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ABSTRACT  

Human DNA polymerase ι (polιιιι) is a unique member of Y-family polymerases, 

which preferentially misincorporates nucleotides opposite thymines (T), and halts 

replication at T bases.  The structural basis of the high error rates remains elusive. 

We present three crystal structures of polι complexed with DNA containing a 

thymine base, paired with correct or incorrect incoming nucleotides.  A narrowed 

active site supports a pyrimidine:pyrimidine mismatch and excludes Watson-Crick 

base pairing in polιιιι. The template thymine remains in an anti conformation 

irrespective of incoming nucleotides. Incoming ddATP adopts a syn conformation 

with reduced base stacking while incorrect dGTP and dTTP maintain anti 

conformations with normal base stacking.  Further stabilization of dGTP by H-

bonding with Gln59 from the finger domain explains the preferential T:G 

mismatch.  A template ‘U-turn’ is stabilized by polι and the methyl group of the 

thymine template, revealing the structural basis of T stalling. Our structural and 

domain swapping experiments indicate that the finger domain is responsible for 

polιιιι’s high error rates on pyrimidines and determines the incorporation specificity. 

 

Key Words:  Y family DNA polymerase/ pol ι/ incorporation specificity/ mutagenesis/ 

translesion synthesis 
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INTRODUCTION 

A strict adherence to Watson-Crick base pairing is a key feature in determining the high 

fidelity of replicative DNA polymerases.  An induced fit mechanism is employed when a 

correct incoming nucleotide is optimally paired with the template base (Doublie et al., 

1999).  A highly restrictive active site with limited solvent accessibility enables this 

efficient base pair selection (Doublie et al., 1998).  In contrast, Y family DNA 

polymerases, which specialize in traversing DNA lesions have evolved an open and 

solvent accessible active site allowing for permissive base pairing (Ling et al., 2001).  

The Y-family polymerases contain a similar catalytic core, consisting of “palm”, “finger” 

and “thumb” domains as in high-fidelity DNA polymerases. The smaller finger and 

thumb domains in Y-family polymerases generate a solvent-accessible and spacious 

active site. The finger domain contacts the replicating base pair and is therefore the 

substrate recognition site. In addition, the Y-family polymerases possess a unique C-

terminal domain, called the “little finger” or polymerase associated domain (PAD). The 

little finger (LF) holds the DNA substrate along with the thumb domain. Around the 

active site, the major groove of the DNA duplex is fully solvent exposed. Thus, bulky 

DNA adducts can be accommodated in the active site and multiple nucleotide 

conformations can be adopted in order for the enzyme to replicate through the lesion.  

The caveat to performing translesion DNA synthesis is a high error rate of replication on 

undamaged DNA (Boudsocq et al., 2001; Johnson et al., 2000; Zhang et al., 2000).  

  Human Y family DNA polymerase ι (polι) is a specialized polymerase that does 

not utilize Watson-Crick base pairing for DNA replication.  Instead, this enzyme 

functions by inducing a syn conformation on template purines, which results in 
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Hoogsteen base pairing with the correctly matched incoming nucleotide (Johnson et al., 

2005; Nair et al., 2005; Nair et al., 2006).  The ability to induce a nucleotide syn 

conformation by polι appears to serve as the mechanism for replication opposite damaged 

template purines.  Structural evidence demonstrates that the 1, N6 ethenodeoxyadenosine 

and N2 ethyl guanine lesions are presented in the syn conformation protruding into the 

solvent accessible major groove of the DNA helix (Nair et al., 2006; Pence et al., 2008), 

which allows base pairing with the correct incoming nucleotide. 

DNA replication by polι on template pyrimidines displays extremely high error 

rates, while incorporation opposite template purines is more accurate (Kunkel et al., 

2003; Tissier et al., 2001; Tissier et al., 2000; Zhang et al., 2000).  Opposite a template 

thymine (T), polι prefers to incorporate a guanine (G) up to 2.5 fold over the correctly 

paired adenine (A) in a metal-dependent manner (Frank and Woodgate, 2007). In 

addition, polι has inefficient replication past a template T base causing a signature T 

template stall (Zhang et al., 2000).  A similar pattern of misincorporation and replication 

stalling by polι is observed opposite template uracil (U) (Vaisman and Woodgate, 2001). 

It has been proposed that G misincorporation opposite template U could restore the 

genomic sequence of cytosines (C) that have undergone deamination. The biological role 

of this preferred misinsertion of G opposite template T or U within cells remains 

unknown.  However, such an unusual and highly specific property could serve a unique 

function in DNA maintenance. 

The error-prone replication on template T by polι has been implicated in the high 

rates of DNA mutagenesis presented in patients with the UV-sensitive disorder; 

Xeroderma Pigmentosum Variant (XP-V) syndrome (Wang et al., 2007). When the 
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human Y family DNA polymerase η (polη) is inactivated by mutations, polι takes over its 

specialized role of bypassing UV-induced thymine-thymine (T-T) dimers.  However, the 

preference of misinsertion opposite template T by polι results in an increase in 

mutagenesis and the presentation of the disease.  Although polι is responsible for 

increased DNA mutagenesis when functioning out of context, this enzyme does appear to 

play a role in tumour suppression.  Mice deficient in both polη and polι have an earlier 

onset on UV-light induced tumors than polη deficiency alone (Dumstorf et al., 2006; 

Ohkumo et al., 2006), indicating a role for polι in UV-induced lesion bypass. In addition, 

it has recently been observed that polι plays a significant role in cellular protection from 

oxidative damage (Petta et al., 2008).  Although polι likely facilitates the repair of 

oxidative DNA lesions, the specificity and mechanism of this repair is unknown.  The 

unique T template misincorporation by polι has been extensively reported, but has 

remained mechanistically unexplained. 

