

‘SXCMT-PV’s’. 

Figure 5.9B: The cumulative percentage of estimated nAg nanoparticle mass flow for each imaged 

time-step/SXCMT-PV as a function of distance from the nearest grain surface. Cumulative 

percentage refers to the total percentage of nAg mass flow occurring between the grain surface and a 

certain distance from the surface.  

5.4 Discussion 

The ‘compression’ of the pore space by the HSIC geometry in CFT, illustrated in Figure 

5.3, may be impacting the accuracy of CFT’s predictions for nanoparticle transport. 

Figures 5.5, 5.8 and 5.9 indicate that large percentages of pore space (25%), nanoparticle 

mass (30%) and mass flow (37%) are further away from the grain surface than is 

considered by the HSIC model. These percentages remain consistent for all time-steps 

through the transport experiment. The degree to which CFT’s prediction of colloid 

retention is affected by these percentages depends on the primary process governing 

(B) 
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colloid transport. Micron-sized colloids rely on interception (commonly denoted by ηI) to 

contact the grain surface [e.g. Rajagopalan and Tien, 1976; Yao et al., 1971].  

Interception is when colloids are flowing along a fluid streamline which passes within 1 

colloid radius of the collector surface, the colloids then contact the collector surface by 

virtue of their size and, if energetically favorable, attach to the collector. The micron-

sized colloids exhibit only a minimal degree of Brownian motion – the diffusive 

behaviour of particles arising from collisions with surrounding molecules – and are not 

expected to diffuse across a significant number of streamlines. This strong interception 

behaviour, coupled with weak diffusive transport, suggests that only colloids on specific 

trajectories will be contacting and attaching to the collector; the ‘critical trajectory’ refers 

to the trajectory beyond which colloids will no longer intercept the grain surface. 

Rajagopalan and Tien [1976] employ this concept to simplify their calculations by only 

considering colloids within the critical trajectory. As a result, micron-size colloid 

transport and retention is unlikely to be adversely affected by approximating the pore 

space, which extends out to 197 μm, as only being 36 μm thick. Colloids further than 36 

μm away from a grain surface are likely outside of the grain’s critical trajectory and are 

unlikely to interact with a collector surface so the approximation does not affect their 

likelihood of contacting a surface. In addition, the strong interception behaviour coupled 

with the HSIC’s reasonable approximation of near-surface pore space (Figure 5.5B) 

suggests that this geometry can be appropriate for predicting micron-sized colloid 

retention rates.  

Interception is not a dominant mechanism for nanoparticles. Due to nanoparticles’ small 

radii there are only a small number of trajectories which will bring nanoparticles within 1 

colloid radius of the collector. Nanoparticles rather rely on diffusive transport to come 

into contact with collector surfaces (commonly denoted by ηD). The classical analytical 

solution to 1-dimensional colloid diffusion arising from Brownian motion is given by 

[Einstein, 1956]: 
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where m6I, Y7 is the number of colloids which diffuse a distance I over time Y from an 

origin point which initially contained � colloids, ( is the diffusivity coefficient 

calculated from the Stokes-Einstein equation (eq. 5.14), 8E is the Boltzmann constant, s 

is the absolute temperature, / is the fluid viscosity and #$ is the colloid radius. It should 

be noted that m6I, Y7 can be used interchangeably with ;6I, Y7 where ; is the 

concentration of colloids. If m6I, Y7 is employed to describe the number of nanoparticles 

that have to diffused to a region on a collector surface, the value of I would range from 

0–36 μm in the HSIC geometry and 0–197 μm in the uniform quartz porous medium. 

eq.’s 5.13 and 5.14 predict that the numbers of nanoparticles reaching the collector 

surface via diffusion decreases with increasing initial distance from a collector surface for 

a given time Y. Thus, the fraction of nanoparticles diffusing distances of 0 – 36 μm across 

the HSIC envelope will be much larger than in the porous medium where diffusive 

distance can range from 0 – 197 μm. Given that 80% of the pore bodies have larger radii 

than the HSIC envelope and 25% of the total pore space – as well as 30% of the 

nanoparticle mass and 37% of the nanoparticle mass flow – is further away from the 

grain surface than expected by HSIC, approximating all nanoparticles as being within the 

36μm HSIC envelope will over-estimate η and nanoparticle retention rates. This 

hypothesis is supported by previous studies which have shown that the HSIC-CFT 

models can over-predict η and katt [Long and Hilpert, 2009; Molnar et al., 2015a; Nelson 

and Ginn, 2011]. 

The pore-scale distribution and behaviour of nanoparticles within real porous media is 

currently poorly understood [Molnar et al., 2015b], so it is unclear how much the 

extended diffusive distances (0–36 μm vs 0–197 μm) has on over-predicted retention 

rates as opposed to other proposed mechanisms (e.g., immobile zones) [Molnar et al., 
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2015a]. Furthermore, while eq. 5.13 clearly illustrates how larger pore bodies can 

decrease the number of nanoparticles reaching grain surfaces relative to the HSIC model, 

it is unclear to what extent other fluid and nanoparticle parameters influence the 

‘diffusive error’ arising from approximating larger pore bodies as a thin HSIC fluid 

envelope. These fluid and nanoparticles parameters, however, can be estimated by: 

 mp/� = m6I, Y7
m6U, Y7 5.15 

where m6I, Y7 is the number of nanoparticles diffusing distance I during time Y (as 

illustrated by Figure 5.3), and m6U, Y7 is the number of nanoparticles diffusing across the 

width U of the HSIC envelope during time Y (in Figure 5.3). The closer mp/� is to 1, the 

smaller the error associated with diffusion across the HSIC geometry versus actual 

geometry (termed ‘diffusive error). While there will be a fraction of nanoparticles 

diffusing distances further than I or U, the relationship governing mp/� can be used to 

qualitatively examine what fluid parameters would minimize or exacerbate the diffusive 

error associated with the HSIC fluid envelope. 5.13 can be substituted twice into 5.15 (for 

both I and U) to yield:  

 mp/� = o�q�pq
!rH  5.16 

The relationship in 5.16 illustrates that the diffusive error associated with the HSIC 

envelope increases not only with increasing distance x, but also increases with lower 

nanoparticle diffusivities (D) and shorter times.  

The diffusive error (i.e., mp/� ≪ 1) is expected to be significant for many nanoparticle 

flow and transport scenarios. Many nanoparticle solutions, especially nZVI, are stabilized 

with viscous polymer solutions to prevent rapid aggregation and settling [El Badawy et 

al., 2013; He and Zhao, 2005; He et al., 2007; Hotze et al., 2010; O’Carroll et al., 2013]. 

For instance, nZVI solutions may have viscosities between 1.3 × 10-2 Pa·s [Krol et al., 

2013] to upwards of 1.942 Pa·s [Quinn et al., 2005]. Nanoparticles contained within 

these stabilized solutions will have significantly lower diffusivity coefficients than non-
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polymer stabilized nanoparticles and, as suggested by eq. 5.16, will have larger diffusive 

errors within the CFT-HSIC models.  Unlike micron-sized colloids, which also have 

small diffusivity coefficients, stabilized nanoparticles do not experience enough 

interception – which, as discussed, is typically accurately predicted by CFT – to off-set 

the increase in error described by eq. 5.16.   

The high simulated velocities in Figure 5.7 may influence the time available for 

nanoparticles to diffuse to the collector surface before being flushed from the pore space. 

As described in eq. 5.16, decreasing the time available increases the error associated with 

diffusion across the HSIC fluid envelope. If nanoparticles are being transported at high 

velocities through the centers of pores then these nanoparticles may not be able to diffuse 

across enough streamlines to reach the relatively low near-surface velocities before being 

flushed from the pore. While HSIC’s velocity field is in excellent comparison with the 

near-surface CFD-simulated field in the SXCMT-CFD dataset (which comprises 75% of 

the total pore space in the SXCMT-CFD dataset), HSIC under-predicts the fluid 

velocities that nanoparticles may be exposed to.  This under-prediction of fluid velocities 

through the pore centers supports the hypothesis that the CFT’s over-prediction of η 

arises, at least partially, due to the HSIC geometry under-predicting the distances across 

which nanoparticles must diffuse to reach the grain surfaces.  

The results presented in Figure 5.4, 5.5, 5.8 and 5.9 as well as eq.’s 5.13 and 5.16 suggest 

that nanoparticle transport studies which employ η-correlation equations from Colloid 

Filtration Theory to estimate η [e.g., El Badawy et al., 2013; Jaisi and Elimelech, 2009; 

Krol et al., 2013; Lecoanet et al., 2004; Lin et al., 2011; Liu et al., 2009; Mattison et al., 

2011; Phenrat et al., 2010a; Phenrat et al., 2010b; Ryan et al., 2002; Taghavy et al., 

2013; Tong and Johnson, 2006] are over-predicting η due to the CFT-HSIC geometry’s 

inability to consider nanoparticle mass flow outside the thin fluid envelope. The fraction 

of nanoparticle mass flow occurring outside of the HSIC fluid envelope (37%) is 

approximately consistent with the over-predictions of η for nanoparticles reported in the 

literature. Nelson and Ginn [2011] note that CFT-predicted katt values (when α = 1) were 

typically larger than experimental observations by a factor of ~ 2. Molnar et al. [2015a] 

observed that applying a CFT-HSIC correlation equation to nanoparticles flowing 
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through an iron oxide sand (structurally identical to the media employed within this 

study, but coated with iron oxide to achieve α=1) over-predicted η by approximately 

33%.  

In favorable DLVO conditions where α = 1 (i.e., attachment efficiency = 1) this over-

prediction of η will result in over-predictions of the nanoparticle kinetic retention rate 

coefficient katt and over-predictions of the overall rate of nanoparticle retention. This may 

result in under-predictions of nanoparticle mobility under-predictions of nanoparticle risk 

to nearby drinking water supplies. In unfavorable DLVO conditions where α < 1, a-priori 

estimations of η are required to determine α. CFT-HSIC over-predictions of η will then 

result in under-estimations of α. Numerous studies have tried to identify trends in 

nanoparticle α [Bai and Tien, 1999; Elimelech and Omelia, 1990; Kocur et al., 2013; Lin 

et al., 2011; Petosa et al., 2010; Tiraferri and Sethi, 2009; Tong and Johnson, 2006] but 

with generally limited success. This limited success in describing α for nanoparticle 

transport may be due, in part, to the inability to accurately predict η with CFT-HSIC 

mechanistic models and correlation equations. 

5.5 Conclusions 

This study examined experimentally-collected pore-scale datasets of nanoparticle 

distribution during a silver nanoparticle- quartz sand transport experiment. The pore-scale 

silver nanoparticle distributions were imaged via quantitative Synchrotron X-Ray 

Computed Microtomography (qSXCMT). This examination yielded some of the first ever 

data on pore-scale nanoparticle transport through real porous media. In addition, this data 

was employed to perform the first systematic examination of how well the Happel 

Sphere-in-Cell (HSIC) geometry, commonly employed for Colloid Filtration Theory 

mechanistic models, approximated the pore-scale processes governing nanoparticle flow 

and transport.  

Four major findings were drawn from this study: (1) The distribution of pore space 

ranged from 0 – 197 μm from a grain surface, with most of the pore space close to the 

grain surface, 25% of this pore space was further away from the grain surface than 

allowable within the HSIC model, (2) Numerical simulations of fluid flow through the 
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SXCMT-CFD dataset indicated that velocity was a strong function of distance from the 

grain surface and could be upwards of ten times the average pore water velocity. These 

numerical simulations compared well with analytical solutions of fluid flow through the 

HSIC fluid envelope although the HSIC velocities predicted were much less than those in 

the centers of the larger pores, (3) SXCMT-datasets revealed that nanoparticle mass and 

mass flow distributions were larger in centers of pores than expected from the pore 

volume distribution. The distribution of mass and mass flow that favoured pore centers is 

associated with previously observed concentration gradients and the simulated velocity 

distributions. Approximately 30% of all nanoparticle mass and 37-38% of all 

nanoparticle mass flow was occurring further away from the grain surface than expected 

by the HSIC geometry.  (4) The diffusive behaviour of nanoparticles, coupled with the 

larger-than-expected distances from the grain surface, suggests that a significant fraction 

of nanoparticles are less likely to diffuse far enough to contact a grain surface than 

expected by HSIC geometry (termed ‘diffusive error’), likely contributing to CFT’s over-

predictions of η for nanoparticle 
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Chapter 6 

 

6 Conclusions 

6.1 Summary 

The work presented in this thesis demonstrates that the transport and retention of 

nanoparticles in soil is sensitive to pore-scale properties such as variations in fluid 

velocity and the distribution of mass flow rates.  The link between these pore-scale 

properties and nanoparticle transport and retention was examined by employing 

Synchrotron X-ray Computed Microtomography (SXCMT). The use of SXCMT to 

examine the pore-scale transport and behaviour of environmental contaminants has been 

well documented [e.g., Al-Raoush and Willson, 2005; Blunt et al., 2013; Wildenschild 

and Sheppard, 2013]. However SXCMT techniques had not been previously extended to 

nanoparticle/soil systems as nanoparticles were orders of magnitude smaller than the 

resolution of SXCMT systems and could not be visually observed. It was conjectured that 

Beer’s law could be applied directly to reconstructed SXCMT datasets to mathematically 

determine the concentrations of silver nanoparticles for every pore space voxel.  This 

method would be able to directly quantify the distribution nanoparticles within a water 

saturated soil’s pore space during transport.  

