
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-14-2015 12:00 AM

Security Protocol Suite for Preventing Cloud-based Denial-of-Security Protocol Suite for Preventing Cloud-based Denial-of-

Service Attacks Service Attacks

Marwan M. Darwish
The University of Western Ontario

Supervisor

Dr. Abdelkader Ouda

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Marwan M. Darwish 2015

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Darwish, Marwan M., "Security Protocol Suite for Preventing Cloud-based Denial-of-Service Attacks"
(2015). Electronic Thesis and Dissertation Repository. 3392.
https://ir.lib.uwo.ca/etd/3392

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3392&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.lib.uwo.ca%2Fetd%2F3392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3392?utm_source=ir.lib.uwo.ca%2Fetd%2F3392&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

SECURITY PROTOCOL SUITE FOR PREVENTING CLOUD-BASED DENIAL-OF-
SERVICE ATTACKS

(Thesis format: Monograph)

by

Marwan Darwish

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Marwan Darwish 2015

ii

Abstract

Cloud systems, also known as cloud services, are among the primary solutions of the

information technology domain. Cloud services are accessed through an identity authentication

process. These authentication processes have become increasingly vulnerable to adversaries

who may perform denial-of-service (DoS) attacks to make cloud services inaccessible. Several

strong authentication protocols have been employed to protect conventional network systems.

Nevertheless, they can cause a DoS threat when implemented in the cloud-computing system.

This is because the comprehensive verification process may exhaust the cloud resources and

shut down cloud’s services. This thesis proposes a novel cloud-based secure authentication

(CSA) protocol suite that provides a smart authentication approach not only for verifying the

users’ identities but also for building a strong line of defense against the DoS attacks. CSA

protocol suite offers two modules, CSAM-1 and CSAM-2. The decision of which module of

CSA to be utilized depends on the deployment nature of the cloud computing.

CSAM-1 is designed to prevent external risks of DoS attacks in private and community cloud

computing. CSAM-1 utilizes multiple techniques that include the client puzzle problem and

utilization of unique encrypted text (UET). Therefore, these techniques can distinguish

between a legitimate user’s request and an attacker’s attempt.

CSAM-2 is designed to prevent internal risks of DoS attacks in public and hybrid cloud

computing. CSAM-2 combines an extended unique encrypted text (EUET) application, client

puzzle problem, and deadlock avoidance algorithm to prevent DoS risks that occur from inside

cloud computing systems. The authentication process in both modules is designed so that the

cloud-based servers become footprint-free and fully able to detect the signs of DoS attacks.

The reliability and scalability of these two modules have been measured through a number of

experiments using the GreenCloud simulation tool. The experiments’ results have shown that

the CSA protocol suite is practically applicable as a lightweight authentication protocol. These

experiments have verified the ability of the CSA to protect the cloud-based system against DoS

attacks with an acceptable mean time to failure while still having the spare capacity to handle

a large number of user requests.

iii

Keywords

Cloud Computing, Denial-of-Service (DoS) Attack, Network Security, Authentication

Protocol.

iv

Acknowledgments

First of all, I thank God for giving me the ability to achieve my goals. I would like to thank my

lovely parents and my lovely family (my wife and my two daughters) for their support and

encouragement in my life.

I would like to thank my supervisor Prof. Abdelkader Ouda for his guidance and advice during

my Ph.D. program. His academic expertise helped me to improve my research skills. His

support and motivation gave me the confidence and the strength to accomplish my goals.

I acknowledge my former supervisor Prof. Luiz Capretz for his guidance and advice during

my Ph.D. program.

I would like to thank Dr. Arif Raza for his valuable comments and suggestions on my final

version of the thesis.

I acknowledge King Abdulaziz University and the Cultural Bureau of Saudi Arabia in Canada

for their financial support and for their advising during my Ph.D. studies.

v

Table of Contents

Abstract ... ii

Acknowledgments.. iv

Table of Contents .. v

List of Tables ... viii

List of Figures .. ix

List of Appendices .. xii

List of Abbreviations ... xiii

Chapter 1 ... 1

1 Introduction .. 1

1.1 Research Motivation ... 1

1.2 Research Objectives .. 4

1.3 Research Methodology ... 5

1.3.1 Defender Protocol Suite Design .. 5

1.3.2 Security and Performance Validation ... 6

1.4 Main Thesis Contributions .. 7

1.5 Thesis Structure .. 8

Chapter 2 ... 9

2 Background and Literature Review ... 9

2.1 Cloud Computing .. 9

2.2 Denial-of-Service Attacks ... 10

2.3 Literature Review.. 16

2.3.1 DoS Defense Techniques .. 16

2.3.2 Cloud Computing Authentication and Authorization Protocols 20

vi

2.3.3 Authentication Protocol Validation .. 27

2.3.4 Review Summary .. 28

Chapter 3 ... 30

3 Cloud-Based Secure Authentication Module 1 (CSAM-1) Protocol for Private and

Community Cloud Computing ... 30

3.1 Registration Protocol .. 32

3.2 Identification and Authentication Protocol ... 34

3.3 Discussion ... 38

Chapter 4 ... 40

4 Cloud-Based Secure Authentication Module 2 (CSAM-2) Protocol for Public and

Hybrid Cloud Computing ... 40

4.1 Registration Protocol .. 42

4.2 Identification and Authentication Protocol ... 44

4.3 Service Management and Allocation Protocol ... 46

4.4 Host Session and Authentication Protocol .. 50

4.5 Discussion ... 51

Chapter 5 ... 53

5 Security and Performance Validation .. 53

5.1 Security Validation ... 53

5.1.1 Security Validation of the CSA Protocol Suite via a Cost-Based Model

Approach ... 53

5.1.2 Security Validation and Formal Verification of the CSA Protocol Suite via

SVO Logic .. 56

5.2 Performance Validation .. 64

5.2.1 Knapsack Puzzle Performance Validation .. 65

5.2.2 Performance Evaluation of the Google OAuth 2.0 Protocol

Implementation ... 67

5.2.3 Performance Validation of the CSA Protocol Suite 70

vii

Chapter 6 ... 80

6 Conclusions and Future Work .. 80

6.1 Summary of Contributions .. 80

6.2 Future Work .. 83

References ... 84

Appendices .. 89

Curriculum Vitae .. 92

viii

List of Tables

Table 2.1: Types of DoS attacks on cloud systems .. 18

Table 2.2: Literature review summary .. 29

Table 3.1: Notations of the CSAM-1 protocol .. 31

Table 4.1: Notations of the CSAM-2 protocol .. 41

Table 5.1: Validation of the CSA protocol suite via a cost-based model approach 55

Table 5.2: Notations of the SVO ... 57

Table 5.3: Task parameters obtained from the Linux benchmark experiment 71

Table A.1. VM load with different processes ... 89

Table A.2. VM memory load with different processes ... 90

Table A.3. VM storage load with different processes .. 91

ix

List of Figures

Figure 2.1: Architecture of cloud computing service models ... 9

Figure 2.2: IP spoofing attack ... 12

Figure 2.3: (a) Normal three-way handshake; (b) SYN flooding attack 13

Figure 2.4: Smurf attack ... 14

Figure 2.5: Ping of death attack .. 15

Figure 2.6: Land attack ... 16

Figure 2.7: External and internal cloud-based DoS attacks .. 17

Figure 2.8: Mutual authentication protocol .. 20

Figure 2.9: Example of social authentication icons (Darwell, 2013) 22

Figure 2.10: Overview of the OAuth 2.0 protocol .. 23

Figure 2.11: Authorization process of Google's OAuth 2.0 for web server applications 25

Figure 3.1: CSAM-1 protocols ... 32

Figure 3.2: Registration protocol in CSAM-1 .. 32

Figure 3.3: UET structure in CSAM-1 ... 33

Figure 3.4: Cloud_user (lookup) database table structure .. 33

Figure 3.5: Adaptive-based identification and authentication protocol in CSAM-1 36

Figure 4.1: CSAM-2 protocols ... 40

Figure 4.2: User registration protocol in CSAM-2 ... 43

Figure 4.3: (a) EUET structure in CSAM-2 with no service assigned to cloud_user; (b) EUET

structure in CSAM-2 with at least one service assigned to cloud_user 43

x

Figure 4.4: Adaptive-based identification and authentication protocol in CSAM-2 45

Figure 4.5: Service allocation protocol in CSAM-2 ... 47

Figure 4.6: (a) Service request algorithm for the user; (b) safety algorithm 48

Figure 4.7: ACL structure ... 49

Figure 4.8: Service host lightweight authentication protocol in CSAM-2 50

Figure 5.1: Authentication processes of CSAM-1 and CSAM-2 ... 60

Figure 5.2: Additional authentication processes of CSAM-2 ... 62

Figure 5.3: Response times of the requester (in seconds) with various numbers of

combination items ... 66

Figure 5.4: VM load with multiple requests per second ... 68

Figure 5.5: VM memory load with multiple requests per second ... 69

Figure 5.6: VM storage load with multiple requests per second .. 69

Figure 5.7: AES encryption VM load ... 72

Figure 5.8: AES encryption VM memory load ... 72

Figure 5.9: AES encryption VM storage load .. 73

Figure 5.10: AES decryption VM load ... 73

Figure 5.11: AES decryption VM memory load ... 74

Figure 5.12: AES decryption VM storage load .. 74

Figure 5.13: SHA-512 hashing VM load .. 75

Figure 5.14: SHA-512 hashing VM memory load.. 75

Figure 5.15: SHA-512 hashing VM storage load ... 76

xi

Figure 5.16: Generating random number VM load .. 76

Figure 5.17: Generating random number VM memory load .. 77

Figure 5.18: Generating random number VM storage load .. 77

Figure 5.19: Comparison of VM load (the same graph is represented in tabular form in

appendix A – Table A.1) ... 78

Figure 5.20: Comparison of VM memory load (the same graph is represented in tabular form

in appendix A – Table A.2) ... 78

Figure 5.21: Comparison of VM storage load (the same graph is represented in tabular form

in appendix A – Table A.3) ... 79

xii

List of Appendices

Appendix A: The results of the simulation using GreenCloud simulator tool 89

xiii

List of Abbreviations

ACL Access Control List

AES Advanced Encryption Standard

API Application Program Interface

CPU Central Processing Unit

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

HCF Hop Count Filtering

HIP Host Identity Protocol

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ICMP Internet Control Message Protocol

IP Internet Protocol

IPSec Internet Protocol Security

MIPS Million Instructions Per Second

OSI Open Systems Interconnection

PaaS Platform as a Service

RAM Random Access Memory

SaaS Software as a Service

SVO Syverson & Van Oorschot

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

URL Uniform Resource Locator

VM Virtual Machine

WPA2 Wi-Fi Protected Access II

1

Chapter 1

1 Introduction

Security and reliability are important in the cloud computing environment. This is

especially true today because denial-of-service (DoS) attacks constitute one of the largest

threats to Internet users and cloud computing services. DoS attacks target the resources of

these services, thereby lowering their ability to provide optimum usage of the network

infrastructure. Owing to the nature of cloud computing, the methodologies for preventing

or mitigating DoS attacks are quite different compared to those used in conventional

networks. This chapter discusses the motivation and objectives of this research. It

additionally explains the research methodology and the main contributions. Finally, this

chapter describes the structure of the thesis.

1.1 Research Motivation

Addressing DoS attacks for all service models in cloud systems is a major challenge owing

to the difficulty of distinguishing an attacker’s attempt from a legitimate user’s request,

even though the requests originate from different distributed machines. DoS attacks affect

all cloud system service models—Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS)—and can occur from outside or from inside the

cloud environment.

External cloud-based DoS attacks are initiated from outside the cloud environment and

target cloud-based services. These attacks occur from outside the cloud system and target

SaaS and PaaS models. This type of attack affects the availability of services.

Internal cloud-based DoS attacks raise from the cloud system itself, such as within the PaaS

or IaaS model. This attack type can occur in several ways. For example, the attacker may

exploit the trial period of the cloud service of a vendor. Consequently, an authorized user

within the cloud environment can internally launch a DoS attack on the victim’s machine.

Moreover, sharing infected virtual machine (VM) images can allow an attacker to control

and utilize the infected VMs to execute an internal DoS attack on the targeted machine

within the same cloud-computing system.

2

The case scenarios that demonstrate how internal and external DoS attacks affect cloud-

computing systems are described as follows.

1. Case Scenario-1 E-mall Company External DoS Attack.

E-Mall Company, which provides a web-based e-commerce service to their visitors and

members, decided to move to a cloud-based hosting service. They agreed to migrate

their service to Whatchamacallit Elastic Compute Cloud (WEC2) and utilize the

Whatchamacallit Elastic Block Store (WEBS) service for their data storage. However,

three months after the implementation of the cloud service, the E-Mall service became

unavailable to their members and visitors for more than 16 hours. Neither could E-Mall

Company control the circumstances nor could they address the cause of the

unavailability of the service. They contacted Whatchamacallit support and were

informed, “that E-Mall Company had somehow exhausted all its available bandwidth.”

E-Mall Company notified the Whatchamacallit support representative that their records

indicated that only 150 transactions had been processed and that only 1,050 users were

online when the services terminated. After some time, E-Mall Company was intimated,

“that their bandwidth was consumed by the flood of innumerable User Datagram

Protocol (UDP) packets that were targeted at their IP.” This attack caused

approximately 16 hours of service unavailability. Consequently, the E-Mall Company

incurred the following costs:

- Owing to the nature of cloud computing and based on the WEC2 service

agreement, the E-Mall Company was responsible for the bandwidth usage

consumed during the DoS attack. The average cost of the bandwidth usage was

$0.10 per GB.

- The web-based e-commerce system was unavailable resulting in a loss of

approximately $50,000 worth sale transactions.

2. Case Scenario-2 E-mall Company Internal DoS Attack:

The second scenario is an internal DoS attack that occurred at the E-Mall Company

two days following the resolution of the first DoS attack. During this attack, the website

3

of E-Mall Company was unable to access the WEBS to store or retrieve data. The

response they received was, “that multiple transactions were performed on the data

storage system triggering an extended communication response time with the

database.” E-Mall Company “observed that their logs indicated that database

transactions occurred at average levels when compared to their transaction volumes

over the previous three months.” Following an investigation by Whatchamacallit, “it

was discovered that a flood of TCP SYN connection requests affected the data-storage

service.” WEBS service is an internal service and is not related directly to the

customers’ systems. Therefore, the second attack, which affected the data-storage

system, occurred through another virtual machine in the WEC2 environment.

Whatchamacallit explained “that the second DoS attack differed from the first attack

in that it was an internal DoS attack. It was mentioned that an owner of another virtual

server within the cloud environment caused seven other virtual machines to flood the

WEBS service concurrently by sending forged requests. Therefore, the WEBS response

time was extremely slow during the attack.” As a result, E-Mall Company reported the

following losses:

- E-Mall Company lost approximately $6,000 worth sales transactions because

of the unavailability of the data for two hours.

- E-Mall Company lost 1,000 customers because the customers were frustrated

by the effects of the internal DoS attack. They were not able to browse the E-

Mall services as easily as they could browse for the services of other competing

firms.

Owing to the above challenges, defending cloud-computing systems against the different

types of DoS attacks is an important research issue. The defense objective is to maintain

cloud system availability and avoid the attacks’ overloaded resource usage, which can

cause financial losses. Accordingly, this research strives to:

- Develop methods to effectively protect cloud-based systems against external DoS

attacks using strong authentication protocols that are targeted to external DoS

attacks.

4

- Develop an approach to effectively defend cloud-based systems against internal

DoS attacks by employing strong authentication protocols that are targeted to

internal DoS attacks.