Here, we report three crystal structures of polι in complex with DNA containing a 

template T base in the active site, which is paired with either correct (A) or incorrect (T 

or G) incoming nucleotides.  Our results reveal, for the first time, the structural basis of 

preferred G misincorporation and stalling on a template T base by polι. 

 

RESULTS 

Polι-DNA-dNTP complexes with template bending back at the T base 

In order to position the thymine base at the polι active site, DNA substrates for 

crystallization were designed containing a thymine 5´ to the template-primer junction.  

The first (substrate 1) is a 15/9-nt duplex DNA with two thymines 5' to the template-
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primer junction (see Methods).  The second (substrate 2) is an 18-nt self-complementary 

duplex (14 base pairs) containing a 2, 3-dideoxy 3’ primer end for trapping ternary 

complexes (see Methods).  Incoming 2, 3-dideoxy ATP (ddATP) was incubated with 

DNA substrate 1 and co-crystallized with polι, while dGTP and dTTP were incubated 

with DNA substrate 2 and co-crystallized with polι. Interestingly, the polι-DNA-ddATP 

complex was trapped at the first T from the template-primer junction without the 

expected one incorporation, probably due to the replication stalling at T.  The resulting 

three crystal structures are denoted as T:ddADP, T:dGTP and T:dTTP according to the 

replicating base pair in the active site.  The  ternary complex crystals are in two different 

space groups (C2 for T:ddADP; P6522 for T:dGTP and T:dTTP) and diffract to 2.0 Å, 2.0 

Å, and 2.2 Å resolutions, respectively (Table I).  In T:ddADP, incoming ddATP was 

hydrolyzed to ddADP.  Hydrolysis in this manner has been observed in Dpo4 from 

Sulfolobus solfataricus, the model enzyme of the Y-family DNA polymerase, due to a 

weak phosphatase activity of the polymerase (Ling et al., 2001). In the T:ddADP 

structure, the active site metal ions have been refined as Ca2+, due to the presence of 150 

mM CaCl2 in the crystallization buffer and the high electron density.  In addition, 

anomalous signal peaks were observed at the metal ion sites which are distinct from 

surrounding non-metal atoms though weak at the A site (Figure 4S).  This is analogous to 

Dpo4 structures crystallized with 100 mM Ca(AC)2 (Ling et al., 2001; Wong et al., 2008).  

Such anomalous peaks were not observed for the T:dTTP or T:dGTP structures, which 

were crystallized in the absence of Ca2+ ions (Figure 5S).  Thus, the T:dTTP and T:dGTP 

structures were refined with two active site Mg2+ ions.  Primer extension assays have 

been preformed on polι in the presence of 150 mM CaCl2, which demonstrates that Ca2+ 
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ions do not change the nucleotide incorporation specificity of polι (Figure S1).  The 

divalent cation in the B site is positioned identically within all three T template 

structures, as well as previous polι structures containing template purines (Nair et al., 

2006) and Dpo4 ternary structure (Vaisman et al., 2005) (Figure S2).  The divalent cation 

in the A site however, is mobile with variable positions in all three structures (Figure S2)  

Divalent ion mobility within the A site has also been reported previously for polι (Nair et 

al., 2005) and Dpo4 (Vaisman et al., 2005). 

Polι in all three ternary structures is essentially identical to that of the previously 

solved, purine-template polι structures (Nair et al., 2005; Nair et al., 2006; Nair et al., 

2004) (Figure 1A). The pair-wise comparisons on all Cα atoms produced root mean 

square deviations (rmsd) within 0.7 Å among our three complex structures.  In addition, 

the Cα rmsd is ~0.8 Å between T:ddADP and a previously solved polι ternary complex 

(PDB: 2ALZ) containing a purine base at the template position. The close agreement 

between all of these polι structures indicates that polι, like other Y-family polymerases, 

does not undergo significant conformational change when replicating through different 

DNA substrates (Bauer et al., 2007; Ling et al., 2001; Nair et al., 2006).  

We use the first complex structure (T:ddADP, Figure 1C) to describe the general 

features of the three ternary complexes, since these three structures are identical, except 

for the replicating base pair.  All residues of polι have the same side-chain conformations 

in the current three structures, which are identical to those of the previously reported 

purine-template polι structures, except for Tyr 61.  Tyr 61 flips its side chain 

conformation 100° from that seen in the purine-template polι structures, and moves its 

aromatic ring 9 Å closer to the template DNA (Figure 1A).  The unique Tyr61 orientation 
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is observed in all three of our template thymine structures reported here, which are in two 

different crystal forms. Thus, this conformation is independent of crystal packing and is 

likely induced by the DNA substrate that contains a template T base (see details below).   