This approach to determining pore-scale distributions of silver nanoparticles was 

validated by examining the distribution of silver nanoparticles in static and quasi-

dynamic systems of representative packed glass bead columns. In the systems tested, the 

SXCMT method was able to accurately quantify the spatial distributions of static silver 

nanoparticle/glass bead systems and temporal changes in the spatial distributions of the 

quasi-dynamic silver nanoparticle/glass bead systems. In addition, the factors affecting 

the quality of the SXCMT-determined results were investigated: 1) The acquisition of 

additional datasets reduced the standard deviation of SXCMT-determined concentrations; 

2) X-ray interactions (i.e., absorption, refraction and reflection) with the soil/water media, 

column material and scintillator crystal significantly impacted the accuracy of the 



169 

 

SXCMT-determined concentrations; 3) By treating the approximately 20 × 106 voxels 

within each data set statistically (i.e., averaging), a high level of confidence in the 

SXCMT-determined mean concentrations can be obtained. 

The validated SXCMT method was then employed to examine pore-scale silver 

nanoparticle distributions during transport through three sand columns: uniform iron 

oxide, uniform quartz and well graded quartz. Extended tailing was observed during the 

elution phase of all experiments suggesting that hydraulic retention in immobile zones, 

not detachment from grains, was the source of tailing. A numerical simulation of fluid 

flow through an SXCMT dataset predicted the presence of immobile zones near grain-

grain contacts. SXCMT-determined silver nanoparticle concentrations observed that 

significantly lower nanoparticle concentrations existed near grain-grain contacts 

throughout the duration of all experiments. In addition, the SXCMT-determined pore-

scale concentration gradients were found to be independent of surface chemistry and 

grain size distribution, suggesting that immobile zones limit the diffusive transport of 

nanoparticles towards the collectors.  

The simulated CFD datasets were then coupled directly with the uniform quartz SXCMT-

determined silver nanoparticle datasets to estimate the distribution of silver nanoparticle 

mass flow rates during transport. It was found that the distribution of mass flow rates 

depended on the pore-scale distribution of several properties: nanoparticle concentration, 

fluid velocity and pore-scape geometry. The nanoparticle concentrations and fluid 

velocities were highest in the centers of the largest pores, yielding high rates of mass flux 

in those areas. However, the volume of pore space decreased with increasing distance 

from the grain surfaces; thus the regions with high mass flux rates occurred in only a 

small percentage of the total pore space. When these factors were combined, it was found 

that mass flow rates decreased with increasing distance from the grain surfaces. 

6.2  Implications    

These results presented in this thesis have substantial implications for both employing 

SXCMT to the study pore-scale transport of contaminants and for nanoparticle transport 

through the subsurface. As SXCMT is being increasingly employed to examine the 
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transport of contaminants, the ability to quantify elemental pore-scale distribution of 

contaminants in real soil pore spaces over time will open up new avenues of contaminant 

transport research.   

Current approaches for modelling nanoparticle transport are unable to describe and 

accurately predict nanoparticle transport behaviour and retention rates. It was shown that 

immobile zones yielded extended tailing behaviour that is typically not describable by 

standard continuum-scale nanoparticle transport models. In addition, Colloid filtration 

theory (CFT)  – a mechanistic approach to predicting colloid retention rates for 

continuum-scale transport models – is widely applied to nanoparticle transport and is 

known to over-predict retention rates in even simple systems. CFT was unable to account 

for the phenomena observed within this study (immobile zones, mass flow through large 

pore centers) and it is hypothesized that these phenomena are at least partially responsible 

for CFT’s inability to accurately predict nanoparticle retention rates. If these observed 

phenomena are widely present in the subsurface, then Colloid Filtration Theory and the 

standard continuum-scale transport modelling approach may be insufficient to describe 

field-scale nanoparticle transport and their uses should be reconsidered.  

6.3 Recommendations for Future Work 

Numerous simplifications and assumptions were employed in this study that may limit 

the direct applicability of these results to field-scale nanoparticle transport. These 

assumptions and simplifications include: employing homogeneous sand packed columns 

with no organic carbon content or micro-organisms, freshly synthesized silver 

nanoparticles which may be different from nanoparticles that have undergone aging and 

transformations within the natural environment and a simple aqueous solution with a high 

ionic strength which may not be representative of actual groundwater. As such, future 

research on the pore-scale processes governing field-scale nanoparticle transport needs to 

be expanded to consider more realistic nanoparticles, soils and groundwater.  

In addition, this thesis highlighted several pore-scale phenomena impacting silver 

nanoparticle transport and discussed how current nanoparticle transport modelling 

approaches do not adequately describe or predict the impact of these phenomena on 
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nanoparticle transport through soil. As such, future research should also focus on further 

developing our understanding of these phenomena and developing nanoparticle-specific 

modelling approaches.  

Specifically, future research should:  

1. Examine the pore-scale aggregation and transport of silver nanoparticles which 

have undergone aging and transformation in the environment. Silver nanoparticles 

react with to common subsurface constituents such as chloride and oxygen, the 

possibility exists that these reactions will alter how the silver nanoparticles 

interact with phenomena such as immobile and other processes, such as 

aggregation and straining, may become more dominant. 

2. Identify how silver nanoparticles interact with iron oxide surfaces. In this thesis it 

was shown that silver nanoparticles interacted with iron oxide surfaces in a way 

that rendered them non-digestible to even highly acidic (pH ~ 0) solutions.  This 

interaction between silver nanoparticles and iron oxides has, to the best of the 

author’s knowledge, not been previously researched and, given the widespread 

presence of iron oxide in the subsurface, should be examined in greater detail.  

3. Examine how the presence of microbes in the subsurface alters nanoparticle 

transport behaviour. Silver nanoparticles possess strong anti-microbial properties, 

suggesting that they actively interact with nearby microbes. Microbes are 

ubiquitous throughout subsurface soils and groundwater resources and it is likely 

that their presence will alter the transport and ultimate fate of silver nanoparticles 

in soils. 

4. Develop mathematical approaches to incorporate pore-scale phenomena into 

continuum-scale transport models and to predict the required parameters. 

Currently, continuum-scale transport models require extra parameters and 

coefficients to incorporate phenomena such as immobile zones and these 

parameters are typically determined by fitting to experimental data. The SXCMT 

method developed and presented in this thesis will provide a valuable path 

forward for developing the mathematical relationships, and methods for 

predicting the parameters, required to incorporate nanoparticle interactions with 

these phenomena into continuum-scale models.    
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5. Develop nanoparticle-specific mechanistic approaches to predicting nanoparticle 

retention rates in soils. As shown in this study, Colloid Filtration Theory is not 

well suited to predicting nanoparticle retention rates as it is incapable of including 

processes that impact experimental nanoparticle retention rates such as immobile 

zones and mass flow through larger pores.  There are several promising CFT 

approaches to predicting nanoparticle retention rates in soils [Long and Hilpert, 

2009; Long et al., 2010] that should be further developed. 

6. In addition, there are likely numerous other pore-scale processes and phenomena 

that are responsible for the ‘anomalous’ transport behaviour of nanoparticles such 

as bi-modal breakthroughs, and non-log linear retention profiles. While the results 

presented in this thesis partially explain at least two of the anomalous behaviours 

– extended tailing and lower-than-expected retention rates – the SXCMT method 

presented and validated in this thesis should be employed to further investigate 

the potential causes of the remaining anomalous behaviours.  

7. The SXCMT method developed and validated in this thesis remains the only 

method that can accurately determine high resolution distributions of nanoparticle 

concentrations within real soil pore spaces. As such, it should be further 

developed to improve the accuracy, uncertainty, limits, and range of nanoparticles 

that can be examined with this method. For instance, other reconstruction 

algorithms, such as algebraic or statistical reconstruction techniques, may provide 

higher quality reconstructed datasets than the reconstruction algorithm employed 

within this thesis (filtered back projection with a radon transform).  It is also 

likely that as X-ray Microtomography technology evolves and the component 

parts improve (e.g., CCD detectors and scintillator crystals) this SXCMT method 

will become capable of delivering higher quality SXCMT-determined 

concentration datasets and may also partially eliminate some of the SXCMT 

imaging artifacts (such as the ‘shadow zone’) which limited the analyses within 

this thesis.  
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7 Appendix A: Supplementary Material for “Predicting colloid transport through saturated 
porous media: A critical review” 

7.1 Overview of the geometries and equations of select CFT models 

Table 7.1 Overview of the geometries and equations governing selected mechanistic Happel sphere models 

Model Name   Rajagopalan and Tien [1976] Tufenkji and Elimelech [2004] Nelson and Ginn [2011] 

Model type Lagrangiana Eulerian Lagrangian  

Model 
Geometry* 
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Particle 
boundary 

conditions 

 

Fluid flow 
equation 

Stokes (creeping) flowb: ^_ = /^
\ 

Continuity: ^\ = 0 

Governing 
colloid 

transport 
equationc 

v� � v�� � vr� � vr � vw ? 0  

Y� � Y�� � Yr� � Yr � Yw ? 0  
^6xT7 ? ^6()*� ∙ ^T7 3 ^ eryz{ ∙|

Zy} f T  ~ ��
�H ? v� � v� � v)   

η correlationd 

� � γ
 �4
��/�����
/� �

�����/�����/� �

0.00338
����.
��� .!�  

� � 2.4
��/���� . ������ .����>�� . �
 �
0.55
����.k���� .�
� �0.22��� .
!���.���>�� . ��  

� �
�
 d2.4
�

�
� e ���

�����kf .�� ���� .k���� . ����< .� �

�����/�����/� � 0.7 e ���

���� .�f ����� . �g  

Kinetic 
retention rate 

equation 
8 ? 3

2
61 3 P7�/�%

&'P �� 8 ? 3
2

61 3 P7%
&'P �� 8 ? 3

2
61 3 P7�/�%

&'P �� 

a Rajagopalan and Tien [1976] only employed a Lagrangian model for colloid interception and sedimentation. An analytical solution (not shown 
here) was employed for diffusion.  



176 

 

 

b Assumes steady-state conditions (i.e., 
��
�H ? 0) and negligible external forces. Subject to boundary conditions outlined in each model.    

c The force/torque equations for each model are listed below in their respective tables. 
d The η correlation equation originally presented in Rajagopalan and Tien [1976] is incorrect. Here we are presenting the Logan et al [1995] 
corrected version.  
+ Trajectory simulations employ random starting locations at upstream (labelled ‘injection’) collector boundary 
* The illustrated models typically considered downwards flow (with gravity). 

  



177 

 

 

Table 7.2 Overview of the geometries and equations governing selected mechanistic non-Happel sphere models 

Model Name Yao et al [1971] Hemisphere-in-Cell [Ma et al., 2013]a Long and Hilpert [2009] 

Model type Eulerian Lagrangian Eulerian 

Model 
Geometry* 

 
 

 

Particle 
boundary 

conditions 
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Fluid flow 
equation 

Stokes (creeping) flowb,c: 

∇_ ? /∇
\ 
Continuity: 

^\ ? 0 

Navier-Stokesb: 

2\ ∙ ^\ = −^_ + /^
\ 
Continuity: 

^\ = 0 

Governing 
colloid 

transport 
equationc 

��
�H + \∇T = ()*∇
T +

M1 − ��
��Q ��

�����
��
��  

6~ + ~∗7 ��
�H = vr + v� + v� + v�r� + v>�� +

v)  
∇6\T7 = ∇6()* ∙ ∇T7 − ∇ eryz ∙|

Zy} f T  

η correlationd 

� ≈ �

 e��

� f
 +
,�����0���q

���> +
0.9 M Zy}

���� >Q
/�
  

� ≈  �
 d��!e��¡7���/�����/�f
��6��¡7���¢.£¤ ��¥ . ����< .��� . 
� +


�����/���¥�/� + 0.7��� . ��� ���
���� .�g e 

� ≈ 615.56 ±
0.217 6��¦7�

¦q ���� .k�± . 
��� .��± . � +
0.55
��� .�k���� .�
� +
0.22��� .
!���.���>�� . ��  

 

Kinetic 
retention rate 

equation 
8 = 3

2
61 − P7%

&'P �� 

8 = �6��¦7

�  �\ d ��¦

���¦ − 
6��¦7
�6���¦7 ;ab�� e���¦

��¦ f
�
q +



� l2 e ��¦

���¦f .� − 1g  

8 = 3
2

61 − P7%
&'P �� 

a There are a number of iterations of the Hemisphere-in-Cell model [Ma et al., 2009; Ma and Johnson, 2010; Ma et al., 2011; Ma et al., 2013]. 

