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Abstract 

Cloud systems, also known as cloud services, are among the primary solutions of the 

information technology domain. Cloud services are accessed through an identity authentication 

process. These authentication processes have become increasingly vulnerable to adversaries 

who may perform denial-of-service (DoS) attacks to make cloud services inaccessible. Several 

strong authentication protocols have been employed to protect conventional network systems. 

Nevertheless, they can cause a DoS threat when implemented in the cloud-computing system. 

This is because the comprehensive verification process may exhaust the cloud resources and 

shut down cloud’s services. This thesis proposes a novel cloud-based secure authentication 

(CSA) protocol suite that provides a smart authentication approach not only for verifying the 

users’ identities but also for building a strong line of defense against the DoS attacks.  CSA 

protocol suite offers two modules, CSAM-1 and CSAM-2. The decision of which module of 

CSA to be utilized depends on the deployment nature of the cloud computing. 

CSAM-1 is designed to prevent external risks of DoS attacks in private and community cloud 

computing. CSAM-1 utilizes multiple techniques that include the client puzzle problem and 

utilization of unique encrypted text (UET). Therefore, these techniques can distinguish 

between a legitimate user’s request and an attacker’s attempt.  

CSAM-2 is designed to prevent internal risks of DoS attacks in public and hybrid cloud 

computing. CSAM-2 combines an extended unique encrypted text (EUET) application, client 

puzzle problem, and deadlock avoidance algorithm to prevent DoS risks that occur from inside 

cloud computing systems. The authentication process in both modules is designed so that the 

cloud-based servers become footprint-free and fully able to detect the signs of DoS attacks. 

The reliability and scalability of these two modules have been measured through a number of 

experiments using the GreenCloud simulation tool. The experiments’ results have shown that 

the CSA protocol suite is practically applicable as a lightweight authentication protocol. These 

experiments have verified the ability of the CSA to protect the cloud-based system against DoS 

attacks with an acceptable mean time to failure while still having the spare capacity to handle 

a large number of user requests. 
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Chapter 1  

1 Introduction 

Security and reliability are important in the cloud computing environment. This is 

especially true today because denial-of-service (DoS) attacks constitute one of the largest 

threats to Internet users and cloud computing services. DoS attacks target the resources of 

these services, thereby lowering their ability to provide optimum usage of the network 

infrastructure. Owing to the nature of cloud computing, the methodologies for preventing 

or mitigating DoS attacks are quite different compared to those used in conventional 

networks. This chapter discusses the motivation and objectives of this research. It 

additionally explains the research methodology and the main contributions. Finally, this 

chapter describes the structure of the thesis. 

1.1 Research Motivation 

Addressing DoS attacks for all service models in cloud systems is a major challenge owing 

to the difficulty of distinguishing an attacker’s attempt from a legitimate user’s request, 

even though the requests originate from different distributed machines. DoS attacks affect 

all cloud system service models—Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS)—and can occur from outside or from inside the 

cloud environment.  

External cloud-based DoS attacks are initiated from outside the cloud environment and 

target cloud-based services. These attacks occur from outside the cloud system and target 

SaaS and PaaS models. This type of attack affects the availability of services.   

Internal cloud-based DoS attacks raise from the cloud system itself, such as within the PaaS 

or IaaS model. This attack type can occur in several ways. For example, the attacker may 

exploit the trial period of the cloud service of a vendor. Consequently, an authorized user 

within the cloud environment can internally launch a DoS attack on the victim’s machine. 

Moreover, sharing infected virtual machine (VM) images can allow an attacker to control 

and utilize the infected VMs to execute an internal DoS attack on the targeted machine 

within the same cloud-computing system.  
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The case scenarios that demonstrate how internal and external DoS attacks affect cloud-

computing systems are described as follows. 

1. Case Scenario-1 E-mall Company External DoS Attack. 

E-Mall Company, which provides a web-based e-commerce service to their visitors and 

members, decided to move to a cloud-based hosting service. They agreed to migrate 

their service to Whatchamacallit Elastic Compute Cloud (WEC2) and utilize the 

Whatchamacallit Elastic Block Store (WEBS) service for their data storage. However, 

three months after the implementation of the cloud service, the E-Mall service became 

unavailable to their members and visitors for more than 16 hours. Neither could E-Mall 

Company control the circumstances nor could they address the cause of the 

unavailability of the service. They contacted Whatchamacallit support and were 

informed, “that E-Mall Company had somehow exhausted all its available bandwidth.” 

E-Mall Company notified the Whatchamacallit support representative that their records 

indicated that only 150 transactions had been processed and that only 1,050 users were 

online when the services terminated. After some time, E-Mall Company was intimated, 

“that their bandwidth was consumed by the flood of innumerable User Datagram 

Protocol (UDP) packets that were targeted at their IP.” This attack caused 

approximately 16 hours of service unavailability. Consequently, the E-Mall Company 

incurred the following costs: 

- Owing to the nature of cloud computing and based on the WEC2 service 

agreement, the E-Mall Company was responsible for the bandwidth usage 

consumed during the DoS attack. The average cost of the bandwidth usage was 

$0.10 per GB. 

- The web-based e-commerce system was unavailable resulting in a loss of 

approximately $50,000 worth sale transactions. 

2. Case Scenario-2 E-mall Company Internal DoS Attack: 

The second scenario is an internal DoS attack that occurred at the E-Mall Company 

two days following the resolution of the first DoS attack. During this attack, the website 
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of E-Mall Company was unable to access the WEBS to store or retrieve data. The 

response they received was, “that multiple transactions were performed on the data 

storage system triggering an extended communication response time with the 

database.”  E-Mall Company “observed that their logs indicated that database 

transactions occurred at average levels when compared to their transaction volumes 

over the previous three months.” Following an investigation by Whatchamacallit, “it 

was discovered that a flood of TCP SYN connection requests affected the data-storage 

service.” WEBS service is an internal service and is not related directly to the 

customers’ systems. Therefore, the second attack, which affected the data-storage 

system, occurred through another virtual machine in the WEC2 environment. 

Whatchamacallit explained “that the second DoS attack differed from the first attack 

in that it was an internal DoS attack. It was mentioned that an owner of another virtual 

server within the cloud environment caused seven other virtual machines to flood the 

WEBS service concurrently by sending forged requests. Therefore, the WEBS response 

time was extremely slow during the attack.” As a result, E-Mall Company reported the 

following losses: 

- E-Mall Company lost approximately $6,000 worth sales transactions because 

of the unavailability of the data for two hours. 

- E-Mall Company lost 1,000 customers because the customers were frustrated 

by the effects of the internal DoS attack. They were not able to browse the E-

Mall services as easily as they could browse for the services of other competing 

firms. 

Owing to the above challenges, defending cloud-computing systems against the different 

types of DoS attacks is an important research issue. The defense objective is to maintain 

cloud system availability and avoid the attacks’ overloaded resource usage, which can 

cause financial losses. Accordingly, this research strives to: 

- Develop methods to effectively protect cloud-based systems against external DoS 

attacks using strong authentication protocols that are targeted to external DoS 

attacks. 
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- Develop an approach to effectively defend cloud-based systems against internal 

DoS attacks by employing strong authentication protocols that are targeted to 

internal DoS attacks.  

In addition, this research analyzes and validates the proposed cloud-based authentication 

protocol suite against both external and internal DoS attacks. The full scope of research 

objectives are described in the following section. 

1.2 Research Objectives  

The main goal of this thesis is designing and developing a novel cloud-based authentication 

protocol suite to securely authenticate the cloud user and to prevent risks of external and 

internal DoS attacks. The research objectives established to achieve the research goal are 

as follows: 

1. Investigate DoS attacks in conventional networks and then identify DoS attacks in 

cloud-computing systems. The tasks for achieving this objective are to: 

- Explore the risks of DoS attacks. 

- Study existing types of DoS attacks in conventional network systems. 

- Examine existing defense mechanisms against DoS attacks in conventional 

network systems. 

- Evaluate the ability of cloud-computing systems to detect DoS attacks. 

- Identify and categorize all possible types of DoS attacks in cloud-computing 

systems. 

2. Investigate, propose, and validate a protocol suite that defends the cloud-based system 

against external DoS attacks. The tasks to achieve this objective are to: 

- Design a cloud-based authentication protocol to defend the system against 

external DoS attacks. 

- Analyze and validate the security and performance of the proposed cloud-based 

authentication protocol. 

3. Investigate, develop, and validate a defender protocol suite against internal DoS 

attacks. The following tasks to accomplish this objective are to: 

- Develop a cloud-based authentication protocol to prevent internal DoS attacks. 
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- Analyze and validate the security and performance of the proposed cloud-based 

authentication protocol. 

1.3 Research Methodology 

This section describes the methodologies that are applied in this research to design and 

develop the cloud-based authentication protocol suite that defends against external and 

internal DoS attacks. The proposed cloud-based authentication protocol suite can not only 

detect internal DoS threats, but it can also defend the system against external DoS attackers. 

In addition, the developed protocol satisfies the following security requirements:  

- Multilevel adaptive technique that determines the efforts of the protocol 

participants.  

- Ability to identify a legitimate user’s requests prior to heavy authentication. 

- Footprint-free core protocol.  

- Formal validation of the protocol.  

- Experimental validation of the protocol. 

1.3.1 Defender Protocol Suite Design 

The identity authentication protocol is believed to have become increasingly susceptible to 

attackers who use DoS techniques. A cloud-based authentication protocol that securely 

authenticates a cloud user and effectively prevents DoS attacks on the cloud-computing 

system is needed. In this thesis, we propose a cloud-based DoS-resistance protocol suite 

that securely authenticates cloud users. This protocol is designed such that the cloud server 

is required to do lightweight computation work without the need to store any data during 

the authentication process. In addition, it requires the cloud user to do a process that is 

computationally expensive. 

To realize the Meadows cost-based approach (Meadows, 2001), this protocol suite 

considers a “subset sum” problem as a “client puzzles” technique (Juels & Brainard, 1999) 

(Chapters 3 and 4). A “subset sum” problem is a kind of cryptographic knapsack problem, 

and it is not only a strong one-way function, but it also has a flexibility property to be 

adaptive (Salomaa, 1996). The complexity of the subset sum knapsack problem depends 
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on the size of the knapsack (the total number of its items, n) and on the number of items 

(the subset sum size, m) involved in puzzle solution. If the number of items n is small, then 

an exhaustive search for the solution is practical. Also, if the number of m is small 

compared to n, then a solution can be found in a reasonable time. Consequently, by 

adjusting the values of n and m, determining the difficultly level of the knapsack problem 

and hence the cost-based approach can be adaptively realized. Therefore, the proposed 

cloud-based DoS-resistance protocol suite has the ability to be configured such that the 

more sensitive the services requested are, the greater the computation cost required from 

the requester is. In other words, greater computation cost can be achieved by asking the 

requester (client) to perform an expensive operation, such as solving an expensive subset 

sum puzzle. The responder (cloud server) should conduct inexpensive to medium-cost 

operations, such as generating subset sum puzzle elements, checking the solution, or 

decryption operations. 

A banker’s (Dijkstra, 2002) algorithm is also implemented in the second module of the 

proposed protocol to control the allocation of services and to prevent the risk of an internal 

DoS attack on a specific service host or virtual machine (Chapter 4).  

1.3.2 Security and Performance Validation 

To validate the security requirements of an identity authentication protocol, it is important 

to analyze the proposed protocol via two different models. Therefore, the proposed 

authentication protocol is formally analyzed via Syverson & Van Oorschot (SVO) logic 

(P. F. Syverson & Van Oorschot, 1994) to validate its security requirements (Section 5.1.2). 

The proposed protocol is also validated via a cost-based model approach (Meadows, 2001) 

to ensure that it is invulnerable to DoS attacks (Section 5.1.1). 

In addition, to validate the performance of the proposed protocol, experiments are 

conducted to assess the ability of the protocol to serve as a DoS defender tool. The dynamic 

programming algorithm is our tool to solve and assess the computational cost of both 

participants (client and cloud server) involved in the subset sum problem. We were able to 

experimentally determine different values of n and m that provide different levels of the 
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subset sum solution’s complexity (Section 5.2.1). This makes our protocol adaptive enough 

to protect different levels of sensitive services. 

The GreenCloud simulator (Kliazovich, Bouvry, & Khan, 2012) was used to validate the 

proposed protocol implementation in terms of their ability to prevent DoS attacks. A real 

Linux OS was configured to collect real data regarding the properties of the high-level 

computational processes of the proposed protocol. These data include the number of 

million instructions per second (MIPS), the input size, the output size, and storage size of 

each process. The collected data were used in the simulation as the input parameters for 

simulating the protocol’s processes. Furthermore, a virtual machine (VM) was configured 

as a cloud server in the simulation in order to execute the computational processes of the 

protocol under extreme conditions. Then, VM data were collected from the simulation tool, 

including the VM load, VM memory load, and VM storage load (Section 5.2.3). Finally, 

the analysis results from the collected VM data were compared to the analysis results from 

a widely used authorization protocol in the Internet (Sections 5.2.2 and 5.2.3). The main 

contributions of this thesis are detailed in the following section. 

1.4 Main Thesis Contributions  

This thesis focuses on designing and developing a novel authentication protocol suite to 

securely authenticate the cloud user and to prevent external and internal risks of DoS 

attacks. Research contribution can be mainly summarized as follows: 

- A taxonomy of existing DoS attacks and defenses on cloud-computing systems. 

- An investigation and design of a defender authentication protocol suite against 

external cloud-based DoS attacks. 