A striking structural change is observed in the single-stranded DNA template 

when comparing our T template base structures with previous polι structures containing 

template purines  and with Y-family polymerase Dpo4 (Figure 1). The previous polι and 

Dpo4 structures project the single stranded template DNA away from the active site in 

extended conformations (Figure 1B-D).  In our T template base structures, the single 

stranded DNA is flipped back upon itself in a ‘U’ shaped conformation, enclosing the 

replicating base pair from the DNA’s major groove and approaching the polymerase 

thumb domain across the major groove (Figure 1B,C).  The DNA backbone is bent ~90o 

after the template T base towards the major groove, and the +1 nucleotide (5’ to T) is 

oriented 90o to the template T base.  This latter difference is completely different from 

the template/+1 base relationships in the extension template strands in the other Y-family 

polymerase structures (Figure 1B).  In our structures, the +1 base lies perpendicular to the 

template T base (position 0) due to DNA strand binding.  All three of our polι structures 

display this unique ‘U-turn’ DNA conformation after the T base, irrespective of the 

incoming nucleotide or the identity of the bases flanking the template T.  

Contributions of polι domains and T template base to template stabilization  

The unique ‘U-turn’ DNA conformation in our polι structures is stabilized by both polι 

and the unique T template base within the active site, which likely induces replication 

stalling.  The single-stranded template DNA downstream of the T base is held in position 

by the finger domain, the little finger (LF) domain and the thumb domain of polι (Figure 
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2A).  Tyr 61, Leu 62 and Leu 78 from the finger domain contact the +1 nucleotide and 

provide strong hydrophobic interactions to the backbone sugar via the aromatic side chain 

of Tyr 61 and to the +1 nucleotide base from interactions with the two leucine residues 

(Figure 2B).  The Positively charged Arg 347 and polar Ser 307 from the LF domain 

contact the phosphate backbone of the template at position 0 and +1 nucleotides (Figure 

2B).  The 5’ end of the template is in contact with the thumb domain at Tyr 244 and Lys 

237 (Figure 2C).  Tyr 244 stacks with the sugar of the +3 nucleotide, and the positively 

charged Lys 237 interacts with the negatively charged phosphate to fix the free 5’ end of 

the template strand in front of the replicating base pair (Figure 2C).  Furthermore, the 

~90° bend at the T base is stabilized by the interactions between the methyl group of the 

template T base and the bent single-stranded template DNA (Figure 2D).  Although the 

extensive contacts between this unique methyl group and the +1 nucleotide reinforce the 

unusual bending template, the methyl group may not be an absolute requirement, due to a 

similar stalling effect opposite template U (Vaisman and Woodgate, 2001).  The unique 

‘U-turn’ conformation is not observed in the presence of template purine bases (Nair et 

al., 2005; Nair et al., 2006). Two of our template thymine structures (T:dTTP and 

T:dGTP) have the same sized DNA substrate, single stranded DNA overhang, and crystal 

form as the previous purine template structures.  However, these template thymine 

structures adopted the ‘U-turn’ conformation, similar to the T:ddADP structure, which 

has a different DNA substrate and crystal form (Figure 1A).  This excludes any structural 

variation caused by differences in the single stranded DNA and packing environments of 

the complexes.  It appears that the purine bases A and G are too large to be 

accommodated in the U-turn conformation observed in our structures, which would 



                                                                      10 

disrupt bending.  However, there are likely other unidentified factors also involved in 

preventing this conformation.  Although template C has a similar size to T and U, which 

may lend itself to a ‘U-turn’ structure, such a conformation may not be stable when 

template C is in the active site, as no significant replication stalling has been observed 

with this template base.  The U-turn interactions are not involved with the template bases 

in the double strand DNA except the template T and are mainly involved with backbone 

atoms on the downstream single strand DNA. This is consistent with the observations that 

the stalling only depends on the T base and not the bases flanking it (Zhang et al., 2000). 

The current T template structures clearly show the structural basis for the signature T 

template stalling by polι.  

Role of finger domain at polι active site 

Structural comparison of polι and Dpo4 ternary complexes indicate that the Y-family 

polymerases are highly structurally conserved in the core area that forms the DNA-

binding cleft, except for the finger domains (Figure 3B).  The finger domains are 

structurally conserved with most secondary structural elements aligned between polι and 

Dpo4 (Figure 3A,B).  However, there are two striking differences in these finger 

domains, which affect the shape of the active sites and their interactions with DNA 

substrate. These differences are concentrated in the fragment between the β-strands β2 

and β3, which is in the non-conserved substrate recognition site that contacts the template 

DNA and the replicating base pair in the active site (Yang, 2003).  First, polι has a much 

shorter loop between β2 and β3 than that of Dpo4. This loop (L23) forms a structural 

interface for the finger domains to interact with the LF domains, as well as the-single 

stranded template DNA in Dpo4 (Figure 3B-E). The shorter loop of polι causes the LF 
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domain to rotate 12˚ inward to the finger domain and the β9 strand moves ~2 Å towards 

the template strand, creating a narrowed active site in polι (Figure 3B,C).  The narrowed 

active site limits the C1´-C1´ distance of the replicating base pair to within 9 Å in polι. 

