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Abstract—The demand for knowledge extraction has been
increasing. With the growing amount of data being generated
by global data sources (e.g., social media and mobile apps) and
the popularization of context-specific data (e.g., the Internet of
Things), companies and researchers need to connect all these
data and extract valuable information. Machine learning has
been gaining much attention in data mining, leveraging the birth
of new solutions. This paper proposes an architecture to create
a flexible and scalable machine learning as a service. An open
source solution was implemented and presented. As a case study,
a forecast of electricity demand was generated using real-world
sensor and weather data by running different algorithms at the
same time.

Keywords—Machine Learning as a Service, Supervised Learn-
ing, Regression, Prediction, Service Oriented Architecture, Ser-
vice Component Architecture, Platform as a Service

I. INTRODUCTION

The amount of data generated has been continuously grow-
ing from global data sources like Web sites, social media,
mobile applications, news networks, weather, political insti-
tutes, society and the economy. No matter how big the data
are, they may be useless without proper preparation and
processing. Many different machine learning algorithms have
been used to extract valuable knowledge from data, e.g., for
scientific modeling, consumer behavior, energy consumption
forecasting, related article recommendation and user trends.

At the same time, with the popularization of sensors and
mobile devices able to connect to a network (e.g., the Internet
of Things), it is becoming viable to collect more data from
specific contexts at higher levels of detail. By connecting
global and context specific data, it is possible to extract even
more detailed information and build richer knowledge using
machine learning algorithms.

Large companies have enough resources to invest in their
own machine learning solutions. However, small companies,
developers and researchers in general have difficulties when
facing the steep learning curve of how machine learning works
and when building their own solutions or integrating with
third-party ones. In addition, machine learning can require
computational resources with impracticable costs. How could
these users have access to affordable machine learning ser-
vices?

One way to meet this demand is by creating a functional
and ready-to-use Machine Learning as a Service (MLaaS)
platform. Because multiple users will be using the same
platform, computational resources can be shared or allocated

on demand, reducing overall costs. By specifying a well
defined interface, users can have access to machine learning
process efficiently from anywhere, at any time. Users must not
be concerned with implementation and computing resources,
focusing mainly on the data itself.

This paper proposes a novel approach for machine learning,
providing a scalable, flexible, and non-blocking platform as
a service based on the service component architecture. This
platform facilitates the creation, validation and execution of
machine learning models. By taking advantage from service
oriented architecture, the proposed approach becomes easily
scalable and easy to adapt by adding, removing, changing and
linking any component. This also makes the system more flex-
ible for handling multiple data sources and different machine
learning algorithms at the same time. In addition, a graphical
user interface is presented to facilitate the comparison between
different models.

The proposed framework source code is available1 as an
open-source project to facilitate its use for various prediction
modeling tasks and to enable it to be adapted for other
purposes.

The following sections of this paper are organized as
follows: Section II gives an overview of machine learning,
service component architecture and the main related works
on machine learning as a service; Section III describes the
proposed architecture for MLaaS; Section IV explains the
MLaaS process; Section V presents the case study; and finally,
Section VI concludes the paper.

II. RELATED WORKS

A. Machine Learning

Machine Learning is one of the fastest growing fields in
computer science [1]. It is a collection of statistical techniques
for building mathematical models that can make inferences
from data samples (known as a training set). Machine learning
is a part of artificial intelligence: it must adapt itself to a
changing environment.

Figure 1 roughly illustrates how to choose between the main
categories of machine learning. There are three main types of
learning [1]: (a) Supervised Learning, when the training set is
labeled (i.e., it contains the attribute that the model is trying
to estimate); (b) Unsupervised Learning, when the training set
is not labeled, and (c) Reinforced Learning, when the learned
results lead to actions that change the environment.

1https://github.com/mauro0x52/mlaas
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The labels in supervised learning can be discrete or con-
tinuous, which are handled by classification and regression
algorithms respectively. Classification is used mostly for pre-
diction, pattern recognition and outlier detection, whereas
regression is used for prediction and ranking. Unsupervised
learning is known as density estimation in statistics and is
represented mainly by clustering algorithms. Classification,
regression and clustering are widely used in data mining
(applications of machine learning to large databases), whereas
reinforced learning is mostly used in decision-making prob-
lems (e.g., a computer playing chess).

Independently of the applications just described, machine
learning techniques work in a similar way: the model learns
from a training set and then becomes able to make inferences
for a new data set. This abstraction inspires the creation
of a generic architecture to support any machine learning
algorithm. This paper will focus on regression predictive
modeling, although the approach can be adapted for other
algorithms.