In addition, this research analyzes and validates the proposed cloud-based authentication

protocol suite against both external and internal DoS attacks. The full scope of research

objectives are described in the following section.

1.2 Research Objectives

The main goal of this thesis is designing and developing a novel cloud-based authentication

protocol suite to securely authenticate the cloud user and to prevent risks of external and

internal DoS attacks. The research objectives established to achieve the research goal are

as follows:

1. Investigate DoS attacks in conventional networks and then identify DoS attacks in

cloud-computing systems. The tasks for achieving this objective are to:

- Explore the risks of DoS attacks.

- Study existing types of DoS attacks in conventional network systems.

- Examine existing defense mechanisms against DoS attacks in conventional

network systems.

- Evaluate the ability of cloud-computing systems to detect DoS attacks.

- Identify and categorize all possible types of DoS attacks in cloud-computing

systems.

2. Investigate, propose, and validate a protocol suite that defends the cloud-based system

against external DoS attacks. The tasks to achieve this objective are to:

- Design a cloud-based authentication protocol to defend the system against

external DoS attacks.

- Analyze and validate the security and performance of the proposed cloud-based

authentication protocol.

3. Investigate, develop, and validate a defender protocol suite against internal DoS

attacks. The following tasks to accomplish this objective are to:

- Develop a cloud-based authentication protocol to prevent internal DoS attacks.

5

- Analyze and validate the security and performance of the proposed cloud-based

authentication protocol.

1.3 Research Methodology

This section describes the methodologies that are applied in this research to design and

develop the cloud-based authentication protocol suite that defends against external and

internal DoS attacks. The proposed cloud-based authentication protocol suite can not only

detect internal DoS threats, but it can also defend the system against external DoS attackers.

In addition, the developed protocol satisfies the following security requirements:

- Multilevel adaptive technique that determines the efforts of the protocol

participants.

- Ability to identify a legitimate user’s requests prior to heavy authentication.

- Footprint-free core protocol.

- Formal validation of the protocol.

- Experimental validation of the protocol.

1.3.1 Defender Protocol Suite Design

The identity authentication protocol is believed to have become increasingly susceptible to

attackers who use DoS techniques. A cloud-based authentication protocol that securely

authenticates a cloud user and effectively prevents DoS attacks on the cloud-computing

system is needed. In this thesis, we propose a cloud-based DoS-resistance protocol suite

that securely authenticates cloud users. This protocol is designed such that the cloud server

is required to do lightweight computation work without the need to store any data during

the authentication process. In addition, it requires the cloud user to do a process that is

computationally expensive.

To realize the Meadows cost-based approach (Meadows, 2001), this protocol suite

considers a “subset sum” problem as a “client puzzles” technique (Juels & Brainard, 1999)

(Chapters 3 and 4). A “subset sum” problem is a kind of cryptographic knapsack problem,

and it is not only a strong one-way function, but it also has a flexibility property to be

adaptive (Salomaa, 1996). The complexity of the subset sum knapsack problem depends

6

on the size of the knapsack (the total number of its items, n) and on the number of items

(the subset sum size, m) involved in puzzle solution. If the number of items n is small, then

an exhaustive search for the solution is practical. Also, if the number of m is small

compared to n, then a solution can be found in a reasonable time. Consequently, by

adjusting the values of n and m, determining the difficultly level of the knapsack problem

and hence the cost-based approach can be adaptively realized. Therefore, the proposed

cloud-based DoS-resistance protocol suite has the ability to be configured such that the

more sensitive the services requested are, the greater the computation cost required from

the requester is. In other words, greater computation cost can be achieved by asking the

requester (client) to perform an expensive operation, such as solving an expensive subset

sum puzzle. The responder (cloud server) should conduct inexpensive to medium-cost

operations, such as generating subset sum puzzle elements, checking the solution, or

decryption operations.

A banker’s (Dijkstra, 2002) algorithm is also implemented in the second module of the

proposed protocol to control the allocation of services and to prevent the risk of an internal

DoS attack on a specific service host or virtual machine (Chapter 4).

1.3.2 Security and Performance Validation

To validate the security requirements of an identity authentication protocol, it is important

to analyze the proposed protocol via two different models. Therefore, the proposed

authentication protocol is formally analyzed via Syverson & Van Oorschot (SVO) logic

(P. F. Syverson & Van Oorschot, 1994) to validate its security requirements (Section 5.1.2).

The proposed protocol is also validated via a cost-based model approach (Meadows, 2001)

to ensure that it is invulnerable to DoS attacks (Section 5.1.1).

In addition, to validate the performance of the proposed protocol, experiments are

conducted to assess the ability of the protocol to serve as a DoS defender tool. The dynamic

programming algorithm is our tool to solve and assess the computational cost of both

participants (client and cloud server) involved in the subset sum problem. We were able to

experimentally determine different values of n and m that provide different levels of the

7

subset sum solution’s complexity (Section 5.2.1). This makes our protocol adaptive enough

to protect different levels of sensitive services.

The GreenCloud simulator (Kliazovich, Bouvry, & Khan, 2012) was used to validate the

proposed protocol implementation in terms of their ability to prevent DoS attacks. A real

Linux OS was configured to collect real data regarding the properties of the high-level

computational processes of the proposed protocol. These data include the number of

million instructions per second (MIPS), the input size, the output size, and storage size of

each process. The collected data were used in the simulation as the input parameters for

simulating the protocol’s processes. Furthermore, a virtual machine (VM) was configured

as a cloud server in the simulation in order to execute the computational processes of the

protocol under extreme conditions. Then, VM data were collected from the simulation tool,

including the VM load, VM memory load, and VM storage load (Section 5.2.3). Finally,

the analysis results from the collected VM data were compared to the analysis results from

a widely used authorization protocol in the Internet (Sections 5.2.2 and 5.2.3). The main

contributions of this thesis are detailed in the following section.

1.4 Main Thesis Contributions

This thesis focuses on designing and developing a novel authentication protocol suite to

securely authenticate the cloud user and to prevent external and internal risks of DoS

attacks. Research contribution can be mainly summarized as follows:

- A taxonomy of existing DoS attacks and defenses on cloud-computing systems.

- An investigation and design of a defender authentication protocol suite against

external cloud-based DoS attacks.

- An investigation and design of a defender authentication protocol suite against

internal cloud-based DoS attacks. In addition to the performance validation of the

proposed authentication protocol.

- A security validation of the proposed authentication protocol suite against cloud-

based DoS attacks.

- A performance evaluation of a widely used cloud-based authorization framework

in the Internet.

8

The research contributions of this thesis have been published in journals and conference

proceedings in the areas of information security and cloud security. Therefore, these

contributions have been peer-reviewed by experts in the field.

1.5 Thesis Structure

The thesis structure is outlined as follows:

 Chapter 2 provides an overview of cloud-computing technology and DoS attacks.

In addition, it provides a literature review of existing cloud-based DoS attacks and

defenses. Furthermore, the ability of a cloud-computing system to defend against

DoS attacks using an existing authentication protocol is also provided in this

chapter.

 Chapter 3 presents and discusses the proposed cloud-based secure authentication

module 1 (CSAM-1) protocol suite that is used to defend against external DoS

attacks.

 Chapter 4 presents and discusses the proposed cloud-based secure authentication

module 2 (CSAM-2) protocol suite that is employed to defend against internal DoS

attacks.

 Chapter 5 describes a security and performance validation of the proposed protocol.

It provides formal verification of the protocol via SVO logic, as well as security

validation using a cost-based model. In addition, it provides an analysis of a puzzle

technique that is implemented in the proposed protocol suite. Furthermore, it

provides an evaluation of a widely used existing authorization framework. Finally,

it provides a performance validation of the proposed protocol suite.

 Chapter 6 summarizes the contributions of the thesis and outlines the future work.

9

Chapter 2

2 Background and Literature Review

This chapter overviews the cloud computing in general and the related DoS attacks. It

presents an in-depth security analysis of DoS attacks in cloud computing. Finally, it

presents a literature review of the existing authentication protocols on cloud computing

and their ability to defend against DoS attacks.

2.1 Cloud Computing

Cloud computing is the utilization of hardware and software to provide services to end

users over a network, such as the Internet (Mell & Grance, 2011). It includes a set of VMs

that simulates physical computers and provides services, such as operating systems and

applications. However, configuring virtualization in a cloud-computing environment is

critical when deploying a cloud-computing system.

Figure 2.1: Architecture of cloud computing service models

A cloud-computing structure relies on three service models (Mell & Grance, 2011): IaaS,

PaaS, and SaaS (Fig. 2.1). IaaS enables users to access physical resources, networks,

10

bandwidth, and storage. PaaS builds on IaaS and provides end users with access to the

operating systems and platforms that are required for building and developing applications,

such as databases. SaaS provides end users with access to software applications.

Furthermore, cloud computing can be implemented using different deployment models, as

described below (Mell & Grance, 2011):

- Private Cloud: This cloud model is deployed to be used by a single organization.

This deployment model could be owned, operated, and managed by the

organization itself or by a third party exclusively for the organization. It can be

located on or off the organization.

- Community Cloud: This cloud model is deployed to be used by multiple

organizations that have shared interests such as government organizations. This

deployment model could be owned, operated and managed by one or more

organizations in the community or by a third party exclusively for the community.

It can be located on or off the organizations.

- Public Cloud: This cloud model is deployed to be used by general public. This

deployment model could be owned, operated, and managed by, for example, a

business or an academic organization. It is located in a cloud provider.

- Hybrid Cloud: This deployment model is a combination of two or more different

deployment models (such as private, community, or public) that communicate

together to allow application and data portability. It is to be noted that the hybrid

cloud in this research is considered as a combination of the public model and either

private, community, or both (private and community) models.

2.2 Denial-of-Service Attacks

DoS attacks are a major security risk in the cloud-computing environment, where resources

are shared by many users. A DoS attack targets resources or services to attempt to render

them unavailable by overloading system resources with substantial amounts of spurious

traffic (Mather, Kumaraswamy, & Latif, 2009). The objective of DoS attacks is to consume

11

critical resources, such as memory, CPU processing space, or network bandwidth, to make

them unreachable to end users by blocking network communication or denying access to

services.

DoS attacks are becoming increasingly more sophisticated. Many websites and large

companies have been targeted by these attacks. The first DoS attack was reported in 1999

(Nazario, 2008). In 2000, large resource companies, such as Yahoo, Amazon, CNN.com,

and eBay, were targeted by DoS attacks, and their services were stopped for hours

(Neumann, 2000). Register.com was targeted by a DoS attack in 2001. It was the first DoS

attack to use domain name servers (DNSs) as reflectors (Dittrich, Mirkovic, Reiher, &

Dietrich, 2004). In 2002, a service disruption was reported at 9 of 13 DNS root servers on

account of a DNS backbone DoS attack. This attack type reoccurred in 2007 and disrupted

two DNS root servers (Arora, Kumar, & Sachdeva, 2011). In 2007, a DoS attack was

executed by thousands of computers targeting more than 10,000 online game servers

(Arora et al., 2011). In 2008, a DoS attack targeting Wordpress.com resulted in 15 minutes

of service denials (Patel & Borisagar, 2012). In 2009, GoGrid, a cloud-computing provider,

was targeted by a massive DoS attack that affected approximately half of the thousands of

customers of the provider. In 2009, Register.com was again targeted by a DoS attack. In

the same year, several social networking sites, including Facebook and Twitter, were

targeted by various DoS attacks. Many websites were affected by DoS attacks in 2010,

including the Australian Parliament House website, Optus, Web24, Vocus, and the website

of Burma’s main Internet provider. In 2011, Visa, MasterCard, PayPal, and PostFinance

were targeted by a DoS attack that aimed to support the WikiLeaks founder (Patel &

Borisagar, 2012). In the same year, the site of the National Election Commission of South

Korea was targeted by a DoS attack.

Furthermore, thousands of infected computers were used in a DoS attack that targeted the

Asian E-Commerce Company in 2011 (Patel & Borisagar, 2012). In 2012, the official

website of the office of the vice-president of Russia was unavailable for 15 hours owing to

a DoS attack (Patel & Borisagar, 2012). In the same year, many South Korean and United

States (US) websites were targeted by DoS attacks. Godaddy.com websites reported

service outages because of a DoS attack in the same year. In 2012, major US banks and

12

other financial institutions became targets of a DoS attack. As evidenced by the above

cases, the volume of DoS attacks is rapidly increasing. Moreover, these attacks are

targeting major companies, which are consequently incurring significant global financial

losses.

DoS attacks, such as those above, include different types of techniques. These techniques

and their effects are outlined below.

Server

(123.12.1.1)

Legitimate User

(210.21.1.5)

Attacker

(196.15.10.5)

 IP Source IP Destination

 (210.21.1.5) (123.12.1.1) DATA

Figure 2.2: IP spoofing attack

 IP spoofing attack: In an Internet Protocol (IP) spoofing attack, packet transmissions

between the end user and cloud server are intercepted. Their headers are modified so

that the IP source field in the IP packet is forged by using either a legitimate IP address

or an unreachable IP address, as shown in Fig. 2.2. Consequently, the server responds

to the legitimate user machine, thereby affecting that machine, or the server is unable

to complete the transaction to the unreachable IP address, which affects the server

resources. Tracing such an attack is difficult because of the forged IP address in the IP

source field of the IP packet.

13

Hacker

Legitimate User

ServerLegitimate User

SYN

SYN-ACK

ACK

SYN

Hacker
SYN-ACK

SYN

Server

Server

Server

(b)(a)

k

l

j

Figure 2.3: (a) Normal three-way handshake; (b) SYN flooding attack

 SYN flooding attack: A Transmission Control Protocol (TCP) connection starts with

a three-way handshake, as shown in Fig. 2.3(a). A typical three-way handshake

between a legitimate user and the server begins by sending a connection request from

the legitimate user to the server in the form of a synchronization (SYN) message.

Subsequently, the server acknowledges the SYN message by returning a request (SYN-

ACK) to the legitimate user. Finally, the legitimate user sends an ACK request to the

server to establish the connection. SYN flooding occurs when the attacker sends

innumerable packets to the server but does not complete the three-way handshake

process. Consequently, the server waits to complete the process for all of those packets.

This prevents the server from processing legitimate requests, as shown in Fig. 2.3(b).

Moreover, SYN flooding can be executed by sending packets with a spoofed IP

address. A sniffing attack is considered a type of SYN flooding attack. In a sniffing

14

attack, the attacker sends a packet with the predicted sequence number of an active

TCP connection with a spoofed IP address. Thus, the server is unable to reply to that

request, thereby affecting the performance of the cloud system because of extensive

resource consumption.

Router

Attacker

(196.15.10.5)

(123.12.1.1)

(123.12.1.3)

(123.12.1.252)

(123.12.1.254)

(123.12.1.2)

(123.12.1.253)

Victim

(210.21.1.5)

 IP

 S
ou

rc
e

 IP

 D
es

tin
at

io
n

 (
21

0.
21

.1
.5

)
 (1

23
.1

2.
1.

25
5)

D
ATA

Internet

Figure 2.4: Smurf attack

 Smurf attack: In a smurf attack, the attacker sends many Internet Control Message

Protocol (ICMP) echo requests. These requests are spoofed so that their source IP

address is the IP address of the victim, and the IP destination address is the broadcast

15

IP address, as shown in Fig. 2.4. Therefore, the victim is flooded with broadcasted

addresses. In the worst case scenario, the number of hosts who reply to the ICMP echo

requests is excessively large.

 Buffer-overflow attack: In a buffer-overflow attack, an attacker sends executable code

to the victim to exploit the buffer-overflow vulnerability. Consequently, the attacker

can completely control the victim machine. The attacker can subsequently either harm

that machine or use the infected machine to perform an internal cloud-based DoS

attack.