The C1´-C1´ distances are 8.3 Å, 8.6 Å, and 8.9 Å in the structures of T:ddADP, T:dTTP, 

and T:dGTP, respectively.  In contrast, the replicating base pair in the active site of Dpo4 

has a C1´-C1´ distance of ~10.6 Å (Figure 3D), which is a common strand width for B 

form DNA in all other Y-family polymerase structures (Alt et al., 2007; Lone et al., 2007; 

Nair et al., 2005).   

The second difference between polι and Dpo4 finger domains lies in the fragment 

that contacts the replicating base pair within the active site.  Polι has relatively large 

amino-acid side chains (Gln 59, Lys 60, Leu 62, Val 64, Leu 78) contacting the 

replicating base pair at the active site (Figure 3E) when compared to Dpo4, which has 

relatively small amino acids (Val 32, Gly 41, Ala 42, Ala 44, Gly 58) for the contacts. 

Although the finger domain is rolled out by ~15˚ relative to Dpo4, the larger side chains 

of Gln 59, Leu 62, Val 64, and Leu 78 in polι still push the replicating base pair towards 

the major groove, effectively tilting it off plane relative to that of Dpo4 (Figure 3E). Lys 

60 and the residues from strand β9 of the polι LF domain squeeze the template base 

towards the incoming nucleotide and make the C1´-C1´ distance shorter than 9 Å (Figure 

3E).  These structures reveal that the finger domain is not only important for contacting 

the replicating base pair but is also an essential factor for restricting the C1´-C1´ distance 

in polι. Therefore, the polι finger domain is most likely the functional domain 

responsible for the nucleotide specificity during replication. 
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Conformation and stability of replicating base pairs in polι active site 

The unique polι active site and the T template base make the replicating base pairs in the 

ternary complexes different in conformation from those in other Y-family polymerase 

ternary structures.  All three of our polι structures have the template T base in a normal 

anti conformation when it is paired with an incoming nucleotide in the active site (Figure 

4).   Nucleotide binding does not induce a conformational change in the T template base 

as observed in the purine-template structures (Nair et al., 2005; Nair et al., 2006).  

Instead, the incoming dNTPs of the replicating base pairs in our polι structures adopt 

different conformations, depending on their fit in the enzyme active site. Due to large 

residues from finger domain, the template T base is pushed out of the stacking area with 

underneath bases and tilted off plane by the finger domain in all three structures (Figure 

4).  The tilt (τ) and roll (ρ) angles of the off plane T from the underlying base are around 

6˚ and 16˚, respectively.   

 In the T:ddADP structure, the incoming ddADP adopts a syn conformation and 

forms a Hoogsteen base pair with the template T (Figure 4A).  The Hoogsteen base pair 

in the T:ddADP structure fits the narrowed active site with a C1´-C1´ distance of 8.4 Å, 

which is similar to other reported polι structures (Nair et al., 2005; Nair et al., 2006; Nair 

et al., 2006)  and is smaller than the required C1´-C1´ distance of ~10.6 Å for proper 

Watson-Crick base pairing (Ling et al., 2003; Ling et al., 2001; Ling et al., 2004; Ling et 

al., 2004; Wong et al., 2008).  In addition, incoming ddADP is flipped out of the stacking 

area of the underlying base pair towards the major groove due to its syn conformation.  

The ddADP is tilted ~20° off plane with the underlying base pair and has an elongated 
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stacking distance of about 4 Å , which weakens the stability of the replicating base pair 

further (Figure 4A).   

In the T:dTTP structure, the mismatched incoming dTTP is in an anti 

conformation (Figure 4B).  The narrowed active site holds the pyrimidine- pyrimidine 

base pair well, due to the pair being smaller than the common pyrimidine-purine base 

pair in contacting distance.   The narrowed active site thus stabilizes the small 

pyrimidine-pyrimidine mismatched base pair. The C1´-C1´ distance of the T:T base pair 

is 8.5 Å, which would not be stable in an active site that accommodates a standard 

Watson-Crick base pair with C1´-C1´ distance of ~10.6 Å.  Interestingly, the incoming 

dGTP is also in the anti conformation, which has not been observed in other polι 

structures that contain template purine bases in the active site (Nair et al., 2005; Nair et 

al., 2006) (Figure 4C).  The C1´-C1´ distance is restricted to 8.9 Å, which causes the 

template T to tilt an extra 15° off plane in order to accommodate the anti conformation of 

the dGTP nucleotide.  Our structural observation shows that a syn conformation on purine 

nucleotides can occur in the template or incoming nucleotide position and is the result of 

a narrowed active site that constrains the C1´-C1´ distance of the replicating base pair.  In 

contrast to ddADP, the bases of dTTP and dGTP in anti conformations remain within the 

active site, parallel to the underlying base pair (Figure 4B,C) with stacking distances in 

the normal range  of 3.2 - 3.6 Å.  Compared to incoming A and T bases, the G base of 

dGTP has the largest stacking surface due to its purine base and anti conformation.  Base 

stacking between the incoming nucleotide and the underlying base pair is critical to the 

stability and preference of nucleotide incorporation (Yang, 2006). Therefore, G is most 
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favourable and A is the least favourable opposite template T in terms of its base-stacking 

properties. 