- An investigation and design of a defender authentication protocol suite against 

internal cloud-based DoS attacks. In addition to the performance validation of the 

proposed authentication protocol. 

- A security validation of the proposed authentication protocol suite against cloud-

based DoS attacks. 

- A performance evaluation of a widely used cloud-based authorization framework 

in the Internet. 
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The research contributions of this thesis have been published in journals and conference 

proceedings in the areas of information security and cloud security. Therefore, these 

contributions have been peer-reviewed by experts in the field. 

1.5 Thesis Structure 

The thesis structure is outlined as follows: 

 Chapter 2 provides an overview of cloud-computing technology and DoS attacks. 

In addition, it provides a literature review of existing cloud-based DoS attacks and 

defenses. Furthermore, the ability of a cloud-computing system to defend against 

DoS attacks using an existing authentication protocol is also provided in this 

chapter. 

 Chapter 3 presents and discusses the proposed cloud-based secure authentication 

module 1 (CSAM-1) protocol suite that is used to defend against external DoS 

attacks. 

 Chapter 4 presents and discusses the proposed cloud-based secure authentication 

module 2 (CSAM-2) protocol suite that is employed to defend against internal DoS 

attacks. 

 Chapter 5 describes a security and performance validation of the proposed protocol. 

It provides formal verification of the protocol via SVO logic, as well as security 

validation using a cost-based model. In addition, it provides an analysis of a puzzle 

technique that is implemented in the proposed protocol suite. Furthermore, it 

provides an evaluation of a widely used existing authorization framework. Finally, 

it provides a performance validation of the proposed protocol suite. 

 Chapter 6 summarizes the contributions of the thesis and outlines the future work. 
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Chapter 2  

2 Background and Literature Review 

This chapter overviews the cloud computing in general and the related DoS attacks. It 

presents an in-depth security analysis of DoS attacks in cloud computing. Finally, it 

presents a literature review of the existing authentication protocols on cloud computing 

and their ability to defend against DoS attacks. 

2.1 Cloud Computing 

Cloud computing is the utilization of hardware and software to provide services to end 

users over a network, such as the Internet (Mell & Grance, 2011). It includes a set of VMs 

that simulates physical computers and provides services, such as operating systems and 

applications. However, configuring virtualization in a cloud-computing environment is 

critical when deploying a cloud-computing system.  

 

Figure 2.1: Architecture of cloud computing service models  

A cloud-computing structure relies on three service models (Mell & Grance, 2011): IaaS, 

PaaS, and SaaS (Fig. 2.1). IaaS enables users to access physical resources, networks, 



10 

  

bandwidth, and storage. PaaS builds on IaaS and provides end users with access to the 

operating systems and platforms that are required for building and developing applications, 

such as databases. SaaS provides end users with access to software applications.  

Furthermore, cloud computing can be implemented using different deployment models, as 

described below (Mell & Grance, 2011): 

- Private Cloud: This cloud model is deployed to be used by a single organization. 

This deployment model could be owned, operated, and managed by the 

organization itself or by a third party exclusively for the organization. It can be 

located on or off the organization.  

- Community Cloud: This cloud model is deployed to be used by multiple 

organizations that have shared interests such as government organizations. This 

deployment model could be owned, operated and managed by one or more 

organizations in the community or by a third party exclusively for the community. 

It can be located on or off the organizations. 

- Public Cloud: This cloud model is deployed to be used by general public. This 

deployment model could be owned, operated, and managed by, for example, a 

business or an academic organization. It is located in a cloud provider. 

- Hybrid Cloud: This deployment model is a combination of two or more different 

deployment models (such as private, community, or public) that communicate 

together to allow application and data portability. It is to be noted that the hybrid 

cloud in this research is considered as a combination of the public model and either 

private, community, or both (private and community) models. 

2.2 Denial-of-Service Attacks 

DoS attacks are a major security risk in the cloud-computing environment, where resources 

are shared by many users. A DoS attack targets resources or services to attempt to render 

them unavailable by overloading system resources with substantial amounts of spurious 

traffic (Mather, Kumaraswamy, & Latif, 2009). The objective of DoS attacks is to consume 
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critical resources, such as memory, CPU processing space, or network bandwidth, to make 

them unreachable to end users by blocking network communication or denying access to 

services.  

DoS attacks are becoming increasingly more sophisticated. Many websites and large 

companies have been targeted by these attacks. The first DoS attack was reported in 1999 

(Nazario, 2008). In 2000, large resource companies, such as Yahoo, Amazon, CNN.com, 

and eBay, were targeted by DoS attacks, and their services were stopped for hours 

(Neumann, 2000). Register.com was targeted by a DoS attack in 2001. It was the first DoS 

attack to use domain name servers (DNSs) as reflectors (Dittrich, Mirkovic, Reiher, & 

Dietrich, 2004). In 2002, a service disruption was reported at 9 of 13 DNS root servers on 

account of a DNS backbone DoS attack. This attack type reoccurred in 2007 and disrupted 

two DNS root servers (Arora, Kumar, & Sachdeva, 2011). In 2007, a DoS attack was 

executed by thousands of computers targeting more than 10,000 online game servers 

(Arora et al., 2011). In 2008, a DoS attack targeting Wordpress.com resulted in 15 minutes 

of service denials (Patel & Borisagar, 2012). In 2009, GoGrid, a cloud-computing provider, 

was targeted by a massive DoS attack that affected approximately half of the thousands of 

customers of the provider. In 2009, Register.com was again targeted by a DoS attack. In 

the same year, several social networking sites, including Facebook and Twitter, were 

targeted by various DoS attacks. Many websites were affected by DoS attacks in 2010, 

including the Australian Parliament House website, Optus, Web24, Vocus, and the website 

of Burma’s main Internet provider. In 2011, Visa, MasterCard, PayPal, and PostFinance 

were targeted by a DoS attack that aimed to support the WikiLeaks founder (Patel & 

Borisagar, 2012). In the same year, the site of the National Election Commission of South 

Korea was targeted by a DoS attack.  

Furthermore, thousands of infected computers were used in a DoS attack that targeted the 

Asian E-Commerce Company in 2011 (Patel & Borisagar, 2012). In 2012, the official 

website of the office of the vice-president of Russia was unavailable for 15 hours owing to 

a DoS attack (Patel & Borisagar, 2012). In the same year, many South Korean and United 

States (US) websites were targeted by DoS attacks. Godaddy.com websites reported 

service outages because of a DoS attack in the same year. In 2012, major US banks and 
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other financial institutions became targets of a DoS attack. As evidenced by the above 

cases, the volume of DoS attacks is rapidly increasing. Moreover, these attacks are 

targeting major companies, which are consequently incurring significant global financial 

losses.  

DoS attacks, such as those above, include different types of techniques. These techniques 

and their effects are outlined below. 

 

Server

(123.12.1.1)

Legitimate User

(210.21.1.5)

Attacker

(196.15.10.5)

    IP Source         IP Destination        

  (210.21.1.5)         (123.12.1.1)         DATA

 

Figure 2.2: IP spoofing attack 

 

 IP spoofing attack: In an Internet Protocol (IP) spoofing attack, packet transmissions 

between the end user and cloud server are intercepted. Their headers are modified so 

that the IP source field in the IP packet is forged by using either a legitimate IP address 

or an unreachable IP address, as shown in Fig. 2.2. Consequently, the server responds 

to the legitimate user machine, thereby affecting that machine, or the server is unable 

to complete the transaction to the unreachable IP address, which affects the server 

resources. Tracing such an attack is difficult because of the forged IP address in the IP 

source field of the IP packet. 
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Figure 2.3: (a) Normal three-way handshake; (b) SYN flooding attack 

 

 SYN flooding attack: A Transmission Control Protocol (TCP) connection starts with 

a three-way handshake, as shown in Fig. 2.3(a). A typical three-way handshake 

between a legitimate user and the server begins by sending a connection request from 

the legitimate user to the server in the form of a synchronization (SYN) message. 

Subsequently, the server acknowledges the SYN message by returning a request (SYN-

ACK) to the legitimate user. Finally, the legitimate user sends an ACK request to the 

server to establish the connection. SYN flooding occurs when the attacker sends 

innumerable packets to the server but does not complete the three-way handshake 

process. Consequently, the server waits to complete the process for all of those packets. 

This prevents the server from processing legitimate requests, as shown in Fig. 2.3(b). 

Moreover, SYN flooding can be executed by sending packets with a spoofed IP 

address. A sniffing attack is considered a type of SYN flooding attack. In a sniffing 
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attack, the attacker sends a packet with the predicted sequence number of an active 

TCP connection with a spoofed IP address. Thus, the server is unable to reply to that 

request, thereby affecting the performance of the cloud system because of extensive 

resource consumption. 
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Figure 2.4: Smurf attack 

 

 Smurf attack: In a smurf attack, the attacker sends many Internet Control Message 

Protocol (ICMP) echo requests. These requests are spoofed so that their source IP 

address is the IP address of the victim, and the IP destination address is the broadcast 
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IP address, as shown in Fig. 2.4. Therefore, the victim is flooded with broadcasted 

addresses. In the worst case scenario, the number of hosts who reply to the ICMP echo 

requests is excessively large. 

 

 Buffer-overflow attack: In a buffer-overflow attack, an attacker sends executable code 

to the victim to exploit the buffer-overflow vulnerability. Consequently, the attacker 

can completely control the victim machine. The attacker can subsequently either harm 

that machine or use the infected machine to perform an internal cloud-based DoS 

attack. 

 

Server

(123.12.1.1)

Attacker

(196.15.10.5)

 Packet size 90,000 bytes

 

Figure 2.5: Ping of death attack 

 

 Ping of death attack: In the ping of death attack, the attacker sends an IP packet larger 

than the IP protocol limit, which is 65,535 bytes, as shown in Fig. 2.5. Processing an 

oversized packet affects both the victim machine within the cloud system and the cloud 

system resources. 

 



16 

  

Victim

(123.12.1.1)

    IP Source         IP Destination        

  (123.12.1.1)         (123.12.1.1)         DATA

 

Figure 2.6: Land attack 

 

 Land attack: This attack uses the Land.c program to send forged TCP SYN packets 

with the victim’s IP address in the source and destination fields, as shown in Fig. 2.6. 

The machine receives the request from itself, which crashes the system. 

 

 Teardrop attack: This type of attack uses the Teardrop.c program to send invalid 

overlapping values of IP fragments in the header of TCP packets. The victim machine 

in the cloud system will crash in the re-assembly process. 

2.3 Literature Review 

2.3.1 DoS Defense Techniques 

DoS attacks in cloud-computing environments can be externally or internally initiated, as 

shown in Fig. 2.7. An external cloud-based DoS attack is launched from outside the cloud 

system and targets the cloud’s services to disrupt their availability. Therefore, an external 

DoS attack can affect the SaaS and PaaS models. On the other hand, an internal cloud-

based DoS attack originates from inside the cloud system, primarily in the IaaS and PaaS 

models. These attacks can take various forms. For example, an attacker can take advantage 

of the free trial periods of some cloud service providers. Hence, an authorized user of the 

cloud system may internally initiate a DoS attack on the targeted services. 
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Figure 2.7: External and internal cloud-based DoS attacks 

Based on an investigation of the major types of DoS attacks, we derive a taxonomy of 

cloud-based DoS attacks, as illustrated in Table 2.1. Our classification is focused on cloud-

computing aspects, such as a cloud-based type of attack, as well as on recommended 

practical defense mechanisms and the drawbacks of each mechanism. 

Datacenter (Location 2)Datacenter (Location 1)

User

Virtual Datacenter

(IaaS)

Applications

(SaaS)

Virtual Machines

(PaaS)

External 

DoS 

attack
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Table 2.1: Types of DoS attacks on cloud systems 

Attack Cloud-based Type 
Recommended Practical 

Defense Mechanism 

Limitation 

IP Spoofing 

External 

Internal 

- Hop Count Filtering (HCF) in 

the PaaS model (Wang, Jin, & 

Shin, 2007) 

- The attacker can build 

his/her own IP2HC 

mapping to avoid HCF 

External 

Internal 

- Trust-based approach in the 

IaaS model (Gonzalez, Anwar, 

& Joshi, 2011) 

- Another compatible 

solution should be 

proposed to detect IP 

spoofing in distribution 

routers 

SYN Flooding 

External 

Internal 

- SYN cache approach in the 

PaaS model (Lemon, 2002) 
- Increase in latency 

External 

Internal 

- SYN cookies defense 

approach in the PaaS model 

(Lemon, 2002) 

- Lowers the performance 

of the cloud system 

External 

Internal 

- Reduces the time of SYN 

messages received in the PaaS 

model 

- Some of the legitimate 

ACK packets could be lost 

External 

Internal 

- Filtering mechanism in the 

IaaS model 

- Not reliable due to the 

limited use of this method 

External 

Internal 

- Firewall mechanism in the 

IaaS model 

- May affect the 

performance of the 

networking system in the 

cloud 

External 

Internal 

- Active monitoring mechanism 

in the IaaS model (Schuba et 

al., 1997) 

- Decreases resource 

performance in the cloud 
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Smurf Attack 

External 

Internal 

- Configuring VMs in the PaaS 

model 
 

External 

Internal 

- Configuring network 

resources in the IaaS model 
 

Buffer Overflow 

External 

Internal 

- Prevented when writing a 

source code mechanism in the 

SaaS model (Fu & Shi, 2012) 

- Time consumption 

External 

Internal 

- Performs the array bounds 

checking mechanism in the 

SaaS model (Fu & Shi, 2012) 

- Decreases resource 

performance in the cloud 

External 

Internal 

- Runtime instrumentation 

mechanism in the SaaS model 

(Fu & Shi, 2012) 

- Not reliable 

External 

Internal 

- Analyzes the static and 

dynamic code mechanism in 

the SaaS model (Fu & Shi, 

2012) 

- Not reliable 

Ping of Death 

External 

Internal 

- May not currently affect any 

cloud service model; however, 

the attack could be developed 

in the future 

 

Land.c 

External 

Internal 

- May not currently affect any 

cloud service model; however, 

the attack could be developed 

in the future 

 

Teardrop.c 

External 

Internal 

- May not currently affect any 

cloud service model; however, 

the attack could be developed 

in the future 
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2.3.2 Cloud Computing Authentication and Authorization Protocols  

The identity authentication process is considered the principal gateway to cloud-based 

services. Therefore, these gateways have become increasingly susceptible to adversaries 

who may use DoS attacks to permanently close these gateways. Numerous authentication 

protocols exist that can verify identities and protect conventional networked applications. 