Server

(123.12.1.1)

Attacker

(196.15.10.5)

 Packet size 90,000 bytes

Figure 2.5: Ping of death attack

 Ping of death attack: In the ping of death attack, the attacker sends an IP packet larger

than the IP protocol limit, which is 65,535 bytes, as shown in Fig. 2.5. Processing an

oversized packet affects both the victim machine within the cloud system and the cloud

system resources.

16

Victim

(123.12.1.1)

 IP Source IP Destination

 (123.12.1.1) (123.12.1.1) DATA

Figure 2.6: Land attack

 Land attack: This attack uses the Land.c program to send forged TCP SYN packets

with the victim’s IP address in the source and destination fields, as shown in Fig. 2.6.

The machine receives the request from itself, which crashes the system.

 Teardrop attack: This type of attack uses the Teardrop.c program to send invalid

overlapping values of IP fragments in the header of TCP packets. The victim machine

in the cloud system will crash in the re-assembly process.

2.3 Literature Review

2.3.1 DoS Defense Techniques

DoS attacks in cloud-computing environments can be externally or internally initiated, as

shown in Fig. 2.7. An external cloud-based DoS attack is launched from outside the cloud

system and targets the cloud’s services to disrupt their availability. Therefore, an external

DoS attack can affect the SaaS and PaaS models. On the other hand, an internal cloud-

based DoS attack originates from inside the cloud system, primarily in the IaaS and PaaS

models. These attacks can take various forms. For example, an attacker can take advantage

of the free trial periods of some cloud service providers. Hence, an authorized user of the

cloud system may internally initiate a DoS attack on the targeted services.

17

Figure 2.7: External and internal cloud-based DoS attacks

Based on an investigation of the major types of DoS attacks, we derive a taxonomy of

cloud-based DoS attacks, as illustrated in Table 2.1. Our classification is focused on cloud-

computing aspects, such as a cloud-based type of attack, as well as on recommended

practical defense mechanisms and the drawbacks of each mechanism.

Datacenter (Location 2)Datacenter (Location 1)

User

Virtual Datacenter

(IaaS)

Applications

(SaaS)

Virtual Machines

(PaaS)

External

DoS

attack

18

Table 2.1: Types of DoS attacks on cloud systems

Attack Cloud-based Type
Recommended Practical

Defense Mechanism

Limitation

IP Spoofing

External

Internal

- Hop Count Filtering (HCF) in

the PaaS model (Wang, Jin, &

Shin, 2007)

- The attacker can build

his/her own IP2HC

mapping to avoid HCF

External

Internal

- Trust-based approach in the

IaaS model (Gonzalez, Anwar,

& Joshi, 2011)

- Another compatible

solution should be

proposed to detect IP

spoofing in distribution

routers

SYN Flooding

External

Internal

- SYN cache approach in the

PaaS model (Lemon, 2002)
- Increase in latency

External

Internal

- SYN cookies defense

approach in the PaaS model

(Lemon, 2002)

- Lowers the performance

of the cloud system

External

Internal

- Reduces the time of SYN

messages received in the PaaS

model

- Some of the legitimate

ACK packets could be lost

External

Internal

- Filtering mechanism in the

IaaS model

- Not reliable due to the

limited use of this method

External

Internal

- Firewall mechanism in the

IaaS model

- May affect the

performance of the

networking system in the

cloud

External

Internal

- Active monitoring mechanism

in the IaaS model (Schuba et

al., 1997)

- Decreases resource

performance in the cloud

19

Smurf Attack

External

Internal

- Configuring VMs in the PaaS

model

External

Internal

- Configuring network

resources in the IaaS model

Buffer Overflow

External

Internal

- Prevented when writing a

source code mechanism in the

SaaS model (Fu & Shi, 2012)

- Time consumption

External

Internal

- Performs the array bounds

checking mechanism in the

SaaS model (Fu & Shi, 2012)

- Decreases resource

performance in the cloud

External

Internal

- Runtime instrumentation

mechanism in the SaaS model

(Fu & Shi, 2012)

- Not reliable

External

Internal

- Analyzes the static and

dynamic code mechanism in

the SaaS model (Fu & Shi,

2012)

- Not reliable

Ping of Death

External

Internal

- May not currently affect any

cloud service model; however,

the attack could be developed

in the future

Land.c

External

Internal

- May not currently affect any

cloud service model; however,

the attack could be developed

in the future

Teardrop.c

External

Internal

- May not currently affect any

cloud service model; however,

the attack could be developed

in the future

20

2.3.2 Cloud Computing Authentication and Authorization Protocols

The identity authentication process is considered the principal gateway to cloud-based

services. Therefore, these gateways have become increasingly susceptible to adversaries

who may use DoS attacks to permanently close these gateways. Numerous authentication

protocols exist that can verify identities and protect conventional networked applications.

However, these authentication protocols may themselves introduce DoS risks when used

in cloud-based applications. This risk introduction could occur on account of the utilization

of a heavy verification process that can consume the cloud resources and disable the

application service.

This section provides an example of one of these protocols. In addition, some of the

proposed authentication protocols utilized in cloud computing are presented. Furthermore,

the OAuth 2.0 protocol, which is a widely used authorization protocol for cloud systems,

is described. Finally, the Host Identity Protocol (HIP), which is a DoS-resistant

authentication protocol in conventional network systems, is explained.

Figure 2.8: Mutual authentication protocol

User session request, Rclient

Rserver, [{Rclient, gb mod p}client]server

[{Rserver, ga mod p}server]client

User Server

21

An example of authentication protocols that can independently introduce internal DoS risks

is shown in Fig. 2.8. The goal of this protocol is to cross-authenticate the user and server.

This protocol uses the ephemeral Diffie-Hellman key exchange (Diffie & Hellman, 1976),

where a, b, p, and g are the values of Diffie-Hellman, as shown in Fig. 2.8. In this protocol,

once the server receives a request from a user, the server begins generating the secret value,

b. Subsequently, the server computes the exponential value, gb mod p. Moreover, the server

encrypts the nonce of the user and the exponential value via the user public key. Finally,

the server digitally signs the encrypted message. All of these processes are executed by the

server, which consumes considerable resources without determining whether the request is

legitimate. This mutual authentication, which is vulnerable to the DoS attack, is similar to

the two-way authentication version of the Transport Layer Security (TLS) protocol

(Dierks, 1999).

Another example of a protocol that independently introduces DoS risk is Kim et al.’s

protocol (Kim, Fujioka, & Ustaoğlu, 2009), which aims to securely authenticate the key

exchange between participants. In this protocol, once the server receives the first message,

the server begins computing an exponential value and generates the key. Accordingly, the

server resources can become exhausted by the initial requests.

Many authentication protocols have been proposed for the cloud-computing environment.

However, they do not protect against DoS attacks. Yassin et al. (A. A. Yassin, Jin, Ibrahim,

Qiang, & Zou, 2013) proposed an authentication process that uses a one-time password for

mutual authentication of the user and cloud server. Although Yassin et al.’s authentication

scheme defends against replay attacks, it cannot defend against DoS attacks. Other cloud-

based authentication protocols for DoS prevention have been proposed (e.g., Choudhury et

al. (Choudhury, Kumar, Sain, Lim, & Jae-Lee, 2011), Hwang et al. (Hwang, Chong, &

Chen, 2010), Jaidhar (Jaidhar C. D, 2012), and Tsaur et al. (Tsaur, Li, & Lee, 2012)). These

protocols use a smart card reader for the authentication process. Therefore, the cloud users

should use a card reader device for each authentication by the cloud server. Additionally,

the scheme of Yassin et al. (A. a. Yassin, Jin, Ibrahim, & Zou, 2012) recommends the use

of another third-party device, such as a fingerprint scanner.

22

Figure 2.9: Example of social authentication icons (Darwell, 2013)

Furthermore, the OAuth 2.0 authorization framework was developed by Hardt in 2012

(Hardt, 2012) as an improvement on the previous OAuth 1.0 protocol (Hammer-Lahav,

2010). Currently, it is implemented as an authorization framework (as OAuth) by many

vendors, such as Facebook, Google, Twitter, LinkedIn, and Yahoo (Boyd, 2012), as shown

in Fig. 2.9. This protocol was developed to control third-party client accessibility to HTTP

services. For instance, assume that a user would like to play the Angry Birds game and post

the score and screenshots on his/her Facebook account. In this scenario, the user must give

the Angry Birds app access to his/her Facebook account so the app can obtain the user’s

information and post the game score on the user’s behalf. By employing OAuth, this can

be done in such a way that, when the app needs to access any Facebook services (i.e.,

posting), OAuth will redirect the user back to the Facebook login screen to login into the

user’s Facebook account. In this case, the user gives his/her username and password to

Facebook itself, not to the Angry Birds app. Facebook will then ask whether the user wants

to authorize this app. It will then create an access token that works like a password. This

token only allows the app to access the user’s Facebook account information and post the

user’s score when needed.

Thus, the OAuth 2.0 protocol permits a third-party client, such as an application, to access

a server’s resources (user profile information) with rules and permissions in a way that

avoids exchanging the user’s credentials. The OAuth 2.0 protocol participants are as

follows:

23

 Client: An application (e.g., Angry Birds app) that uses an application program

interface (API) (Siriwardena, 2014) to access the resource owner’s (user’s) protected

resources (profile) with his/her authorization.

 Resource owner: The user of the application who grants access to his/her protected

resources (profile) that are available on the resource server (e.g., a Facebook user

profile server).

 Resource server: The server (Facebook user profile server) that hosts the protected

resources of the user (his/her profile). Typically, this server provides the API and hosts,

and protects the user’s data (profile).

 Authorization server: The server that receives the resource owner’s (user’s)

permissions to generate the access token and then sends it to the client (Angry Birds

app). Therefore, the client can access the protected resources (user’s profile). The

authorization server (Facebook server) can be the same as the resource server

(Facebook user profile server).

Figure 2.10: Overview of the OAuth 2.0 protocol

User

Resource Server

Authorization Server

Resource owner

 3 Authorization Grant

 4 Access Token

24

As shown in Fig. 2.10, the OAuth 2.0 protocol works as follows:

1. The client (Angry Birds app) sends an authorization request to the resource owner

(user).

2. The resource owner (user) sends an authorization grant to the client (Angry Birds

app). However, the type of authorization granted is determined based on the

authorization request received from the client. Examples of authorization grant

types are as follows:

 Authorization code grants: In this type of grant, the resource owner (user)

grants an authorization code to the client (Angry Birds app) after an

authorization server (Facebook server) authorizes the resource owner. The

client uses this authorization code and therefore does not need the credentials

of the resource owner. An authorization code grant is a secure type of grant.

 Implicit grants: This type of grant is implemented on the client (Angry Birds

app) using software language so that the access token is immediately given to

the client. Although the implicit grant reduces the protocol overhead, it may

introduce security threats.

 Resource owner password credential grants: For this type of grant, the

access token is given to the client (Angry Birds app) using the credentials of the

resource owner (username and password). This grant type can be implemented

when the resource owner (user) completely trusts the client.

 Client credential grants: This type of grant can be implemented to limit access

to the server’s secure resources, such as Facebook user profiles. Therefore, it

can be implemented when the client (Angry Birds app) is the owner of the

secure resource (Facebook user profiles) or when the client has been granted

permission to access the secure resource in the past.

3. The client (Angry Birds app) sends the received authorization grant to the

authorization server (Facebook server) to obtain an access token.

4. The authorization server (Facebook server) authenticates the client (Angry Birds

app) and validates the authorization grant. It then issues an access token that will

be known by the resource server (Facebook user profile server) and sends it to the

25

client. This access token is used instead of the standard username and password

authentication. The access token has an expiration time. Once it expires, an optional

refresh process can be implemented by reapplying the third step of the protocol.

5. The client (Angry Birds app) sends the received access token to the resource server

(Facebook user profile server) so that it may access the secure resource (user’s

profile data).

6. The resource server (Facebook user profile server) validates the access token and

then allows the client (Angry Birds app) to access the resource (user’s profile data).

For instance, the client could share the game’s achievements of the user on his/her

Facebook timeline.

Figure 2.11: Authorization process of Google's OAuth 2.0 for web server

applications

However, if the OAuth 2.0 protocol is not securely implemented, the protocol could

introduce security breaches into the system, such as in Google’s implementation of the

OAuth 2.0 protocol (Google Developers, 2014). This implementation of the OAuth 2.0

protocol for web server applications was developed so that Google’s API could be

implemented in web server applications and frameworks, such as game applications. As

Google servers

 1: Request token

 3: Authorization code

 4: Exchange code for token

 5: Token response

 6: Use token to call Google API

 2: User login & consent

Web server applicationUser

26

shown in Fig. 2.11, the authorization process of the implemented protocol works as

follows:

1. The web server application (app) requests the token.

2. The user is redirected to the uniform resource locator (URL) that is assigned by

Google. This URL contains some information, such as access type.

3. Google servers perform the authentication task. Once Google servers authenticate

the user, the web server application (app) receives the authorization code.

4. To obtain an access token, the web server application (app) exchanges the user’s

data and obtains an authorization code with the Google servers. To enable future

offline access, the web server application receives the refresh token first; this token

information is then exchanged with the Google servers to obtain the access token.

5. The Google servers send the access token to the web server application (app).

6. The web server application (app) uses the received token to call Google’s API.

For offline access, in this implementation, the refresh token is stored on the web application

server’s storage device for future communication. The stored refresh token remains valid

until it is revoked by the user (Google Developers, 2014). These stored data can lead to

security flaws that exhaust the storage resources of the web servers, as detailed in Section

5.2.2.

The Host Identity Protocol (HIP) (Moskowitz, Nikander, Jokela, & Henderson, 2008) is an

example of an authentication protocol that is used to identify a DoS attack on a

conventional network. However, this protocol cannot be implemented in the application

layer to defend against external DoS attacks. This is because HIP is based on the host

identity on the network layers in the Open Systems Interconnection (OSI) reference model.

Moreover, it is configured and controlled at an operating system level. Furthermore, any

authentication protocol that is based on IP address verification, such as the Internet

Protocol Security (IPSec) protocol, makes it difficult to hide the identity of the participants.

HIP solves the DoS-SYN flooding attack that was presented in Section 2.2 by creating

additional processing to establish a new TCP connection between two participants. This

new four-way handshake process is based on a crypto-puzzle that requires the user to

27

reverse a hash function. Consequently, the puzzle-solving process forces the user to

complete some computational operations. Verifying the puzzle solution is a short operation

on the server side.

2.3.3 Authentication Protocol Validation

Burrows, Abadi, and Needham (BAN) proposed a belief logic (Burrows, Abadi, &

Needham, 1989) to analyze the security requirements of authentication protocols.

Subsequently, logic by Syverson and Van Oorschot (SVO) (P. F. Syverson & Van

Oorschot, 1994) was introduced as an extension model to address some of the limitations

of BAN. SVO uses some of its own notations in addition to those used in BAN. The

analysis steps of any authentication protocol using SVO (P. Syverson & Cervesato, 2001)

are as follows:

1) Initial assumption: An assumption of the initial status of the protocol.

2) Received message assumption: An assumption regarding the messages each party

receives when the protocol is completed in a trusted fashion.

3) Comprehension assumption: An assumption regarding what the receiver believes,

and what parts of the received message are unknown.

4) Interpretation assumption: An assumption of how each party interprets the received

messages.

5) Derivation: It derives the analysis goals using the previous assumptions.