In addition to base stacking, incoming bases are also stabilized by hydrogen 

bonding with template bases.  There are two hydrogen bonds between incoming A (N6 

and N7) and the template T (N3 and O4) in the Hoogsteen base pair in T:ddADP (Figure 

4A).  In the T:dTTP structure, there are also two hydrogen bonds formed between the 

template T (O2 and N3) and the incoming dTTP (N3 and O4) (Figure 4B).  Accordingly, 

the hydrogen-bonding forces of the replicating base pairs are comparable in these two 

complexes.  Thus, the loss of base stacking on ddADP makes the mismatched dTTP more 

favourable for incorporation than the A base.  Incoming dGTP also forms two hydrogen 

bonds to the template T, as well as a unique third hydrogen bond between its N2 atom and 

OE1 of Gln59 from the finger domain (Figure 4C).  This special hydrogen bonding with 

Gln59 is the first to be identified in a polι structure and reveals a unique stabilizing force 

that favours, over other bases, the mis-incorporation of dGTP opposite template T by 

polι.  The Gln 59 is conserved in polι homologues (Figure S3), signifying its functional 

importance.  The structural observation that incoming dGTP is the most stable incoming 

nucleotide is supported by the observation that dGTP binding affinity opposite template T 

by polι is greater than dTTP or dATP and is the same for dTTP binding affinity opposite 

template A (Washington et al., 2004).   

Role of polι finger domain in base incorporation specificity and replication stalling 

The finger domain of polι contacts the replicating base pair and pulls the LF domain 

towards the active site, which contributes to the replication specificity.  In order to 

confirm that the polι finger domain determines the replication specificity, we generated 
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two Dpo4-ι chimeric proteins with functional domains switched between Dpo4 and polι.  

The LF domain has been implicated in contributing to replication specificity (Boudsocq 

et al., 2004), thus the finger or LF domains of Dpo4 were replaced with the 

corresponding counterparts of polι in the chimeras.  Four DNA substrates containing 

either T, A, C, or G at the first replicating position and a T base at the eighth replicating 

position were used for the functional assays (Figure 5).  The chimeric proteins were 

tested by primer extension assays with wild-type Dpo4 and polι as controls.   

Opposite the T template base, polι has a high misincorporation rate of G and T 

(vertical arrows in Figure 5A) opposite template T, as the primers (bottom bands) are 

almost fully reacted for dGTP (lane G) and dTTP (lane T). Multiple bands are observed 

due to the low processivity of these enzymes.  In contrast, Dpo4 incorporates the correct 

A nucleotide preferentially (lane A) with dramatically reduced reactions with dTTP (lane 

T), dGTP (lane G), and dCTP (lane C) compared to dATP (Figure 5A).  Opposite the A 

template (Figure 5B), both Dpo4 and polι have quite accurate incorporation with 

preference for the correct incoming nucleotide dTTP (lanes T in Figure 5B). The 

polymerases against the G template in Figure 5C show similar patterns, with C 

preferentially inserted. Interestingly, Dpo4 replicates the C template (Figure 5D) 

accurately, while polι preferentially inserts G with significant misincorporations of T 

(vertical arrows in Figure 5D).  Remarkably, Dpo4-ι finger domain chimera (Dpo4-ι) 

adopted a high mis-incorporation rate of G and T opposite template T similar to polι, as 

the primer bands in the lanes T and G are almost fully reacted (vertical arrows in Figure 

5A), which is similar to polι and different from Dpo4 (Figure 5A).  Accordingly, 

opposite template A, G, and C, the Dpo4-ι resembles polι and differs from wild type 
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Dpo4 (Figure 5B,C).  The primer extension assays indicate that replication specificity is 

dominated by the finger domain of the Y-family polymerases as the finger swapping 

converts Dpo4 into a polι−like protein in terms of nucleotide incorporation. Interestingly, 

the other Dpo4-ι chimera with the LF domain swapped into Dpo4 (Dpo4-ι-LF) does not 

show any base incorporation pattern changes from Dpo4 to pol ι (data not shown), in 

contrast to what we observed in the Dpo4-ι mutant.  This LF-replacement chimera is very 

different from the Dpo4-Dbh chimeric proteins in which the enzymatic properties of the 

mutants are mainly influenced by their LF domains (Boudsocq et al., 2004).  In the latter 

case, the LF domain is swapped between two very similar Y-family polymerases Dpo4 

and Dbh, which have almost identical substrate recognition sites. The Dpo4-Dbh 

chimeras show functional differences of the LF domains between homologues sharing 

very similar finger domains (Boudsocq et al., 2004).  In our case, the dramatic difference 

between the finger domains of Dpo4 and polι masks the influence from the LF domains.  

Overall, the mutagenesis data clearly support the structural observations that the finger 

domain plays an important role in nucleotide incorporation specificity, particularly for G 

and T mis-insertion opposite template T and in determining the replication specificity. 

Replication stalling is observed for polι at the T template bases (horizontal arrows 

in Figure 5) but not for Dpo4 and Dpo4-ι.  When all four nucleotides (lanes 4) are present 

in the assay, polι has poor extension beyond the first T template base (Figure 5A) and 

stops at the downstream 8th T base (labelled with horizontal arrows in Figure 5), while 

Dpo4 extends the primer to the end of the template DNA (top bands in Figure 5) with 

better processivity than polι. The finger domain alone does not appear to control the 

stalling property of the enzymes, as the chimeric protein Dpo4-ι extends replication 
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beyond the 8th T base.  This finding is consistent with our structural observation that three 

domains, instead of the finger domain alone, contribute to the stabilization of the ‘U-turn’ 

DNA that leads to replication stalling at the T base.  