However, these authentication protocols may themselves introduce DoS risks when used 

in cloud-based applications. This risk introduction could occur on account of the utilization 

of a heavy verification process that can consume the cloud resources and disable the 

application service.  

This section provides an example of one of these protocols. In addition, some of the 

proposed authentication protocols utilized in cloud computing are presented. Furthermore, 

the OAuth 2.0 protocol, which is a widely used authorization protocol for cloud systems, 

is described. Finally, the Host Identity Protocol (HIP), which is a DoS-resistant 

authentication protocol in conventional network systems, is explained. 

 

 

Figure 2.8: Mutual authentication protocol 

User session request, Rclient

Rserver, [{Rclient, gb mod p}client ]server

[{Rserver, ga mod p}server ]client

User Server



21 

  

An example of authentication protocols that can independently introduce internal DoS risks 

is shown in Fig. 2.8. The goal of this protocol is to cross-authenticate the user and server. 

This protocol uses the ephemeral Diffie-Hellman key exchange (Diffie & Hellman, 1976), 

where a, b, p, and g are the values of Diffie-Hellman, as shown in Fig. 2.8. In this protocol, 

once the server receives a request from a user, the server begins generating the secret value, 

b. Subsequently, the server computes the exponential value, gb mod p. Moreover, the server 

encrypts the nonce of the user and the exponential value via the user public key. Finally, 

the server digitally signs the encrypted message. All of these processes are executed by the 

server, which consumes considerable resources without determining whether the request is 

legitimate. This mutual authentication, which is vulnerable to the DoS attack, is similar to 

the two-way authentication version of the Transport Layer Security (TLS) protocol 

(Dierks, 1999).  

Another example of a protocol that independently introduces DoS risk is Kim et al.’s 

protocol (Kim, Fujioka, & Ustaoğlu, 2009), which aims to securely authenticate the key 

exchange between participants. In this protocol, once the server receives the first message, 

the server begins computing an exponential value and generates the key. Accordingly, the 

server resources can become exhausted by the initial requests. 

Many authentication protocols have been proposed for the cloud-computing environment. 

However, they do not protect against DoS attacks. Yassin et al. (A. A. Yassin, Jin, Ibrahim, 

Qiang, & Zou, 2013) proposed an authentication process that uses a one-time password for 

mutual authentication of the user and cloud server. Although Yassin et al.’s authentication 

scheme defends against replay attacks, it cannot defend against DoS attacks. Other cloud-

based authentication protocols for DoS prevention have been proposed (e.g., Choudhury et 

al. (Choudhury, Kumar, Sain, Lim, & Jae-Lee, 2011), Hwang et al. (Hwang, Chong, & 

Chen, 2010), Jaidhar (Jaidhar C. D, 2012), and Tsaur et al. (Tsaur, Li, & Lee, 2012)). These 

protocols use a smart card reader for the authentication process. Therefore, the cloud users 

should use a card reader device for each authentication by the cloud server. Additionally, 

the scheme of Yassin et al. (A. a. Yassin, Jin, Ibrahim, & Zou, 2012) recommends the use 

of another third-party device, such as a fingerprint scanner.  
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Figure 2.9: Example of social authentication icons (Darwell, 2013) 

Furthermore, the OAuth 2.0 authorization framework was developed by Hardt in 2012 

(Hardt, 2012) as an improvement on the previous OAuth 1.0 protocol (Hammer-Lahav, 

2010). Currently, it is implemented as an authorization framework (as OAuth) by many 

vendors, such as Facebook, Google, Twitter, LinkedIn, and Yahoo (Boyd, 2012), as shown 

in Fig. 2.9. This protocol was developed to control third-party client accessibility to HTTP 

services. For instance, assume that a user would like to play the Angry Birds game and post 

the score and screenshots on his/her Facebook account. In this scenario, the user must give 

the Angry Birds app access to his/her Facebook account so the app can obtain the user’s 

information and post the game score on the user’s behalf. By employing OAuth, this can 

be done in such a way that, when the app needs to access any Facebook services (i.e., 

posting), OAuth will redirect the user back to the Facebook login screen to login into the 

user’s Facebook account. In this case, the user gives his/her username and password to 

Facebook itself, not to the Angry Birds app. Facebook will then ask whether the user wants 

to authorize this app. It will then create an access token that works like a password. This 

token only allows the app to access the user’s Facebook account information and post the 

user’s score when needed. 

Thus, the OAuth 2.0 protocol permits a third-party client, such as an application, to access 

a server’s resources (user profile information) with rules and permissions in a way that 

avoids exchanging the user’s credentials. The OAuth 2.0 protocol participants are as 

follows: 



23 

  

 Client: An application (e.g., Angry Birds app) that uses an application program 

interface (API) (Siriwardena, 2014) to access the resource owner’s (user’s) protected 

resources (profile) with his/her authorization. 

 Resource owner: The user of the application who grants access to his/her protected 

resources (profile) that are available on the resource server (e.g., a Facebook user 

profile server). 

 Resource server: The server (Facebook user profile server) that hosts the protected 

resources of the user (his/her profile). Typically, this server provides the API and hosts, 

and protects the user’s data (profile). 

 Authorization server: The server that receives the resource owner’s (user’s) 

permissions to generate the access token and then sends it to the client (Angry Birds 

app). Therefore, the client can access the protected resources (user’s profile). The 

authorization server (Facebook server) can be the same as the resource server 

(Facebook user profile server). 

 

Figure 2.10: Overview of the OAuth 2.0 protocol 

User

Resource Server

Authorization Server

Resource owner

 3 Authorization Grant

 4 Access Token
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As shown in Fig. 2.10, the OAuth 2.0 protocol works as follows: 

1. The client (Angry Birds app) sends an authorization request to the resource owner 

(user). 

2. The resource owner (user) sends an authorization grant to the client (Angry Birds 

app). However, the type of authorization granted is determined based on the 

authorization request received from the client. Examples of authorization grant 

types are as follows:  

 Authorization code grants: In this type of grant, the resource owner (user) 

grants an authorization code to the client (Angry Birds app) after an 

authorization server (Facebook server) authorizes the resource owner. The 

client uses this authorization code and therefore does not need the credentials 

of the resource owner. An authorization code grant is a secure type of grant. 

 Implicit grants: This type of grant is implemented on the client (Angry Birds 

app) using software language so that the access token is immediately given to 

the client. Although the implicit grant reduces the protocol overhead, it may 

introduce security threats.  

 Resource owner password credential grants: For this type of grant, the 

access token is given to the client (Angry Birds app) using the credentials of the 

resource owner (username and password). This grant type can be implemented 

when the resource owner (user) completely trusts the client.  

 Client credential grants: This type of grant can be implemented to limit access 

to the server’s secure resources, such as Facebook user profiles. Therefore, it 

can be implemented when the client (Angry Birds app) is the owner of the 

secure resource (Facebook user profiles) or when the client has been granted 

permission to access the secure resource in the past.  

3. The client (Angry Birds app) sends the received authorization grant to the 

authorization server (Facebook server) to obtain an access token. 

4. The authorization server (Facebook server) authenticates the client (Angry Birds 

app) and validates the authorization grant. It then issues an access token that will 

be known by the resource server (Facebook user profile server) and sends it to the 
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client. This access token is used instead of the standard username and password 

authentication. The access token has an expiration time. Once it expires, an optional 

refresh process can be implemented by reapplying the third step of the protocol. 

5. The client (Angry Birds app) sends the received access token to the resource server 

(Facebook user profile server) so that it may access the secure resource (user’s 

profile data).  

6. The resource server (Facebook user profile server) validates the access token and 

then allows the client (Angry Birds app) to access the resource (user’s profile data). 

For instance, the client could share the game’s achievements of the user on his/her 

Facebook timeline. 

 

Figure 2.11: Authorization process of Google's OAuth 2.0 for web server 

applications 

However, if the OAuth 2.0 protocol is not securely implemented, the protocol could 

introduce security breaches into the system, such as in Google’s implementation of the 

OAuth 2.0 protocol (Google Developers, 2014). This implementation of the OAuth 2.0 

protocol for web server applications was developed so that Google’s API could be 

implemented in web server applications and frameworks, such as game applications. As 

Google servers

 1: Request token 

 3: Authorization code

 4: Exchange code for token

 5: Token response

 6: Use token to call Google API

 2: User login & consent  

Web server applicationUser
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shown in Fig. 2.11, the authorization process of the implemented protocol works as 

follows: 

1. The web server application (app) requests the token.  

2. The user is redirected to the uniform resource locator (URL) that is assigned by 

Google. This URL contains some information, such as access type. 

3. Google servers perform the authentication task. Once Google servers authenticate 

the user, the web server application (app) receives the authorization code. 

4. To obtain an access token, the web server application (app) exchanges the user’s 

data and obtains an authorization code with the Google servers. To enable future 

offline access, the web server application receives the refresh token first; this token 

information is then exchanged with the Google servers to obtain the access token. 

5. The Google servers send the access token to the web server application (app). 

6. The web server application (app) uses the received token to call Google’s API. 

For offline access, in this implementation, the refresh token is stored on the web application 

server’s storage device for future communication. The stored refresh token remains valid 

until it is revoked by the user (Google Developers, 2014). These stored data can lead to 

security flaws that exhaust the storage resources of the web servers, as detailed in Section 

5.2.2. 

The Host Identity Protocol (HIP) (Moskowitz, Nikander, Jokela, & Henderson, 2008) is an 

example of an authentication protocol that is used to identify a DoS attack on a 

conventional network. However, this protocol cannot be implemented in the application 

layer to defend against external DoS attacks. This is because HIP is based on the host 

identity on the network layers in the Open Systems Interconnection (OSI) reference model. 

Moreover, it is configured and controlled at an operating system level. Furthermore, any 

authentication protocol that is based on IP address verification, such as the Internet 

Protocol Security (IPSec) protocol, makes it difficult to hide the identity of the participants. 

HIP solves the DoS-SYN flooding attack that was presented in Section 2.2 by creating 

additional processing to establish a new TCP connection between two participants. This 

new four-way handshake process is based on a crypto-puzzle that requires the user to 
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reverse a hash function. Consequently, the puzzle-solving process forces the user to 

complete some computational operations. Verifying the puzzle solution is a short operation 

on the server side. 

2.3.3 Authentication Protocol Validation 

Burrows, Abadi, and Needham (BAN) proposed a belief logic (Burrows, Abadi, & 

Needham, 1989) to analyze the security requirements of authentication protocols. 

Subsequently, logic by Syverson and Van Oorschot (SVO) (P. F. Syverson & Van 

Oorschot, 1994) was introduced as an extension model to address some of the limitations 

of BAN. SVO uses some of its own notations in addition to those used in BAN. The 

analysis steps of any authentication protocol using SVO (P. Syverson & Cervesato, 2001) 

are as follows: 

1) Initial assumption: An assumption of the initial status of the protocol. 

2) Received message assumption: An assumption regarding the messages each party 

receives when the protocol is completed in a trusted fashion. 

3) Comprehension assumption: An assumption regarding what the receiver believes, 

and what parts of the received message are unknown. 

4) Interpretation assumption: An assumption of how each party interprets the received 

messages. 

5) Derivation: It derives the analysis goals using the previous assumptions.  

For further security validation, any protocol design in general should be investigated in 

terms of its vulnerability to DoS attacks using the cost-based model approach proposed by 

Meadows (Meadows, 2001). This approach aims to prevent DoS attacks during the 

authentication process. It depends on the exhausted resource costs of the participants. The 

cost-based model approach logically demonstrates the effectiveness of the protocols in 

preventing DoS attacks. The computation cost is defined as the total resource usage cost of 

the requester (user) and responder (server) when both participate in the authentication 

protocol. The cost is computed during the process until a DoS attacker is detected and is 

prevented from participating. The total cost of the requester is the total estimated cost of 

each operation involved in the authentication process on the requester’s side until the 
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authentication process ends. However, the total cost of the responder is the total estimated 

cost of each operation during the authentication process until the requester is determined 

to be either a legitimate requester or attacker. 

Meadows (Meadows, 2001) proposed the categories of inexpensive, medium, and 

expensive for an operation’s cost. This approach assumes that the exponential, signature 

check, and signature operations performed during an authentication process are expensive. 

The pre-calculated exponential value, and the encryption and decryption operations are 

medium cost. Any other operations are inexpensive. 