Here we are specifically presenting the η correlation for Ma et al. [2013]. Many of the model details relevant to these tables remain the same 
between the iterations and, unless noted otherwise, it is not necessary to differentiate between the specific iterations.   
b Assumes steady-state conditions (i.e., 

�>
�H = 0) and negligible external forces. Subject to boundary conditions outlined in each model.    

c The force/torque equations for each model are listed below in their respective tables. Yao 1971 does not include forces or torques therefore none 
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are reported here. 
d Long and Hilpert [2009] adopts the governing equations (in addition to the force balance) from Elimelech[1994] but without van der Waals, 
anisotropic diffusion or lubrication. The reader is referred to the Tufenkji and Elimelech [2004] table below for further information on the Long 
and Hilpert [2009] force/torque balance. 
e In regimes of either pure diffusion or sedimentation mass transfer use the asymptotes described in Ma et al. [2013].  
+ Trajectory simulations employ random starting locations at upstream (labelled ‘injection’) collector boundary 
* The illustrated models typically considered downwards flow (with gravity).  
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Table 7.3: Force/torque equations for Rajagopalan and Tien [1976] 

 Force Torque 

Inertia vw = ~ e��
�H + x ∙ ∇xf  Yw = 0 

Gravity v� = !
� .#$�,2$ − 2405B−cos6c7 o� + sin 6c7o`F  Y� = 0 

London v�� = d �
�«{¬­D��
�®q,
D��®0qg o�  Y�� = 0 

Electrostatic Double 

Layer 
vr� = ¯°±D�²,³ q�³�q0


 ´ X °M 
³ ³�
³ q�³�qQ − o�²®´ ° �µ¶·

,���µq¶·0´¸ o�  Yr� = 0 

Hydrodynamic drag 

 (t = translation,  

r = rotation, m = 

movement of fluid 

around particle) 

 

6vr7H = −6./#$�x�m�Ho� + x`m̀H o`" 6Yr7H = 8./#$
x`5¹H o¹ 

6vr7� = 6./#$
ºm̀�o` 6Yr7� = −8./#$�º5¹� o¹  

6vr7� = 6./#$»−
¼�
m��o� + B½¼�m��̀ + (¼�
m
�̀Fo`¾  
6Yr7� = 8./#$�,½5�¹� +

(¼�5
¹� 0o¹  
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Table 7.4: Force/torque equations for Tufenkji and Elimelech [2004]1 

 Force 

External force in governing equation v =  v'¥= + v�  
Colloidal forces v'¥= = −^¿}  

Gravity v� = !
� .#$�,2$ − 2405  

Hydrodynamic drag2,3 

x� = m�6À�7m
6À�7\�  

x` = m�6À�7\` 

(� = m�6À�7()* 

(` = m!6À�7()* 

1The model equations are presented in Elimelech [1994], not Tufenkji and Elimelech [2004] 
2Elimelech [1994] does not present hydrodynamic force equations. We have reproduced the particle velocity equations with hydrodynamic forces 
instead.  
3DÂ and DÃ are referred to more generally as ()*�  in the governing colloid transport equation in Table 7.1. 
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Table 7.5: Force/torque equations for Nelson and Ginn [2011]1,2 

 Equation for θ and r component particle velocities 

Particle velocity from streamline 
x` = B½�61 + À�7 + (�61 + À�7
F eÄ

� f  

x� = −
�61 + À�7
% 

Particle velocity with London van der Waals forces 

n.a. to x` 

x� = �− «{¬­�ÅÆ6®Ç7q6
�®Ç7q� %  

Particle velocity with sedimentation 
x` = B��sin 6c7F eÄ

� f  

x� = B−��cos 6c7F% 

Particle velocity with hydrodynamic retardation 

x` = �
�� B½�b
 + (�61 + À�7b�F eÄ

� f  

x� = �
4{¬ B−
�61 + À�7
m��F%  

Total expression for particle velocity 

x` = �
�� B½�b
 + (�61 + À�7b� + ��sin 6c7F eÄ

� f  

x� = �
4{¬ �−
�61 + À�7
m��−��cos 6c7 − «{¬­�ÅÆ6®Ç7q6
�®Ç7q� %  
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Particle displacement due to Brownian force vector (Fb) 
(Cartesian)3 

ÈÉp = PpÊ2()*∆Y 

ÈÉË = PËÊ2()*∆Y 

ÈÉÌ = PÌÊ2()*∆Y 

1Many of these equations are not presented in Nelson and Ginn [2011] but appear instead in Nelson and Ginn [2005]. 
2The Nelson and Ginn [2005; 2011] papers do not present their force/torque equations. Instead, they present the contributions to particle velocity 
from the individual components. We have reproduced these velocity expressions here along with the final, complete equations for particle 
velocity. 
3()*  in this table is a function of both À� and the classic Stokes-Einstein equation, please see Nelson and Ginn [2011] for full details.  
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Table 7.6: List of force equations for the Hemisphere-in-Cell model [Ma et al., 2009; Ma and Johnson, 2010; Ma et al., 2011; 

Ma et al., 2013] 1,2 

 Force 

Hydrodynamic drag3 

vr� = k��D��Í
4� + 6./#$\�m
  

vrH = − k��D��¬
4Î + 4�

4Î 6./#$\H  

Gravity  v� = !
� .#$�,2$ − 2405  

Shear lift  v� = k.!k�D��6�>/��7�/q

Ï Ð
Ñ�Ò

¢.Ó   

Electrostatic Double Layer 

v�r� = 4.Ô�Ô¥ÕÖ$Ö' X d ×ØÙ 6�ÚÛ7
��×ØÙ 6�ÚÛ7 −

,³��³ 0q

³�³ 

×ØÙ 6�
²®7
��×ØÙ 6�
²®7g  

van der Waals v>�� = − �D�
k®q

Ü6Ü�

.
�
®7
6Ü���.��k®7q  

Brownian force  v) = ℛl
ÞZy}
ßH   

1 The Hemisphere-in-Cell model employs torques that are equivalent to the Rajagopalan and Tien [1976] model. The result of this is that, for 
colloids in contact with the collector surface, all torque-induced rolling is assumed yield translation along the collector surface (i.e., no slipping or 
friction) in unfavorable conditions. The only difference is an additional surface friction torque that appears in the Ma et al [2011] iteration of the 
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Hemisphere-in-Cell model. 
2 Many of the terms in the Hemisphere-in-Cell model and the Rajagopalan and Tien [1976] model are similar, however the Hemisphere-in-Cell 
flow field has to be solved numerically, this results in references to velocity (v) in the force equations as opposed to the A,B and D coefficients 
employed by Rajagopalan and Tien [1976] from their analytical solution of the flow field.  
3 Superscripts and subscripts N and t refer to directions normal and tangential to collector surface respectively 

 

Table 7.7: Notation for Tables 7.1 to 7.6 

A brief note on notation for the above tables: The authors of these mechanistic model studies often use different symbols to represent 
the same parameter. Wherever possible we have consolidated the symbols representing each parameter into a single consistent 
symbol. For instance the separation distance between colloid and collector surface has been variously referred to as À, h and H. In this 
appendix we use the symbol À from the Rajagopalan and Tien [1976] paper.     

Symbol Definition 

Dimensions 
(L = length, t = time, m = mass, K = 
temperature, V = electric potential 
difference, A = current, N.A. = 
dimensionless) 

#$  = radius of colloid L 

#� = radius of collector L 


� 
=porosity dependent parameter = 261 − ��7/62 −
3� + 3�� − 2�k7 

N.A. 
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, ½, ( 
= coefficients to correct fluid velocity. Refer to the 
individual papers for their exact values 

A:L-1t-1, B: t-1, D:L-1t-1 


�, ½� , (� = dimensionless versions of the A,B,D coefficients N.A. 

T = concentration of colloids m/L3 

T<¦ = concentration of colloids entering the domain m/L3 

()*  

= Brownian diffusion coefficient for a sphere in an 
infinite fluid (from Stokes-Einstein equation: ()* =

Zy}
�����  

L2/t 

()*�  = diffusion tensor (from (�, (`) L2/t 

(� , (` 
= diffusion coefficient in the radial and angular 
directions 

L2/t 

&' = diameter of collector  L 

&$ = diameter of colloid L 
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o�, o` , o¹ = unit vectors in the radial and angular directions  N.A. 

F 
= force vector (subscripts refer to the specific force of 
interest) 

m·L/t2 

m�H , m̀H , m̀� , 
m�� , m��̀ , m
�̀  

= drag correction factors in RT 1976 and NG 2011. 
Refer to individual papers for exact values.  

N.A. 

m�, m
, m�, m! 
= corrections for hydrodynamic interactions in TE 
2004 and MPFJ. Refer to individual papers for exact 
values.  

N.A. 

g = gravitational acceleration, 9.81 m/s L/t 

5¹H , 5¹� , 5�¹� , 5
¹�  = torque correction factors in RT 1976 N.A. 

H = Hamaker coefficient  m·L2/t2 

8)  = Boltzmann constant (~1.38×10-23 m2·kg·s-2·K-1) L2·m/(t2·K) 

8 
= kinetic retention rate coefficient (also commonly 
denoted as 8DHH , 84) 

1/t 
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~ = particle mass (~∗ refers to virtual particle mass) m 

�� = attraction number =  +/,12./#$
%0 N.A. 

�� = gravity number = 2#$
,2$ − 2405/69/%7 N.A. 

��< = 1/6�� + 17 N.A. 

��� = London number = +/,9./#$
%0 N.A. 

��� = Peclet number = %&'/()* N.A. 

�� = aspect ratio = #$/#� N.A. 

�>�� = van der Waals number = +/68Es7 N.A. 

P = porosity N.A. 

Pp , PË , PÌ  = random numbers for Brownian force vector  N.A. 

_ = fluid pressure  m/(L·t2) 
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ÈÉp , ÈÉË , ÈÉÌ = random displacement for Brownian motion L 

ℛ = Gaussian random number  N.A. 

U = radial coordinate  L 

b�, b
, b� = drag correction factors in NG 2011 N.A. 

s = temperature K 

Y = time T 

Y� , Y�� , Yr� , Yr , Yw = torques  (m·L/t2)·L 

x 
= particle velocity (subscripts r and θ refer to its polar 
components) 

L/t 

% = approach (or darcy) velocity = \ × P L/t 

\ 
= fluid velocity (subscripts refer to its directional 
components)  

L/t 
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¼� = 6U 3 #�7 L 

I, ¼, à = Cartesian coordinates  L 

Greek letters: 

� = sticking (or collision) efficiency  N.A. 

��H� = retardation correction for London force  L-4 

À 
= surface to surface separation between colloid and 
collector 

L 

À� = À/#$ N.A. 

Ô = dielectric constant of the medium N.A. 

Ô�Ô¥ = permittivity of water   t4·A2/(L2·m)/L 

� = collector contact efficiency  N.A. 

á = friction coefficient m/t 
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Õ = Debye-Hückel reciprocal length  L-1 

24 , 2$ = density of fluid and particle  m/L3 

/ = dynamic (absolute) viscosity of fluid  m/(L·t) 

º = angular velocity  Radians/t 

Ö' , Ö$ 
= surface potentials of the collector and particle (it is 
common practice to use zeta potentials instead of 
surface potentials) 

V 

c = angle Radians 

âH 
= total interaction energy (i.e., sum of van der Waals 
and electric double layer forces) 

m·L2/t2 

ã = characteristic wave length  L 

� = 61 − P7�/� N.A. 



192 

 

 

7.2 References 

Elimelech, M. (1994), PARTICLE DEPOSITION ON IDEAL COLLECTORS FROM DILUTE FLOWING SUSPENSIONS - 
MATHEMATICAL FORMULATION, NUMERICAL-SOLUTION, AND SIMULATIONS, Sep. Technol., 4(4), 186-212. 

Logan, B., D. Jewett, R. Arnold, E. Bouwer, and C. O'Melia (1995), Clarification of Clean-Bed Filtration Models, Journal of 
Environmental Engineering, 121(12), 869-873. 

Long, W., and M. Hilpert (2009), A Correlation for the Collector Efficiency of Brownian Particles in Clean-Bed Filtration in Sphere 
Packings by a Lattice-Boltzmann Method, Environ. Sci. Technol., 43(12), 4419-4424. 

Ma, H., J. Pedel, P. Fife, and W. P. Johnson (2009), Hemispheres-in-Cell Geometry to Predict Colloid Deposition in Porous Media, 
Environ. Sci. Technol., 43(22), 8573-8579. 

Ma, H., and W. P. Johnson (2010), Colloid Retention in Porous Media of Various Porosities: Predictions by the Hemispheres-in-Cell 
Model, Langmuir, 26(3), 1680-1687. 

Ma, H., E. Pazmino, and W. P. Johnson (2011), Surface Heterogeneity on Hemispheres-in-Cell Model Yields All Experimentally-
Observed Non-Straining Colloid Retention Mechanisms in Porous Media in the Presence of Energy Barriers, Langmuir, 
27(24), 14982-14994. 

Ma, H., M. Hradisky, and W. P. Johnson (2013), Extending Applicability of Correlation Equations to Predict Colloidal Retention in 
Porous Media at Low Fluid Velocity, Environ. Sci. Technol., 47(5), 2272-2278. 