 

DISCUSSION 

The polι finger domain creates a unique active site that induces low fidelity opposite 

pyrimidines 

Polι displays a wide diversity on its fidelity between template purines versus template 

pyrimidines (Kunkel et al., 2003; Tissier et al., 2001).  Although this enzyme has low 

error rates opposite template purines, it has the highest error rate of any known 

polymerase opposite template thymines (Johnson et al., 2000; Tissier et al., 2000; Zhang 

et al., 2000).  The diversified substrate-recognition site in the finger domain changes in 

size and residue identity across the Y-family members and is expected to be responsible 

for the specificity of nucleotide incorporation (Ling et al., 2001; Yang, 2003).  The β2-

turn-β3 loop (L23) is the only part of the polymerase core that contacts the LF domain in 

the Y-family ternary complex structures.  Our structural analyses indicate that the shorter 

polι L23 of the finger domain induces a movement of the LF domain towards the 

template strand, which results in a narrowed active site.  It is conceivable that the finger 

domain causes the LF shifting towards the template in the active site, as the LF is the 

most flexible domain in the Y-family structures (Wong et al., 2008).   

Polι promotes a T:G mismatch by the its unique narrowed active site and specific 

interactions with the replicating base pair. As a good structural fit, the narrowed active 

site supports pyrimidine:pyrimidine mismatches when the template base is a pyrimidine. 
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Higher misincorporations of T:T, T:C, C:T and C:C were observed in our primer 

extension assays for both polι and Dpo4-ι relative to misincorporations opposite template 

purines.  When the template base is a purine, the smaller, incoming pyrimidine maintains 

its base stacking in anti conformations (Nair et al., 2006), while a larger, incoming purine 

nucleotide would be difficult to fit in the narrowed active site for a purine:purine 

mismatch.  This mechanism prevents misincorporation against purine template bases and 

allows for accurate replication.  Our structural and biochemical analyses are consistent 

with the well documented, high error rates against template pyrimidine bases and 

relatively high fidelity against purine bases by polι (Johnson et al., 2000; Tissier et al., 

2000; Zhang et al., 2000).  

Interestingly, in the presence of Mn2+, polι has increased fidelity opposite 

template thymine with a preference of incorporating the correct A nucleotide instead of 

incorrect G (Frank and Woodgate, 2007).  The Mn2+ ion has a more relaxed and mobile 

coordination than Mg2+ within the active site of polymerases.  This effect likely allows 

the incoming nucleotide to adopt a variety of conformations that would not be possible 

with Mg2+.  In this manner, Mn2+ ion coordination by polι may render a favourable 

interaction that selects A over G opposite template T. 

Replication stalling is stabilized by conserved residues over three domains 

Another unique feature of polι is a pronounced stalling of replication in extending a 

primer strand opposite a T base (Zhang et al., 2000).  Our structures of polι reveal a 

unique template DNA ‘U-turn’ conformation at the DNA’s single-stranded side that may 

effectively stall replication. The back-bending ‘U-turn’ conformation is stabilized by 

specific interactions from the unique methyl group of the template T base and a collection 
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of interactions from three domains of polι.  Three domains are involved in interacting 

with the “U-turn”: the finger domain (Tyr 61, Leu 62, and Leu 78), little finger domain 

(Ser 307 and Arg 347), and thumb domain (Lys 237 and Tyr 244).  These combined 

interactions stabilize the bent single-stranded DNA and appear to hinder its translation 

into the active site for primer elongation.  In addition, the highly bent DNA may also 

reduce the catalytic efficiency of polι, due to the observation that dNTP incorporation 

opposite template T is much slower than opposite template A (Washington et al., 2004).  

Interestingly, most of the residues contacting the single-stranded template are unique to 

and conserved in polι from difference species (Figure S3), suggesting conservation of 

specific functions.  Replication stalling by polι may be involved in recruiting another 

polymerase for primer extension after insertion opposite template T or U.  

 

Conclusions 

Polι uniquely replicates DNA with a constrained active site, creating shorter C1´-C1´ 

strand distances, with the finger domain projecting the template base out towards the 

solvent-accessible major groove and stabilizing a mismatched G base via H-bonding.  

The finger domain of polι  is responsible for the unique active site, and in turn, its 

replication specificity.  This feature allows polι to maintain a relatively high fidelity on 

template purines, yet induce high rates of misincorporation on template pyrimidines.  The 

high fidelity on template purines by polι appears to play a role in translesion synthesis by 

allowing accurate replication through adducted purine bases.  The biological role of 

polι’s low fidelity is still unclear; however, it is apparent that when functioning out of 

context, this unique replication specificity induces high rates of DNA mutagenesis. 
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METHODS 

Dpo4-ι chimeric proteins 

To construct the Dpo4-ι finger domain chimera (Dpo4-ι) and the Dpo4-ι little finger 

domain chimera (Dpo4-ι-LF), plasmid vector pET-22b containing the Dpo4 gene and 

plasmid vector pHis-parrallel1 containing the polι gene were used as templates for PCR.  