For further security validation, any protocol design in general should be investigated in

terms of its vulnerability to DoS attacks using the cost-based model approach proposed by

Meadows (Meadows, 2001). This approach aims to prevent DoS attacks during the

authentication process. It depends on the exhausted resource costs of the participants. The

cost-based model approach logically demonstrates the effectiveness of the protocols in

preventing DoS attacks. The computation cost is defined as the total resource usage cost of

the requester (user) and responder (server) when both participate in the authentication

protocol. The cost is computed during the process until a DoS attacker is detected and is

prevented from participating. The total cost of the requester is the total estimated cost of

each operation involved in the authentication process on the requester’s side until the

28

authentication process ends. However, the total cost of the responder is the total estimated

cost of each operation during the authentication process until the requester is determined

to be either a legitimate requester or attacker.

Meadows (Meadows, 2001) proposed the categories of inexpensive, medium, and

expensive for an operation’s cost. This approach assumes that the exponential, signature

check, and signature operations performed during an authentication process are expensive.

The pre-calculated exponential value, and the encryption and decryption operations are

medium cost. Any other operations are inexpensive.

2.3.4 Review Summary

The literature review on DoS-aware cloud-based authentication protocols is summarized

in Table 2.2.

29

Table 2.2: Literature review summary

Proposed Protocol DoS awareness
Implementation

environment

Uses third-party

device

OAuth 2.0 (Hardt, 2012)
Based on the

implementation

Conventional

network and cloud

computing

No

HIP (Moskowitz et al., 2008) Yes
Conventional

network
No

Yassin et al. (A. A. Yassin, Jin,

Ibrahim, Qiang, & Zou, 2013)
No Cloud computing No

Choudhury et al. (Choudhury et al.,

2011)
Yes Cloud computing

Yes

(smartcard reader)

Hwang et al. (Hwang et al., 2010) Yes Cloud computing
Yes

(smartcard reader)

Jaidhar (Jaidhar C. D, 2012) Yes Cloud computing
Yes

(smartcard reader)

Tsaur et al. (Tsaur, Li, & Lee, 2012) Yes Cloud computing
Yes

(smartcard reader)

Yassin et al. (A. a. Yassin, Jin,

Ibrahim, & Zou, 2012)
Yes Cloud computing

Yes

(fingerprint scanner)

Based on the implications of the above literature review summary, an authentication

protocol suite against DoS attacks is herein proposed that works in the cloud-computing

environment. Moreover, it considers the security requirements of the authentication

protocol without using third-party devices.

30

Chapter 3

3 Cloud-Based Secure Authentication Module 1 (CSAM-1)
Protocol for Private and Community Cloud Computing

In this chapter, the first module of the proposed cloud-based secure authentication (CSAM-

1) protocol suite to defend against external DoS attacks is presented. The CSAM-1 protocol

is developed so that the total computational cost of the user side is greater than the resource

operations cost of the cloud-based server when they jointly participate in the authentication

process. The main objective of the CSAM-1 protocol is to defend against external DoS

attacks. Therefore, CSA can be implemented and configured in private and community

cloud computing because the infrastructure and platforms in these deployment models are

secured by the organizations. On the other hand, in public and hybrid cloud computing

models, different infrastructures are communicated together. Thus, there is no guarantee

that all infrastructures have the same security level. The solution to this problem is

addressed in Chapter 4. Table 3.1 shows the notations that are used in the CSAM-1 protocol

suite.

31

Table 3.1: Notations of the CSAM-1 protocol

Notation Description

Cloud_user Cloud user/client

Cloud_server Cloud server/service provider

Cloud_user ID (CUID) Cloud_user ID

Unique encrypted text (UET)
Unique encrypted text; the key of the UET is known only by

cloud_server

Session key (SK) Session key

A A set of random integers of the server challenge function

S A subset sum of the server challenge functions

B A binary vector representing the challenge function solution

Rcloud_server The nonce that is generated by cloud_server

T Timestamp

KX Secret key of X

MK Master secret key of cloud_server

Tag
An encryption of timestamp and cloud user ID by master secret

key of cloud_server

CSAM-1 consists of two protocols, as shown in Fig. 3.1. The first protocol is used for the

registration process, which is an agreement process between the participants (cloud_user

and cloud_server) about specific shared information. Thus, the participants can use that

information during the operation of the second CSAM-1 protocol. The second protocol is

an adaptive-based identification and authentication protocol that works against DoS

attacks. This protocol is developed based on the cost-based model approach. In addition,

this protocol is used for the authentication process, which includes all operations that occur

on the basis of initially agreed upon information of the previous protocol. As a result,

32

cloud_server can confirm the identity of cloud_user and then completes the authentication

process, or it can detect and then prevent an intruder in the case of a DoS attack.

Figure 3.1: CSAM-1 protocols

3.1 Registration Protocol

In the CSA registration protocol, cloud_user and cloud_server share the required identity

data to register cloud_user in the cloud_server database.

Figure 3.2: Registration protocol in CSAM-1

 New request includes cloud_user information

 Request confirmation data

 Response to confirmation data

 UET||Tag, CUID

cloud_servercloud_user

33

As shown in Fig. 3.2, the registration process begins when cloud_user submits all the

required information to cloud_server. This information includes the first name, last name,

organization name, email address, and any other information that is required by the cloud

service provider. Cloud_server validates the received information, stores it in a database,

and then sends a validation email message to cloud_user to confirm cloud_user’s

information. If cloud_user does not confirm his/her information after a specific amount of

time, cloud_server deletes cloud_user’s information. After validation, cloud_server

activates cloud_user’s account. At the same time, cloud_server generates a CUID and a

UET. This UET is encrypted by cloud_server’s master key (MK), which is known only

by cloud_server.

Figure 3.3: UET structure in CSAM-1

As shown in Fig. 3.3, the UET contains cloud_user information and other information that

is created by cloud_server during the processes of the CSA protocols, such as the CUID,

last session key, and last timestamp. The UET is a piece of information that is not stored

on cloud_server; rather, it is sent to the requesting cloud_user.

Figure 3.4: Cloud_user (lookup) database table structure

To identify cloud_user and to avoid the risk of DoS attacks, cloud_server generates a tag

that contains a timestamp (T) and CUID that are both encrypted by cloud_server’s MK.

Cloud_server then adds CUID and tag information to cloud_user’s table in its database

(referred to as the lookup table), as shown in Fig. 3.4. It should be noted that the number

of entities in the lookup table depends on the number of confirmed registered cloud_users.

CUID Last SK Last T

Tag = E (T + CUID, MK)CUID PSK Other cloud_user’s information

34

In the next step, cloud_server sends UET along with the tag to cloud_user. Once

cloud_user receives the required data from cloud_server, both cloud_user and

cloud_server agree upon the pre-shared key. The pre-shared key is created using a key

derivation function and a shared secret. Cloud_user and cloud_server agree upon the key

derivation function and a shared secret at the end of the registration protocol, which is

exchanged via a secure channel in a very restricted environment. This approach is the same

approach of the pre-shared key (PSK) agreement that used in the UMTS and WPA2

protocols (Southern, Ouda, & Shami, 2013). Consequently, cloud_user stores the UET

and a pre-shared key for a future authentication process. Cloud_server stores PSK in the

lookup table.

Even if cloud_user is registered to cloud_server, cloud_user cannot access the services

available through cloud_server unless cloud_server identifies and authenticates

cloud_user. To perform the identification and authentication protocol that is ready to

defend against external DoS attacks, CSAM-1 provides an outer shield to the authentication

protocol. This helps in distinguishing legitimate cloud_users from DoS attackers. The

CSA-adaptive based identification and authentication protocol is designed to provide this

outer shield as described in the following section.

3.2 Identification and Authentication Protocol

The adaptive-based identification and authentication protocol utilizes the cost-based model

approach. Before applying the computational power of the authentication protocols in the

server side, users are asked to prove their sincere commitment for receiving the

cloud_server services. This validation of commitment can be achieved by any technique

that can force the users to utilize a significant amount of computational power before the

servers utilize them in order to confirm their genuine requests. Currently, “client puzzles”

is a common technique that realizes the cost-based model approach (Juels & Brainard,

1999).

In this research study, a technique based on a one-way function is proposed to realize the

cost-based model approach. A cryptographic knapsack problem has been chosen because

it is a strong one-way function, while also being flexible for adaptability (Salomaa, 1996).

35

The knapsack problem is strong because it is known to be an NP-complete problem

(Manber, 1989). It is to be noted that the problem is considered as NP-complete when the

problem is in both NP (nondeterministic polynomial time) and NP-hard. In addition, the

main characteristic of the selected one-way function in this protocol is an adjustable

difficulty level to solve the puzzle based on the efforts of the users.

In cryptography, a knapsack problem is described as follows. Given a set of positive

integers (i.e., items) A = a1 … an and a positive integer value S. It needs to be determined

if there is non-empty subset of a1 … an whose values sum to S. For example, let the set of

items in knapsack A be (13, 54, 28, 73, 3, 36) and the summation S be 89. Therefore,

finding the elements 13, 73, and 3 solves the problem because their summation is equal to

89. In other words, finding a binary vector, B, such that A . B = S solves the problem. In

this example, B is the vector (1, 0, 0, 1, 1, 0); therefore, A . B = 13 + 73 + 3, which is 89.

Typically, the complexity of the knapsack problem depends on the size of knapsack A (the

number of its items; for example, n) and on the number of ones (for example, m) in binary

vector B. If the number of items in A (i.e., n) is small, then an exhaustive search for the

solution is practical. Furthermore, if the number of ones in B (i.e., m) is small compared to

n, then a solution can be found in a reasonable time via dynamic programming algorithms.

Consequently, by adjusting the values of n and m, determining the difficulty level of the

knapsack problem, and hence the cost-based approach, can be adaptively realized.

The CSAM-1 protocol considers n = 512 items in the knapsack puzzle problem. These

items are fixed integer values that both parties should agree upon during the registration

protocol. Based on the experimental result (see Section 5.2.1), obtaining vector B forces

cloud_user to become involved in finding the solution to 2512 subsets, which is a very large

time interval and significant resource consumption. The number of subsets of items is

adjustable based on the required efforts of the participants. Moreover, the chosen items that

are used during the summation process are determined by hashing the values of CUID,

MK, and Rcloud_server using SHA2-512, where MK is the master secret key of cloud_server.

The result of the hash function is a 512-bit stream. Moreover, the subset of the 512-bit

stream that includes a specific number of ones (m) represents the required vector, B, of the

36

knapsack problem. For example, if the protocol is developed to let m = 55, cloud_server

takes the subset of the 512-bit stream that includes the first 55 ones. Increasing the value

of m makes the process of solving the puzzle more difficult, which would magnify the

time-consuming nature of the puzzle-solving process. The hashing process is mandatory to

verify the subset summation value (S) of cloud_user after the calculation process.

Figure 3.5: Adaptive-based identification and authentication protocol in CSAM-1

The function of this adaptive-based identification and authentication protocol process

shown in Fig. 3.5 is described as follows:

Cloud_user sends a request for a service along with the CUID and tag to cloud_server.

At this point, cloud_server blocks any CUID that has performed three consecutive requests

within a low time threshold to prevent DoS attacks. The attacker may attempt to launch a

DoS attack by sending requests with randomly generated CUID values. In this case, the

Session request, CUID, Tag

 S, Rcloud_server, Tag, request UET

CUID, UET||Tag, vector B, S, Rcloud_server

 E(SK, PSK), UET||Tag

cloud_servercloud_user

UET||Tag

37

cloud_server easily check the received tag with the stored tag in the lookup table. If these

are not identical, the request is considered an attacker request. It should be noted that

cloud_server is not required to perform an encryption process to check the tag value.

Cloud_server directly replies to cloud_user by sending the puzzle element as a challenge,

which is the subset summation value (S) along with a cloud_server nonce (Rcloud_server)

and a new generated tag. Cloud_server generates a new tag value and updates the lookup

table in the database each time it checks the tag value to preserve the refreshment property

of the protocol.

Cloud_server asks cloud_user to prove its sincere commitment to receiving the

cloud_server services by asking for the UET as well as the puzzle solution to the (S) value.

The expected solution for this challenge is vector B.

Once cloud_user calculates and obtains vector B, it sends the CUID and UET, received

tag, vector B, S value, and received Rcloud_server to cloud_server for validation. At this

point, cloud_server has all the information required to validate the authentication requests;

therefore, cloud_server can apply the validation process to only a few operations, such as

those outlined below.

First, cloud_server validates the received tag by comparing it with the stored tag in the

lookup table. Second, cloud_server checks the subset of item ai by securely hashing

(CUID, MK, Rcloud_server) and comparing the resulting vector with received vector B to

determine whether they are identical.

If any of the two previous conditions do not apply, cloud_server drops the request and

considers it to be an attacker’s request. However, once the cloud_user request passes both

conditions, cloud_server decrypts the UET and validates the decrypted information

containing the CUID. Then, cloud_server generates a new tag and updates its field in the

lookup table.

38

To complete the authentication process once the protocol determines that cloud_user is

legitimate, both participants agree on the SK for future interactions. In addition, they can

agree on the sub-session key if they later require a refreshment process. Therefore,

cloud_server generates the SK, which is encrypted via a pre-shared key. Moreover,

cloud_server adds both the SK and T information to the UET. Consequently,

cloud_server is protected against DoS attacks on the storage space because the UET is

never saved in the cloud_server. Furthermore, cloud_server can apply the refreshment

property of the session key for future communication by adding the SK to the UET.

Therefore, cloud_server sends the generated SK to the cloud_user that is encrypted by

the pre-shared key, along with the modified UET and newly generated tag. It should be

noted that the notation E(SK, PSK) means that the SK is encrypted by the PSK.

Cloud_user first confirms the received encrypted SK by encrypting timestamp T using

SK. It then returns encrypted SK, along with the received UET and tag, to cloud_server.

Therefore, cloud_server decrypts the UET, validates the CUID, and obtains the SK. It then

confirms SK by decrypting the received timestamp T using the SK.

Later, the two parties can agree regarding the sub-session keys by re-applying the processes

of the authentication protocol. Accordingly, cloud_server can generate a sub-session key

and add it to the UET without storing it in the cloud system.

3.3 Discussion

The authentication protocol suite is proposed to identify and authenticate cloud users in the

SaaS model and provide a strong shield against external DoS attacks. By integrating the

client puzzle problem and utilization of the UET, security breaches that may lead to DoS

attacks can be avoided.

In the CSAM-1 protocol suite, we rely on the computational complexity theory to

determine different levels of client-puzzle solution difficulties. Thus, the identity protocol

is designed to minimize the computational cost incurred by the cloud resources; moreover,

the computation cost incurred by cloud users is adjustable based on the service’s

sensitivity. The high computational cost influences an attacker launching a DoS attack with

39

a massive number of requests from his/her device. However, if the attacker uses many

different devices to launch DoS attacks, the cloud system will not be exhausted because

the attack can be detected at an early stage of the authentication process.

In practical terms, the proposed CSAM-1 protocol suite can be implemented in the SaaS

model of cloud computing systems because the protocol simply relies on basic hardware

and software requirements of both the cloud systems and users.

However, the proposed CSAM-1 protocol suite does not consider the possible DoS risks

faced by the other cloud service models, such as PaaS or IaaS. Although the CSAM-1

protocol suite can be implemented on private and community cloud models at this stage, it

must be redeveloped for implementation on public or hybrid cloud models, as discussed in

Chapter 4.

40

Chapter 4

4 Cloud-Based Secure Authentication Module 2 (CSAM-2)
Protocol for Public and Hybrid Cloud Computing

In this chapter, a second module of the cloud-based secure authentication (CSAM-2)

protocol suite is proposed to prevent DoS attacks in PaaS and IaaS cloud-computing service

models. In addition, it securely authenticates and identifies cloud users who would like to

use cloud services. The CSAM-2 protocol suite relies on four protocols, as shown in Fig.