2.3.4 Review Summary 

The literature review on DoS-aware cloud-based authentication protocols is summarized 

in Table 2.2. 
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Table 2.2: Literature review summary 

Proposed Protocol DoS awareness 
Implementation 

environment 

Uses third-party 

device 

OAuth 2.0 (Hardt, 2012) 
Based on the 

implementation 

Conventional 

network and cloud 

computing 

No 

HIP (Moskowitz et al., 2008) Yes 
Conventional 

network 
No 

Yassin et al. (A. A. Yassin, Jin, 

Ibrahim, Qiang, & Zou, 2013) 
No Cloud computing No 

Choudhury et al. (Choudhury et al., 

2011) 
Yes Cloud computing 

Yes 

(smartcard reader) 

Hwang et al. (Hwang et al., 2010) Yes Cloud computing 
Yes 

(smartcard reader) 

Jaidhar (Jaidhar C. D, 2012) Yes Cloud computing 
Yes 

(smartcard reader) 

Tsaur et al. (Tsaur, Li, & Lee, 2012) Yes Cloud computing 
Yes 

(smartcard reader) 

Yassin et al. (A. a. Yassin, Jin, 

Ibrahim, & Zou, 2012) 
Yes Cloud computing 

Yes 

(fingerprint scanner) 

Based on the implications of the above literature review summary, an authentication 

protocol suite against DoS attacks is herein proposed that works in the cloud-computing 

environment. Moreover, it considers the security requirements of the authentication 

protocol without using third-party devices. 
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Chapter 3  

3 Cloud-Based Secure Authentication Module 1 (CSAM-1) 
Protocol for Private and Community Cloud Computing 

In this chapter, the first module of the proposed cloud-based secure authentication (CSAM-

1) protocol suite to defend against external DoS attacks is presented. The CSAM-1 protocol 

is developed so that the total computational cost of the user side is greater than the resource 

operations cost of the cloud-based server when they jointly participate in the authentication 

process. The main objective of the CSAM-1 protocol is to defend against external DoS 

attacks. Therefore, CSA can be implemented and configured in private and community 

cloud computing because the infrastructure and platforms in these deployment models are 

secured by the organizations. On the other hand, in public and hybrid cloud computing 

models, different infrastructures are communicated together. Thus, there is no guarantee 

that all infrastructures have the same security level. The solution to this problem is 

addressed in Chapter 4. Table 3.1 shows the notations that are used in the CSAM-1 protocol 

suite. 
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Table 3.1: Notations of the CSAM-1 protocol 

Notation Description 

Cloud_user Cloud user/client 

Cloud_server Cloud server/service provider 

Cloud_user ID (CUID) Cloud_user ID 

Unique encrypted text (UET) 
Unique encrypted text; the key of the UET is known only by 

cloud_server 

Session key (SK) Session key 

A A set of random integers of the server challenge function 

S A subset sum of the server challenge functions 

B A binary vector representing the challenge function solution 

Rcloud_server The nonce that is generated by cloud_server 

T Timestamp 

KX Secret key of X 

MK Master secret key of cloud_server 

Tag 
An encryption of timestamp and cloud user ID by master secret 

key of cloud_server 

CSAM-1 consists of two protocols, as shown in Fig. 3.1. The first protocol is used for the 

registration process, which is an agreement process between the participants (cloud_user 

and cloud_server) about specific shared information. Thus, the participants can use that 

information during the operation of the second CSAM-1 protocol. The second protocol is 

an adaptive-based identification and authentication protocol that works against DoS 

attacks. This protocol is developed based on the cost-based model approach. In addition, 

this protocol is used for the authentication process, which includes all operations that occur 

on the basis of initially agreed upon information of the previous protocol. As a result, 
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cloud_server can confirm the identity of cloud_user and then completes the authentication 

process, or it can detect and then prevent an intruder in the case of a DoS attack. 

 

Figure 3.1: CSAM-1 protocols 

 

3.1 Registration Protocol 

In the CSA registration protocol, cloud_user and cloud_server share the required identity 

data to register cloud_user in the cloud_server database.  

 

Figure 3.2: Registration protocol in CSAM-1 

 New request includes cloud_user information 

 Request confirmation data

 Response to confirmation data   

 UET||Tag, CUID 

cloud_servercloud_user
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As shown in Fig. 3.2, the registration process begins when cloud_user submits all the 

required information to cloud_server. This information includes the first name, last name, 

organization name, email address, and any other information that is required by the cloud 

service provider. Cloud_server validates the received information, stores it in a database, 

and then sends a validation email message to cloud_user to confirm cloud_user’s 

information. If cloud_user does not confirm his/her information after a specific amount of 

time, cloud_server deletes cloud_user’s information. After validation, cloud_server 

activates cloud_user’s account. At the same time, cloud_server generates a CUID and a 

UET. This UET is encrypted by cloud_server’s master key (MK), which is known only 

by cloud_server.  

 

Figure 3.3: UET structure in CSAM-1 

As shown in Fig. 3.3, the UET contains cloud_user information and other information that 

is created by cloud_server during the processes of the CSA protocols, such as the CUID, 

last session key, and last timestamp. The UET is a piece of information that is not stored 

on cloud_server; rather, it is sent to the requesting cloud_user.  

 

Figure 3.4: Cloud_user (lookup) database table structure 

To identify cloud_user and to avoid the risk of DoS attacks, cloud_server generates a tag 

that contains a timestamp (T) and CUID that are both encrypted by cloud_server’s MK. 

Cloud_server then adds CUID and tag information to cloud_user’s table in its database 

(referred to as the lookup table), as shown in Fig. 3.4. It should be noted that the number 

of entities in the lookup table depends on the number of confirmed registered cloud_users. 

CUID Last SK Last T

Tag = E ( T + CUID, MK )CUID PSK Other cloud_user’s information
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In the next step, cloud_server sends UET along with the tag to cloud_user. Once 

cloud_user receives the required data from cloud_server, both cloud_user and 

cloud_server agree upon the pre-shared key. The pre-shared key is created using a key 

derivation function and a shared secret. Cloud_user and cloud_server agree upon the key 

derivation function and a shared secret at the end of the registration protocol, which is 

exchanged via a secure channel in a very restricted environment. This approach is the same 

approach of the pre-shared key (PSK) agreement that used in the UMTS and WPA2 

protocols (Southern, Ouda, & Shami, 2013). Consequently, cloud_user stores the UET 

and a pre-shared key for a future authentication process. Cloud_server stores PSK in the 

lookup table. 

Even if cloud_user is registered to cloud_server, cloud_user cannot access the services 

available through cloud_server unless cloud_server identifies and authenticates 

cloud_user. To perform the identification and authentication protocol that is ready to 

defend against external DoS attacks, CSAM-1 provides an outer shield to the authentication 

protocol. This helps in distinguishing legitimate cloud_users from DoS attackers. The 

CSA-adaptive based identification and authentication protocol is designed to provide this 

outer shield as described in the following section.  

3.2 Identification and Authentication Protocol 

The adaptive-based identification and authentication protocol utilizes the cost-based model 

approach. Before applying the computational power of the authentication protocols in the 

server side, users are asked to prove their sincere commitment for receiving the 

cloud_server services. This validation of commitment can be achieved by any technique 

that can force the users to utilize a significant amount of computational power before the 

servers utilize them in order to confirm their genuine requests. Currently, “client puzzles” 

is a common technique that realizes the cost-based model approach (Juels & Brainard, 

1999). 

In this research study, a technique based on a one-way function is proposed to realize the 

cost-based model approach. A cryptographic knapsack problem has been chosen because 

it is a strong one-way function, while also being flexible for adaptability (Salomaa, 1996). 
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The knapsack problem is strong because it is known to be an NP-complete problem 

(Manber, 1989). It is to be noted that the problem is considered as NP-complete when the 

problem is in both NP (nondeterministic polynomial time) and NP-hard. In addition, the 

main characteristic of the selected one-way function in this protocol is an adjustable 

difficulty level to solve the puzzle based on the efforts of the users. 

In cryptography, a knapsack problem is described as follows. Given a set of positive 

integers (i.e., items) A = a1 … an and a positive integer value S. It needs to be determined 

if there is non-empty subset of a1 … an whose values sum to S. For example, let the set of 

items in knapsack A be (13, 54, 28, 73, 3, 36) and the summation S be 89. Therefore, 

finding the elements 13, 73, and 3 solves the problem because their summation is equal to 

89. In other words, finding a binary vector, B, such that A . B = S solves the problem. In 

this example, B is the vector (1, 0, 0, 1, 1, 0); therefore, A . B = 13 + 73 + 3, which is 89.  

Typically, the complexity of the knapsack problem depends on the size of knapsack A (the 

number of its items; for example, n) and on the number of ones (for example, m) in binary 

vector B. If the number of items in A (i.e., n) is small, then an exhaustive search for the 

solution is practical. Furthermore, if the number of ones in B (i.e., m) is small compared to 

n, then a solution can be found in a reasonable time via dynamic programming algorithms. 

Consequently, by adjusting the values of n and m, determining the difficulty level of the 

knapsack problem, and hence the cost-based approach, can be adaptively realized. 

The CSAM-1 protocol considers n = 512 items in the knapsack puzzle problem. These 

items are fixed integer values that both parties should agree upon during the registration 

protocol. Based on the experimental result (see Section 5.2.1), obtaining vector B forces 

cloud_user to become involved in finding the solution to 2512 subsets, which is a very large 

time interval and significant resource consumption. The number of subsets of items is 

adjustable based on the required efforts of the participants. Moreover, the chosen items that 

are used during the summation process are determined by hashing the values of CUID, 

MK, and Rcloud_server using SHA2-512, where MK is the master secret key of cloud_server. 

The result of the hash function is a 512-bit stream. Moreover, the subset of the 512-bit 

stream that includes a specific number of ones (m) represents the required vector, B, of the 
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knapsack problem. For example, if the protocol is developed to let m = 55, cloud_server 

takes the subset of the 512-bit stream that includes the first 55 ones. Increasing the value 

of m makes the process of solving the puzzle more difficult, which would magnify the 

time-consuming nature of the puzzle-solving process. The hashing process is mandatory to 

verify the subset summation value (S) of cloud_user after the calculation process. 

 

 

Figure 3.5: Adaptive-based identification and authentication protocol in CSAM-1 

The function of this adaptive-based identification and authentication protocol process 

shown in Fig. 3.5 is described as follows: 

Cloud_user sends a request for a service along with the CUID and tag to cloud_server. 

At this point, cloud_server blocks any CUID that has performed three consecutive requests 

within a low time threshold to prevent DoS attacks. The attacker may attempt to launch a 

DoS attack by sending requests with randomly generated CUID values. In this case, the 

Session request, CUID, Tag

 S, Rcloud_server, Tag, request UET

CUID, UET||Tag, vector B, S, Rcloud_server

 E(SK, PSK), UET||Tag

cloud_servercloud_user

UET||Tag
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cloud_server easily check the received tag with the stored tag in the lookup table. If these 

are not identical, the request is considered an attacker request. It should be noted that 

cloud_server is not required to perform an encryption process to check the tag value.  

Cloud_server directly replies to cloud_user by sending the puzzle element as a challenge, 

which is the subset summation value (S) along with a cloud_server nonce (Rcloud_server) 

and a new generated tag. Cloud_server generates a new tag value and updates the lookup 

table in the database each time it checks the tag value to preserve the refreshment property 

of the protocol. 

Cloud_server asks cloud_user to prove its sincere commitment to receiving the 

cloud_server services by asking for the UET as well as the puzzle solution to the (S) value. 

The expected solution for this challenge is vector B.  

Once cloud_user calculates and obtains vector B, it sends the CUID and UET, received 

tag, vector B, S value, and received Rcloud_server to cloud_server for validation. At this 

point, cloud_server has all the information required to validate the authentication requests; 

therefore, cloud_server can apply the validation process to only a few operations, such as 

those outlined below. 

First, cloud_server validates the received tag by comparing it with the stored tag in the 

lookup table. Second, cloud_server checks the subset of item ai by securely hashing 

(CUID, MK, Rcloud_server) and comparing the resulting vector with received vector B to 

determine whether they are identical. 

If any of the two previous conditions do not apply, cloud_server drops the request and 

considers it to be an attacker’s request. However, once the cloud_user request passes both 

conditions, cloud_server decrypts the UET and validates the decrypted information 

containing the CUID. Then, cloud_server generates a new tag and updates its field in the 

lookup table. 
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To complete the authentication process once the protocol determines that cloud_user is 

legitimate, both participants agree on the SK for future interactions. In addition, they can 

agree on the sub-session key if they later require a refreshment process. Therefore, 

cloud_server generates the SK, which is encrypted via a pre-shared key. Moreover, 

cloud_server adds both the SK and T information to the UET. Consequently, 

cloud_server is protected against DoS attacks on the storage space because the UET is 

never saved in the cloud_server. Furthermore, cloud_server can apply the refreshment 

property of the session key for future communication by adding the SK to the UET.   

Therefore, cloud_server sends the generated SK to the cloud_user that is encrypted by 

the pre-shared key, along with the modified UET and newly generated tag. It should be 

noted that the notation E(SK, PSK) means that the SK is encrypted by the PSK. 

Cloud_user first confirms the received encrypted SK by encrypting timestamp T using 

SK. It then returns encrypted SK, along with the received UET and tag, to cloud_server. 

Therefore, cloud_server decrypts the UET, validates the CUID, and obtains the SK. It then 

confirms SK by decrypting the received timestamp T using the SK.  