In predictive modeling, once rules have been extracted from
past data (the training set), the model can make accurate
prediction for new instances of data (the predictor set) if
the future is similar to the past. Spam filtering, investment
risk and energy consumption forecasting are some examples
of predictive modeling. Predictive modeling approaches in-
clude: Artificial Neural Networks for energy consumption [2],
Support Vector Machines for energy consumption [2] and K-
Nearest Neighbors for wind power [3].

Validation for predictive models has a twofold importance:
(a) choosing the most accurate algorithm and parameters; and
(b) estimating the expected error for new predictions [1]. Ac-

curacy can be related with errors, which can be calculated by
comparing the estimated results from the model with the real
measured results. A popular and reliable validation technique
for predictive models is the K-Fold Cross-Validation. The data
set is split randomly into K parts of the same size. One of
the K folds is used to calculate the errors using the other K-
1 folds to train the algorithm. The same process is repeated
K times each time using different fold for validation. This
method guarantees that the entire data set is validated with
statistical significance.

Different models can perform better or worse, depending on
the used algorithms, parameters and data set. However, there
is no such a thing as the best learning algorithm [1]. For any
algorithm, there are data sets that perform very accurately and
others that perform very poorly. For the same data set, different
algorithms can perform differently because of their own nature.
MLaaS helps the user to run multiple algorithms and compare
their performances, so the most suitable algorithm can be
chosen.

B. Service Component Architecture

A service component architecture (SCA) [4] is a modeling
specification for composing systems according to the princi-
ples of Service-Oriented Architecture (SOA).

SCA separates implementation concerns into three artifacts:
(a) components implement its business function; (b) compos-
ites assemble various components together to create business
solutions, and (c) services create an interface for remote
access to component and composite functions. In a system,
composites, services, and their relations with components are
defined in a dynamic XML descriptor file.

Because SCA is built on top of SOA, it inherits all SOA’s
advantages — for example, intrinsic interoperability, inherent
reuse, simplified architecture and solutions, and organizational
agility [5]. In addition, whereas SOA focuses on building an
architecture to design individual components, SCA focuses
on assembling multiple components into a composite and
facilitating design, implementation, and deployment. SCA sys-
tems have been successfully used, for example, in geographic
information systems [6] and smart home systems [7] [8].

This research aims to build a platform which is capable
of providing various machine learning algorithms to build
different predictive models which will run at the same time.
Adding a new algorithm must be simple. The system must
provide well-defined APIs which can be remotely accessed
over the Web by any external system. SCA provides enough
artifacts to meet these requirements.

C. Machine Learning as a Service (MLaaS)

The increasing demand for machine learning is leveraging
the emergence of new solutions. In this section, various
machine learning platforms are reviewed.

PredictionIO [9] was launched in 2013. It is an open-source
platform with an architecture that integrates multiple machine
learning processes into a distributed and horizontally scalable



system based on Hadoop. In addition, PredictionIO provides
access through web APIs and graphical user interface (GUI).

Baldominos et al. [10] also proposed a platform built on top
of Hadoop. Its implementation was capable of handling up to
30 requests at one time while maintaining a response time of
less than one second.

OpenCPU [11] is another open-source platform, launched
in 2014, that creates a Web API for R [12], a popular
statistical analysis software environment. However, because it
is practically a middleware for accessing R functions, it does
not take into account many non-functional requirements like
scalability and performance.

In the industry context, Google, Microsoft, and Amazon
have been releasing their own proprietary platforms. Google
released its Prediction API2 in 2014. Also in 2014, Microsoft
launched Azure Machine Learning3. Most recently in 2015,
Amazon released AWS Machine Learning4. Their sales can
prove that the demand exists. Unfortunately, the designs and
implementation specifications of these products are not pub-
licly available.

PredictionIO, OpenCPU, and Baldominos’ platforms are
built on top of a specific analytical tools and suffer from its
restrictions. This means less flexibility for adding new machine
learning algorithms, for data storage, and for deployment.
Although Hadoop and R are open-source projects, it is not
a trivial challenge to adapt them to a new approach. The
same happens with the industry players and their proprietary
solutions when external developers cannot have access to the
code to add new algorithms.

The MLaaS proposed in this paper focuses on predictive
modeling. As an architecture based on SCA specifications,
the architecture facilitates the addition of new algorithms, its
improvement, and its adaptation to other machine learning
applications. Even the revised platforms mentioned above
can be attached to proposed architecture to build prediction
models.