4.1. These protocols sequentially progress so that each protocol process starts its execution

based on the output of the previous protocol. In the registration protocol, the cloud user

begins the registration process in the cloud server. Once the user is registered, the cloud

server in the identification and authentication protocol determines whether the cloud user

is a legitimate user. Once the external DoS attack is prevented, the service management

and allocation protocol directs the cloud user to the requested service, which prevents the

risks of internal DoS attacks. Finally, once the legitimate user is directed to the host of the

requested service, the host session and authentication protocol validates the cloud user to

access the requested service.

Figure 4.1: CSAM-2 protocols

41

The notations of the CSAM-2 protocol suite are shown in Table 4.1.

Table 4.1: Notations of the CSAM-2 protocol

Notation Description

cloud_user Cloud user/client

cloud_server Cloud server/service provider

v_service_host Virtual host of the requested service

CUID Cloud user ID

SVID Service ID

ACL
Access control list; an information set issued by cloud_server to allow

cloud_user access to the requested services

EUET
Extended unique encrypted text, the key of which is known only by

cloud_server

SK Session key

A A set of random integers of the server challenge function

S A subset sum of the server challenge function

B A binary vector representing the challenge function solution

Rcloud_server The nonce that is generated by cloud_server

T Timestamp

KX Secret key of X

MK Master secret key of cloud_server

Tag
An encryption of the timestamp and CUID by the master secret key of

cloud_server

Tagv_service_host An encryption of time stamp and CUID by the secret key of v_service_host

42

4.1 Registration Protocol

In this protocol, the cloud server registers and activates the cloud user in its own database.

It is to be noted that depends on successful completion of module 1, this protocol is similar

to the registration protocol in CSAM-1 with UET structure that is extended to hold extra

security information. In this protocol, the cloud server issues an extended unique encrypted

text (EUET) for the cloud user to employ in the future protocols’ processes. Therefore, a

user registration protocol is proposed to enable both participants (cloud_user and

cloud_server) to communicate to share mandatory identification information.

Accordingly, it can register cloud_user in the cloud_server database.

In the user registration protocol, cloud_user initiates a request to cloud_server that

includes the cloud_user information, as shown in Fig. 4.2. This information contains, but

is not limited to, the cloud_user name, phone number, email address, and other information

that cloud_server should maintain in its database. Cloud_server stores the information in

its database and then sends an email message to cloud_user to validate the email address.

Once cloud_user responds to the validation message, it is deemed an activated user. On

the other hand, if cloud_user does not respond to the message within a specified period,

the cloud_user information is deleted from cloud_server. Hence, the goal of registering

and activating cloud_user is achieved. Once the registration succeeds, cloud_server issues

a CUID and a EUET that is encrypted by its own MK.

43

Figure 4.2: User registration protocol in CSAM-2

In addition, Cloud_server generates a tag by encrypting the timestamp (T) and CUID by

its own MK. Cloud_server then inserts the CUID and tag into the cloud_user information

table (lookup table). As mentioned in CSAM-1 (Chapter 3), the number of entities in the

lookup table depends on the number of confirmed registered cloud_users. In addition,

cloud_server uses the tag to identify cloud_user based on the information in the lookup

table and to avoid any risks of DoS attacks.

(a)

(b)

Figure 4.3: (a) EUET structure in CSAM-2 with no service assigned to cloud_user;

(b) EUET structure in CSAM-2 with at least one service assigned to cloud_user

 New request includes cloud_user information

 Request confirmation data

 Response to confirmation data

 EUET||Tag, CUID

cloud_servercloud_user

CUID Last SK Last T
Service

request status

CUID Last SK Last T Direct accessible SVIDs list Indirect accessible SVIDs list
Service

request status

44

Then, cloud_server sends the CUID to cloud_user along with the EUET and tag. This

EUET includes the CUID and other information required for other CSAM-2 protocols, as

shown in Fig. 4.3. The EUET is sent to cloud_user but is not saved on cloud_server.

Both participants use a shared secret and a key derivation function in a restricted and

secured environment based on a pre-shared key (PSK) agreement. This agreement process

is similar to those used in WPA2 and UMTS protocols (Southern et al., 2013).

Cloud_server then stores the PSK in the lookup table.

As a result, cloud_user in the registration protocol is registered and activated in

cloud_server. Furthermore, cloud_server sends a EUET to cloud_user. In the following

protocol, cloud_server identifies and authenticates the requester who uses the EUET. It is

simultaneously aware of external cloud-based DoS attacks.

4.2 Identification and Authentication Protocol

This section presents the proposed adaptive-based identification and authentication

protocol. Once again, based on successful completion of module 1, this protocol is similar

to the identification and authentication protocol in CSAM-1 with extended UET structure

to hold extra security information. In this protocol, cloud_server determines whether the

requester is a legitimate cloud_user. It then authenticates the legitimate cloud_user. In

this protocol, cloud_server forces cloud_user to perform a computational process before

cloud_server is involved in any computational power.

As presented in Fig. 4.4, the steps of the adaptive-based identification and authentication

protocol are as follows:

Cloud_user sends an initial session request with the CUID and tag to cloud_server.

Cloud_server prevents requests from the same CUID once the consecutive failures reach

the maximum allowed limit (three) in a short timeframe. Cloud_server identifies the CUID

by searching the lookup table in the database and then comparing the received tag to the

stored tag value in the table. If they are not identical, the request is considered an

illegitimate request; else the CUID is identified by cloud_server. It is to be noted that

45

cloud_server is not required to decrypt the tag until the tag value is validated in the lookup

table.

Figure 4.4: Adaptive-based identification and authentication protocol in CSAM-2

Cloud_server responds to the request by sending a puzzle challenge of value S, sending a

nonce (Rcloud_server), and requesting the EUET from cloud_user. In addition, cloud_server

generates a new tag value and updates the lookup table in the database. The new tag

generation process is repeated each time cloud_server checks for the tag value so that the

refreshment property is achieved in this protocol. Cloud_server then sends the newly

generated tag to cloud_user. To prove the commitment of cloud_user, cloud_server

requests the expected puzzle solution (vector B) along with the EUET and tag from

cloud_user.

Cloud_user computes the puzzle solution (vector B) and sends it along with the S value,

received nonce (Rcloud_server), CUID, and EUET in conjunction with a tag to cloud_server.

Session request, CUID, Tag

 S, Rcloud_server, Tag, request EUET

CUID, EUET||Tag, vector B, S, Rcloud_server

 E(SK, PSK), EUET||Tag

cloud_servercloud_user

EUET||Tag

46

Cloud_server validates the received tag and CUID by checking the lookup table.

Cloud_server then verifies whether vector B is identical to the result obtained by secure

hashing (CUID, Rcloud_server, MK). The MK size should not be short to avoid any possibility

of using a brute-force attack to guess the MK. Once vector B is verified, cloud_server

achieves the goal of identifying the legitimate cloud_user. On the other hand, if vector B

is not verified, the request is rejected and is assumed to be a forgery. Cloud_server then

decrypts the EUET and checks the CUID registered in the EUET. Furthermore,

cloud_server issues a new tag, as mentioned in the second step of this protocol.

After cloud_server authenticates cloud_user, both the participants agree to the session SK

for future communications; therefore, cloud_server creates the SK and encrypts it using

the stored PSK. It then adds it and the current T to the EUET, and it sends this modified

EUET in conjunction with the new tag and encrypted SK to cloud_user.

To confirm receipt, cloud_user encrypts the current T using the SK and returns it and the

received EUET along with the received tag to cloud_server.

Cloud_server validates the received tag and EUET. It then decrypts the EUET to obtain

the registered SK, which is then used to decrypt T. To prevent a DoS attack on storage

space, the EUET is not stored in cloud_server. In addition, in this case, T is used instead

of the nonce because cloud_server can verify the operation time of cloud_user.

Furthermore, cloud_server can handle SK’s refreshment property for future

communications by simply adding the new SK information to the EUET and by re-applying

the last three steps of this protocol.

Thus, cloud_server in the identification and authentication protocol can prevent external

DoS attacks. Additionally, it can identify and authenticate the legitimate cloud_user.

Therefore, cloud_user in the next protocol can request available services from the cloud

service provider.

4.3 Service Management and Allocation Protocol

The main goals of the service management and allocation protocol are to enable

cloud_server to allocate to cloud_user the requested available service(s), and to prevent

47

risks of internal cloud-based DoS attacks. To achieve these goals, a service allocation

protocol is herein proposed. In this protocol, cloud_server can organize multiple requests

for a specific service so that deadlocks cannot occur, which thus protects the services from

internal cloud-based DoS attacks.

Figure 4.5: Service allocation protocol in CSAM-2

As depicted in Fig. 4.5, cloud_user sends the CUID and EUET along with the tag to

cloud_server and requests available services (SVIDs). Cloud_server validates the

received CUID by first comparing the received tag with the tag value registered in the

lookup table. Upon successful validation, cloud_server decrypts the EUET, validates the

CUID, and adds the “service requested” status to the EUET. Cloud_server then checks for

SVIDs that are available in the system and sends a list of available SVIDs to cloud_user

along with the EUET and a newly generated tag. Cloud_user then sends a request for a

selected SVID from the received list along with the CUID, EUET, and tag. Cloud_server

denies any request that includes an invalid tag by comparing the received tag with the one

in the lookup table. If the CUID is validated, the requested service might lead to a deadlock

problem because many users have multiple accesses to the requested service or other

E(ACL, Kv_service_host), EUET||Tagv_service_host

CUID, SVID, EUET||Tag

 CUID, EUET||Tag

List of available services (SVIDs), EUET||Tag

cloud_servercloud_user

cloud_server

considers

deadlock

algorithm

48

services through the requested service. Thus, to avoid a deadlock problem and to prevent

an internal DoS attack due to a huge number of forged requests for a specific service,

cloud_server controls the service allocation process by applying a deadlock avoidance

strategy. If a request leads to a deadlock problem—for example, by flooding services with

false requests—the request is denied. Hence, cloud_server prevents internal cloud-based

DoS attacks.

Figure 4.6: (a) Service request algorithm for the user; (b) safety algorithm

49

One such approach is the banker’s algorithm (Dijkstra, 2002), which can be implemented

so that the “requested services” replace the “current processes.” Moreover, the “required

resources” are the directly and indirectly accessible services that cloud_user requires, as

shown in the algorithm in Fig. 4.6.

Figure 4.7: ACL structure

If the service can be allocated to cloud_user based on the result of the deadlock avoidance

process, cloud_server issues an ACL that is encrypted using the secret key of the host of

the given service. It adds this additional information to the EUET. The ACL contains

information, such as the CUID, requested SVID with permissions, and all other SVIDs that

are accessible through the requested service with permissions, as shown in Fig. 4.7.

Cloud_server also issues a new tag to access the virtual service host (v_service_host).

However, this tag structure is different from the one used earlier because it is used to

identify cloud_user to v_service_host. The new tag considers timestamp T and the CUID,

both encrypted by the secret key of v_service_host. In this case, cloud_server sends the

encrypted ACL along with modified EUET in conjunction with newly generated

Tagv_service_host to cloud_user. Hence, the goal of allocating cloud_user to the requested

service is achieved. At the end of this protocol, cloud_user has all the required information

to access the requested service after a lightweight authentication process.

CUID

SVIDs

SVIDs that are directly accessible with permission

SVIDs

Related SVIDs that are indirectly accessible with permission

50

4.4 Host Session and Authentication Protocol

The main goal of the host session and authentication protocol is to authenticate cloud_user

by the host of the requested service in a lightweight authentication process. In this protocol,

cloud_user internally communicates with the required virtual service host. Consequently,

cloud_user must be authenticated by v_service_host before accessing the requested

service; however, this authentication is a lightweight authentication process to ensure that

the requester is a legitimately authenticated cloud_user. As shown in Fig. 4.8, the service

host lightweight authentication protocol functions as follows:

Figure 4.8: Service host lightweight authentication protocol in CSAM-2

Cloud_user sends a request that includes the CUID and Tagv_service_host to v_service_host.

V_service_host maintains its own lookup table based on the received CUID and

Tagv_service_host. V_service_host then validates cloud_user by decrypting the received tag

and comparing the CUID in Tagv_service_host with the received CUID. This authentication is

a lightweight process because cloud_user is already authenticated by cloud_server. Once

the CUID is identified, v_service_host acknowledges the request. Cloud_user then sends

the encrypted ACL to v_service_host to decrypt it. Next, v_service_host allows

CUID, Tagv_service_host

Acknowledge the request

v_service_hostcloud_user

E(ACL, Kv_service_host)

51

cloud_user to access the requested service based on the registered information in the ACL.

Hence, cloud_user is authenticated by the host of the requested service.

4.5 Discussion

A second module of a cloud-based secure authentication protocol suite is proposed in this

chapter to add extra layers of protections to securely authenticate and identify a cloud user

and prevent internal risks of DoS attacks. This protocol suite consists of four protocols to

prevent the risks of DoS attacks in multiple cloud-computing service models. We have

combined the EUET application technique, client puzzle problem, and deadlock avoidance

algorithm to prevent security threats that allow attackers to perform cloud-based DoS

attacks.

The proposed CSAM-2 protocol suite integrates several layers of protections. The protocol

suite is designed to identify and authenticate legitimate user requests. Moreover, the

protocol suite is developed to prevent external DoS attackers based on the theory of

computational complexity. Therefore, a cloud-computing server can adjust the difficulty

level of the client puzzle based on the sensitivity of the requested service(s). It thereby

protects the cloud server from external DoS attackers. Additionally, the deadlock

avoidance algorithm is implemented to allocate the requested service(s) to the

authenticated cloud user with the ability to detect threats of internal DoS attacks.

Furthermore, the CSAM-2 protocol suite is developed to enable the host of the requested

service to authenticate the cloud user.

The proposed CSAM-2 protocol suite is practically applicable to different cloud computing

service models. This is because the protocol is developed based on basic software and

hardware components of both participants. The proposed CSAM-2 protocol is reliable on

account of two key reasons. First, the processes of the protocol suite do not overload the

cloud resources. Second, the protocol suite controls access to the cloud service(s) by

implementing the deadlock problem with no cache process. Therefore, the cloud server

does not allocate the cloud user to the requested service(s) if the number of maximum

allowed concurrent accesses to these service(s) is achieved. Furthermore, the maximum

number of allowed accesses to the cloud services is adaptive based on the properties of

52

these services. As a result, the CSAM-2 protocol suite is scalable because it can be

expandable based on the size of the cloud-computing system without affecting the cloud

computing resources.

53

Chapter 5

5 Security and Performance Validation

In this chapter, the achievement of the security requirements of the authentication protocol

by both CSA protocol modules is verified. In addition, the performance of the protocols is

assessed. The security validation includes the assessment of the CSA protocols via the

Meadows cost-based model approach. The formal verification of the authentication

processes of the protocols is performed via SVO logic. In terms of performance, the

knapsack puzzle technique used in the protocol design is validated. Furthermore, the

implementation of Google’s OAuth 2.0 for web server applications is evaluated. Finally,

the performance of highly computational processes of CSA protocols is evaluated. The

assessment results are compared with the evaluation outcomes of Google’s OAuth 2.0

implementation for web server applications.

5.1 Security Validation

In this section, both modules of CSA protocol suites are analyzed and assessed in terms of

their security implementations. The assessment of the CSA protocols entails an evaluation

of the protocol’s efficiency against DoS attacks by applying a cost-based model approach.