Nelson, K. E., and T. R. Ginn (2005), Colloid Filtration Theory and the Happel Sphere-in-Cell Model Revisited with Direct Numerical 
Simulation of Colloids, Langmuir, 21(6), 2173-2184. 

Nelson, K. E., and T. R. Ginn (2011), New collector efficiency equation for colloid filtration in both natural and engineered flow 
conditions, Water Resour. Res., 47, 17. 

Rajagopalan, R., and C. Tien (1976), TRAJECTORY ANALYSIS OF DEEP-BED FILTRATION WITH SPHERE-IN-CELL 
POROUS-MEDIA MODEL, Aiche J., 22(3), 523-533. 

Tufenkji, N., and M. Elimelech (2004), Correlation equation for predicting single-collector efficiency in physicochemical filtration in 
saturated porous media, Environ. Sci. Technol., 38(2), 529-536. 

Yao, K.-M., M. T. Habibian, and C. R. O'Melia (1971), Water and waste water filtration. Concepts and applications, Environ. Sci. 
Technol., 5(11), 1105-1112. 



193 

 

 

7.3 Mechanistic simulations: Unfavorable conditions  

Mechanistic force/torque balance simulations that use mean-field DLVO interactions 

predict zero attachment even under conditions of modest repulsion (e.g., interaction 

energy > several kT, see Figure 2.1) between colloids and grain surfaces [Elimelech and 

Omelia, 1990].   Yet, as discussed earlier, unfavorable conditions are observed in 

numerous environmental scenarios.  As a result, we have until recently lacked 

mechanistic theory to predict colloid attachment and transport in environmental contexts, 

and there as yet exists no easily-implemented approximating correlation equation for 

mechanistically-based prediction of colloid attachment under unfavorable conditions.  

The inability of mean-field force/torque balances to predict colloid attachment in 

unfavorable conditions has driven the development of semi-empirical expressions to 

predict attachment [Bai and Tien, 1996; 1999; Chang et al., 2009; Elimelech, 1992].  

Like the approximating correlation equations for favorable conditions described above, 

these semi-empirical correlations are composed of dimensionless groups of relevant 

physicochemical parameters that were fit via coefficients and powers. An example 

correlation from Elimelech [1992] is provided: 

 ��¦4 = 0.02576�'¥=7�.���4D>  7.1 

where ηunf and ηfav are the collector efficiencies in the presence and absence of repulsion, 

respectively, and Ncol represents the ratio of attractive to repulsive colloid-collector 

interactions and is defined as follows:  

 �'¥= ? 
��
 Ô Ô�Ö$Ö'  Õ�� 7.2 

where A132 is the combined Hamaker constant for the colloid, water, and porous media, εo 

and εr are the absolute and relative permittivities in vacuum and water, respectively.  The 

parameters ζp and ζc are the mean-field potentials of the colloid and collector surfaces, 

and κ -1 
 is the inverse Debye length. The reported fitted coefficient (0.0257) and power 

(1.19) correspond to the general set of experiments reported by Elimelech (1992). Please 
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note that throughout this document we do not use subscripting of η to denote whether it 

represents favorable versus unfavorable conditions, except in circumstances where direct 

comparison of these two conditions is required. 

Semi-empirical correlations coefficients and powers were fit directly to experimental data 

rather than to mechanistic simulations.  They are therefore limited to the experimental 

conditions from which they were developed, and their relative performance across a 

larger range of conditions is generally poor when applied outside the experimental 

conditions under which they were developed. In contrast, the approximating correlation 

equations for favorable conditions typically show relative errors less than a factor of three 

(i.e., the error is less than 3× the estimated η) [Ma et al., 2013; Nelson and Ginn, 2011].  

The relatively greater success of correlation equations developed for favorable conditions 

may reflect their having been fit to mechanistic simulations, which ideally extends their 

utility to a larger range of conditions, but may also reflect the greater complexity of 

colloid transport under unfavorable conditions. 

 The ratio (ηunf /ηfav) provides a measure of the effect of repulsion, and is called the 

collision or attachment efficiency (α).  The value of α should therefore range from 0 to 

unity.  Investigators can obtain α by comparing experiments conducted under unfavorable 

versus favorable conditions, or as more often is the case, by substituting favorable 

condition correlation equation predictions of ηfav.  Whereas the latter approach yields 

reasonable estimates of α for many conditions, it may yield values of α > 1 for less 

unfavorable (nearly favorable) conditions.  This reflects the fact that, as described above, 

the approximating correlation equations for favorable conditions are just that, 

approximations of the underlying mechanistic models, and so they may introduce error 

via the approximation.  Furthermore, even the underlying mechanistic models may 

introduce error if the experimental conditions “violate” assumptions in the underlying 

mechanistic models (e.g., uniformity, spheroidal colloids and collectors, etc.) as is also 

true for predictions under favorable conditions.     
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7.3.1.1 Secondary minimum association.   

Whereas mean-field mechanistic models do not predict immobilization (attachment) of 

colloids in the presence of significant repulsion, they do predict the accumulation of 

colloids in the near-surface fluid domain due to secondary minimum attraction under 

unfavorable conditions [e.g. Johnson et al., 2007]. The experimentally-observed 

“skimming” behavior of colloids in the near-surface fluid domain under unfavorable 

conditions [e.g. Johnson et al., 2010] is predicted by mean-field mechanistic models, for 

example, in dense and simple cubic packing structures [e.g. Johnson et al., 2007] and 

impinging jet systems where flow is directed normal to a planar surface and spreads 

radially from the flow stagnation axis [Johnson and Hilpert, 2013].   

The influence of secondary minimum interactions is accounted for in mean-field 

force/torque models underlying CFT but this has received limited attention.  The reason 

being that these models (often performed in the Happel unit cell) were usually run under 

favorable conditions (absence of repulsive barrier yields absence of secondary minimum) 

but would need to be run under unfavorable conditions in order for the influence of the 

secondary minimum to be observed.  Furthermore, when these models were run under 

unfavorable conditions, the primary purpose was to demonstrate lack of immobilization 

(lack of attachment) for significant repulsion [e.g. Elimelech and Omelia, 1990].     

The possibility that experimentally-inferred colloid retention at the column scale may 

include secondary minimum-associated colloids prompted the development of easily-

adopted approaches to predict potential colloid retention via this mechanism.  Foremost 

among these is the Maxwell approach [Franchi and O'Melia, 2003; Hahn and O'Melia, 

2004; Sang et al., 2013; Shen et al., 2007; Tosco et al., 2009], which  determines the 

kinetic energy distribution among the colloid population from the Maxwell frequency 

distribution of their velocities.  Retained colloids are those with insufficient kinetic 

energy to escape from the secondary energy minimum into the bulk fluid domain.  The 

Maxwell approach is a simplified version of CFT in that it does not account for fluid 

flow, collector geometry, or mechanistic force/torque balance, such that the subsequent 
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fate (e.g., exit from the collector) of colloids associated with the surface via secondary 

minimum interactions is not actually determined.   

The utility of the Maxwell approach lies in its relative ease of application relative to a full 

force/torque balance. It must be stressed that although both the Maxwell or mean-field 

mechanistic force/torque balance approaches predict accumulation in the secondary 

energy minima they predict no colloid attachment to (i.e., immobilization on) surfaces 

(except for energy barriers less than several kT).   

7.3.1.2 Immobilization.   

As mentioned above, mean-field mechanistic models do not predict the experimentally-

observed immobilization of a significant fraction of near-surface colloids [e.g. Johnson et 

al., 2010] on bulk repulsive surfaces. Instead, as stated above, colloids are predicted to 

skim (spin and translate) outboard of the energy barrier in the near-surface fluid domain.  

As such, the challenge in prediction of colloid attachment (immobilization) is how to 

achieve physical contact with the surface when mean-field prediction indicates that it is 

prevented by the repulsive barrier.  A number of strategies have been recently employed 

to mechanistically predict this immobilization.  These strategies can be categorized as: 1) 

macroscopic heterogeneity, 2) implied physical heterogeneity, and 3) representative 

discrete heterogeneity.  

Heterogeneity has, for at least twenty years, been acknowledged as a potential 

explanation for the discrepancy between mechanistic predictions and experimental 

observations in environmental (unfavorable) conditions [Ryan and Elimelech, 1996]. 

Since then, research has confirmed the potential role of heterogeneity in colloid retention 

in environmental conditions. While our understanding of the processes governing colloid-

heterogeneity interactions has evolved considerably, there remain a number of questions 

regarding the role and significance of heterogeneity at macroscopic and microscopic 

scales as described below.   
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7.3.1.2.1 Macroscopic and implied physical heterogeneity 

Macroscopic surface heterogeneity (i.e., readily measured surface properties) arises from, 

for example, the presence of multiple mineral surfaces with different isoelectric points 

such that some surfaces are positively charged, and some are negatively charged (e.g., 

iron oxyhydroxides versus silica) at circum-neutral pH.  For porous media having 

macroscopic geochemical heterogeneity, the unfavorable fraction of the surface can be 

approximated as having α=0, and the favorable fraction of surface can be approximated 

as having α= 1.  This approach is successful in that a simple linear combination of the 

binary α values weighted by the corresponding fractions of favorable versus unfavorable 

surfaces in the porous media yields reasonable prediction of observed retention in 

macroscopically heterogeneous media [Chen et al., 2001; Johnson et al., 1996; Loveland 

et al., 2003; Song et al., 1994].  

The primary limitation of this approach is that while macroscopic surface heterogeneities 

are widespread in environmental porous media, there is significant evidence that these 

heterogeneities may only minimally influence colloid transport in soils. Natural organic 

matter (NOM) has been shown to sorb strongly to positively charged (i.e., favorable) 

mineral surfaces such as ferric and aluminum oxyhydroxides and switch their surface 

charges from positive to negative [Abudalo et al., 2010; Amirbahman and Olson, 1993; 

Foppen et al., 2008; Gu et al., 1995; Johnson and Logan, 1996; Liu et al., 2009b; Mosley 

et al., 2003; Mylon et al., 2004; Pieper et al., 1997; Wang et al., 2012]. The sorption of 

NOM to surfaces that are favorable for colloid attachment will potentially yield 

unfavorable attachment conditions. Given the widespread prevalence of NOM throughout 

environmental media, many macroscopic heterogeneities may be coated by organics that 

yield unfavorable conditions thereby limiting the relevance of macroscopic 

heterogeneities in environmental media. A large number of colloid transport studies have 

demonstrated this NOM ‘masking effect’ in which the presence of organic matter can 

increase colloid transport [Abudalo et al., 2010; Amirbahman and Olson, 1993; Foppen 

et al., 2008; Jiang et al., 2012b; Johnson and Logan, 1996; Morales et al., 2011; Mylon 

et al., 2004; Pelley and Tufenkji, 2008; Pieper et al., 1997; Wang et al., 2012]. 
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Environmental media coated with NOM cannot be represented by this “patchwise” linear 

approximation since the entire media would be represented by α=0; whereas significant 

colloid retention is experimentally observed in such media [Elimelech and Omelia, 1990; 

Johnson et al., 2010; Li et al., 2004; Tong and Johnson, 2006]. The discrepancy suggests 

the presence of micro- to nano-scale heterogeneity (i.e., not readily measurable surface 

properties) on the bulk repulsive surface, which may allow attachment to occur (e.g., 

Elimelech and O’Melia, 1990) as described below in Appendix 7.3.1.2.2.  

The inferred presence of micro- to nano-scale heterogeneity on surfaces has spurred the 

development of a variety of mechanistic approaches to account for nano- to micro-scale 

physical and chemical heterogeneity. One approach that capitalizes on the predicted 

accumulation of colloids in secondary minima, but also provides a mechanism to 

immobilize a subset of these secondary minimum-associated colloids, is herein called the 

“implied physical heterogeneity approach” [Torkzaban et al., 2008].   The approach 

extends surface friction, which is traditionally considered to act at the primary minimum 

[e.g. Bergendahl and Grasso, 2000; Johnson et al., 1971], out to the secondary minimum, 

which is traditionally considered “non contact” such that the relevant friction in the 

secondary minimum arises from fluid viscosity [e.g. Rajagopalan and Tien, 1976].  

Extending surface friction to the secondary minimum replaces the traditionally-assumed 

relatively weak friction from fluid viscosity with stronger surface friction that 

immobilizes colloids in zones of low fluid drag (e.g. low velocity or recirculation zones).  

The approach effectively treats the near-surface fluid domain (see Figure 2.1) as a highly 

viscous fluid yielding a friction coefficient equal to that of the surfaces in contact.  This 

method is justified on the basis that there can exist roughness, macromolecules, etc. that 

may effectively extend surface friction to the attractive secondary well [Johnson et al., 

2009].  

The approach is successful in that it identifies zones on the surface where colloids can be 

immobilized due to drag forces being less than the extended friction force.  However, an 

important limitation of the approach is that it has not been reconciled with existing work 

that considers secondary minimum interactions as non–contact forces [Israelachvili, 

2011], and it does not build on the formal approach provided by the previously existing 
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body of work accounting for steric forces associated with water structure, roughness, and 

macromolecules in the near-surface domain [Israelachvili, 2011].   