III. ARCHITECTURAL DESIGN

This section describes the proposed MLaaS architecture,
which is designed to support machine learning by gathering
data from multiple sources and building multiple models
using different algorithms. The approach focuses on predictive
modeling, but it is adaptable to other applications.

The scope of this architecture deals with the machine
learning itself, ignoring the front-end aspects such as the user
interface. In a Model-View-Controller (MVC) perspective, this
architecture focus on the model layer while the controller and
view layers are only implemented as part of the case study.

The SCA diagram in Figure 2 depicts a high level overview
of the architecture.

The Modeler composite is responsible for building new
predictive models. A predictive model is an instance of Model-
µ composite, running a specific algorithm. The cardinality 0..N

2https://cloud.google.com/predictio
3http://azure.microsoft.com/en-us/services/machine-learning
4http://aws.amazon.com/pt/machine-learning

shows that MLaaS can run multiples instances of Model-µ
composite at the same time, through the Build, Train, Test and
Predict services. The model property shows that each instance
can run with different settings.

The architecture works as follows: the Machine Learning
as a Service composite receives raw data from data sources
through its Send Training Set service. First, data are received
and prepared by the Data Gatherer composite. The Modeler
composite then receives the prepared data to train a Model-
µ instance. When receiving a predictor set from the Send
Predictor Set service, the Model-µ instance calculates the
prediction and serves it to external modules through the Get
Prediction service.

The specified services provide well defined interfaces that
increase the architecture’s flexibility to new inputs and outputs:
the Send Training Set and Send Predictor Set services enable
the inclusion of various data sources that will be merged by
Data Gatherer; the Build, Train, Test and Predict consumers
enable the architecture to be pluggable with different Model-
µ instances; and the Get Report, Get Test and Get Prediction
services enable different user interfaces and external systems
to consume the data.

The following subsections describe each of the composites
shown in Figures 2 and 3.

A. Data Gatherer Composite

The Data Gatherer composite is responsible for receiving
data, pre-processing it, and feeding it to the model. One
instance is created for each Send Training Set, Send Test Set
or Send Predictor Set services, so that they can run in parallel
and independently. The Data Gatherer composite is made up
of three components arranged in a pipeline as illustrated in
Figure 3; they can be described as follows:

• The Merger component merges all received data (single
data points or batches) from different data sources (e.g.,
sensors or databases). Data sets with different schema are
joined into a single multicolumn schema by related at-
tributes (e.g., time-stamp for time-series data, categories,
identifiers, etc). When finished, it forwards the data to
the Outliers Remover component.

• The Outliers Remover component removes outliers (e.g.,
missing values, zeros, extremely high values, etc.). Once
finished, it forwards the cleaned data to the Pre-Processor
component.

• The Pre-Processor component modifies the data set by
re-sampling, creating columns, getting the maximum,
minimum, or average values, etc. When it is finished, it
sends the pre-processed data to the destination component
in the Modeler composite.

B. Modeler Composite

This is the core composite in the architecture, because
it is responsible for building, training, testing, and running
the Model-µ instances. It is made up of five components as
illustrated in Figure 2, which can be described as follows:
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• The Builder component receives from Build Model the
parameters (e.g., algorithm and property values) to build
and deploy a new model (a Model-µ instance) for the
Build consumer. When the instance is created, Builder
sends the model identifier back to the consumer and
forwards it to the Learner and Predictor components.

• The Learner component receives the pre-processed data
from the Train service and forwards them to the destined
Model-µ instance. When it receives the training report
from the Model-µ instance through the Train consumer
callback, it forwards it to Reports Storage.

• The Reports Storage component receives the report from
the Learner component through the Store Report service
and serves it to external consumers through the Get
Report service.

• The Predictor component receives the predictor set from
the Predict service and forwards it to the Model through
the Predict consumer, which will return the prediction
through a callback. The prediction will be returned to
the Predict requester and also forwarded to Predictions
Storage. Predictor is also responsible for forwarding the
testing set.

• The Predictions Storage component receives and stores

the predictions and tests from the Store Prediction and
Store Test services and provides them to external con-
sumers through the Get Prediction and Get Test services.

C. Model-µ Composite

The Model-µ composite is an architecture for building
different models. It holds all the implemented algorithms
source codes (e.g., Multilayer Perceptron), but only one must
be loaded. The algorithm to be loaded and its parameters
should be specified when calling the Build service. In other
words, for each Build Model service request, a new instance
of a Model-µ composite is created.