Later, the two parties can agree regarding the sub-session keys by re-applying the processes 

of the authentication protocol. Accordingly, cloud_server can generate a sub-session key 

and add it to the UET without storing it in the cloud system. 

3.3 Discussion 

The authentication protocol suite is proposed to identify and authenticate cloud users in the 

SaaS model and provide a strong shield against external DoS attacks. By integrating the 

client puzzle problem and utilization of the UET, security breaches that may lead to DoS 

attacks can be avoided.  

In the CSAM-1 protocol suite, we rely on the computational complexity theory to 

determine different levels of client-puzzle solution difficulties. Thus, the identity protocol 

is designed to minimize the computational cost incurred by the cloud resources; moreover, 

the computation cost incurred by cloud users is adjustable based on the service’s 

sensitivity. The high computational cost influences an attacker launching a DoS attack with 
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a massive number of requests from his/her device. However, if the attacker uses many 

different devices to launch DoS attacks, the cloud system will not be exhausted because 

the attack can be detected at an early stage of the authentication process.  

In practical terms, the proposed CSAM-1 protocol suite can be implemented in the SaaS 

model of cloud computing systems because the protocol simply relies on basic hardware 

and software requirements of both the cloud systems and users. 

However, the proposed CSAM-1 protocol suite does not consider the possible DoS risks 

faced by the other cloud service models, such as PaaS or IaaS. Although the CSAM-1 

protocol suite can be implemented on private and community cloud models at this stage, it 

must be redeveloped for implementation on public or hybrid cloud models, as discussed in 

Chapter 4. 
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Chapter 4  

4 Cloud-Based Secure Authentication Module 2 (CSAM-2) 
Protocol for Public and Hybrid Cloud Computing  

In this chapter, a second module of the cloud-based secure authentication (CSAM-2) 

protocol suite is proposed to prevent DoS attacks in PaaS and IaaS cloud-computing service 

models. In addition, it securely authenticates and identifies cloud users who would like to 

use cloud services. The CSAM-2 protocol suite relies on four protocols, as shown in Fig. 

4.1. These protocols sequentially progress so that each protocol process starts its execution 

based on the output of the previous protocol. In the registration protocol, the cloud user 

begins the registration process in the cloud server. Once the user is registered, the cloud 

server in the identification and authentication protocol determines whether the cloud user 

is a legitimate user. Once the external DoS attack is prevented, the service management 

and allocation protocol directs the cloud user to the requested service, which prevents the 

risks of internal DoS attacks. Finally, once the legitimate user is directed to the host of the 

requested service, the host session and authentication protocol validates the cloud user to 

access the requested service. 

 

Figure 4.1: CSAM-2 protocols 
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The notations of the CSAM-2 protocol suite are shown in Table 4.1. 

Table 4.1: Notations of the CSAM-2 protocol 

Notation Description 

cloud_user Cloud user/client 

cloud_server Cloud server/service provider 

v_service_host Virtual host of the requested service 

CUID Cloud user ID 

SVID Service ID 

ACL 
Access control list; an information set issued by cloud_server to allow 

cloud_user access to the requested services 

EUET 
Extended unique encrypted text, the key of which is known only by 

cloud_server 

SK Session key 

A A set of random integers of the server challenge function 

S A subset sum of the server challenge function 

B A binary vector representing the challenge function solution 

Rcloud_server The nonce that is generated by cloud_server 

T Timestamp 

KX Secret key of X 

MK Master secret key of cloud_server 

Tag 
An encryption of the timestamp and CUID by the master secret key of 

cloud_server 

Tagv_service_host An encryption of time stamp and CUID by the secret key of v_service_host 
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4.1 Registration Protocol 

In this protocol, the cloud server registers and activates the cloud user in its own database. 

It is to be noted that depends on successful completion of module 1, this protocol is similar 

to the registration protocol in CSAM-1 with UET structure that is extended to hold extra 

security information. In this protocol, the cloud server issues an extended unique encrypted 

text (EUET) for the cloud user to employ in the future protocols’ processes. Therefore, a 

user registration protocol is proposed to enable both participants (cloud_user and 

cloud_server) to communicate to share mandatory identification information. 

Accordingly, it can register cloud_user in the cloud_server database. 

In the user registration protocol, cloud_user initiates a request to cloud_server that 

includes the cloud_user information, as shown in Fig. 4.2. This information contains, but 

is not limited to, the cloud_user name, phone number, email address, and other information 

that cloud_server should maintain in its database. Cloud_server stores the information in 

its database and then sends an email message to cloud_user to validate the email address. 

Once cloud_user responds to the validation message, it is deemed an activated user. On 

the other hand, if cloud_user does not respond to the message within a specified period, 

the cloud_user information is deleted from cloud_server. Hence, the goal of registering 

and activating cloud_user is achieved. Once the registration succeeds, cloud_server issues 

a CUID and a EUET that is encrypted by its own MK.  
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Figure 4.2: User registration protocol in CSAM-2 

In addition, Cloud_server generates a tag by encrypting the timestamp (T) and CUID by 

its own MK. Cloud_server then inserts the CUID and tag into the cloud_user information 

table (lookup table). As mentioned in CSAM-1 (Chapter 3), the number of entities in the 

lookup table depends on the number of confirmed registered cloud_users. In addition, 

cloud_server uses the tag to identify cloud_user based on the information in the lookup 

table and to avoid any risks of DoS attacks. 

 

(a) 

(b) 

Figure 4.3: (a) EUET structure in CSAM-2 with no service assigned to cloud_user; 

(b) EUET structure in CSAM-2 with at least one service assigned to cloud_user 

 New request includes cloud_user information 

 Request confirmation data

 Response to confirmation data   

 EUET||Tag, CUID 

cloud_servercloud_user

CUID Last SK Last T
Service 

request status

CUID Last SK Last T Direct accessible SVIDs list Indirect accessible SVIDs list
Service 

request status
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Then, cloud_server sends the CUID to cloud_user along with the EUET and tag. This 

EUET includes the CUID and other information required for other CSAM-2 protocols, as 

shown in Fig. 4.3. The EUET is sent to cloud_user but is not saved on cloud_server.  

Both participants use a shared secret and a key derivation function in a restricted and 

secured environment based on a pre-shared key (PSK) agreement. This agreement process 

is similar to those used in WPA2 and UMTS protocols (Southern et al., 2013). 

Cloud_server then stores the PSK in the lookup table. 

As a result, cloud_user in the registration protocol is registered and activated in 

cloud_server. Furthermore, cloud_server sends a EUET to cloud_user. In the following 

protocol, cloud_server identifies and authenticates the requester who uses the EUET. It is 

simultaneously aware of external cloud-based DoS attacks. 

4.2 Identification and Authentication Protocol 

This section presents the proposed adaptive-based identification and authentication 

protocol. Once again, based on successful completion of module 1, this protocol is similar 

to the identification and authentication protocol in CSAM-1 with extended UET structure 

to hold extra security information. In this protocol, cloud_server determines whether the 

requester is a legitimate cloud_user. It then authenticates the legitimate cloud_user. In 

this protocol, cloud_server forces cloud_user to perform a computational process before 

cloud_server is involved in any computational power. 

As presented in Fig. 4.4, the steps of the adaptive-based identification and authentication 

protocol are as follows: 

Cloud_user sends an initial session request with the CUID and tag to cloud_server. 

Cloud_server prevents requests from the same CUID once the consecutive failures reach 

the maximum allowed limit (three) in a short timeframe. Cloud_server identifies the CUID 

by searching the lookup table in the database and then comparing the received tag to the 

stored tag value in the table. If they are not identical, the request is considered an 

illegitimate request; else the CUID is identified by cloud_server. It is to be noted that 
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cloud_server is not required to decrypt the tag until the tag value is validated in the lookup 

table. 

 

Figure 4.4: Adaptive-based identification and authentication protocol in CSAM-2 

Cloud_server responds to the request by sending a puzzle challenge of value S, sending a 

nonce (Rcloud_server), and requesting the EUET from cloud_user. In addition, cloud_server 

generates a new tag value and updates the lookup table in the database. The new tag 

generation process is repeated each time cloud_server checks for the tag value so that the 

refreshment property is achieved in this protocol. Cloud_server then sends the newly 

generated tag to cloud_user. To prove the commitment of cloud_user, cloud_server 

requests the expected puzzle solution (vector B) along with the EUET and tag from 

cloud_user. 

Cloud_user computes the puzzle solution (vector B) and sends it along with the S value, 

received nonce (Rcloud_server), CUID, and EUET in conjunction with a tag to cloud_server. 

Session request, CUID, Tag

 S, Rcloud_server, Tag, request EUET

CUID, EUET||Tag, vector B, S, Rcloud_server

 E(SK, PSK), EUET||Tag

cloud_servercloud_user

EUET||Tag
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Cloud_server validates the received tag and CUID by checking the lookup table. 

Cloud_server then verifies whether vector B is identical to the result obtained by secure 

hashing (CUID, Rcloud_server, MK). The MK size should not be short to avoid any possibility 

of using a brute-force attack to guess the MK. Once vector B is verified, cloud_server 

achieves the goal of identifying the legitimate cloud_user. On the other hand, if vector B 

is not verified, the request is rejected and is assumed to be a forgery. Cloud_server then 

decrypts the EUET and checks the CUID registered in the EUET. Furthermore, 

cloud_server issues a new tag, as mentioned in the second step of this protocol.  

After cloud_server authenticates cloud_user, both the participants agree to the session SK 

for future communications; therefore, cloud_server creates the SK and encrypts it using 

the stored PSK. It then adds it and the current T to the EUET, and it sends this modified 

EUET in conjunction with the new tag and encrypted SK to cloud_user. 

To confirm receipt, cloud_user encrypts the current T using the SK and returns it and the 

received EUET along with the received tag to cloud_server.  

Cloud_server validates the received tag and EUET. It then decrypts the EUET to obtain 

the registered SK, which is then used to decrypt T. To prevent a DoS attack on storage 

space, the EUET is not stored in cloud_server. In addition, in this case, T is used instead 

of the nonce because cloud_server can verify the operation time of cloud_user. 

Furthermore, cloud_server can handle SK’s refreshment property for future 

communications by simply adding the new SK information to the EUET and by re-applying 

the last three steps of this protocol. 

Thus, cloud_server in the identification and authentication protocol can prevent external 

DoS attacks. Additionally, it can identify and authenticate the legitimate cloud_user. 

Therefore, cloud_user in the next protocol can request available services from the cloud 

service provider. 

4.3 Service Management and Allocation Protocol 

The main goals of the service management and allocation protocol are to enable 

cloud_server to allocate to cloud_user the requested available service(s), and to prevent 
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risks of internal cloud-based DoS attacks. To achieve these goals, a service allocation 

protocol is herein proposed. In this protocol, cloud_server can organize multiple requests 

for a specific service so that deadlocks cannot occur, which thus protects the services from 

internal cloud-based DoS attacks. 

 

 

Figure 4.5: Service allocation protocol in CSAM-2 

As depicted in Fig. 4.5, cloud_user sends the CUID and EUET along with the tag to 

cloud_server and requests available services (SVIDs). Cloud_server validates the 

received CUID by first comparing the received tag with the tag value registered in the 

lookup table. Upon successful validation, cloud_server decrypts the EUET, validates the 

CUID, and adds the “service requested” status to the EUET. Cloud_server then checks for 

SVIDs that are available in the system and sends a list of available SVIDs to cloud_user 

along with the EUET and a newly generated tag. Cloud_user then sends a request for a 

selected SVID from the received list along with the CUID, EUET, and tag. Cloud_server 

denies any request that includes an invalid tag by comparing the received tag with the one 

in the lookup table. If the CUID is validated, the requested service might lead to a deadlock 

problem because many users have multiple accesses to the requested service or other 

E(ACL, Kv_service_host), EUET||Tagv_service_host

CUID, SVID, EUET||Tag

 CUID, EUET||Tag

List of available services (SVIDs), EUET||Tag

cloud_servercloud_user

cloud_server 

considers 

deadlock 

algorithm
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services through the requested service. Thus, to avoid a deadlock problem and to prevent 

an internal DoS attack due to a huge number of forged requests for a specific service, 

cloud_server controls the service allocation process by applying a deadlock avoidance 

strategy. If a request leads to a deadlock problem—for example, by flooding services with 

false requests—the request is denied. Hence, cloud_server prevents internal cloud-based 

DoS attacks. 

 

Figure 4.6: (a) Service request algorithm for the user; (b) safety algorithm 
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One such approach is the banker’s algorithm (Dijkstra, 2002), which can be implemented 

so that the “requested services” replace the “current processes.” Moreover, the “required 

resources” are the directly and indirectly accessible services that cloud_user requires, as 

shown in the algorithm in Fig. 4.6. 

 

Figure 4.7: ACL structure 

If the service can be allocated to cloud_user based on the result of the deadlock avoidance 

process, cloud_server issues an ACL that is encrypted using the secret key of the host of 

the given service. It adds this additional information to the EUET. The ACL contains 

information, such as the CUID, requested SVID with permissions, and all other SVIDs that 

are accessible through the requested service with permissions, as shown in Fig. 4.7.  

Cloud_server also issues a new tag to access the virtual service host (v_service_host). 

However, this tag structure is different from the one used earlier because it is used to 

identify cloud_user to v_service_host. The new tag considers timestamp T and the CUID, 

both encrypted by the secret key of v_service_host. In this case, cloud_server sends the 

encrypted ACL along with modified EUET in conjunction with newly generated 

Tagv_service_host to cloud_user. Hence, the goal of allocating cloud_user to the requested 

service is achieved. At the end of this protocol, cloud_user has all the required information 

to access the requested service after a lightweight authentication process. 