With respect to predictions, the implied physical heterogeneity approach predicts 

attachment only in zones of low fluid drag [Bradford et al., 2011; Torkzaban et al., 2007; 

Torkzaban et al., 2008]; whereas, experiments demonstrate colloid deposition in high 

fluid drag zones such as forward flow stagnation zones [Johnson et al., 2010; Pazmino et 

al., 2014b] under unfavorable conditions. Forward flow stagnation zones are regions 

where flow impinging normal to the collector surface is converted to tangential 

flow. Tangential flow is zero on the forward flow stagnation axis that is defined as the 

center of the impinging flow.  Normal flow on this axis decays with decreasing 

separation distance from the surface to a minimum (taken to be zero) at the forward flow 

stagnation point on the collector surface. Adjacent to the collector surface outside the 

forward flow stagnation point, tangential flow and tangential drag force on colloids 

rapidly increase. As a result the forward flow stagnation zones are not zones of low fluid 

drag except at the forward flow stagnation point (identified in Figure 2.4). The same 

principle applies to the rear flow stagnation zone and point, where tangential flow 

converging on the flow stagnation axis is converted to normal flow away from the grain 

surface. Simulations utilizing implied physical heterogeneity also predict that colloids 

will immobilize (attach) at long distances (e.g., multiple tens of nm) from the surface, in 

which case detachment will occur in response to very slight increases in fluid drag 

[Pazmino et al., 2014a].  In contrast, direct observation experiments show that 

detachment requires fluid velocity perturbations significantly higher than the loading 

velocity [Pazmino et al., 2014a], as further described below. 

7.3.1.2.2 Micro- to nano-scale heterogeneity.   

The existence of micro- to nano-scale heterogeneity (herein called discrete heterogeneity) 

on bulk repulsive surfaces is inferred from the observed attachment of colloids under 

unfavorable conditions lacking macroscopic heterogeneity.  The rationale for this 

inference is that repulsion experienced by colloids from a bulk like-charged surface may 

be locally eliminated or reduced by the presence of physical asperities (protrusions 
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associated with roughness) and charge heterogeneity [Bhattacharjee et al., 1998; Hoek 

and Agarwal, 2006].  As illustrated in Figure 7.1, physical asperities reduce repulsion 

because interaction forces scale directly with radius of curvature [Israelachvili, 2011], 

and the asperity reduces (locally) the radius of curvature associated with colloid-surface 

interaction.  Charge heterogeneity creates local zones of opposite charge (attraction) that 

scales with the size of these zones, as illustrated in Figure 7.1.   

 

Figure 7.1: The different attachment/retention interactions that may occur when the colloid is near 

the collector surface. The representative DLVO profile is an approximation of unfavorable 

deposition conditions with both an electrostatic repulsive energy barrier (red) and an attractive 

secondary energy minimum (blue). For ease of interpretation, the size of the primary energy barrier 

is on the same order as the depth of the secondary minimum but there are scenarios where the 

primary energy barrier may be much larger than what is pictured. In addition, for ease of 

interpretation the colloids are depicted as being the same size as the heterodomain features they are 

interacting with; this is not necessarily the case as the size of these features may range from the 

micro- to nano-scale while colloids may be up to 10 µm in diameter. 
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Whereas macroscopic heterogeneity (e.g., metal oxyhydroxide coatings on silica) may be 

removed via acid-base cleaning, nano- to micro-scale heterogeneity from roughness and 

cation substitution in the mineral matrix are not removed, and in fact may be enhanced, 

by cleaning approaches [DiCarlo et al., 2010; Jiang et al., 2012a; Johnson et al., 1996; 

Litton and Olson, 1993; Liu et al., 2009a; Molnar et al., 2011; Tong and Johnson, 2006].  

The sometimes-invoked assumption that colloid retention on cleaned surfaces must occur 

via straining (due to presumed absence of heterogeneity) has been discussed [Johnson et 

al., 2011] (see Appendix 7.4.3 for a discussion on successes and opportunities in 

straining research). 

7.3.1.2.3 Representative discrete heterogeneity  

 Another approach to achieve physical contact between the colloid and the collector 

surface in spite of significant repulsion between the bulk surfaces is to replace the mean-

field colloid-collector interactions with interactions that explicitly recognize the existence 

of discrete nano- to micro-scale physical and chemical heterogeneity on the collector (or 

potentially colloid) surface where colloid-collector repulsion is locally reduced or 

eliminated (herein referred to as heterodomains)[e.g. Bendersky and Davis, 2011; 

Duffadar and Davis, 2007; Shen et al., 2013]. Heterodomains differ from the previously 

discussed macroscopic surface heterogeneities as they are not readily measurable surface 

properties. These heterodomains, illustrated in Figure 7.1, can bring colloids into physical 

(e.g., primary minimum) contact with the surface, where surface friction is more 

generally accepted to be applicable [Bergendahl and Grasso, 2000; Johnson et al., 1971], 

as described in detail in Pazmino et al. [2014b].   

Discrete heterogeneity on a collector surface yields different net interactions (attractive 

versus repulsive) for different colloid sizes [Pazmino et al., 2014b].  Due to curvature of 

the colloid surface and the rapid decay of colloid-collector interactions with increasing 

separation distance, the zone of significant colloid-collector interaction (ZOI) is a fraction 

of the projected area of the colloid.  The ZOI area decreases with increasing ionic 

strength [Duffadar et al., 2009; Pazmino et al., 2014b].  The net colloid-collector 

interaction is determined by the combination of attractive and repulsive interactions 
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across the ZOI, which is determined by the fraction of the ZOI that is occupied by 

heterodomain(s) [Pazmino et al., 2014a; Pazmino et al., 2014b].  Hence, the net colloid-

collector interaction (attractive versus repulsive) depends on the interplay of colloid size, 

heterodomain size, and ionic strength, as shown in Figure 7.2 adapted from Pazmino et 

al. [2014b].  In the figure, a given heterodomain size and ionic strength condition yields a 

net interaction force that depends directly on colloid size, as shown by the force curves in 

Figure 7.2, where blue yields no repulsion and red yields the largest repulsion.  This 

occurs because the radius of the ZOI (RZOI) increases with colloid size, as shown by 

spheres in Figure 7.2.   The fractional coverage (of ZOI) by heterodomains decreases as 

the colloid size increases relative to a given heterodomain size, leading to net attractive 

interaction at all separation distances for the smallest (blue) colloid, and net strong 

repulsion at intermediate distances (repulsive barrier) for the largest (red) colloid.   

Successes of the discrete heterogeneity approach, referring to the incorporation of 

nanoscale zones of attraction in the DLVO interaction, include:  (i) colloid attachment on 

the open surface, and (ii) wedging in grain to grain contacts for larger colloids both 

emerge from the force/torque simulations that incorporate discrete nanoscale 

heterogeneity [Ma et al., 2011]. Quantitative prediction of experimentally-observed 

attachment of colloids on silica emerges from incorporation of representative discrete 

nanoscale heterogeneity into mechanistic force/torque balance [Pazmino et al., 2014b]. 

The approach also predicts the experimentally-observed detachment of colloids (i.e., a 

fractional release of the attached population) in response to perturbations in ionic strength 

or fluid velocity.  Notably, both the observed and simulated colloid detachment in 

response to fluid velocity perturbations required perturbations to be significantly greater 

than the loading velocity.  This resulted from colloid immobilization (attachment) in the 

primary minimum where van der Waals attraction generated strong adhesion [Pazmino et 

al., 2014a].  This is an important contrast to the implied physical heterogeneity approach, 

which immobilizes colloids multiple tens of nm from the surface in the secondary 

minimum, as described above. 

The discrete heterogeneity approach represents (to the knowledge of the authors) the first 

report of an ability to predict attachment quantitatively and detachment (from physical 
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contact) qualitatively, using the same set of fundamental parameters in force/torque 

simulations for both predictions [Pazmino et al., 2014a; Pazmino et al., 2014b]. 

However, there are still challenges to be addressed in the discrete heterogeneity 

approach; to date discrete heterogeneity cannot be independently measured in ways 

directly relevant to colloid-surface interaction.  For example, zeta potentials are too 

insensitive to reflect nano- to micro-scale heterogeneity [Elimelech et al., 2000], atomic 

force microscopy has limited resolution [Drelich and Wang, 2011; Shellenberger and 

Logan, 2002; Taboada-Serrano et al., 2005], and surface spectroscopic techniques do not 

yield information directly applicable to colloid-surface interaction.  Whereas there are 

many opportunities to explore application of the above techniques, at present the discrete 

heterogeneity approach requires empirical determination of a representative heterogeneity 

on surfaces. Currently, the published literature reflects representative discrete 

heterogeneity on silica surfaces only [Pazmino et al., 2014b].  Although silica is an 

important primary target surface (i.e., the vast majority of colloid transport experiments 

utilize silica porous media), the approach needs to be extended to other surfaces and 

conditions to test its general applicability. 

The outcomes that emerge from the force/torque simulations utilizing discrete 

heterogeneity match experimental observations across an array of colloid sizes, fluid 

velocities, and ionic strength values.  The discrete heterogeneity approach, by developing 

a representative heterogeneity for a surface, provides a mechanism to represent 

differences in heterogeneity among different mineral types and different pH conditions.  

These changes are not captured by mean-field parameters such as bulk surface zeta 

potential [Elimelech et al., 2000].   

Representative discrete heterogeneity provides a potential platform for mechanistic 

representation of blocking or ripening, both of which begin with a limited number of 

colloid attachment sites.  Heterodomains (representative heterogeneity) would serve as 

these initial attachment sites, with subsequent decrease (blocking) or increase (ripening) 

in the number of attachment sites with increased colloid attachment, depending on 

whether colloid-colloid interactions are repulsive or attractive, respectively.   
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As explained above, for a given heterogeneous surface, the net interaction (attractive 

versus repulsive) depends on colloid size and surface properties. As such, slight 

differences in colloid size and/or surface properties may generate effective heterogeneity 

in “stickiness” among the colloid population.  Demonstrating this effect may yield a 

mechanistic explanation for the apparent heterogeneity in retention rate coefficients 

among apparently uniform populations, which is thought to drive the observed non log-

linear profiles of retained colloids observed under unfavorable conditions [Albinger et al., 

1994; Baygents et al., 1998; Bolster et al., 1999; Bolster et al., 2000; Harvey et al., 1995; 

Hendry et al., 1997; Li et al., 2004; Liang et al., 2013; Schijven et al., 1999; Simoni et al., 

1998; Tong and Johnson, 2007; Tufenkji and Elimelech, 2004; Tufenkji et al., 2004; 

Tufenkji and Elimelech, 2005a; b; Wang et al., 2014].  
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Figure 7.2: Colloidal force profiles as a function of colloid-collector separation distance (H) for 1.95, 

1.1 and 0.25 µm colloids. The height of the energy barrier corresponds to the size of the colloid. The 

largest colloid – 1.95 μm – has the largest energy barrier, the medium colloid – 1.1 μm– has the 

smaller energy barrier and the smallest colloid – 0.25 μm – has no energy barrier. The projected 

colored circle represents the ZOI, the inner circle represents an 80-nm radius heterodomain. The 

ZOI color corresponds to the force profile. The repulsive force is greatest for the lowest ZOI 

coverage by heterodomain(s). Varied heterodomain size relative to ZOI would have the same effect, 

as would varied IS for a given colloid and heterodomain size (increased IS yields decreased radius of 

ZOI).  Adapted from Pazmino et al., [2014b].   

7.4 Upscaling from pore to continuum scale 

The parameter η describes the efficiency of colloid delivery to the surface (favorable 

conditions) or the near surface fluid domain (unfavorable conditions) at the pore scale.  

Its implementation into continuum scale models (upscaling) is performed under the 

simple assumption that the control volume considered in the continuum model is 

represented by a collection of identical pore scale collectors comprising the same volume 

and having the same porosity as the control volume [Johnson and Hilpert, 2013; Logan et 
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al., 1995; Nelson and Ginn, 2011]. Under this assumption the equation expressing � as a 

rate constant (k) for the Happel sphere in cell geometry is: 

 8 ? 3 361 − c7� �ä
2&' ln 61 − �7\ 7.3 

Where dc is the average collector diameter, \ is velocity and c is porosity. The functional 

form of k is not the same for all η correlations, it is a function of the conceptual model 

employed; the Hemisphere-in-cell [Ma et al., 2009] and constricted tube [Paraskeva et 

al., 1991] geometries have different relationships for k.  

7.4.1  Opportunities in secondary minimum interactions 

The k – η relationship (eq. 7.3) describes colloid delivery to the near-surface fluid, which 

under favorable conditions is practically equivalent to attachment.  Under unfavorable 

conditions, the fate of near surface colloids is less straightforward. While a fraction of 

near-surface (secondary minimum-associated) colloids may attach in response to local 

attraction emanating from heterogeneity, the complement may translate across the surface 

until they return to the bulk fluid.   