In addition, the security effectiveness of the proposed authentication protocols via SVO

logic is analyzed. This analysis proves that the proposed authentication protocols in CSA

achieve the authentication requirements of an authentication protocol for cloud-computing

systems.

5.1.1 Security Validation of the CSA Protocol Suite via a Cost-
Based Model Approach

The Meadows cost-based model is an approach to analyze the computation process of an

authentication protocol when it comes to its vulnerability to DoS attacks (Meadows, 2001).

This technique is designed to avoid DoS attacks through the authentication operation. This

cost-based model relies on the costs of the exhausted resources of the protocol contributors.

The cost-based model approach practically demonstrates the ability of the protocol to avoid

DoS attacks. In this approach, the computation cost is described as the overall resource

54

consumption cost of the user and the server when they become involved in the

authentication process. The cost is computed throughout the authentication process prior

to the process of detecting a DoS attacker, who is then prevented from completing the

authentication process. The user’s total cost is the total cost of every single operation in the

authentication process—from the user’s component until the completion of the

authentication process. Additionally, the servers’ total costs are the total costs of every

operation throughout the authentication process until either the user is authenticated as

legitimate or the attacker is detected. The following categorizations are proposed by

Meadows (Meadows, 2001) for the cost of an operation: expensive, medium, and

inexpensive. The Meadows approach considers that the signature, a check signature, and

the exponential operations that are executed throughout the authentication process are

expensive. The decryption, encryption, and pre-calculated exponential value operations

have medium costs. Every other operation is inexpensive.

As presented in Table 5.1, based on the cost-based model approach, the operation cost of

cloud_user for the CSA protocol is categorized as expensive, particularly when

cloud_user solves the puzzle. The other operations of cloud_user are listed in the medium

or inexpensive categories. However, the maximum operation costs of cloud_server,

including the pre-calculation and decryption operations, are in the medium category. As a

result, the CSA protocol suite is an effective protocol against DoS attacks, in which the

user consumption cost is higher than the consumption cost of the cloud service provider

during the authentication process.

55

Table 5.1: Validation of the CSA protocol suite via a cost-based model approach

CSA protocol

Cloud_user Cloud_server

Operation
Cost

Category
Operation

Cost

Category

Identification and

authentication

protocol in CSAM-1

and CSAM-2

Sends the initial request Inexpensive

Replies directly to the request

via secure hashing of the

received values to obtain the

puzzle element and asks the

cloud_user for the UET

Inexpensive-

Medium

Solves the puzzle until the

result is obtained. Then,

sends the result and the

UET to cloud_server

Expensive
Verifies the received

elements. Encrypts the SK
Medium

Decrypts the SK. Encrypts

the timestamp
Medium

Decrypts the UET. Decrypts

the timestamp
Medium

Service allocation

protocol in CSAM-2

Sends the initial request. Inexpensive

Verifies the request. Replies

with a list of available

services

Inexpensive

Requests a service Inexpensive
Considered a deadlock

algorithm. Encrypts the ACL
Medium

Service host

lightweight

authentication

protocol in CSAM-2

Sends the initial request Inexpensive Acknowledges the request Inexpensive

Sends the received

encrypted ACL
Inexpensive Decrypts the ACL Medium

56

5.1.2 Security Validation and Formal Verification of the CSA
Protocol Suite via SVO Logic

Logic-based formal approaches typically are used to analyze the security properties of

cryptographic protocols. These approaches use notations and axioms to study the beliefs

of protocol participants. The consequences of these beliefs are analyzed to determine

whether the protocol’s security goals have been achieved. SVO logic (P. F. Syverson &

Van Oorschot, 1994) is our tool to analyze CSA protocols.

In the proposed CSA protocol suite, the authentication processes are performed in the last

three steps of the adaptive-based identification and authentication protocol in both

modules, CSAM-1 and CSAM-2, as shown in Fig. 5.1. Furthermore, the validation is

performed in the service host authentication protocol in CSAM-2, as shown in Fig. 5.2

further below. In addition, Table 5.2 shows the notations and their descriptions that are

used in the SVO logic.

57

Table 5.2: Notations of the SVO

Notation Description

P believes X P can take X as true

P received X P has received a message containing X

P said X P believes X when P sent it

P says X P has said X

P has X X is initially available to P, freshly generated by P, or received by P

P controls X P has a jurisdiction on X

fresh(X) X is fresh, and it has not been previously sent

P
 𝑘
↔ Q

P and Q communicate with each other by a good shared key, k

PKψ(P, k) k is a public encryption key of P. Only P can read messages encrypted by k

PKσ(P, k) k is a public signature key of P. Key k verifies that the messages signed by the

corresponding private key k-1 are from P

PKδ(P, k) k is a public key agreement of P. A Diffie-Hellman key formed with k is shared

with P

{X}k X is encrypted under key k

⌊𝑋⌋k X is signed with key k

<X>*P Received message X is unrecognized by P

The two inference rules of SVO are outlined below.

Modus Ponens:

𝜑 𝜑 → 𝜓

𝜓

58

The rule is that whenever the instance φ and the instance φ → ψ (i.e. φ implies ψ) appear

by themselves on lines of a proof then ψ can validly be placed on a subsequent line.

Necessitation:

⊢ 𝜑

⊢ 𝑃 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠 𝜑

where Г ⊢ 𝜑 means that 𝜑 can be derived from the set of formulas, Г. Using the above

rules, “⊢ 𝜑” means that 𝜑 is a theorem.

The axioms of SVO (P. F. Syverson & Van Oorschot, 1994) are outlined below. We assume

that the reader is got familiar with the notations that described in Table 5.2.

Belief Axioms:

A1. (P believes 𝜑 ^ P believes (𝜑 → 𝜓)) → P believes 𝜓

A2. P believes 𝜑 → 𝜑

A3. P believes 𝜑 → 𝑃 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠 (𝑃 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠 𝜑)

Source Association Axioms:

A4. (P
𝑘
↔ Q ^ R received {X from Q}k) → (Q said X ^ Q has X)

A5. (PKσ (Q,k) ^ R received X ^ SV(X, k, Y)) → Q said Y

Key Agreement Axioms:

A6. (PKδ (P, kP) ^ PKδ (Q, kQ)) → 𝑃
F0(kP,kQ)
↔ 𝑄

A7. 𝜑 ≡ 𝜑 [F0(k, kꞋ) / F0(k
Ꞌ, k)]

Receiving Axioms:

A8. P received (X1, ... Xn) → P received Xi for i = 1, ..., n

59

A9. (P received {X}k+ ^ P has k¯) → P received X

A10. (P received ⌊𝑋⌋k) → P received X

Possession Axioms:

A11. P received X → P has X

A12. P has (X1, ... Xn) → P has Xi for i = 1, ..., n

A13. (P has X1 ^ . . . ^ P has Xn) → P has F(X1, ... Xn)

Comprehension Axiom:

A14. P believes (P has F(X)) → P believes (P has X)

Saying Axioms:

A15. P said (X1, ... Xn) → P said Xi ^ P has Xi for i=1,..., n

A16. P says (X1, ..., Xn) → (P said (X1, ... Xn) ^ P says Xi) for i = 1, ..., n

Freshness Axioms:

A17. fresh (Xi) → fresh (X1, ..., Xn) for i = 1, ..., n

A18. fresh (X1, ..., Xn) → fresh F(X1, ..., Xn)

Jurisdiction and Nonce-Verification Axioms:

A19. (P controls φ ^ P says φ) → φ

A20. (fresh (X) ^ P said X) → P says X

Symmetric Goodness Axiom:

A21. P
𝑘
↔Q ≡ Q

𝑘
↔P

60

Figure 5.1: Authentication processes of CSAM-1 and CSAM-2

To formally analyze the authentication process in CSAM-1 and CSAM-2 via SVO logic,

as shown in Fig. 5.1, it is important to identify the goal of the protocol. In this protocol, the

goal is stated as follows:

cloud_server authenticates the cloud_user, so that

cloud_server believes (cloud_user says T)

where PSK is a pre-shared key, and SK is a session key.

The protocol analysis is presented in five steps that are the initial state assumption, received

message assumption, comprehension assumption, interpretation assumption, and

derivation.

1) Initial state assumption

The initial state assumption includes all initial statuses of the protocol.

I1. cloud_user believes cloud_user
 𝑃𝑆𝐾
↔ cloud_server

I2. cloud_server believes cloud_user
 𝑃𝑆𝐾
↔ cloud_server

CUID, UET||Tag, vector B, S, Rcloud_server

 E(SK, PSK), UET||Tag

 UET||Tag, E(T, SK)

cloud_servercloud_user

61

I3. cloud_user believes (cloud_server controls SK)

I4. cloud_server believes fresh(SK)

I5. cloud_user believes fresh(SK)

2) Received message assumption

The received message assumption step indicates what messages each party receives.

R1. cloud_user received {SK} PSK

R2. cloud_server received {T}SK

3) Comprehension assumption

This step states what receivers believe and indicates what parts of the received message are

unknown.

C1. cloud_user believes (cloud_user received {SK}PSK)

C2. cloud_server believes (cloud_server received {T}<SK>*cloud_server)

4) Interpretation assumption

The interpretation assumption step shows what the sender intends by sending the message.

P1. cloud_user believes (cloud_user received {SK}PSK → cloud_user received {SK ^

fresh(SK) }PSK)

5) Derivation

The derivation step derives the analysis goal by the previous assumptions.

D1. cloud_user believes cloud_user received {SK ^ fresh(SK)}PSK

By applying Modus Ponens, C1, P1.

D2. cloud_user believes (cloud_server said SK ^ cloud_server has SK)

62

By applying the Source Association (A4), D1, I1, I2, and Belief Axiom.

D3. cloud_user
 𝑆𝐾
↔ cloud_server

By applying the Receiving (A9), R1, D2, and Belief Axioms.

D3 shows that cloud_user and cloud_server communicate with each other by a good

shared key (SK).

D4. cloud_server believes (cloud_user said T ^ cloud_user has T)

By applying the Source Association (A4), C2, D3 and Belief Axioms.

D5. cloud_server believes (cloud_user said T)

By applying the Saying (A15), D4, and Belief Axioms.

D6. cloud_server believes (cloud_user says T)

By applying the Jurisdiction (A20), I5, D5 and Belief Axioms.

D6 shows that our analysis goal, which aims to prove that cloud_server authenticates

cloud_user, has been achieved by applying the rules of SVO logic.

Figure 5.2: Additional authentication processes of CSAM-2

CUID, Tagv_service_host

Acknowledge the request

v_service_hostcloud_user

E(ACL, Kv_service_host)

63

To formally analyze the additional authentication process in CSAM-2 via SVO logic, as

shown in Fig. 5.2, the goal of the protocol is outlined below.

v_service_host authenticates cloud_user by believing in the received message from

cloud_user, so that:

v_service_host believes (cloud_server says ACL)

where K is a Kv_service_host.

Once again, the protocol analysis is presented in five steps that are the initial state

assumption, received message assumption, comprehension assumption, interpretation

assumption, and derivation.

1) Initial state assumption

The initial state assumption includes all initial statuses of the protocol.

I1. v_service_host believes (cloud_server
 𝐾
↔ v_service_host)

I2. cloud_server believes fresh(ACL)

2) Received message assumption

The received message assumption step indicates what messages each party receives.

R1. v_service_host received {ACL}K

3) Comprehension assumption

This step states what receivers believe and indicates what parts of the received message are

unknown.

C1. v_service_host believes (v_service_host received {ACL}<K>*cloud_user)

4) Interpretation assumption

The interpretation assumption step shows what the sender intends by sending the message.

64

P1. v_service_host believes (v_service_host received {ACL}<K>*cloud_user →

v_service_host received {ACL ^ fresh(ACL) }K)

5) Derivation

The derivation step derives the analysis goal by the previous assumptions.

D1. v_service_host believes v_service_host received {ACL ^ fresh(ACL)}K

By applying Modus Ponens, C1, P1.

D2. v_service_host believes (cloud_server said ACL ^ cloud_server has ACL)

By applying the Source Association (A4), D1, I1 and Belief Axioms.

D3. v_service_host believes (cloud_server said ACL)

By applying the Saying (A15), D2 and Belief Axioms.

D4. v_service_host believes (cloud_server says ACL)

By applying the Jurisdiction (A20), I2, D1, D3 and Belief Axioms.

D4 shows that our analysis goal, which is intended to prove that v_service_host

authenticates cloud_user, has been achieved by applying the rules of SVO logic.

5.2 Performance Validation

In this section, the performance of the knapsack puzzle problem is analyzed via dynamic

programming. This analysis is performed to determine the difficulty levels of the puzzle so

that the challenge technique can be adjusted on the basis of the analysis results.

Furthermore, the implementation of Google’s OAuth 2.0 for web server applications is

evaluated. This indicates that the implementation of Google’s OAuth 2.0 protocol may lead

to a security flaw that exploits low- to medium-size web servers. This threat may occur by

exhausting the storage resources of the web server and by rendering its applications

unavailable. Finally, the effects of the high computation processes of the CSA protocols

are evaluated. These processes include the process of generating random number,

65

encrypting plaintext by a well-known key, decrypting ciphertext by a well-known key, and

the hashing process on the cloud server. A comparative analysis of the evaluation results

and those of Google’s OAuth 2.0 implementation for web server applications is

additionally presented.

5.2.1 Knapsack Puzzle Performance Validation

An experiment was conducted to analyze the time complexity of the subset sum (knapsack)

problem. The subset sum can be briefly described as follows. Assume a set of positive

integers A of size n and a positive integer value S. Let us determine whether any non-empty

subset of size m adds up to S. For example, let A be (13, 54, 28, 73, 3, 36), n = 6, and S =

89. It is obvious that for the subset (13, 73, 3), m = 3 solves the problem because their

summation is equal to 89. In other words, let us find a binary vector B such that A . B = S

solves the problem. In this example, B is the vector (1, 0, 0, 1, 1, 0); hence, A . B = 13 +

73 + 3, which is 89.

It should be noted that, in the identification and authentication protocols, vector B is

generated as the output of the hash function (see Chapters 3.2 and 4.2).

It was mentioned in Chapter 3.2 that the values of n and m are key factors that play a

significant role in the complexity of the subset sum problem. In this experiment, different

values of n and m are chosen for which the time complexity of the subset sum problem is

analyzed. The values of n are 128, 256, and 512, while the values of m range from 1 to 64.

The dynamic programming algorithm is used to solve the puzzle; it is coded in C# and runs

on a quad-core desktop computer with the Windows 8 64-bit operating system, a Core i7-

4770 CPU running at 3.4 GHz, and 32 GB of RAM.

Our experiment indicates that the algorithm solves the puzzle in less than 8 seconds with n

= 128 and for all values of m. When n = 256, and for all values of m, the algorithm solves

the puzzle in less than 12 seconds. Finally, when n = 512 and for all values of m, the

algorithm solves the puzzle in less than 24 seconds. The detailed execution times when n

= 512 are shown by the graph in Fig. 5.3. The graph indicates that the puzzle is solved in

approximately 10 seconds when m is between 25 and 30. When m is between 55 and 60,

66

the puzzle is solved in approximately 20 seconds of the execution time. It is also to be

noted that the algorithm hangs on account of the full consumption of system memory when

n = 512 and m is chosen to be higher than 64; i.e., the system resources are exhausted.

Figure 5.3: Response times of the requester (in seconds) with various numbers of

combination items

Based on these results and the corresponding system resource consumption, the

computation costs of solving the subset sum problem can be categorized into three main

categories—inexpensive, medium and expensive—as shown in Fig. 5.3.