The model property describes how the model needs to be
built and executed. It is composed of four sub-properties:
modelId: is the model unique identifier, algorithm: specifies
which algorithm is going to be used by the model, parameters:
adjust the algorithm behavior, and k: the number of folds to
use in the K-Fold Cross-Validation.

The Train, Test, and Predict service specifications enable
the Modeler composite to interact with any Model-µ instance.

The Model-µ composite is made up of four components,
which can be described as follows:

• The Constructor component is responsible for loading the
right algorithm and setting the properties of the model in-



stance using the Build service request parameters. When
the instance is set up and running, it is ready to provide
Train, Test and Predict services.

• The Trainer component receives the training set from the
Train service and forwards it to Validator and Predictor
components through the Validate and Train services re-
spectively. When validation is finished, the Trainer com-
ponent receives the validation report from the Validate
service callback and returns it to the consumer through
Train service callback.

• The Validator component receives the training set from
the Validate service, feeds it to the model and validates
the model (e.g., K-Fold Cross-Validation), returning a
report.

• The Predictor component receives the training set from
the Train service to feed the model for future prediction
requests. When receiving predictor sets through the Pre-
dict service, it calculates and returns the predictions.

The implemented algorithms source code must be responsi-
ble only for training and predicting. Testing and validating
do not depend on the algorithm itself, but on the results,
which can be found by using the algorithm’s training and pre-
dicting functions. Therefore, testing and validating functions
are responsibilities of Validator and Predictor components,
increasing standardization and reducing the effort when adding
a new algorithm.

IV. MLAAS PROCESS

The diagram in Figure 4 illustrates the main interaction
flow between the Consumer, the Modeler and the Model-
µ composites. To simplify, the earlier stage related to the
Data Gatherer composite is ignored by assuming that data
have already been pre-processed. The term Consumer in the
following discussion refers to a generic consumer using the
Modeler component.

The main flow is divided into three stages:

• Building: it starts with the Consumer requesting the
Builder component to build a new model through the
Build Model service. The Builder component will then
create and configure a new Model-µ instance. When the
building operation is complete, the Builder component
sends the new model identifier to the Learner and Pre-
dictor components and to the Consumer.

• Training: the Consumer is now able to train the instan-
tiated model. It sends the already pre-processed training
set to the Learner component through the Train service,
which will forward the training set to the Trainer com-
ponent of the Model-µ instance. The Trainer component
will make two requests at the same time: one to the
Validator component to validate the model (e.g., K-Fold
Cross-Validation) and another to the Predictor compo-
nent to be trained for future prediction requests. When
validation is complete, the Validator component responds
to Trainer component with the validation report, which
contains information such as error measurements. The
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report will be stored into Reports Storage component for
future retrievals.

• Predicting: the model is ready to predict. The Consumer
sends the predictor set to the Modeler composite’s Pre-
dictor component, which will forward to the Model-µ
instance’s Predictor component, where the prediction is
calculated and returned to the Modeler. The predictions
are sent to the Predictions Storage to be stored and
served.

In Training and Predicting stages, the Consumer receives
the report and prediction identifiers as soon as the Learner
and Predictor components receive the request, so it is not
necessary to keep the connection while the entire request is
be processed. When the report or prediction is ready, it can
be accessed from Reports Storage and Predictions Storage
components, using the specific identifier.

A Training Stage can also be considered and works similarly
to the Predicting Stage. The main difference is the final result,
which contains testing information such as errors.



V. CASE STUDY

The goal of this case study is to forecast energy demand
based on past electricity demand data data for an office build-
ing, using different machine learning algorithms and finding
the best-performing one. This experiment focuses mainly on
the Modeler and Model-µ composites.

The proposed architecture was implemented using elec-
tricity demand data from Powersmiths’ office building, in
Brampton, ON, Canada. The data set were pre-processed
before feeding them to the system. This data set was made up
of 13 daily attributes: the energy demand peak, six weather
attributes and six time attributes. The six weather attributes
were: maximum temperature, minimum temperature, average
temperature, maximum humidity, minimum humidity and av-
erage humidity. The six time attributes were: year, month
(from 1 to 12), day of the month (from 1 to 31), day of the
year (from 0 to 365), weekDay (from 0 for Sunday to 6 for
Saturday) and dayType (0 for a business day, 1 for a weekend
and 2 for a holiday).

The system was built using Node.js because of its ease and
agility for coding and deploying Web services and handling
JSON. Because there are currently no SCA frameworks for
Node.js, one had to be implemented. JSON was used for
Web service communication, data storage and the SCA artifact
descriptor file. A simple user interface was developed to
generate effective illustrations of the results obtained.