While eq. 7.3 is specifically for porous media, it is worthwhile mentioning that it is 

possible to link the observed deposition rates in impinging jet systems to mechanistically-

predicted collector efficiencies in pore scale models [Pazmino et al., 2014b].  In contrast, 

comparison of k between these systems requires relating the flow fields between them, 

and this likely requires incorporating discrete heterogeneity representations into Happel 

sphere in cell geometry.  

Additionally, the presence of secondary minima in unfavorable conditions may yield an 

indefinite residence time of colloids in the near-surface fluid domain. Secondary 

minimum interactions will influence the average velocity of the colloid population to an 

extent depending on η as well as the depth of the secondary minimum, since velocity in 

the near surface fluid is far lower than the average pore water velocity.  Furthermore, 

secondary minimum-associated colloids may be effectively retained in the control 
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volume (e.g., packed column in experiments) if elution does not occur prior to 

termination of the observation.  Currently there exists no relationship to quantitatively 

account for the influence of secondary minimum association on the concentration and 

timing of colloid elution.  Developing such a relationship will require identifying the 

frequency with which colloids transfer between the bulk and near surface fluid domains, 

as discussed below.    

7.4.2  Opportunities in the role of topology   

The fact that mechanistic simulations and upscaling provide good prediction at the 

continuum scale under favorable conditions suggests that mixing of near surface and bulk 

fluid must occur between subsequent collectors (grains) in the control volume [Johnson 

and Hilpert, 2013].  This is inferred on the basis that under favorable conditions in the 

absence of mixing, the near-surface fluid would become depleted of colloids, 

increasingly so with each subsequent collector, yielding decreasing k with increased 

transport distance [Johnson and Hilpert, 2013].  The log-linear profiles of retained 

colloids that are typically observed under favorable conditions indicate that k remains 

constant with transport distance.  Hence, mixing of near-surface and bulk fluid between 

subsequent collectors is reasonably inferred.  In contrast, absence of mixing between 

collectors under unfavorable conditions would yield increasing excess of colloids in the 

near-surface fluid (via secondary minimum attraction), increasingly so with each 

subsequent collector, such that k would increase with increased transport distance 

[Johnson and Hilpert, 2013].  Whereas k does vary with transport distance under 

unfavorable conditions (e.g., hyper-exponential and non-monotonic profiles of retained 

colloids), it does not strictly increase with transport distance.   

Nevertheless, the association of distance-varying k and extended tailing with unfavorable 

conditions suggests a relationship with colloid accumulation in the near surface under 

unfavorable conditions.  Johnson and Hilpert [2013] speculated that incomplete mixing of 

bulk and near-surface fluid between subsequent grains may at least partially drive the 

observed extended tailing (and non-log-linear retained profiles) under unfavorable 

conditions.  This, in addition to the above-described potential influence of discrete 
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heterogeneity on amplifying heterogeneity among the colloid population, provide potent 

mechanisms to potentially explain these critical phenomena observed under unfavorable 

conditions.   

Since colloid transfer from the bulk to the near-surface fluid occurs at forward flow 

stagnation points, and colloid transfer from the near-surface to the bulk fluid occurs 

largely at rear flow stagnation zones (less so for Brownian-dominated colloids) [Johnson 

and Hilpert, 2013], the degree of mixing between collectors is a topological issue that 

depends on the alignment of the local flow field with the grain-to-grain contacts [Johnson 

and Hilpert, 2013].  Whereas experimental evidence that topology (degree of alignment 

of flow field and grain-to-grain contacts) governs retention at the continuum scale has 

been provided [Johnson and Hilpert, 2013], the opportunity exists for many additional 

studies to explore experimentally and theoretically the relationship of observed profiles 

of retained colloids to topology (as governed by packing structure).  Such information 

can guide development of upscaling techniques for non-uniform media. 

An additional mechanism potentially driving extended tailing under unfavorable 

conditions is provided by recent pore-scale modeling studies that suggest the possibility 

of indefinite colloid retention under unfavorable conditions in low-flow/recirculation 

zones associated with grain-grain contacts (discussed in Section 4.1.1) [Cardenas, 2008; 

Li et al., 2010a; Li et al., 2010b; 2012; Torkzaban et al., 2008]. Temporary hydraulic 

retention of colloids in these regions could drive long-term tailing as colloids slowly exit 

the immobile zones via Brownian motion [Molnar et al., 2015]. More generally, solute 

transport demonstrates diffusive mass transfer between advective and non-advective 

zones [e.g. Berkowitz et al., 2006; Haggerty and Gorelick, 1995; Haggerty et al., 2000; 

Scheibe et al., 2013].  There is opportunity to distinguish the influence of near-surface 

residence from the influence of mass transfer between bulk advective versus non-

advective zones in colloid transport.  This is particularly true for nanoparticles, for which 

it is not yet demonstrated whether their diffusivity will allow them to enter bulk non-

advective domains and whether this entry would require skimming along the secondary 

minima (as required by micron-sized colloids) or direct diffusive mass transfer that could 

occur in both favorable and unfavorable conditions. 
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7.4.3  Opportunities in straining.  

Another critical aspect of non-uniformity of porous media is the expectation that a 

fraction of the pore throats will be too small for colloids to pass (i.e., straining) [Bradford 

et al., 2002; Bradford et al., 2003; Bradford et al., 2004; Bradford et al., 2006a; Bradford 

et al., 2006b; Bradford et al., 2013; Shen et al., 2008; Tufenkji et al., 2004]. The process 

of straining is not included in CFT because, while both filtration and straining lead to 

attachment, straining has no dependence on diffusion, sedimentation and limited 

dependence on colloid-surface interaction. Early work on straining [Herzig et al., 1970; 

McDowell-Boyer et al., 1986; Sakthivadivel, 1966; 1969] identified the ratio of mean 

particle:collector diameter 6&$/&'7 as the critical factor in determining straining.  These 

early works presented a range of critical &$/&' ratios required for straining, such as >5% 

[Sakthivadivel, 1966; 1969] and >18% [Matthess et al., 1985]. These large critical ratios 

suggest that only the largest (i.e., dp~10μm) colloids in fine textured soils would be 

strained. However, there has recently been a large volume of research published inferring 

(see Section 3 for a discussion on the limitations of inferred transport behaviour)  colloid 

straining as a significant removal mechanism for a wide range of colloid and collector 

sizes [Bradford et al., 2002; Bradford et al., 2003; Bradford et al., 2004; Bradford et al., 

2005; Bradford et al., 2006a; Bradford et al., 2006b; Bradford et al., 2013; Chowdhury et 

al., 2011; Du et al., 2013; Foppen et al., 2005; Gaillard et al., 2007; Porubcan and Xu, 

2011; Raychoudhury et al., 2014; Sagee et al., 2012; Shen et al., 2008; Tufenkji et al., 

2004; Xu et al., 2006a; Xu et al., 2008; Xu and Saiers, 2009]. These studies have inferred 

that &$/&' ratios can be much lower than originally reported (as low as 0.01% )[Bradford 

et al., 2002; Bradford et al., 2003; Bradford et al., 2004; Raychoudhury et al., 2014; Shen 

et al., 2008; Tosco and Sethi, 2010; Xu et al., 2008; Xu et al., 2006b]. In addition, a 

number of studies have suggested that straining is not strictly a function of pore throat 

and colloid size by suggesting that flow velocity [Bradford et al., 2006a; Du et al., 2013], 

input concentration[Bradford and Bettahar, 2006], ionic strength [Shen et al., 2008] and 

colloid shape [Xu et al., 2008] can influence straining behavior. However, many of these 

studies base their evidence for straining on a-priori assumptions that may not be correct 

(e.g. that acid washed sand possesses no macroscopic surface impurities ergo straining is 
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predominant)  [Johnson et al., 2011]. These a-priori assumptions have led to, for 

instance, a number of studies suggesting that even nano-sized colloids (with &$/&'  ratios 

orders of magnitude lower than suggested in the early literature) can be strained out of 

solution [Raychoudhury et al., 2014; Sagee et al., 2012; Tosco and Sethi, 2010].  

Many of the above investigators relate straining to wedging; however, wedging is a mode 

of filtration for larger colloids, whereas straining is entrapment in pore throats too small 

to pass. Wedging is a mode of attachment (filtration) that involves mass transfer from the 

bulk fluid to the near surface fluid and eventual contact with two surfaces simultaneously 

in order to create the adhesive resisting torque that is needed to arrest larger colloids 

which experience a large drag torque [Ma et al., 2011]. Thus wedged colloids can be 

much smaller than the pore throats through which they pass [Johnson et al., 2010], and 

wedging is subject to the same force/torque balance governing colloid attachment to the 

open surface [Johnson et al., 2007; Ma et al., 2011]. In contrast, straining is purely a 

matter of colloid size being larger than the pore throat, and as such does not concern the 

mass transfer of colloids from the bulk fluid to the near surface fluid domain.  Instead, 

straining is a process that cannot be investigated at the single pore scale, and instead 

requires investigation at the assemblage scale where pore throat size distribution can be 

determined and compared to colloid size distribution.   

While the models developed to incorporate straining at the continuum-scale can 

accurately reproduce colloid retention behavior when fit to experimental data [Bradford 

et al., 2003; Bradford et al., 2004; Flury and Qiu, 2008; Shen et al., 2008; Xu et al., 

2006a], they are subject to the same limitations of inferred mechanisms discussed in 

Section 3 and elsewhere in the literature [Johnson et al., 2011].  Developing mechanistic 

methods to predict colloid straining will require an understanding of the pore throat 

distributions and flow fields. Pore-scale visualization methods such as micro-models and 

x-ray computed tomography (XCT) are uniquely suited to this purpose.  



211 

 

 

7.4.4  Opportunities in imaging and x-ray computed 
microtomography 

Flow and transport within porous media are governed by the pore size distribution and 

the topology; i.e., the way in which pores of different sizes are connected [Vogel and 

Roth, 2001]. Thus, while micromodels, Happel spheres, cubic packings, etc. are useful 

for studying fundamental colloid transport processes and mechanisms, the idealized or 

simple pore structures do not represent environmental media. Over the past two decades 

or so, x-ray computed tomography (XCT) has become a relatively standard approach for 

extracting grain and pore scale features of unconsolidated porous media (see recent 

review by Wildenschild and Sheppard [2013]) due to its’ ability to ‘see inside’ of three-

dimensional opaque materials. XCT is a non-destructive, non-intrusive technique for 

acquiring 3D datasets where the fundamental unit, the volume element (voxel), has a 

value that represents the average x-ray absorption of the material within the voxel. This 

x-ray absorption value is a function of density, atomic number and the energy of incident 

x-rays. In this way, it is possible to differentiate between different materials. Therefore, 

the primary information is simply the voxel gray value (mass linear attenuation, which 

roughly corresponds to absorbance for SXCMT and CT# for conventional XCT).  The 

major advantage of microtomography over conventional 2D methods (e.g., thin sections, 

microscopy) is the level of quantitative information that can be derived from a full 3D 

property map.  

While the most common use of XCT in porous media characterization is the 

segmentation of the volume into solid and void space (which has come to mean the 

identification of discrete materials in an image; e.g., the binarization of an image into 

solid and void), XCT can be used to separate and identify more than two phases.  Figure 

7.3 (left) is a vertical cross-section from a raw XCT image dataset of a partially water-

drained column packed with two types of glass beads (75% of the beads (by mass) 

contained some lead; the other 25% did not have any lead). The presence of lead 

increases the x-ray absorption of the voxels within those glass beads and makes them 

distinguishable from the glass beads without lead (note: the voxels with lead show up 

brighter due to the higher absorption values) and from the water. Figure 7.3 (right) is the 
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identical cross-section after the phases have been segmented; i.e., each voxel has been 

uniquely identified as either glass bead with lead (white); glass bead without lead (light 

gray); water (dark gray); and air (black).  

 

Figure 7.3: Fractionally-wet unsaturated glass bead pack; (left) grayscale XCT cross-section; (right) 

segmented cross-section where the white represents glass beads containing some lead; light gray: 

glass beads without lead; dark gray: water; black: air. Imaged at 10.08 µm/voxel. Dimensions: 5.24 

mm (vertical) X 3.78 mm (horizontal) 

A significant amount of research has gone into quantifying the geometrical and 

topological properties from XCT datasets and relating those to flow and transport 

processes [Herring et al., 2015; Vogel and Roth, 2001] as well as extracting physically-

representative pore network structures, i.e, a direct mapping of the pore bodies, throats 

and connectivity [Bhattad et al., 2011; Lindquist et al., 1996]. Two specific items to note 

here: (1) the topological properties of the pore space will have a strong influence on the 

flow and transport, thus impacting the spatial distribution of colloids as well as their 

trajectories towards and around collector surfaces; and (2) the direct mapping of the pore 

structure (e.g., pore body and throat sizes as well as connectivity) provides quantitative 
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data that can be used to determine whether or not certain colloid transport mechanisms 

(e.g., straining, discussed in Appendix 7.4.3) might be relevant.  