According to the findings of the surveys conducted by Nielsen (Nielsen, 1993), 15 to 20

seconds is an acceptable response time for maintaining the user’s attention on a given

application. Therefore, choosing n = 512 and m = 55 is a good configuration of the subset

sum problem. This configuration enables the legitimate user to perform expensive

computations that are acceptable in terms of the system response time (as per the Nielsen

study) especially in terms of his/her initial request.

It is worth mentioning that other researchers (Tritilanunt, Boyd, Foo, & Nieto, 2007) have

shown that the L3 algorithm developed by Lenstra et al. (Lenstra, Lenstra Jr., & Lovász,

1982) can solve the subset sum problem of n = 100 and m = 80 in 2,700 seconds. These

67

researchers have contended that this configuration makes the puzzle difficult to solve.

However, this is not true, especially when the dynamic programming algorithm is instead

used. Therefore, the L3 algorithm is not recommended for use in the CSA protocol suite.

It seems reasonable to conclude that the difficulty level of the subset sum (knapsack)

problem, and, hence, the cost-based approach, can be adaptively realized by adjusting the

values of n and m.

5.2.2 Performance Evaluation of the Google OAuth 2.0 Protocol
Implementation

The data storage process in the authentication protocol can cause security breaches in the

web servers. That is, it can be vulnerable to security threats, such as DoS attacks. In the

OAuth 2.0 implementation described in Chapter 2.3.2, web servers store refresh tokens in

their storage devices. They employ these tokens unless the individual user asks for them to

be revoked. In this case, the web server storage capacity may be exhausted by many

requests asking for a refresh token to be stored. As a result, the web server may be unable

to execute legitimate requests, even though it strictly provides only one refresh token to

each individual user. Therefore, this experiment evaluates the risk of implementing

Google’s OAuth 2.0 protocol for web server applications on cloud-based web servers that

have limited resources.

To evaluate the risk of storing data during the authentication process in a cloud-based web

server, an experiment was conducted using the GreenCloud simulator tool developed by

Kliazovich et al. (Kliazovich, Bouvry, & Khan, 2012) and based on the NS2 network

simulator tool (Fall & Varadhan, 2007).

In the experiment, the actual size of the refresh tokens of several vendors was first

determined. Yahoo’s documentation for OAuth 2.0 for web server applications (Google

Developers, 2014) states that the approximate size of the refresh token is 52 bytes. Both

Twitter’s (Twitter, 2015) and Google’s documentation (Yahoo, 2015) for OAuth 2.0

specify approximately 42 bytes for the refresh token. As a result, the average size of the

refresh token in this experiment was set to 48 bytes.

68

In this experiment, the main server was configured to manage a single VM as a web server.

The resources of the main server are typically shared by other VMs. Therefore, the VM’s

specifications are generally a quad-core CPU processor, 4 GB of RAM, and a 100-GB hard

disk drive. A reasonable number of stored refresh tokens for this VM is 1,000,000 stored

refresh tokens out of 1,500,000 service users, as in a real business case (LoginRadius, n.d.).

This experiment evaluated the performance of the VM, specifically its load, memory load,

and storage load. It is supposed that, if execution of the VM’s tasks requires over 50% of

the load, the resources of the VM are being exhausted.

Figure 5.4: VM load with multiple requests per second

69

Figure 5.5: VM memory load with multiple requests per second

Figure 5.6: VM storage load with multiple requests per second

Figs. 5.4, 5.5, and 5.6 present the experimental results for the VM’s load, memory load,

and storage load, respectively. It is noted that the VM’s storage load begins to noticeably

increase at approximately 300 to 500 requests per second. Real web servers can execute up

70

to 870 to 1,230 requests per second in extreme situations, depending on the specifications

of the web server (Parallels, 2010). It should also be noted that the storage size in this

experiment was expandable because it depended on two factors: the number of stored

refresh tokens, and the size of the refresh token.

The experimental results indicate that storing data during the user authentication process

leads to security flaws in the web servers that store these data. Therefore, the CSA protocol

suite avoids storing new records during the authentication processes.

To validate the effectiveness of the CSA protocol suite against risks of DoS attacks during

the authentication processes, Section 5.2.3 presents the performance of the most expensive

computation processes of CSA protocols on the cloud server simultaneously performed

with multiple tasks.

5.2.3 Performance Validation of the CSA Protocol Suite

Based on our proposed CSA protocol suite design, the cloud server must proceed with

many tasks. This experiment evaluated the effect of the most expensive computation

processes of the CSA protocol, including generating random number (consider Linux-

based random number generation), encrypting plaintext by a well-known key (consider

AES256 encryption), decrypting ciphertext by a well-known key (consider AES256

decryption), and the hashing process (consider SHA2-512) on the cloud server. This

experiment simulated these tasks using the GreenCloud simulation tool by configuring the

cloud-server specification to be similar to the specification of a virtual web server in our

first experiment. This similarity served to compare the performance of our proposed CSA

protocol with the currently used cloud-computing authorization protocol. In this

experiment, the effects of the most computationally expensive processes of the CSA

protocol on VM load, memory load, and storage load when executing 300 to 500 requests

per second were evaluated.

To obtain the parameters of the CSA protocol processes (“tasks” in GreenCloud), and to

use them in the simulation tool, a real VM with four cores, 4 GB of RAM, and a 100-GB

hard disk drive was implemented. A Linux operating system was installed on this VM to

71

benchmark the tasks and obtain their parameters. The task parameters in the simulation

tool included the task’s million instructions per second (MIPS), input size, output size, and

storage size. To measure the task’s MIPS, Linux provides a CPU speed metric called

BogoMIPS. Therefore, after the task was executed in Linux, the MIPS of the task was

computed by multiplying the used CPU BogoMIPS by the task’s execution time (Pacini,

Ribero, Mateos, Mirasso, & Garino, 2012). From that point, the information of the task’s

file size before and after execution was gathered. Finally, the size of the task’s storage that

was used during the task execution, such as the key size of the AES-256 encryption task,

was obtained.

After executing the four tasks in Linux, the task parameters were computed, as shown in

Table 5.3. These collected parameters were then used in the GreenCloud simulation tool.

Table 5.3: Task parameters obtained from the Linux benchmark experiment

Task type
AES-256

encryption

AES-256

decryption
SHA-512 hashing

Generating

random number

MIPS 3,989 3,826 3,663 3,582

Input size 10,000 bytes 10,016 bytes 10,000 bytes 10 bytes

Output size 10,016 bytes 10,000 bytes 149 bytes 5,121 bytes

Storage size 48 bytes 48 bytes 10 bytes 10 bytes

The charts in Figs. 5.7 to 5.18 present our experimental results after simulating the four

different tasks: AES-256 encryption, AES-256 decryption, SHA2-512 hashing, and

random number generation.

72

Figure 5.7: AES encryption VM load

Figure 5.8: AES encryption VM memory load

73

Figure 5.9: AES encryption VM storage load

Figure 5.10: AES decryption VM load

74

Figure 5.11: AES decryption VM memory load

Figure 5.12: AES decryption VM storage load

75

Figure 5.13: SHA-512 hashing VM load

Figure 5.14: SHA-512 hashing VM memory load

76

Figure 5.15: SHA-512 hashing VM storage load

Figure 5.16: Generating random number VM load

77

Figure 5.17: Generating random number VM memory load

Figure 5.18: Generating random number VM storage load

From that point, the effect of the computationally expensive tasks of our proposed CSA

protocol on the VM were compared to the effects of implementing the OAuth2.0

authentication protocol for the web server tasks simulated in our first experiment.

78

Figure 5.19: Comparison of VM load (the same graph is represented in tabular form

in appendix A – Table A.1)

Figure 5.20: Comparison of VM memory load (the same graph is represented in

tabular form in appendix A – Table A.2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 lo
ad

Number of requests/second

Token storage AES Encryption AES Decryption SHA512 hashing Generating random number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 m
e

m
o

ry
 lo

ad

Number of requests/second

Token storage AES Encryption AES Decryption SHA512 hashing Generating random number

79

Figure 5.21: Comparison of VM storage load (the same graph is represented in

tabular form in appendix A – Table A.3)

As shown in Figs. 5.19, 5.20, and 5.21, significant differences existed in the VM storage

load of the proposed CSA protocol tasks compared with the simulated implementation of

OAuth2.0. These differences were due to the immense amount of stored tokens in the web

server that were used in the authentication process. Therefore, the web server could be

vulnerable to DoS attacks on account of its storing of data during the authentication

processes; this issue was avoided in the proposed CSA protocol design.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 s
to

ra
ge

 lo
ad

Number of requests/second

Token storage AES Encryption AES Decryption SHA512 hashing Generating random number

80

Chapter 6

6 Conclusions and Future Work

The use of software systems in a cloud-computing environment is increasingly common.

DoS attacks are currently a major threat to the availability of cloud services. For each

defense mechanism that has been developed against a DoS attack, an improved attack

appears. The use of defense mechanisms from conventional networks to prevent DoS

attacks in cloud-computing systems is not always efficient. Therefore, a cloud-based secure

authentication (CSA) protocol suite for different cloud-computing deployment models was

herein proposed. The authentication protocol identifies cloud users and securely

authenticates them. Furthermore, it functions as a strong shield against risks of external

and internal DoS attacks.

6.1 Summary of Contributions

The main goal of this thesis is designing and developing a novel cloud-based authentication

protocol suite to securely authenticate the cloud user and to prevent risks of external and

internal DoS attacks. The objectives that support our goal are achieved through the

following tasks:

1. Investigate DoS attacks in conventional networks and identify DoS attacks in

cloud-computing systems.

 The risks of DoS attacks were investigated. In addition, existing types of DoS

attacks in conventional network systems and their current defense mechanisms

were investigated (Chapter 2).

 The ability of cloud-computing systems to detect DoS attacks was also

examined. Furthermore, we identified a taxonomy of existing DoS attacks and

defenses on cloud-computing systems (Chapter 2).

2. Investigate, propose, and validate a protocol suite that defends against

external DoS attacks.

81

 An investigation of the risks of DoS attacks in authentication protocols was

presented (Chapter 2).

 The first module of a developed cloud-based secure authentication protocol

(CSAM-1) that works against external cloud-based DoS attacks was proposed.

This protocol can be implemented on private and community deployment

models of the cloud system. To avoid security flaws that can produce DoS

vulnerabilities, multiple techniques—including the client puzzle problem and

unique encryption text (UET) application—were integrated into the design of

the proposed authentication protocol. The CSAM-1 protocol suite depends on

the computational complexity theory; therefore, the complexity level of the

puzzle solution is adjustable. This theory was implemented in the protocol

design to minimize the computation costs of cloud resources during the

identification process. Moreover, it makes the computation costs of the cloud

user’s resources adaptable based on the sensitivity of the requested service.

Therefore, the device’s resources of the DoS attacker are involved in high

computation processes when the attacker attempts to initiate a massive number

of attacking requests. The CSAM-1 protocol suite was developed based on

basic hardware and software requirements for cloud users and servers. Thus,

the protocol is practically applicable in SaaS and PaaS service models (Chapter

3).

 The results of a validation indicated that the CSAM-1 protocol is a secure

authentication protocol and is invulnerable to DoS attacks. In addition, an

experimental validation of the client-puzzle problem determined that the

challenge technique can be adjusted to implement different difficulty levels of

the puzzle (Chapter 5).

3. Investigate, develop, and validate a protocol suite to defend against internal

DoS attacks.

82

 The risks of internal cloud-based DoS attacks were investigated. Furthermore,

an existing authorization protocol in cloud computing was examined (Chapter

2).

 A second module of the cloud-based secure authentication protocol (CSAM-2)

that defends against internal DoS attacks was proposed. This protocol can be

implemented on public and hybrid deployment models of the cloud system.

Multiple techniques were integrated into the design of the CSAM-2 protocols,

such as the client puzzle problem, extended unique encryption text (EUET)

application, and deadlock avoidance algorithms, to prevent security flaws that

may incur DoS attacks. The design of the proposed CSAM-2 protocol

implements a deadlock avoidance algorithm to allocate the authenticated cloud

user to his/her requested service with avoidance of risks of internal cloud-based

DoS attacks. Additionally, in the CSAM-2 protocol suite design, the host of the

requested service authenticates the cloud user in a lightweight authentication

process. The CSAM-2 protocol suite was developed based on basic hardware

and software requirements for protocol participants. Thus, the protocol is

practically applicable in multiple cloud service models, specifically, SaaS,

PaaS, and IaaS (Chapter 4).

 The experimental validation of the CSAM-2 protocol suite indicated that the

CSAM-2 protocol is a secure authentication protocol that is lightweight,

reliable, and scalable. The reliability of the protocol is based on the fact that the

deadlock avoidance algorithm was implemented without cache processing. In

addition, the cloud resources are not overloaded when performing high

computation processes of the protocol. The scalability of the protocol is

attributed to the fact that the maximum accessibility number of each service is

adjustable based on the cloud service properties. Thus, the protocol is

expandable with the size of the cloud system without affecting the cloud

resources (Chapter 5).

83

6.2 Future Work

This study examines the ability of a system to detect DoS attacks during authentication

processes through different cloud-computing service models. The proposed future work

will address the following key aspects of this research topic.

 The proposed work in this research considers using the service allocation technique

to allocate requested services to users while preventing the risk of internal cloud-

based DoS attacks. However, this research does not consider the implementation of

existing resource-allocation techniques, such as allocating services to a specific or

the nearest data center in the cloud computing system. Future work should consider

the integration of the resource-allocation techniques with existing service allocation

technique in this research.

 In the design of authentication and identification protocol, the time threshold

between multiple consecutive attempts to prevent further requests from the same

user is an open research area. Further statistical research is needed to determine the

acceptable time threshold.

 The present research does not consider existing implementations of software or

hardware firewalls or intrusion detection systems (IDS). Conducting such research

with existing firewalls and IDSs remains an open research area that future work

should address.

84

References

Arora, K., Kumar, K., & Sachdeva, M. (2011). Impact analysis of recent DDoS attacks.

International Journal on Computer Science & Engineering, 3(2), 877–884.

Boyd, R. (2012). Getting Started with OAuth 2.0. Sebastopol, CA: O’Reilly Media.

Burrows, M., Abadi, M., & Needham, R. M. (1989). A Logic of Authentication.

Proceedings of the Royal Society of London. Series A, Mathematical and Physical

Sciences, 426(1871), 233–271. http://doi.org/10.1098/rspa.1989.0125

Choudhury, A. J., Kumar, P., Sain, M., Lim, H., & Jae-Lee, H. (2011). A Strong User

Authentication Framework for Cloud Computing. In IEEE Asia-Pacific Services

Computing Conference (pp. 110–115). IEEE.

http://doi.org/10.1109/APSCC.2011.14

Darwell, B. (2013). Study: percent of consumers logging into sites with Facebook dips as

Google gains. Retrieved August 27, 2015, from

http://www.adweek.com/socialtimes/study-percent-of-consumers-logging-into-sites-

with-facebook-dips-as-google-gains/292224

Dierks, T. (1999). The TLS Protocol Version 1.0. Retrieved from

http://tools.ietf.org/html/rfc2246

Diffie, W., & Hellman, M. (1976). New Directions in Cryptography. IEEE Transactions

on Information Theory, 22(6), 644–654. http://doi.org/10.1109/TIT.1976.1055638

Dijkstra, E. W. (2002). Cooperating sequential processes. Springer.

Dittrich, D., Mirkovic, J., Reiher, P., & Dietrich, S. (2004). Internet Denial of Service:

Attack and Defense Mechanisms. Pearson Education.