 

CUID

SVIDs

SVIDs that are directly accessible with permission

SVIDs

Related SVIDs that are indirectly accessible with permission
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4.4 Host Session and Authentication Protocol 

The main goal of the host session and authentication protocol is to authenticate cloud_user 

by the host of the requested service in a lightweight authentication process. In this protocol, 

cloud_user internally communicates with the required virtual service host. Consequently, 

cloud_user must be authenticated by v_service_host before accessing the requested 

service; however, this authentication is a lightweight authentication process to ensure that 

the requester is a legitimately authenticated cloud_user. As shown in Fig. 4.8, the service 

host lightweight authentication protocol functions as follows: 

 

 

Figure 4.8: Service host lightweight authentication protocol in CSAM-2 

Cloud_user sends a request that includes the CUID and Tagv_service_host to v_service_host. 

V_service_host maintains its own lookup table based on the received CUID and 

Tagv_service_host. V_service_host then validates cloud_user by decrypting the received tag 

and comparing the CUID in Tagv_service_host with the received CUID. This authentication is 

a lightweight process because cloud_user is already authenticated by cloud_server. Once 

the CUID is identified, v_service_host acknowledges the request. Cloud_user then sends 

the encrypted ACL to v_service_host to decrypt it. Next, v_service_host allows 

CUID, Tagv_service_host

Acknowledge the request

v_service_hostcloud_user

E(ACL, Kv_service_host)
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cloud_user to access the requested service based on the registered information in the ACL. 

Hence, cloud_user is authenticated by the host of the requested service. 

4.5 Discussion 

A second module of a cloud-based secure authentication protocol suite is proposed in this 

chapter to add extra layers of protections to securely authenticate and identify a cloud user 

and prevent internal risks of DoS attacks. This protocol suite consists of four protocols to 

prevent the risks of DoS attacks in multiple cloud-computing service models. We have 

combined the EUET application technique, client puzzle problem, and deadlock avoidance 

algorithm to prevent security threats that allow attackers to perform cloud-based DoS 

attacks. 

The proposed CSAM-2 protocol suite integrates several layers of protections. The protocol 

suite is designed to identify and authenticate legitimate user requests. Moreover, the 

protocol suite is developed to prevent external DoS attackers based on the theory of 

computational complexity. Therefore, a cloud-computing server can adjust the difficulty 

level of the client puzzle based on the sensitivity of the requested service(s). It thereby 

protects the cloud server from external DoS attackers. Additionally, the deadlock 

avoidance algorithm is implemented to allocate the requested service(s) to the 

authenticated cloud user with the ability to detect threats of internal DoS attacks. 

Furthermore, the CSAM-2 protocol suite is developed to enable the host of the requested 

service to authenticate the cloud user. 

The proposed CSAM-2 protocol suite is practically applicable to different cloud computing 

service models. This is because the protocol is developed based on basic software and 

hardware components of both participants. The proposed CSAM-2 protocol is reliable on 

account of two key reasons. First, the processes of the protocol suite do not overload the 

cloud resources. Second, the protocol suite controls access to the cloud service(s) by 

implementing the deadlock problem with no cache process. Therefore, the cloud server 

does not allocate the cloud user to the requested service(s) if the number of maximum 

allowed concurrent accesses to these service(s) is achieved. Furthermore, the maximum 

number of allowed accesses to the cloud services is adaptive based on the properties of 
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these services. As a result, the CSAM-2 protocol suite is scalable because it can be 

expandable based on the size of the cloud-computing system without affecting the cloud 

computing resources. 
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Chapter 5  

5 Security and Performance Validation 

In this chapter, the achievement of the security requirements of the authentication protocol 

by both CSA protocol modules is verified. In addition, the performance of the protocols is 

assessed. The security validation includes the assessment of the CSA protocols via the 

Meadows cost-based model approach. The formal verification of the authentication 

processes of the protocols is performed via SVO logic. In terms of performance, the 

knapsack puzzle technique used in the protocol design is validated. Furthermore, the 

implementation of Google’s OAuth 2.0 for web server applications is evaluated. Finally, 

the performance of highly computational processes of CSA protocols is evaluated. The 

assessment results are compared with the evaluation outcomes of Google’s OAuth 2.0 

implementation for web server applications. 

5.1 Security Validation 

In this section, both modules of CSA protocol suites are analyzed and assessed in terms of 

their security implementations. The assessment of the CSA protocols entails an evaluation 

of the protocol’s efficiency against DoS attacks by applying a cost-based model approach. 

In addition, the security effectiveness of the proposed authentication protocols via SVO 

logic is analyzed. This analysis proves that the proposed authentication protocols in CSA 

achieve the authentication requirements of an authentication protocol for cloud-computing 

systems. 

5.1.1 Security Validation of the CSA Protocol Suite via a Cost-
Based Model Approach 

The Meadows cost-based model is an approach to analyze the computation process of an 

authentication protocol when it comes to its vulnerability to DoS attacks (Meadows, 2001). 

This technique is designed to avoid DoS attacks through the authentication operation. This 

cost-based model relies on the costs of the exhausted resources of the protocol contributors. 

The cost-based model approach practically demonstrates the ability of the protocol to avoid 

DoS attacks. In this approach, the computation cost is described as the overall resource 
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consumption cost of the user and the server when they become involved in the 

authentication process. The cost is computed throughout the authentication process prior 

to the process of detecting a DoS attacker, who is then prevented from completing the 

authentication process. The user’s total cost is the total cost of every single operation in the 

authentication process—from the user’s component until the completion of the 

authentication process. Additionally, the servers’ total costs are the total costs of every 

operation throughout the authentication process until either the user is authenticated as 

legitimate or the attacker is detected. The following categorizations are proposed by 

Meadows (Meadows, 2001) for the cost of an operation: expensive, medium, and 

inexpensive. The Meadows approach considers that the signature, a check signature, and 

the exponential operations that are executed throughout the authentication process are 

expensive. The decryption, encryption, and pre-calculated exponential value operations 

have medium costs. Every other operation is inexpensive. 

As presented in Table 5.1, based on the cost-based model approach, the operation cost of 

cloud_user for the CSA protocol is categorized as expensive, particularly when 

cloud_user solves the puzzle. The other operations of cloud_user are listed in the medium 

or inexpensive categories. However, the maximum operation costs of cloud_server, 

including the pre-calculation and decryption operations, are in the medium category. As a 

result, the CSA protocol suite is an effective protocol against DoS attacks, in which the 

user consumption cost is higher than the consumption cost of the cloud service provider 

during the authentication process. 
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Table 5.1: Validation of the CSA protocol suite via a cost-based model approach 

CSA protocol 

Cloud_user Cloud_server 

Operation 
Cost 

Category 
Operation 

Cost 

Category 

Identification and 

authentication 

protocol in CSAM-1 

and CSAM-2 

Sends the initial request Inexpensive 

Replies directly to the request 

via secure hashing of the 

received values to obtain the 

puzzle element and asks the 

cloud_user for the UET 

Inexpensive-

Medium 

Solves the puzzle until the 

result is obtained. Then, 

sends the result and the 

UET to cloud_server 

Expensive 
Verifies the received 

elements. Encrypts the SK 
Medium 

Decrypts the SK. Encrypts 

the timestamp 
Medium 

Decrypts the UET. Decrypts 

the timestamp 
Medium 

Service allocation 

protocol in CSAM-2 

 

Sends the initial request. Inexpensive 

Verifies the request. Replies 

with a list of available 

services 

Inexpensive 

Requests a service Inexpensive 
Considered a deadlock 

algorithm. Encrypts the ACL 
Medium 

Service host 

lightweight 

authentication 

protocol in CSAM-2 

 

Sends the initial request Inexpensive Acknowledges the request Inexpensive 

Sends the received 

encrypted ACL 
Inexpensive Decrypts the ACL Medium 
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5.1.2 Security Validation and Formal Verification of the CSA 
Protocol Suite via SVO Logic 

Logic-based formal approaches typically are used to analyze the security properties of 

cryptographic protocols. These approaches use notations and axioms to study the beliefs 

of protocol participants. The consequences of these beliefs are analyzed to determine 

whether the protocol’s security goals have been achieved. SVO logic (P. F. Syverson & 

Van Oorschot, 1994) is our tool to analyze CSA protocols. 

In the proposed CSA protocol suite, the authentication processes are performed in the last 

three steps of the adaptive-based identification and authentication protocol in both 

modules, CSAM-1 and CSAM-2, as shown in Fig. 5.1. Furthermore, the validation is 

performed in the service host authentication protocol in CSAM-2, as shown in Fig. 5.2 

further below. In addition, Table 5.2 shows the notations and their descriptions that are 

used in the SVO logic. 
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Table 5.2: Notations of the SVO 

Notation Description 

P believes X P  can take X as true 

P received X P has received a message containing X 

P said X P believes X when P sent it 

P says X P has said X 

P has X X is initially available to P, freshly generated by P, or received by P 

P controls X P has a jurisdiction on X 

fresh(X) X is fresh, and it has not been previously sent  

P
       𝑘      
↔    Q 

P and Q communicate with each other by a good shared key, k 

PKψ(P, k) k is a public encryption key of P. Only P can read messages encrypted by k 

PKσ(P, k) k is a public signature key of P. Key k verifies that the messages signed by the 

corresponding private key k-1 are from P 

PKδ(P, k) k is a public key agreement of P. A Diffie-Hellman key formed with k is shared 

with P 

{X}k X is encrypted under key k 

⌊𝑋⌋k X is signed with key k 

<X>*P Received message X is unrecognized by P 

The two inference rules of SVO are outlined below. 

Modus Ponens: 

𝜑      𝜑 →  𝜓

𝜓
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The rule is that whenever the instance φ and the instance φ → ψ (i.e.  φ implies ψ) appear 

by themselves on lines of a proof then ψ can validly be placed on a subsequent line. 

Necessitation: 

⊢ 𝜑 

⊢ 𝑃 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠 𝜑 
 

where Г ⊢ 𝜑 means that 𝜑 can be derived from the set of formulas, Г. Using the above 

rules, “⊢ 𝜑” means that 𝜑 is a theorem. 

The axioms of SVO (P. F. Syverson & Van Oorschot, 1994) are outlined below. We assume 

that the reader is got familiar with the notations that described in Table 5.2. 

Belief Axioms: 

A1. (P believes 𝜑 ^ P believes (𝜑 →  𝜓)) → P believes 𝜓 

A2. P believes 𝜑 →  𝜑 

A3. P believes 𝜑 → 𝑃 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠 (𝑃 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠 𝜑) 

Source Association Axioms: 

A4. (P 
𝑘
↔ Q ^ R received {X from Q}k )  → (Q said X ^ Q has X) 

A5. (PKσ (Q,k) ^ R received X ^ SV(X, k, Y)) → Q said Y 

Key Agreement Axioms: 

A6. (PKδ (P, kP) ^ PKδ (Q, kQ)) → 𝑃 
F0(kP,kQ)
↔    𝑄 

A7. 𝜑 ≡  𝜑 [F0(k, kꞋ) / F0(k
Ꞌ, k)] 

Receiving Axioms: 

A8. P received (X1, ... Xn) → P received Xi   for i = 1, ..., n 
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A9. (P received {X}k+ ^  P has k¯ ) → P received X 

A10. (P received  ⌊𝑋⌋k )   → P received X 

Possession Axioms: 

A11. P received X  → P has X 

A12. P has (X1, ... Xn) → P has Xi   for i = 1, ..., n 

A13. (P has X1 ^ . . .  ^ P has Xn) → P has F(X1, ... Xn) 

Comprehension Axiom: 

A14. P believes (P has F(X)) → P believes (P has X) 

Saying Axioms: 

A15. P said (X1, ... Xn) → P said Xi  ^ P has Xi   for i=1,..., n 

A16. P says (X1, ..., Xn) → (P said (X1, ... Xn)   ^ P says Xi)  for i = 1, ..., n 

Freshness Axioms: 

A17.  fresh (Xi) → fresh (X1, ..., Xn) for i = 1, ..., n 

A18. fresh (X1, ..., Xn) → fresh F(X1, ..., Xn) 

Jurisdiction and Nonce-Verification Axioms: 

A19. (P controls φ  ^  P says φ) → φ 

A20. (fresh (X) ^ P said X) → P says X 

Symmetric Goodness Axiom: 

A21. P
𝑘
↔Q ≡ Q

𝑘
↔P 
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Figure 5.1: Authentication processes of CSAM-1 and CSAM-2 

To formally analyze the authentication process in CSAM-1 and CSAM-2 via SVO logic, 

as shown in Fig. 5.1, it is important to identify the goal of the protocol. In this protocol, the 

goal is stated as follows: 

cloud_server authenticates the cloud_user, so that 

cloud_server believes (cloud_user says T) 

where PSK  is a pre-shared key, and SK is a session key.  

The protocol analysis is presented in five steps that are the initial state assumption, received 

message assumption, comprehension assumption, interpretation assumption, and 

derivation. 

1) Initial state assumption 

The initial state assumption includes all initial statuses of the protocol. 