There has been some pore-scale visualization work on straining in both saturated and 

unsaturated conditions [Auset and Keller, 2006; Bradford et al., 2006a; Crist et al., 2004; 

Gaillard et al., 2007; Han et al., 2006]. However, straining studies have yet to fully 

incorporate the rich, quantitative data that can be extracted from these methods such as 

coupling real pore throat distributions with FEM/LBM modeling of the flow field 

(discussed in Appendix 7.4.3). The type of quantitative data relevant to straining that can 

be obtained from XCT can be demonstrated using one of the datasets found in Molnar et 

al. [2015].  In a domain of 3.4×3.4×4.4 mm3 imaged at a resolution of 9.87 μm/voxel, the 

methods described in Thompson et al. [2006] and Bhattad et al. [2011] were used to 

determine that there were 616 sand grains and the pore network structure consisted of 

3,422 unique pore bodies and 17,160 pore throats. The average size (and range) of pore 

bodies and throats were 62.4 (10.5 – 203) μm and 40.6 (9.87 – 156) μm, respectively. 

The sizes listed here are the pore and throat inscribed radii, which are defined as the 

radius of the largest spheres (pores) and circles (throats) that can be drawn within the 

identified geometries.  In addition, the average pore coordination number was 5.1 with a 

range of 1 – 33 pore connections per pore.  

The richness of the XCT datasets and the ability to resolve the pore space, combined with 

increases in computing power allows for the direct flow modeling at the pore scale in 

XCT-obtained domains of real pore networks using FEM (Finite Element Modeling), 

LBM, etc. In particular, the unstructured nature of the FEM allows one to capture the 

discontinuous and complex nature of the solid/void interface, highly relevant for 

capturing the near-surface flow field (within nm if necessary), low flow/recirculating 

regions and stagnation points. While these simulation approaches are now at the point 

where detailed hydrodynamics and bulk flow properties (e.g., permeability) are 

representative, there are still challenges to obtaining representative bulk transport 

properties (e.g. breakthrough curves) due to the complex, time-scale dependent nature of 

the transport processes (e.g., diffusion (Brownian motion), surface-particle interactions, 

and gravity) and the number of particles that need to be simulated (thousands if not tens 
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or hundreds of thousands). Nevertheless, the increasing sophistication of pore-level 

hydrodynamic modeling is providing critical insights into colloid transport through and 

around complex structures [Li et al., 2010a; Li et al., 2010b; 2012].   

XCT has been successfully used to examine some pore-scale colloid transport details, in 

particular the spatial location of retained colloids. Gaillard et al. [2007] and Chen et al. 

[2008] demonstrated the ability to identify the distribution of micrometer-sized colloids 

(of high x-ray attenuation) in a sandstone and Iltis et al. [2011] mapped the distribution of 

biofilm in porous media using silver microspheres. Both of these studies utilized micron-

sized colloids and, due to their material properties, had high x-ray attenuation coefficients 

enabling relatively straightforward identification within the systems. Molnar et al. [2014] 

developed a method that used absorption-edge XCT to extract silver nanoparticle 

concentrations within individual pores in static and quasi-dynamic (i.e., transport) 

systems. This approach was then used to assess how relatively immobile (e.g. low 

velocity) pore space regions near grain-grain contacts could yield deviations between 

experimentally observed and CFT-predicted retention rates [Molnar et al., 2015]. While 

the large amount of spatial data of μm-scale nAg concentrations provides powerful 

statistical measures of the nAg distributions within the pore space, limitations due to X-

ray diffraction across the grain/void interface prevents concentration measurements close 

to grain surfaces (termed ‘shadow zone’ in Molnar et al. [2014] which, in the system 

studied, was ~18 microns).  The development and application of techniques for 

eliminating this shadow zone will allow for better estimates of near-surface 

concentrations and gradients and potentially of the impact of surface heterogeneities.  

XCT has also been applied to extract granular properties such as particle size, shape and 

angularity as well as geomechanically-relevant structural properties such as grain-grain 

contacts (see review by Moreno-Atanasio et al. [2010]). As mentioned above, the ability 

to separate the system into void and solid phases allows for detailed hydrodynamic 

simulations that can be used to better understand the particle trajectories and proximity to 

the collector surface, locations of straining and wedging.  
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However, several factors currently limit the use of XCT for fundamental colloid transport 

studies including: the spatial resolution, sample sizes below that necessary to obtain 

representative properties, and image contrast. The true spatial resolution of a CT 

instrument also depends on the sharpness of the imagery [Ketcham and Carlson, 2001; 

Wildenschild et al., 2002]. The spatial resolution of most XCT systems limits the ability 

to capture small structural/surface features (or heterogeneities) that can influence colloid-

surface interactions and retention. While increases in the spatial resolution are possible 

through the use of higher-resolution XCT systems or other imaging techniques (e.g., 

SEM, thin sections), the quantitative details extracted may not be representative of the 

bulk sample and, if not collected directly with (or concurrently with) the XCT data, need 

to be mapped back to the image data [e.g. Golab et al., 2012]. Quantitative delineation of 

the mineral phases, which strongly influence the spatial distribution of 

favorable/unfavorable attachment sites depends on the X-ray attenuation properties of the 

minerals (as well as the spatial resolution). Fluid phase separation using doping agents is 

a common approach [e.g. Al-Raoush and Willson, 2005; Porter and Wildenschild, 2010; 

Porter et al., 2010; Prodanović et al., 2007; Schnaar and Brusseau, 2005]; however, 

much less work has been done on the spatial distribution of mineralogy. See the recent 

review paper by Kyle and Ketcham [2015] that discusses the approaches and limitations 

to mineral identification and quantification (while they focus primarily on ores, this is a 

very good overview). An interesting but intensive approach that uses the 2D-3D 

registration of SEM and XCT was developed by a group at the Australian National 

University [Golab et al., 2012; Sheppard et al., 2014]. In addition to providing additional 

sub-micron level structural details, this technique allows for the coupling of mineralogy 

(from the SEM) with the XCT data.  

A major limitation of an XCT-based imaging approach is the inability to identify 

coatings/films on solid surfaces that are thinner than several microns and/or have x-ray 

absorption values that are similar to the grain.  This may limit or prevent direct mapping 

of transport-relevant heterogeneities onto the grain surface, resulting in the need for 

indirect “mapping” of chemical heterogeneities.  
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While XCT is allowing for more detailed pore- and grain-level characterization and the 

increases in computing power are pushing the simulation details to higher levels, there 

are still a number challenges/opportunities that can have a major impact on our 

understanding of colloid transport such as developing robust techniques to, directly or 

indirectly, extract and map sub-micron heterogeneities. In addition, improvements in the 

spatial resolution are needed to ensure that the pore structure/topology and mineralogy 

distribution is representatively captured in complex, environmental media. These 

features, when combined with improved techniques in quantitatively mapping colloid 

concentrations and in the modeling of complex pore-level hydrodynamics and colloid 

transport mechanisms (such as mineral specific surface-particle forces), will greatly 

improve our understanding of colloid transport in natural systems.  
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8 Appendix B: Supplementary Material for “A Method for 
Obtaining Silver Nanoparticle Concentrations Within a 
Porous Medium via Synchrotron X-Ray Computed 
Microtomography” 

8.1 Determination of the nanoparticle synthesis yield  

A 30mL 0.1M AgNO3 solution was mixed with a 30mL 1.5% solution of sodium 

carboxymethylcellulose 90k and titrated with nitric acid to dissolve any Ag/CMC90k 

complexes. This solution was then stirred continuously while 30mL of a 0.4M 

NaBH4/1.5% CMC90k solution was added dropwise to reduce the Ag+
aq to silver 

nanoparticles. A jet black solution formed immediately, indicating that high 

concentrations of silver nanoparticles had been created. The formation of silver 

nanoparticles was confirmed by testing for the absorption peak typical of silver 

nanoparticles (~400nm) in a UV/Vis Spectrophotometer. Because of the high 

concentrations of nanoparticles, a small amount of the solution had to be diluted by 

approximately an order of magnitude to get a reading from the UV/Vis 

Spectrophotometer. Even after dilution, the synthesized solution was found to have a 

strong absorption peak at 400nm (see Figure 8.1, Initial Solution), confirming that silver 

nanoparticles had been formed during the addition of NaBH4.  

The undiluted solution was then passed through an Amicon 8400 ultrafiltration unit 

(Millipore) with a cellulose filter (reported as 1 kDa, Millipore). Prior to use, the 

ultrafiltration unit was thoroughly cleaned with nitric acid and rinsed with deionized 

water. Nitrogen gas was used to pressurize the ultrafiltration cell and pressure was 

maintained between 35-60 psi throughout the filtration process. The filtrate was collected 

in a dark bottle to prevent photoreduction of silver onto the bottle walls. The filtrate was 

also tested for the presence of the nanosilver plasmon peak via a UV/Vis 

Spectrophotometer and was found to have no peak in the range of 300-450nm (see Figure 

8.1, Filtrate), indicating that all nanoparticles had been retained by the 1 kDa filter.  
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Figure 8.1: UV/Vis Specrophotometer analysis for the silver nanoparticle solution before and after 

passing through a 1 kDa cellulose filter. The lack of a plasmon peak at 390nm for the filtrate 

indicates that all silver nanoparticles were removed by the filter. 

Both the filtrate and initial solution were then tested for total silver via ICP-OES, after 

first dissolving each in HNO3. The results of this test confirmed our initial assumption, 

that the majority of silver had been reduced. 

The concentration of silver in the initial solution was 2.2 g/L (+/- 0.0075). The 

concentration of silver in the collected filtrate was 0.052g/L (+/- 0.00039).  This test 

confirms that 98% of AgNO3 had been converted to nanosilver and retained by the 1 kDa 

filter.  

A follow up experiment was conducted to quantify the amount of Ag+ retained by the 

1kDa filter. A 0.1M AgNO3 standard was diluted to 3.6 g/L (our target nanoparticle 

concentration) with a 1.5% CMC90k solution. This solution was passed through the 

Amicon 8400 ultrafiltration unit with a 1 kDa cellulose filter. The filtrate and initial 

solutions were tested for total silver in a manner similar to the previous experiment. The 

initial concentration of silver was 3.6 g/L (+/- 0.016). The concentration of silver in the 
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filtrate was 3.4 g/L (+/- 0.019). This indicates that 6.4% (+/- 0.94) of Ag+ had been 

retained by the 1 kDa cellulose filter.  

 

8.2 Derivation of Equation 3.1 

Beer’s law is typically written as [Skoog et al., 2007]: 

 
 ?  3Aa5� � w
wæ� ? ∝ A;   8.1 

where A is the voxel linear attenuation, è¥ and è are the intensity of the incident and 

transmitted radiation respectively, ∝ is the mass attenuation coefficient of the sample, A is 

the length of the voxel (ie. image resolution) and c is the concentration of the absorbing 

compound within the voxel. If the voxel contains n absorbing compounds, eq. 8.1 may be 

rewritten as: 

 
�D�$=� ? AB6∝ ;7� � 6∝ ;7
� . .  6∝ ;7¦F  8.2 

However, it is possible to isolate Ag within SXCMT datasets by exploiting the element's 

mass attenuation K-edge which is unique to each element. Imaging just above and below 

Ag's K-edge yields a series of datasets for which differences in mass attenuation 

coefficients can be mostly ascribed to Ag's changing mass attenuation coefficient. More 

specifically, by subtracting a below-Ag-edge voxel from its corresponding above-Ag-

edge voxel, the concentration of Ag in that voxel can be isolated. Assuming water and Ag 

are the only major x-ray attenuating compounds within the pore space, the above-

edge/below-edge subtraction takes on the following form: 

 ∆
 = A �,6∝D−∝E7;0�<=>�� + ,6∝D−∝E720GDH��� 8.3 

Subscripts a and b in eq. 8.3 denote the above-edge and below-edge mass attenuation 

coefficients taken from the NIST database [M.J. Berger et al., 2010]. Equation 8.3 can be 

rearranged to solve for Csilver where ρwater is assumed to be the density of water at room 

temperature: 
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;�<=>�� =
∆
A − B6∝D−∝E72FGDH��

6∝D−∝E7�<=>��   
8.4 

It was determined that Sodium Carboxymethylcellulose 90k could be excluded from the 

derivation of eq. 8.4 due to its relatively low concentration (1%) and small difference 

between the above-edge and below-edge mass attenuation coefficients. The exclusion of 

CMC90k from eq. 8.4 changes the SXCMT-determined silver concentration by less than 

0.05% and was thus excluded.  

If imaging at 2 energies (ie. 25.614 keV and 25.414 keV) then eq. 8.4 can be applied to 

every voxel in the pore-network. However, based upon previous studies employing 

SXCMT for elemental quantification [Barnett et al., 2010; Ham et al., 2004] it was 

hypothesized that a higher quality concentration map could be obtained by over-

determining the silver concentration at each voxel. Over-determination was completed by 

1) collecting multiple above-below edge energy pairs (25.9-25.4 keV, 25.8-25.4 keV, 

25.6-25.4 keV), 2) applying eq. 8.4 to each of the energy pairs and 3) averaging the 

resultant concentration maps. The 25.9-25.4 keV energy pair had a minimal impact on the 

quality of the averaged L-O concentration map and was excluded from L-PM imaging. 