For Dpo4-ι, the N-terminus of Dpo4 was cloned up to the beginning of the finger domain 

using primers A  

(5’- C GTT ACT GCC ATG GTT GTT CTT TTC GTT G -3’) and B  
 
(5’-TTCTACTTGTGCATAAAAGCAGTCAAAATCAACGAAAAGAACAATC-3’).  

The result was an N-terminus Dpo4 PCR product containing an NcoI cutting site at the N 

terminus and a C terminal overhang, which was complementary to the beginning of the 

polι finger domain. The C-terminus of Dpo4 was cloned past the end of the finger domain 

using primers C 

(5’-GTTGGTATTAGTTAATGGAGAAGACAAGGAAGTATATCAGCAAGTTTC-3’) 

and D (5’-GCTAGTTATTGCTCAGC-3’).  The result was a C-terminal Dpo4 PCR 

product with an N terminal overhang, complementary to the end of the polι finger 

domain.  The finger domain of polι was cloned using primers E 

(5’-TGC TTT TAT GCA CAAGTAGAAATG-3’) and F  

(5’-GTCTTCTCCATTAACTAATACCAAC-3’).  The N-terminal Dpo4 product was 

joined with the polι finger domain product using primers A and F.  The resulting N-

terminal Dpo4-polι finger domain product was joined with the C-terminal Dpo4 product 

using primers A and D to produce the final product of a Dpo4 gene containing the finger 

domain of polι (Dpo4-ι).   
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For Dpo4-ι-LF, the N-terminus of Dpo4 was cloned up to the beginning of the 

little finger domain using primers A  

(5'- C GTT ACT GCC ATG GTT GTT CTT TTC GTT GAT TTT GAC TAC TTT TAC 

GCT C -3') and B  

(5'- AGT TCT TAT AGG CTC GTT ATA CTC GTC TCT AGC TAG A -3').   

The result was an N-terminus Dpo4 PCR product containing an NcoI cutting site at the N 

terminus. The little finger domain of polι was cloned using primers C 

(5'- GCC GTT ACT GCC ATG GTT GTT CTT TTC GTT GAT TTT GAC TAC TTT 

TAC GCT C -3') and D  

(5'- CAT CCT CGA GAC CTA CTT AGC AGT ATT TAG TGC TTT AAG GTT GCA 

GAA GC-3').  The result was a polι little finger domain with an N-terminal overhang, 

complimentary to the end of the Dpo4 product.  The N-terminal Dpo4 product was joined 

with the polι little finger domain product using primers A and D to produce the final 

product of a Dpo4 gene containing the little finger domain of polι (Dpo4-ι-LF).   

Both Dpo4-ι and Dpo4-ι-LF genes were cloned into the pHis-parallel1 vector and 

confirmed by sequencing.   

 

Primer Extension Assays 

DNA substrate (10 nM) was incubated with either Dpo4, Dpo4-ι, Dpo4-ι-LF or hpolι (10 

nM) and 100 uM of either all four dNTPs or individual dNTPs at 37°C for 2min in 

reaction buffer containing 40 mM Tris (pH 8.0), 5 mM MgCl2, 250 ug/ml BSA, 10 mM 

DTT, and 2.5% glycerol. Reactions carried out in the presence of 150 mM CaCl2 were 

incubated at 37°C for 60min. Reactions were terminated with loading buffer (95% 
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formamide, 20 mM EDTA, 0.025% xylene, 0.025% bromophenol blue) and resolved on a 

20% polyacrylamide gel containing 7 M urea. Gels were visualized using a 

PhosphorImager. 

 

Protein Preparation 

Human DNA pol ι (amino acid 1-420) was cloned into pGST-parrallel1 vector and the 

subsequent glutathione S-transferase-tagged polι was over expressed in Escherichia coli 

strain DE3.  The polι-GST fusion protein was purified using affinity chromatography and 

cleaved using a histidine-tagged tobacco etch virus (TEV) protease, which was 

subsequently removed using nickel affinity chromatography.  The cleaved polι containing 

2 extra N-terminal residues was further purified using an SP column.  Dpo4 used for 

functional assays was purified as previously described (Ling et al., 2001).  The His 

tagged Dpo4-ι chimeric proteins used for functional assays were overexpressed in 

Escherichia coli strain DE3 and purified using nickel affinity chromatography followed 

by an SP column 

 

DNA preparation 

Oligonucleotides for crystallization were purchased from Keck Oligo Inc. and gel 

purified.  The 9-nt primer (5’-GTGGATGAG-3’) was annealed to a 15-nt template (5’-

CTCATTCTCATCCAC-3’), and the self-annealing 18-nt oligonucleotide (5’-

TCATGGGTCCTAGGACCCdd-3’) was annealed with itself to give a DNA substrate 

with two replicative ends.  Oligonucleotides used for primer extension assays were 

purchased from Sigma Aldrich and gel purified.  A 30-nt template  
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(5’-GAGCAGTCGCACATGTAGTATCTCTGTGAC-3’) was annealed to a 16-nt primer 

(5’-GTCACAGAGATACTAC-3’) resulting in a template T base at the first and eighth 

position beyond the primer-template junction.  The primer was 5’-end labelled using  

[γ-32P]ATP and T4 polynucleotide kinase.  The 5’-labelled primer was mixed with 

template DNA at a 1.5:1 molar ratio and heated at 95°C, followed by slow cooling to 

form the annealed DNA substrate. 