The source code is available in a public repository 5.

A. Algorithms

To evaluate the architectural flexibility of running different
machine learning models at the same time, Model-µ composite
was implemented to support the following algorithms:

• Multi-Layer Perceptron (MLP): one of the most used
techniques when evaluating machine learning models, and
one of the most used for electrical consumption problems
[2]. It was implemented using the Synaptic package6.

• Support Vector Regression (SVR): also one of the most
used techniques for electrical consumption problems [2].
It was implemented using the Node-SVM package7.

• K-Nearest Neighbors (KNN): easy to understand, to code,
and to debug. This algorithm was coded for this experi-
ment.

A generic Algorithm class was coded under object-oriented
programming structure, defining the standard interface for
train and predict function calls. A new algorithm can be
implemented simply by inheriting the Algorithm class and
making minor adaptations. In this case study, the KNN Al-
gorithm class was implemented first to test and validate the
Model-µ composite. Later, using the same code structure,
MLP Algorithm and SVR Algorithm classes were coded and
imported into Model-µ composite.

5https://github.com/mauro0x52/mlaas
6http://synaptic.juancazala.com
7https://github.com/nicolaspanel/node-svm

When a Model-µ instance is built, the algorithm with the
parameters (both specified in the model property) is loaded.

The test and validate functions are performed by Predictor
and Validation components respectively, and not by the Algo-
rithm class. Both functions use the results from Algorithm’s
train and predict calls.

The Validator component implements de K-Fold Cross-
Validation method to validate the model, calculating the mean
absolute errors and the mean square errors. The number of
folds K can be defined to the model property when building
a new model.

The architectural design and the dynamic artifacts descriptor
file make it possible to create new Model-µ instances dynam-
ically. After the new Model-µ instance is deployed and the
artifacts descriptor file is updated, the new Model-µ instance
will be available without the need to recompile or restart the
system.

B. Results

Three different models were created by instantiating the
Model-µ composite. Table I shows the parameters used for
each model. The models were requested to predict using a
test set, which contains all the 13 attributes including the
real measured daily electricity demand peaks. For the K-
Fold Cross-Validation, K = 10 was fixed for all the models.
The models were also requested to run a prediction using a
different predictor set.

Figure 5 shows a screenshot of the MLaaS graphical user
interface (GUI). Through the navigation bar, the user can
access models (list, create and remove), train, test and predict
models and consult a graphical summary of the results. The
first row of charts shows the validation performance, with
three graphics showing the mean absolute errors, mean square
errors, and the execution time for each of the three models.
The second row shows the test performance, comparing the
mean absolute errors, mean square errors, and execution time
for the three models. The third row is a chart comparing
the three models’ test results with the real measured data
from the test set. Finally, the last row shows the results of a
prediction.

TABLE I: Model Parameters

Algorithm Parameter Value

KNN
k

max distance
10
2

MLP

nodes per layer
learning rate

max iterations
min error

12, 14, 1
0.1
1000
0.0001

SVR

gamma
c

epsilon
retained variance

0.125, 0.5, 1
8, 16, 32
0.001, 0.125, 0.5
0.995



Fig. 5: MLaaS screenshot comparing KNN, MLP, and SVR.

The SVR model showed better accuracy – it had the
lowest mean absolute errors and mean square errors – both
in validation and in testing. Although the KNN model had
better accuracy in validation than the MLP model, it had the
worse mean square error in testing.

The KNN model performed much faster during validation
and could finish executing even while the SVR and MLP mod-
els were still running. The SVR model finished the validation
last. On the other hand, during testing, MLP model finished
first and KNN model was the last. In other words, one model’s
processing did not block the CPU as it would have on a single-
threaded server.

VI. CONCLUSIONS

With the growing amount of data available, companies and
researchers are demanding feasible and affordable ways to

extract knowledge from all this data. This paper has presented
a novel architecture for a scalable, flexible, and non-blocking
machine learning as a service based on SCA and focusing on
predictive modeling. The proposed architecture can support
multiple data sources and create various models with different
algorithms, parameters, and training sets.

To prove the concept, the system was built to predict
electricity demand using real-world data. Once the main
architecture is working and at least one algorithm coded, it is
simple to implement other algorithms. It is possible to execute
multiple models concurrently.

For future research, MLaaS can be adapted to machine
learning applications other than predictive modeling, for ex-
ample, pattern recognition, outlier detection, ranking and clus-
tering.
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