The final imaging procedure used the other 2 energy pairs.  The improvements associated 

with using 2 energy pairs as opposed to 1 are discussed further in the Accuracy section. 
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8.3 Number of nanoparticles per voxel calculation 

ñ>¥p�=ò1147.73 /~�
\aIoA 

T�� ? 3.6 5
ó = 0.0036 5

;~� 

2�� = 10.49 5
;~� 

ñ��;~� = 0.0036 5;~�
10.49 5;~�

= 0.000343 ;~�
5
;~�  

1;~� = 10�
/~� 

1 ;~� = 10�
 μm�

1147.73 μm�
voxel

? 8.7 X 10� voxels 

ñ��\aIoA = 0.000343 cm�of Ag
8.7 X 10�  voxelscm�

= 3.94 X 10��� cm�Ag
voxel  

ø#bb��\aIoA = 3.94 X 10��� cm�Ag
voxel  X 10.49 g Ag

cm� = 4.13 X 10��
 g Ag
voxel 

Therefore in every voxel in the 3.6 g/L L-PM dataset there are approximately 4.13x10-12 

g of silver. 

Assuming nanoparticle are spherical with a diameter of 27.5 nm: 

ñ¦D¦¥$D�H<'=� = 4
3 π M27.5

2 Q� = 10889P~� = 1.09 X 10���;~� 

# nanoparticles
voxel = 3.94 X 10��� cm�Agvoxel

1.09 X 10��� cm�Agnanoparticle
= 3.6 X 10! nanoparticles 
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Therefore each voxel in the 3.6g/L L-PM dataset has approximately 3.6 x104 

nanoparticles. Repeating these calculations for the 1.2 and 2.2 g/L L-PM datasets yield 

approximately 1.2x104 and 2.2x104 nanoparticles per voxel.  

 

Figure 8.2 A photo of a glass bead/silver nanoparticle column in the imaging hutch at the GSECARS 

13-BM-D beamline at the Advanced Photon Source, Argonne National Lab.  
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Table 8.1: Overview of segmentation and pore-network consistency between images 

L-PM/IL-PM 
Sample 

# 
grains 

Average grain 
inscribed radius 

(μm) 
Porosity (%) 

# 
pores 

Average pore 
inscribed 

radius (μm) 

Standard 
deviation of 

pore inscribed 
radii (μm) 

0 g/L 1111 165.6 38.2  4878 69.5  29.1 

1.2 g/L 1095 167.7 38.3  4628 70.8  29.0 

2.3 g/L 1084 170.2 38.2  4677 69.9 28.5 

3.6 g/L 1138 164.1 38.6  4812 68.8 31.1 

2 PV 1128 164.0  38.2 4864 68.8 29.7 

4 PV 1116 165.0  38.2 4799 68.8  29.6 

6 PV 1133 163.7 38.0  4873 68.4  29.5 

8 PV 1141 163.0  38.0  4933 68.  29.5 

10 PV 1114 165.5 38.0  4777 69.0  29.2 

12 PV 1124 164.9 37.9 4864 68.5  29.5 

16 PV 1119 165.2 38.1  4845 68.8 30.3 

18 PV 1118 165.3 38.1  4837 68.9  30.0 
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Figure 8.3: The standard deviation of SXCMT-determined [nAg] as a function of height for both L-O 

and L-PM columns with known concentrations of silver nanoparticles. Each data point represents 

the standard deviation for 1 horizontal slice. Low photon counts at the top and bottom of the 

collected images causes an increase in noise. The silver concentrations were calculated from images 
captured at 25.414, 25.614 and 25.814 keV. 
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Figure 8.4: SXCMT-determined [nAg] as a function of height for both L-O and L-PM columns with 

known concentrations of silver nanoparticles.  The size of the 95% confidence interval is smaller than 

the data point icons and has thus been excluded.  The horizontal black bars indicate the top 

boundaries of the subvolume used in the uncertainty calculations. 
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Figure 8.5a: SXCMT-determined [nAg] vs. number of water voxels averaged for three-dimensional 

subvolumes.  Each circle represents a subvolume average with no subvolumes greater than a single 

pore.  The black lines represent the 99% confidence interval using the back-calculated úû values.  
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Figure 8.5b: SXCMT-determined [nAg] vs. number of water voxels for a random distribution of 

water voxels within the 3.6g/L L-PM image. All voxels with a distance of < 15.70 μm to the nearest 

grain surface were not included in the average. Each circle represents a random sample of size 30-

1,000,000 voxels within the subvolume. The error bars represent the 99% confidence interval using a 

back-calculated σp.  
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Figure 8.6: The size of the 99% confidence intervals depicted in Figures 8.5a and 8.5b using the back-

calculated σp values. 
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9 Appendix C: Supplementary Material for “The impact of 
immobile zones on the transport and retention of 
nanoparticles in porous media” 

9.1 nAg/Iron Oxide interactions and batch experimental 
details 

Care was taken to ensure that no Ag mass was lost during ICP analysis, the effluent 

sample vials were thoroughly rinsed with 68-70% HNO3 to ensure that no mass was lost 

to the glassware and the solutions were never diluted below 2% HNO3. These precautions 

were deemed appropriate as they lead to excellent Ag mass recovery (Ag in effluent + Ag 

in sand ÷ Ag injected) for the two quartz experiments (100%) and excellent volume 

recovery for all three experiments (volume of effluent samples ÷ total injected volume). 

However, in the iron oxide experiment only 86.3% of the Ag mass was recovered. The 

13.7% Ag residual (residual = 100% - recovered percentage) in the iron oxide experiment 

is hypothesized to have been retained in the iron oxide sand but was non-digestible by 

concentrated nitric acid.  

One possible cause of the 13.7% residual remaining on the iron oxide sand is that trace 

amounts of Cl- from the iron oxide coating treatment (using FeCl3) could have formed 

silver chloride, a compound insoluble in nitric acid [Jones et al., 1984] despite 

thoroughly rinsing the sand after coating. Another possible explanation is that nitric acid 

digestion may not dissolve Ag from some mineral structures [Jones et al., 1984] so a 

reaction between the nAg and the iron oxide coating (predominantly hematite and 

goethite [Molnar et al., 2011]) could yield an non-digestable compound. Currently there 

is very little literature on chemical interactions between nAg and iron oxide surfaces. The 

few transport studies that have examined transport of nAg through iron oxide-containing 

media [El Badawy et al., 2013; Lin et al., 2011; Neukum et al., 2014] did not digest their 

sands in nitric acid or report directly measure retained nAg.  Reinforcing the hypothesis 

that the iron oxide’s 13.7% non-digestible Ag is retained in the sand is a study that 

examined the aging of nAg in natural soils [Coutris et al., 2012] and noted unrecoverable 
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residuals on the soils of up to 86% for un-coated nAg and approximately 10% for citrate-

coated nAg.  

A simplified batch experiment conducted in triplicate confirmed that poor mass recovery 

was not due to experimental error. The batch experiments were conducted under 

conditions similar to the SXCMT experimental conditions, freshly synthesized silver 

nanoparticles were mixed with iron oxide for the period of time equal to the SXCMT 

experimental nAg injection time. The nAg solution was drained and replaced with a 

CMC90k solution, controlled to an ionic strength of 0.12M with NaNO3.This solution 

was mixed for a period of time equivalent to 1 PV injection and 1 SXCMT image. The 

sand was drained again and replaced with a volume of CMC90k solution equivalent to 

the total volume of CMC90k solution used during the elution phase of the SXCMT 

experiments. This mixture was left to sit for a period of time equal to the total imaging + 

flushing time during the SXCMT experimental elution phase. Following this, the sand 

was drained again and each drained sample was digested in 68-70% nitric acid and 

analyzed in a manner similar to that described in the ICP-determination section. The iron 

oxide sand was also digested in 68-70% nitric acid and analyzed in a similar manner.  

Silver mass recovery from each of the batch experiments was consistently 93% 

suggesting that there is some interaction between the iron oxide surface and nAg particle 

rendering the nAg non-digestable in 68-70% HNO3. Given the consistency of these 

results, the reported concentration of deposited nAg on the iron oxide sand reported in 

this thesis is the ICP-determined concentration from the acid-digestion solution + the 

residual. 
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Figure 9.1: A TEM image of a silver nanoparticle solution synthesized using the described synthesis 

method.   
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Figure 9.2: Schematic of the experimental set-up employed for each column.   
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Figure 9.3: Tracer test C/Co breakthrough curves a log-log scale to emphasize extended tailing in the 

samples. The grey box represents the nAg injection period and the white background represents the 

elution. The vertical dotted line indicates when the advective front reached the top of the column. 

The experiment number (e.g., Uniform Quartz 1, 2 etc..) is used to denote the repeated experiments 

performed for each sand type.   
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Figure 9.4: Standard DLVO interaction energy profiles for iron oxide sand (dashed red line) and 

quartz (solid black line) interacting with silver nanoparticles. 
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9.2 Overview of the dataset analysis procedure: 

1. The below K-edge subvolume (25.414 keV) was subtracted from the 3 above 

K-edge subvolumes (25.614,25.714 and 25.814 keV) to create 3 difference 

images.  

2. A modified form of Beer’s Law was applied to each of the 3 difference images 

to convert the voxel values of x-ray linear mass attenuation to calculated silver 

nanoparticle concentration. The modified Beer’s law [see Molnar et al. 2014, 

Equation 1] assumes that water and silver are the only x-ray absorbing 

compounds in solution so the voxel value of x-ray linear mass attenuation is 

linearly correlated to experimental silver nanoparticle concentration. However 

the ratio of silver nanoparticle concentration calculated from the modified 

Beer’s law to the experimental concentration is not 1:1 so the term ‘SXCMT-

determined [nAg]’ is employed throughout this paper to differentiate between 

SXCMT-determined and experimentally-determined [nAg].  

3. The 3 SXCMT-determined [nAg] datasets were averaged together. All pore-

space voxels <17.3μm away from a grain surface were discarded due to a 

‘shadow zone’ effect caused by x-ray refraction at grain/pore interfaces.  All 

voxels 17 - 25μm away from a grain surface considered only SXCMT-

determined [nAg] from the 25.614 keV energy dataset due to observations that 

the size of the ‘shadow zone’ was energy dependent. All voxels > 25μm away 

from the grain surface considered all 3 above K-edge datasets.  

4. A calibration curve from the Molnar et al [2014] L-PM datasets (‘improved’ L-

PM calibration curve) was applied to correct the raw SXCMT-determined 

[nAg] voxel values. All SXCMT-determined [nAg] values reported in the 

results and discussion section are the calibrated values obtained in this step 
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10 Appendix D: Supplementary Material for “The impact of 
pore geometry and fluid velocity on the transport of 
nanoparticles in porous media”  

10.1 Overview of the algorithm for finding the closest grain 
surface  

1. A unique positive identifier was assigned to each grain within the SXCMT sub-

volume. Every voxel within a single grain possessed the same unique identifier. 

2. Every voxel within the pore space of the SXCMT sub-volume was assigned an 

identifier value of -1.  

3. The algorithm, written and executed in Matlab, then started moving through the 

pore space voxels on a voxel-by-voxel basis (i.e. the closest and second closest 

grain surfaces were found for the first voxel, then the algorithm moved on to the 

second voxel etc…). It took approximately 3 hours to complete the full analysis 

on 1 dataset measuring 350×350×450 voxels in size. 

4. To find the closest grain surface to the pore space voxel of interest (VOI), the 

algorithm first searched all adjacent voxels that shared either a face, corner or 

edge with the VOI (i.e., it searched within a box surrounding the VOI). Each 

adjacent voxel was checked to see if it possessed a negative (pore space) or 

positive (grain) identifier. It was assumed that the closest voxel with a positive 

identifier existed on the surface of a grain. 

5. If no positive identifier was found, the search box expanded by 1 voxel in every 

direction. This process was repeated with progressively larger search boxes 

until a positive identifier was discovered.  

6. Once a voxel with a positive identifier was discovered, the distance between 

that voxel’s centroid and the VOI’s centroid was measured via the Pythagorean 

theorem. By measuring the distance between voxel centroids adjacent voxels 

which share a face will have a distance equal to the resolution of the voxel. If 

multiple voxels with positive identifiers were discovered, all distances were 

measured and the shortest distance was chosen.  
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7. Once a voxel with a positive identifier was discovered, the search box expanded 

once more and all voxels within the box were checked to ensure that no voxel 

with a positive identifier was closer than the previously identified closest voxel. 

This final search box expansion was because a corner voxel in a smaller box 

might be further away from the VOI than the face voxel of a larger box.  

8. To find the distance to the second closest grain surface, steps 4 to 6 were 

repeated until a voxel with a different positive identifier was discovered.  

9. Once the closest and second closest grain surfaces were discovered for the VOI, 

the algorithm moved on to the next pore space voxel and repeated the same 

procedure.   

 

 

Figure 10.1:  The estimated nAg mass flux rate (nAg mass flow per unit area) as a function of 

distance from the nearest grain surface for each imaged time-step\SXCMT-PV. The gray box 

represents the thickness r of the Happel Sphere-in-Cell fluid envelope. To avoid cluttering the figure, 

‘PV’ is used instead of ‘SXCMT-PV’s’.
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