Fall, K., & Varadhan, K. (2007). The network simulator (ns-2). Retrieved from

http://www.isi.edu/nsnam/ns

Fu, D., & Shi, F. (2012). Buffer Overflow Exploit and Defensive Techniques. 2012

Fourth International Conference on Multimedia Information Networking and

Security, 87–90. http://doi.org/10.1109/MINES.2012.81

Gonzalez, J. M., Anwar, M., & Joshi, J. B. D. (2011). A trust-based approach against IP-

spoofing attacks. 2011 Ninth Annual International Conference on Privacy, Security

and Trust, 63–70. http://doi.org/10.1109/PST.2011.5971965

85

Google Developers. (2014). Using OAuth 2.0 for Web Server Applications - Google

Accounts Authentication and Authorization. Retrieved August 27, 2015, from

https://developers.google.com/identity/protocols/OAuth2?hl=de

Hammer-Lahav, E. (2010). The OAuth 1.0 Protocol. Internet Engineering Task Force

IETF. Retrieved from http://tools.ietf.org/html/rfc5849

Hardt, D. (2012). The OAuth 2.0 Authorization Framework. No. RFC 6749, 85.

http://doi.org/10.1109/MIC.2012.11

Hwang, M. S., Chong, S. K., & Chen, T. Y. (2010). DoS-resistant ID-based password

authentication scheme using smart cards. Journal of Systems and Software, 83(1),

163–172. http://doi.org/10.1016/j.jss.2009.07.050

Jaidhar C. D. (2012). Enhanced Mutual Authentication Scheme for Cloud Architecture.

In 3rd IEEE International Advance Computing Conference (IACC) (pp. 70–75).

IEEE.

Juels, A., & Brainard, J. (1999). Client Puzzles: A Cryptographic Countermeasure

Against Connection Depletion Attacks. In Network and Distributed System Security

Symposium (NDSS) (pp. 151–165). Internet Society.

Kim, M., Fujioka, A., & Ustaoğlu, B. (2009). Strongly Secure Authenticated Key

Exchange without NAXOS’ Approach. In T. Takagi & M. Mambo (Eds.), Advances

in Information and Computer Security (Vol. 5824, pp. 174–191). Berlin: Springer

Berlin Heidelberg. http://doi.org/10.1007/978-3-642-04846-3_12

Kliazovich, D., Bouvry, P., & Khan, S. U. (2012). GreenCloud: A packet-level simulator

of energy-aware cloud computing data centers. Journal of Supercomputing, 62(3),

1263–1283. http://doi.org/10.1007/s11227-010-0504-1

Lemon, J. (2002). Resisting SYN flood DoS attacks with a SYN cache. In Proceedings of

the BSD Conference 2002 on BSD Conference (p. 10). Berkeley, CA, USA:

USENIX Association.

Lenstra, A. K., Lenstra Jr., H. W., & Lovász, L. (1982). Factoring polynomials with

rational coefficients. Mathematische Annalen, 261(4), 515–534.

http://doi.org/10.1007/BF01457454

86

LoginRadius. (n.d.). EasyToBook: Simple Registration and Boosted User Engagement.

Retrieved August 27, 2015, from http://www.loginradius.com/easytobook-simplify-

registration-and-boost-user-engagement

Manber, U. (1989). Introduction to Algorithms: A Creative Approach (1st ed.). Addison-

Wesley.

Mather, T., Kumaraswamy, S., & Latif, S. (2009). Cloud Security and Privacy: An

Enterprise Perspective on Risks and Compliance. Sebastopol, CA: O’Reilly Media.

Meadows, C. (2001). A Cost-Based Framework for Analysis of Denial of Service in

Networks. Journal of Computer Security, 9(1-2), 143–164.

Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing. National

Institute of Standards and Technology, Information Technology Laboratory (Vol.

145). Retrieved from http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf

Moskowitz, R., Nikander, P., Jokela, P., & Henderson, T. (2008). Host Identity Protocol.

Retrieved April 5, 2015, from http://tools.ietf.org/html/rfc5201

Nazario, J. (2008). DDoS attack evolution. Network Security, 2008(7), 7–10.

http://doi.org/10.1016/S1353-4858(08)70086-2

Neumann, P. G. (2000). Inside Risks: Denial-of-Service Attacks. Communications of the

ACM, 43(4), 136. http://doi.org/10.1145/332051.332797

Nielsen, J. (1993). Usability engineering (1st ed.). San Francisco: Morgan Kaufmann.

Pacini, E., Ribero, M., Mateos, C., Mirasso, A., & Garino, C. G. (2012). Simulation on

cloud computing infrastructures of parametric studies of nonlinear solids problems.

In F. Cipolla-Ficarra, K. Veltman, D. Verber, M. Cipolla-Ficarra, & F. Kammüller

(Eds.), Advances in New Technologies, Interactive Interfaces and Communicability

(Vol. 7547, pp. 58–70). Berlin, Heidelberg: Springer Berlin Heidelberg.

http://doi.org/10.1007/978-3-642-34010-9_6

Parallels. (2010). Delivering Extraordinary Density for Cloud Service Providers.

Patel, C. M., & Borisagar, V. H. (2012). Survey On Taxonomy Of DDoS Attacks With

Impact And Mitigation Techniques. International Journal of Engineering Research

& Technology (IJERT), 1(9), 1–8.

Salomaa, A. (1996). Public-Key Cryptography (2nd ed.). Berlin: Springer.

87

Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H., Sundaram, A., & Zamboni, D.

(1997). Analysis of a denial of service attack on TCP. Proceedings. 1997 IEEE

Symposium on Security and Privacy (Cat. No.97CB36097), 208–223.

http://doi.org/10.1109/SECPRI.1997.601338

Siriwardena, P. (2014). Advanced API Security: Securing APIs with OAuth 2.0, OpenID

Connect, JWS, and JWE. New York, NY: Apress.

Southern, E., Ouda, A., & Shami, A. (2013). Wireless security: securing mobile UMTS

communications from interoperation of GSM. Security and Communication

Networks, 6(4), 498–508. http://doi.org/10.1002/sec.674

Syverson, P., & Cervesato, I. (2001). The Logic of Authentication Protocols. In

Foundations of Security Analysis and Design (Vol. 2171, pp. 63–137). Springer.

http://doi.org/10.1007/3-540-45608-2_2

Syverson, P. F., & Van Oorschot, P. C. (1994). On Unifying Some Cryptographic

Protocol Logics. In IEEE Computer Society Symposium on Research in Security and

Privacy (pp. 14–28). http://doi.org/10.1109/RISP.1994.296595

Tritilanunt, S., Boyd, C., Foo, E., & Nieto, J. M. G. (2007). Toward Non-parallelizable

Client Puzzles. In F. Bao, S. Ling, T. Okamoto, H. Wang, & C. Xing (Eds.),

Cryptology and Network Security (Vol. 4856, pp. 247–264). Berlin: Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-540-76969-9

Tsaur, W. J., Li, J. H., & Lee, W. Bin. (2012). An efficient and secure multi-server

authentication scheme with key agreement. Journal of Systems and Software, 85(4),

876–882. http://doi.org/http://dx.doi.org/10.1016/j.jss.2011.10.049

Twitter. (2015). Tokens from dev.twitter.com. Retrieved August 27, 2015, from

https://dev.twitter.com/oauth/overview/application-owner-access-tokens

Wang, H., Jin, C., & Shin, K. G. (2007). Defense Against Spoofed IP Traffic Using Hop-

Count Filtering. IEEE/ACM Transactions on Networking, 15(1), 40–53.

http://doi.org/10.1109/TNET.2006.890133

Yahoo. (2015). Yahoo OAuth 2.0 Guide. Retrieved August 27, 2015, from

https://developer.yahoo.com/oauth2/guide/index.html

Yassin, A. A., Jin, H., Ibrahim, A., Qiang, W., & Zou, D. (2013). Cloud Authentication

Based on Anonymous One-Time Password. In Y.-H. Han, D.-S. Park, W. Jia, & S.-

88

S. Yeo (Eds.), Ubiquitous Information Technologies and Applications (Vol. 214, pp.

423–431). New York: Springer Dordrecht Heidelberg. http://doi.org/10.1007/978-

94-007-5857-5_46

Yassin, A. a., Jin, H., Ibrahim, A., & Zou, D. (2012). Anonymous Password

Authentication Scheme by Using Digital Signature and Fingerprint in Cloud

Computing. In Second International Conference on Cloud and Green Computing

(pp. 282–289). IEEE. http://doi.org/10.1109/CGC.2012.91

89

Appendices

Appendix A: The results of the simulation using GreenCloud simulator tool

Table A.1. VM load with different processes

Number of

requests/second

VM load

Token storage AES encryption AES decryption SHA-512 hashing
Generating

random number

300 0.1875 0.2623 0.2561 0.2439 0.2373

310 0.2170 0.2676 0.2584 0.2527 0.2462

320 0.2055 0.2772 0.2703 0.2596 0.2508

330 0.2216 0.2914 0.2780 0.2688 0.2561

340 0.2266 0.3006 0.2906 0.2742 0.2788

350 0.2324 0.3106 0.2941 0.2784 0.2753

360 0.2389 0.3133 0.3029 0.2872 0.2826

370 0.2458 0.3198 0.3083 0.2995 0.2933

380 0.2485 0.3332 0.3175 0.3033 0.3021

390 0.2596 0.3428 0.3271 0.3094 0.2964

400 0.2650 0.3574 0.3367 0.3221 0.3206

410 0.2699 0.3639 0.3474 0.3301 0.3259

420 0.2753 0.3708 0.3531 0.3382 0.3336

430 0.2799 0.3823 0.3631 0.3470 0.3367

440 0.2857 0.3861 0.3692 0.3524 0.3478

450 0.3018 0.3992 0.3811 0.3650 0.3482

460 0.2991 0.4068 0.3923 0.3823 0.3639

470 0.3110 0.4137 0.3957 0.3808 0.3765

480 0.3106 0.4256 0.4045 0.3888 0.3804

490 0.3248 0.4340 0.4145 0.3961 0.3846

500 0.3309 0.4406 0.4233 0.4018 0.3942

90

Table A.2. VM memory load with different processes

Number of

requests/second

VM memory load

Token storage AES encryption AES decryption SHA-512 hashing
Generating

random number

300 0.0002 0.2499 0.2385 0.1931 0.1226

310 0.0002 0.2595 0.2567 0.2393 0.2162

320 0.0002 0.2660 0.2676 0.2622 0.2537

330 0.0002 0.2707 0.2753 0.2754 0.2727

340 0.0081 0.2757 0.2803 0.2849 0.2842

350 0.0553 0.2772 0.2851 0.2904 0.2930

360 0.1719 0.2791 0.2881 0.2953 0.2980

370 0.2573 0.2802 0.2898 0.3002 0.3029

380 0.2973 0.2819 0.2913 0.3018 0.3075

390 0.3187 0.2835 0.2928 0.3037 0.3088

400 0.3334 0.2852 0.2944 0.3048 0.3109

410 0.3431 0.2872 0.2962 0.3065 0.3120

420 0.3507 0.2882 0.2979 0.3082 0.3135

430 0.3557 0.2896 0.2998 0.3098 0.3152

440 0.3606 0.2926 0.3006 0.3115 0.3169

450 0.3658 0.2962 0.3024 0.3134 0.3186

460 0.3677 0.3019 0.3055 0.3143 0.3205

470 0.3693 0.3081 0.3092 0.3161 0.3214

480 0.3712 0.3168 0.3148 0.3192 0.3231

490 0.3722 0.3259 0.3208 0.3229 0.3261

500 0.3739 0.3351 0.3298 0.3286 0.3298

91

Table A.3. VM storage load with different processes

Number of

requests/second

VM storage load

Token storage AES encryption AES decryption SHA-512 hashing
Generating

random number

300 0.0004 4.797E-07 4.580E-07 7.722E-08 4.904E-08

310 0.0004 4.983E-07 4.928E-07 9.571E-08 8.648E-08

320 0.0004 5.106E-07 5.138E-07 1.049E-07 1.015E-07

330 0.0004 5.198E-07 5.285E-07 1.102E-07 1.091E-07

340 0.0155 5.293E-07 5.382E-07 1.140E-07 1.137E-07

350 0.1062 5.321E-07 5.474E-07 1.162E-07 1.172E-07

360 0.3300 5.359E-07 5.532E-07 1.181E-07 1.192E-07

370 0.4939 5.379E-07 5.564E-07 1.201E-07 1.212E-07

380 0.5709 5.412E-07 5.592E-07 1.207E-07 1.230E-07

390 0.6118 5.443E-07 5.621E-07 1.215E-07 1.235E-07

400 0.6400 5.476E-07 5.653E-07 1.219E-07 1.244E-07

410 0.6587 5.514E-07 5.687E-07 1.226E-07 1.248E-07

420 0.6734 5.534E-07 5.719E-07 1.233E-07 1.254E-07

430 0.6830 5.561E-07 5.756E-07 1.239E-07 1.261E-07

440 0.6923 5.619E-07 5.771E-07 1.246E-07 1.267E-07

450 0.7023 5.688E-07 5.805E-07 1.254E-07 1.275E-07

460 0.7060 5.797E-07 5.865E-07 1.257E-07 1.282E-07

470 0.7090 5.915E-07 5.936E-07 1.264E-07 1.286E-07

480 0.7127 6.083E-07 6.043E-07 1.277E-07 1.292E-07

490 0.7146 6.257E-07 6.160E-07 1.292E-07 1.304E-07

500 0.7178 6.435E-07 6.332E-07 1.314E-07 1.319E-07

92

Curriculum Vitae

Name: Marwan Darwish

Post-secondary King Abdulaziz University

Education and Jeddah, Saudi Arabia

Degrees: 1998-2003 B.Sc. Electrical and Computer Engineering

King Abdulaziz University

Jeddah, Saudi Arabia

2005-2008 M.Sc. Electrical and Computer Engineering

The University of Western Ontario

London, Ontario, Canada

2011-2015 Ph.D. Electrical and Computer Engineering

Honours and King Abdulziz University Scholarship

Awards: 2010-2015

Related Work Web Developer

Experience: King Abdulaziz University – Information Technology Deanship

2003-2004

Technical Support Manager of e-government project

Integrated Visions Company (Saudi Arabia)

2004-2005

Instructor & Head of Computer Technology Department

Technical and Vocational Training Corporation

2005-2009

Lecturer

King Abdulaziz University – Jeddah Community College (JCC)

2009-2010

Teaching Assistant

The University of Western Ontario

2011-2015

93

Publications: Darwish M, Ouda A, Capretz LF. Cloud-based DDoS Attacks and

Defenses. International Conference on Information Society (i-

Society), Toronto, Canada, June 2013. p. 67–71.

Darwish M, Ouda A, Capretz LF. Formal Analysis of an

Authentication Protocol Against External Cloud-Based Denial-of-

Service (DoS) Attack. International Journal for Information Security

Research (IJISR). 2013;3(1/2):400–7.

Darwish M, Ouda A, Capretz LF. A cloud-based secure

authentication (CSA) protocol suite for defense against Denial of

Service (DoS) attacks. Journal of Information Security and

Applications. 2015 Jan;20:90–8.

Darwish M, Ouda A. Evaluation of an OAuth 2.0 Protocol

Implementation for Web Server Applications. 6th International

Conference and Workshop on Computing and Communication,

Vancouver, Canada, October 2015.

Darwish M, Ouda A. An Enhanced Cloud-Based Secure

Authentication (ECSA) Protocol Suite for Prevention of Denial-of-

Service (DoS) Attacks. Future Generation Computer Systems. 2015;

(Submitted).

	Security Protocol Suite for Preventing Cloud-based Denial-of-Service Attacks
	Recommended Citation

	tmp.1450715329.pdf._ovdM