I1. cloud_user believes cloud_user
       𝑃𝑆𝐾      
↔       cloud_server 

I2. cloud_server believes cloud_user
       𝑃𝑆𝐾      
↔       cloud_server 

CUID, UET||Tag, vector B, S, Rcloud_server

 E(SK, PSK), UET||Tag

 UET||Tag, E(T, SK)

cloud_servercloud_user
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I3. cloud_user believes (cloud_server controls SK) 

I4. cloud_server believes fresh(SK) 

I5. cloud_user believes fresh(SK) 

2) Received message assumption 

The received message assumption step indicates what messages each party receives. 

R1. cloud_user received {SK} PSK 

R2. cloud_server received {T}SK 

3) Comprehension assumption 

This step states what receivers believe and indicates what parts of the received message are 

unknown.  

C1. cloud_user believes (cloud_user received {SK}PSK) 

C2. cloud_server believes (cloud_server received {T}<SK>*cloud_server) 

4) Interpretation assumption 

The interpretation assumption step shows what the sender intends by sending the message.  

P1. cloud_user believes (cloud_user received {SK}PSK → cloud_user received {SK ^ 

fresh(SK) }PSK) 

5) Derivation 

The derivation step derives the analysis goal by the previous assumptions. 

D1. cloud_user believes cloud_user received {SK ^ fresh(SK)}PSK 

By applying Modus Ponens, C1, P1. 

D2. cloud_user believes (cloud_server said SK ^ cloud_server has SK) 
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By applying the Source Association (A4), D1, I1, I2, and Belief Axiom. 

D3.  cloud_user 
  𝑆𝐾   
↔   cloud_server 

By applying the Receiving (A9), R1, D2, and Belief Axioms. 

D3 shows that cloud_user and cloud_server communicate with each other by a good 

shared key (SK). 

D4. cloud_server believes (cloud_user said T ^ cloud_user has T) 

By applying the Source Association (A4), C2, D3 and Belief Axioms. 

D5. cloud_server believes (cloud_user said T) 

By applying the Saying (A15), D4, and Belief Axioms. 

D6. cloud_server believes (cloud_user says T) 

By applying the Jurisdiction (A20), I5, D5 and Belief Axioms. 

D6 shows that our analysis goal, which aims to prove that cloud_server authenticates 

cloud_user, has been achieved by applying the rules of SVO logic. 

 

Figure 5.2: Additional authentication processes of CSAM-2 

CUID, Tagv_service_host

Acknowledge the request

v_service_hostcloud_user

E(ACL, Kv_service_host)



63 

  

To formally analyze the additional authentication process in CSAM-2 via SVO logic, as 

shown in Fig. 5.2, the goal of the protocol is outlined below. 

v_service_host authenticates cloud_user by believing in the received message from 

cloud_user, so that: 

v_service_host believes (cloud_server says ACL) 

where K is a Kv_service_host.  

Once again, the protocol analysis is presented in five steps that are the initial state 

assumption, received message assumption, comprehension assumption, interpretation 

assumption, and derivation. 

1) Initial state assumption 

The initial state assumption includes all initial statuses of the protocol. 

I1. v_service_host believes (cloud_server 
       𝐾      
↔     v_service_host) 

I2. cloud_server believes fresh(ACL) 

2) Received message assumption 

The received message assumption step indicates what messages each party receives. 

R1. v_service_host received {ACL}K 

3) Comprehension assumption 

This step states what receivers believe and indicates what parts of the received message are 

unknown.  

C1. v_service_host believes (v_service_host received {ACL}<K>*cloud_user) 

4) Interpretation assumption 

The interpretation assumption step shows what the sender intends by sending the message.  
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P1. v_service_host believes (v_service_host received {ACL}<K>*cloud_user → 

v_service_host received {ACL ^ fresh(ACL) }K) 

5) Derivation 

The derivation step derives the analysis goal by the previous assumptions. 

D1. v_service_host believes v_service_host received {ACL ^ fresh(ACL)}K 

By applying Modus Ponens, C1, P1. 

D2. v_service_host believes (cloud_server said ACL ^ cloud_server has ACL) 

By applying the Source Association (A4), D1, I1 and Belief Axioms. 

D3. v_service_host believes (cloud_server said ACL) 

By applying the Saying (A15), D2 and Belief Axioms. 

D4. v_service_host believes (cloud_server says ACL) 

By applying the Jurisdiction (A20), I2, D1, D3 and Belief Axioms. 

D4 shows that our analysis goal, which is intended to prove that v_service_host 

authenticates cloud_user, has been achieved by applying the rules of SVO logic. 

5.2 Performance Validation 

In this section, the performance of the knapsack puzzle problem is analyzed via dynamic 

programming. This analysis is performed to determine the difficulty levels of the puzzle so 

that the challenge technique can be adjusted on the basis of the analysis results. 

Furthermore, the implementation of Google’s OAuth 2.0 for web server applications is 

evaluated. This indicates that the implementation of Google’s OAuth 2.0 protocol may lead 

to a security flaw that exploits low- to medium-size web servers. This threat may occur by 

exhausting the storage resources of the web server and by rendering its applications 

unavailable. Finally, the effects of the high computation processes of the CSA protocols 

are evaluated. These processes include the process of generating random number, 
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encrypting plaintext by a well-known key, decrypting ciphertext by a well-known key, and 

the hashing process on the cloud server. A comparative analysis of the evaluation results 

and those of Google’s OAuth 2.0 implementation for web server applications is 

additionally presented. 

5.2.1 Knapsack Puzzle Performance Validation  

An experiment was conducted to analyze the time complexity of the subset sum (knapsack) 

problem. The subset sum can be briefly described as follows. Assume a set of positive 

integers A of size n and a positive integer value S. Let us determine whether any non-empty 

subset of size m adds up to S. For example, let A be (13, 54, 28, 73, 3, 36), n = 6, and S = 

89. It is obvious that for the subset (13, 73, 3), m = 3 solves the problem because their 

summation is equal to 89. In other words, let us find a binary vector B such that A . B = S 

solves the problem. In this example, B is the vector (1, 0, 0, 1, 1, 0); hence, A . B = 13 + 

73 + 3, which is 89.  

It should be noted that, in the identification and authentication protocols, vector B is 

generated as the output of the hash function (see Chapters 3.2 and 4.2). 

It was mentioned in Chapter 3.2 that the values of n and m are key factors that play a 

significant role in the complexity of the subset sum problem. In this experiment, different 

values of n and m are chosen for which the time complexity of the subset sum problem is 

analyzed. The values of n are 128, 256, and 512, while the values of m range from 1 to 64. 

The dynamic programming algorithm is used to solve the puzzle; it is coded in C# and runs 

on a quad-core desktop computer with the Windows 8 64-bit operating system, a Core i7-

4770 CPU running at 3.4 GHz, and 32 GB of RAM. 

Our experiment indicates that the algorithm solves the puzzle in less than 8 seconds with n 

= 128 and for all values of m. When n = 256, and for all values of m, the algorithm solves 

the puzzle in less than 12 seconds. Finally, when n = 512 and for all values of m, the 

algorithm solves the puzzle in less than 24 seconds. The detailed execution times when n 

= 512 are shown by the graph in Fig. 5.3. The graph indicates that the puzzle is solved in 

approximately 10 seconds when m is between 25 and 30. When m is between 55 and 60, 
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the puzzle is solved in approximately 20 seconds of the execution time. It is also to be 

noted that the algorithm hangs on account of the full consumption of system memory when 

n = 512 and m is chosen to be higher than 64; i.e., the system resources are exhausted. 

 

Figure 5.3: Response times of the requester (in seconds) with various numbers of 

combination items 

Based on these results and the corresponding system resource consumption, the 

computation costs of solving the subset sum problem can be categorized into three main 

categories—inexpensive, medium and expensive—as shown in Fig. 5.3.  

According to the findings of the surveys conducted by Nielsen (Nielsen, 1993), 15 to 20 

seconds is an acceptable response time for maintaining the user’s attention on a given 

application. Therefore, choosing n = 512 and m = 55 is a good configuration of the subset 

sum problem. This configuration enables the legitimate user to perform expensive 

computations that are acceptable in terms of the system response time (as per the Nielsen 

study) especially in terms of his/her initial request. 

It is worth mentioning that other researchers (Tritilanunt, Boyd, Foo, & Nieto, 2007) have 

shown that the L3 algorithm developed by Lenstra et al. (Lenstra, Lenstra Jr., & Lovász, 

1982) can solve the subset sum problem of n = 100 and m = 80 in 2,700 seconds. These 
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researchers have contended that this configuration makes the puzzle difficult to solve. 

However, this is not true, especially when the dynamic programming algorithm is instead 

used. Therefore, the L3 algorithm is not recommended for use in the CSA protocol suite. 

It seems reasonable to conclude that the difficulty level of the subset sum (knapsack) 

problem, and, hence, the cost-based approach, can be adaptively realized by adjusting the 

values of n and m. 

5.2.2 Performance Evaluation of the Google OAuth 2.0 Protocol 
Implementation  

The data storage process in the authentication protocol can cause security breaches in the 

web servers. That is, it can be vulnerable to security threats, such as DoS attacks. In the 

OAuth 2.0 implementation described in Chapter 2.3.2, web servers store refresh tokens in 

their storage devices. They employ these tokens unless the individual user asks for them to 

be revoked. In this case, the web server storage capacity may be exhausted by many 

requests asking for a refresh token to be stored. As a result, the web server may be unable 

to execute legitimate requests, even though it strictly provides only one refresh token to 

each individual user. Therefore, this experiment evaluates the risk of implementing 

Google’s OAuth 2.0 protocol for web server applications on cloud-based web servers that 

have limited resources. 

To evaluate the risk of storing data during the authentication process in a cloud-based web 

server, an experiment was conducted using the GreenCloud simulator tool developed by 

Kliazovich et al. (Kliazovich, Bouvry, & Khan, 2012) and based on the NS2 network 

simulator tool (Fall & Varadhan, 2007). 

In the experiment, the actual size of the refresh tokens of several vendors was first 

determined. Yahoo’s documentation for OAuth 2.0 for web server applications (Google 

Developers, 2014) states that the approximate size of the refresh token is 52 bytes. Both 

Twitter’s (Twitter, 2015) and Google’s documentation (Yahoo, 2015) for OAuth 2.0 

specify approximately 42 bytes for the refresh token. As a result, the average size of the 

refresh token in this experiment was set to 48 bytes. 
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In this experiment, the main server was configured to manage a single VM as a web server. 

The resources of the main server are typically shared by other VMs. Therefore, the VM’s 

specifications are generally a quad-core CPU processor, 4 GB of RAM, and a 100-GB hard 

disk drive. A reasonable number of stored refresh tokens for this VM is 1,000,000 stored 

refresh tokens out of 1,500,000 service users, as in a real business case (LoginRadius, n.d.).  

This experiment evaluated the performance of the VM, specifically its load, memory load, 

and storage load. It is supposed that, if execution of the VM’s tasks requires over 50% of 

the load, the resources of the VM are being exhausted.  

 

Figure 5.4: VM load with multiple requests per second 
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Figure 5.5: VM memory load with multiple requests per second 

 

 

Figure 5.6: VM storage load with multiple requests per second 

Figs. 5.4, 5.5, and 5.6 present the experimental results for the VM’s load, memory load, 

and storage load, respectively. It is noted that the VM’s storage load begins to noticeably 

increase at approximately 300 to 500 requests per second. Real web servers can execute up 
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to 870 to 1,230 requests per second in extreme situations, depending on the specifications 

of the web server (Parallels, 2010). It should also be noted that the storage size in this 

experiment was expandable because it depended on two factors: the number of stored 

refresh tokens, and the size of the refresh token. 

The experimental results indicate that storing data during the user authentication process 

leads to security flaws in the web servers that store these data. Therefore, the CSA protocol 

suite avoids storing new records during the authentication processes.  

To validate the effectiveness of the CSA protocol suite against risks of DoS attacks during 

the authentication processes, Section 5.2.3 presents the performance of the most expensive 

computation processes of CSA protocols on the cloud server simultaneously performed 

with multiple tasks. 

5.2.3 Performance Validation of the CSA Protocol Suite 

Based on our proposed CSA protocol suite design, the cloud server must proceed with 

many tasks. This experiment evaluated the effect of the most expensive computation 

processes of the CSA protocol, including generating random number (consider Linux-

based random number generation), encrypting plaintext by a well-known key (consider 

AES256 encryption), decrypting ciphertext by a well-known key (consider AES256 

decryption), and the hashing process (consider SHA2-512) on the cloud server. This 

experiment simulated these tasks using the GreenCloud simulation tool by configuring the 

cloud-server specification to be similar to the specification of a virtual web server in our 

first experiment. This similarity served to compare the performance of our proposed CSA 

protocol with the currently used cloud-computing authorization protocol. In this 

experiment, the effects of the most computationally expensive processes of the CSA 

protocol on VM load, memory load, and storage load when executing 300 to 500 requests 

per second were evaluated.  

To obtain the parameters of the CSA protocol processes (“tasks” in GreenCloud), and to 

use them in the simulation tool, a real VM with four cores, 4 GB of RAM, and a 100-GB 

hard disk drive was implemented. A Linux operating system was installed on this VM to 
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benchmark the tasks and obtain their parameters. The task parameters in the simulation 

tool included the task’s million instructions per second (MIPS), input size, output size, and 

storage size. To measure the task’s MIPS, Linux provides a CPU speed metric called 

BogoMIPS. Therefore, after the task was executed in Linux, the MIPS of the task was 

computed by multiplying the used CPU BogoMIPS by the task’s execution time (Pacini, 

Ribero, Mateos, Mirasso, & Garino, 2012). From that point, the information of the task’s 

file size before and after execution was gathered. Finally, the size of the task’s storage that 

was used during the task execution, such as the key size of the AES-256 encryption task, 

was obtained. 

After executing the four tasks in Linux, the task parameters were computed, as shown in 

Table 5.3. These collected parameters were then used in the GreenCloud simulation tool. 

Table 5.3: Task parameters obtained from the Linux benchmark experiment 

Task type 
AES-256 

encryption 

AES-256 

decryption 
SHA-512 hashing 

Generating 

random number 

MIPS 3,989 3,826 3,663 3,582 

Input size 10,000 bytes 10,016 bytes 10,000 bytes 10 bytes 

Output size 10,016 bytes 10,000 bytes 149 bytes 5,121 bytes 

Storage size 48 bytes 48 bytes 10 bytes 10 bytes 

The charts in Figs. 5.7 to 5.18 present our experimental results after simulating the four 

different tasks: AES-256 encryption, AES-256 decryption, SHA2-512 hashing, and 

random number generation. 
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Figure 5.7: AES encryption VM load 

 

 

Figure 5.8: AES encryption VM memory load 
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Figure 5.9: AES encryption VM storage load 

 

 

Figure 5.10: AES decryption VM load 
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Figure 5.11: AES decryption VM memory load 

 

 

Figure 5.12: AES decryption VM storage load 
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Figure 5.13: SHA-512 hashing VM load 

 

 

Figure 5.14: SHA-512 hashing VM memory load 

 

 



76 

  

 

Figure 5.15: SHA-512 hashing VM storage load 

 

 

Figure 5.16: Generating random number VM load  
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Figure 5.17: Generating random number VM memory load 

 

 

Figure 5.18: Generating random number VM storage load 

From that point, the effect of the computationally expensive tasks of our proposed CSA 

protocol on the VM were compared to the effects of implementing the OAuth2.0 

authentication protocol for the web server tasks simulated in our first experiment.  
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Figure 5.19: Comparison of VM load (the same graph is represented in tabular form 

in appendix A – Table A.1) 

 

 

Figure 5.20: Comparison of VM memory load (the same graph is represented in 

tabular form in appendix A – Table A.2) 
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Figure 5.21: Comparison of VM storage load (the same graph is represented in 

tabular form in appendix A – Table A.3) 

As shown in Figs. 5.19, 5.20, and 5.21, significant differences existed in the VM storage 

load of the proposed CSA protocol tasks compared with the simulated implementation of 

OAuth2.0. These differences were due to the immense amount of stored tokens in the web 

server that were used in the authentication process. Therefore, the web server could be 

vulnerable to DoS attacks on account of its storing of data during the authentication 

processes; this issue was avoided in the proposed CSA protocol design. 
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Chapter 6  

6 Conclusions and Future Work 

The use of software systems in a cloud-computing environment is increasingly common. 

DoS attacks are currently a major threat to the availability of cloud services. For each 

defense mechanism that has been developed against a DoS attack, an improved attack 

appears. The use of defense mechanisms from conventional networks to prevent DoS 

attacks in cloud-computing systems is not always efficient. Therefore, a cloud-based secure 

authentication (CSA) protocol suite for different cloud-computing deployment models was 

herein proposed. The authentication protocol identifies cloud users and securely 

authenticates them. Furthermore, it functions as a strong shield against risks of external 

and internal DoS attacks. 

6.1 Summary of Contributions  

The main goal of this thesis is designing and developing a novel cloud-based authentication 

protocol suite to securely authenticate the cloud user and to prevent risks of external and 

internal DoS attacks. The objectives that support our goal are achieved through the 

following tasks: 

1. Investigate DoS attacks in conventional networks and identify DoS attacks in 

cloud-computing systems. 

 The risks of DoS attacks were investigated. In addition, existing types of DoS 

attacks in conventional network systems and their current defense mechanisms 

were investigated (Chapter 2). 

 The ability of cloud-computing systems to detect DoS attacks was also 

examined. Furthermore, we identified a taxonomy of existing DoS attacks and 

defenses on cloud-computing systems (Chapter 2). 

2. Investigate, propose, and validate a protocol suite that defends against 

external DoS attacks. 
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 An investigation of the risks of DoS attacks in authentication protocols was 

presented (Chapter 2). 

 The first module of a developed cloud-based secure authentication protocol 

(CSAM-1) that works against external cloud-based DoS attacks was proposed. 

This protocol can be implemented on private and community deployment 

models of the cloud system. To avoid security flaws that can produce DoS 

vulnerabilities, multiple techniques—including the client puzzle problem and 

unique encryption text (UET) application—were integrated into the design of 

the proposed authentication protocol. The CSAM-1 protocol suite depends on 

the computational complexity theory; therefore, the complexity level of the 

puzzle solution is adjustable. This theory was implemented in the protocol 

design to minimize the computation costs of cloud resources during the 

identification process. Moreover, it makes the computation costs of the cloud 

user’s resources adaptable based on the sensitivity of the requested service. 

Therefore, the device’s resources of the DoS attacker are involved in high 

computation processes when the attacker attempts to initiate a massive number 

of attacking requests. The CSAM-1 protocol suite was developed based on 

basic hardware and software requirements for cloud users and servers. Thus, 

the protocol is practically applicable in SaaS and PaaS service models (Chapter 

3). 

 The results of a validation indicated that the CSAM-1 protocol is a secure 

authentication protocol and is invulnerable to DoS attacks. In addition, an 

experimental validation of the client-puzzle problem determined that the 

challenge technique can be adjusted to implement different difficulty levels of 

the puzzle (Chapter 5). 

3. Investigate, develop, and validate a protocol suite to defend against internal 

DoS attacks. 
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 The risks of internal cloud-based DoS attacks were investigated. Furthermore, 

an existing authorization protocol in cloud computing was examined (Chapter 

2). 

 A second module of the cloud-based secure authentication protocol (CSAM-2) 

that defends against internal DoS attacks was proposed. This protocol can be 

implemented on public and hybrid deployment models of the cloud system. 

Multiple techniques were integrated into the design of the CSAM-2 protocols, 

such as the client puzzle problem, extended unique encryption text (EUET) 

application, and deadlock avoidance algorithms, to prevent security flaws that 

may incur DoS attacks. The design of the proposed CSAM-2 protocol 

implements a deadlock avoidance algorithm to allocate the authenticated cloud 

user to his/her requested service with avoidance of risks of internal cloud-based 

DoS attacks. Additionally, in the CSAM-2 protocol suite design, the host of the 

requested service authenticates the cloud user in a lightweight authentication 

process. The CSAM-2 protocol suite was developed based on basic hardware 

and software requirements for protocol participants. Thus, the protocol is 

practically applicable in multiple cloud service models, specifically, SaaS, 

PaaS, and IaaS (Chapter 4). 

 The experimental validation of the CSAM-2 protocol suite indicated that the 

CSAM-2 protocol is a secure authentication protocol that is lightweight, 

reliable, and scalable. The reliability of the protocol is based on the fact that the 

deadlock avoidance algorithm was implemented without cache processing. In 

addition, the cloud resources are not overloaded when performing high 

computation processes of the protocol. The scalability of the protocol is 

attributed to the fact that the maximum accessibility number of each service is 

adjustable based on the cloud service properties. Thus, the protocol is 

expandable with the size of the cloud system without affecting the cloud 

resources (Chapter 5). 
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6.2 Future Work 

This study examines the ability of a system to detect DoS attacks during authentication 

processes through different cloud-computing service models. The proposed future work 

will address the following key aspects of this research topic.  

 The proposed work in this research considers using the service allocation technique 

to allocate requested services to users while preventing the risk of internal cloud-

based DoS attacks. However, this research does not consider the implementation of 

existing resource-allocation techniques, such as allocating services to a specific or 

the nearest data center in the cloud computing system. Future work should consider 

the integration of the resource-allocation techniques with existing service allocation 

technique in this research. 

 

 In the design of authentication and identification protocol, the time threshold 

between multiple consecutive attempts to prevent further requests from the same 

user is an open research area. Further statistical research is needed to determine the 

acceptable time threshold. 

 

 The present research does not consider existing implementations of software or 

hardware firewalls or intrusion detection systems (IDS). Conducting such research 

with existing firewalls and IDSs remains an open research area that future work 

should address.  
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Appendices 

Appendix A: The results of the simulation using GreenCloud simulator tool 

Table A.1. VM load with different processes 

Number of 

requests/second 

VM load 

Token storage AES encryption AES decryption SHA-512 hashing 
Generating 

random number 

300 0.1875 0.2623 0.2561 0.2439 0.2373 

310 0.2170 0.2676 0.2584 0.2527 0.2462 

320 0.2055 0.2772 0.2703 0.2596 0.2508 

330 0.2216 0.2914 0.2780 0.2688 0.2561 

340 0.2266 0.3006 0.2906 0.2742 0.2788 

350 0.2324 0.3106 0.2941 0.2784 0.2753 

360 0.2389 0.3133 0.3029 0.2872 0.2826 

370 0.2458 0.3198 0.3083 0.2995 0.2933 

380 0.2485 0.3332 0.3175 0.3033 0.3021 

390 0.2596 0.3428 0.3271 0.3094 0.2964 

400 0.2650 0.3574 0.3367 0.3221 0.3206 

410 0.2699 0.3639 0.3474 0.3301 0.3259 

420 0.2753 0.3708 0.3531 0.3382 0.3336 

430 0.2799 0.3823 0.3631 0.3470 0.3367 

440 0.2857 0.3861 0.3692 0.3524 0.3478 

450 0.3018 0.3992 0.3811 0.3650 0.3482 

460 0.2991 0.4068 0.3923 0.3823 0.3639 

470 0.3110 0.4137 0.3957 0.3808 0.3765 

480 0.3106 0.4256 0.4045 0.3888 0.3804 

490 0.3248 0.4340 0.4145 0.3961 0.3846 

500 0.3309 0.4406 0.4233 0.4018 0.3942 
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Table A.2. VM memory load with different processes 

Number of 

requests/second 

VM memory load 

Token storage AES encryption AES decryption SHA-512 hashing 
Generating 

random number 

300 0.0002 0.2499 0.2385 0.1931 0.1226 

310 0.0002 0.2595 0.2567 0.2393 0.2162 

320 0.0002 0.2660 0.2676 0.2622 0.2537 

330 0.0002 0.2707 0.2753 0.2754 0.2727 

340 0.0081 0.2757 0.2803 0.2849 0.2842 

350 0.0553 0.2772 0.2851 0.2904 0.2930 

360 0.1719 0.2791 0.2881 0.2953 0.2980 

370 0.2573 0.2802 0.2898 0.3002 0.3029 

380 0.2973 0.2819 0.2913 0.3018 0.3075 

390 0.3187 0.2835 0.2928 0.3037 0.3088 

400 0.3334 0.2852 0.2944 0.3048 0.3109 

410 0.3431 0.2872 0.2962 0.3065 0.3120 

420 0.3507 0.2882 0.2979 0.3082 0.3135 

430 0.3557 0.2896 0.2998 0.3098 0.3152 

440 0.3606 0.2926 0.3006 0.3115 0.3169 

450 0.3658 0.2962 0.3024 0.3134 0.3186 

460 0.3677 0.3019 0.3055 0.3143 0.3205 

470 0.3693 0.3081 0.3092 0.3161 0.3214 

480 0.3712 0.3168 0.3148 0.3192 0.3231 

490 0.3722 0.3259 0.3208 0.3229 0.3261 

500 0.3739 0.3351 0.3298 0.3286 0.3298 
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Table A.3. VM storage load with different processes 

Number of 

requests/second 

VM storage load 

Token storage AES encryption AES decryption SHA-512 hashing 
Generating 

random number 

300 0.0004 4.797E-07 4.580E-07 7.722E-08 4.904E-08 

310 0.0004 4.983E-07 4.928E-07 9.571E-08 8.648E-08 

320 0.0004 5.106E-07 5.138E-07 1.049E-07 1.015E-07 

330 0.0004 5.198E-07 5.285E-07 1.102E-07 1.091E-07 

340 0.0155 5.293E-07 5.382E-07 1.140E-07 1.137E-07 

350 0.1062 5.321E-07 5.474E-07 1.162E-07 1.172E-07 

360 0.3300 5.359E-07 5.532E-07 1.181E-07 1.192E-07 

370 0.4939 5.379E-07 5.564E-07 1.201E-07 1.212E-07 

380 0.5709 5.412E-07 5.592E-07 1.207E-07 1.230E-07 

390 0.6118 5.443E-07 5.621E-07 1.215E-07 1.235E-07 

400 0.6400 5.476E-07 5.653E-07 1.219E-07 1.244E-07 

410 0.6587 5.514E-07 5.687E-07 1.226E-07 1.248E-07 

420 0.6734 5.534E-07 5.719E-07 1.233E-07 1.254E-07 

430 0.6830 5.561E-07 5.756E-07 1.239E-07 1.261E-07 

440 0.6923 5.619E-07 5.771E-07 1.246E-07 1.267E-07 

450 0.7023 5.688E-07 5.805E-07 1.254E-07 1.275E-07 

460 0.7060 5.797E-07 5.865E-07 1.257E-07 1.282E-07 

470 0.7090 5.915E-07 5.936E-07 1.264E-07 1.286E-07 

480 0.7127 6.083E-07 6.043E-07 1.277E-07 1.292E-07 

490 0.7146 6.257E-07 6.160E-07 1.292E-07 1.304E-07 

500 0.7178 6.435E-07 6.332E-07 1.314E-07 1.319E-07 
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