Crystallization and Structure Determination 

Ternary complexes were formed for T:ddADP, T:dGTP, and T:dTTP by incubating 

protein (0.2 mM) and DNA in a 1:1.2 ratio with either ddNTP or dNTP (1mM), and 

MgCl2 (5 mM).  Crystals of the T:dGTP and T:dTTP complex were obtained in 12% 

PEG 5000 MME + 0.2M NH4SO4 + 5% glycerol + 0.1 M MES, pH 6.5, while crystals of 

the T:ddADP complex were obtained in 12% PEG 3350 + 0.15 M CaCl2 + 0.01 M DTT + 

5% glycerol.  All crystals were flash frozen in liquid nitrogen using paratone-N as a cryo 

protectant.  X-ray diffraction data were collected on the beamline 24-ID-C at the 

Advanced Photon Source in Argonne National Laboratory.  The data were processed and 

scaled using HKL (Otwinowski  and Minor, 1997). 

 All three structures were solved using molecular replacement with a previously 

solved ternary complex (PDB:2ALZ) as a search model.  Rigid body refinement was 

performed using REFMAC (Murshudov et al., 1997), followed by restrained refinement 

and then TLS refinement.  Electron density was well defined for all structures except for 

the first 27 residues of the N-terminus, loop regions 332-337, 350-356, and 371-378 and 

the last 6 residues of the C-terminus.  Additionally, the +4 and +5 nucleotide within 

T:ddADP and the +3, and +2 nucleotides within T:dGTP and T:dTTP were disordered. 
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All structures have good stereochemistry with over 95% of the residues in the most 

favoured region of the Ramachandran plot.  

 

Coordinates 

The atomic coordinates and structure factors have been deposited in the Protein Data 

Bank, www.rcsb.org,  with accession codes 3GV5, 3GV7 and 3GV8 for the structures 

T:ddADP, T:dGTP, and T:dTTP, respectively. 

 

Supplementary data 

Supplementary data are available at The EMBO Journal Online 
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Figure 1  Comparison of polι-DNA-nucleotide ternary structures.  The colour schemes 

are shown either as the colour of the appropriate labels or the colour bars in the panels.    

(A) Superposition of T:ddADP (yellow), T:dTTP (cyan), T:dGTP (magenta), and a 

previously solved polι ternary complex (PDB: 2ALZ, grey).  Proteins are shown as Cα 

traces and Tyr 61 is shown as sticks to highlight its conformational change as a result of 

the DNA U-turn.  Incoming nucleotides were omitted for clarity.  (B) DNA superposition 

of T:ddADP (yellow), Dpo4 ternary structure (PDB: 2AGQ, blue), and a previously 

solved polι ternary complex (PDB: 2ALZ, grey).  Top view is also shown with the 

template T base in orange and the incoming ddADP in red.  (C)(D) Polι (T:ddADP) and 

Dpo4(PDB: 2ALZ) ternary complexes.  DNA template strands are shown in yellow, T 

bases in orange, and primer strands in grey.  The U-turn DNA and position of the 5’ 

template end are indicated by the appropriate arrows. LF represents the little finger 

domain. 

 

Figure 2 Structure of T:ddADP showing template DNA ‘U-turn’ stabilization.  Numbers 

indicate template nucleotide positions relative to T at position 0.  Hydrogen bonding is 

shown as blue dashed lines.  (A) Overall T:ddADP structure is shown with DNA 

template strand in yellow, T base in orange, and the primer strand in grey.  The finger 

domain is shown in blue, little finger (LF) domain in purple, thumb domain in green, and 

palm domain in grey.  (B) Zoom-in view of the ‘U-turn’ stabilization by the polι finger 

(blue) and LF (magenta) domains.  (C) Zoom-in view of the ‘U-turn’ stabilization by the 

polι thumb domain (green).  (D) Zoom-in view of the ‘U-turn’ stabilization by the 

template T base (orange).  Hydrophobic interactions are shown as black dashed lines.  
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View is as seen from underneath and looking up through the red square in panel a; the 

vertical arrow in panel a points to the side that is the top of panel d. 

 

Figure 3 Polι and Dpo4 active site comparison.  (A) Structure-based sequence alignment 

of amino acids for the finger domains of polι (cyan) and Dpo4 (grey).  Numbres 2, 3, and 

4 indicate the second, third, and fourth β-sheets. Secondary structure is indicated as 

rectangles for α-helices and arrows for β-sheets.  Residues interacting with the replicating 

base pair are highlighted in magenta.  (B) Superposition of T:ddADP (cyan, purple) and 

ternary Dpo4 (type I)-DNA-nucleotide (1JX4, grey).  The incoming nucleotides are 

shown as sticks for Dpo4 (grey) and T:ddADP (yellow).  LF represents the little finger 

domain.  (C)(D) Close-up views of active sites showing finger-LF domain interactions in 

polι and Dpo4.  Finger domains are cyan, LF domains are purple, and DNA is yellow.  

(E) Active site superposition from b of T:ddADP (finger: cyan; little finger: purple; T 

base: orange; ddADP: yellow) with Dpo4 (grey).  Positioning of the replicating base pair 

by polι side chains is indicated with black arrows. 

 

Figure 4 Base stacking and hydrogen bonding of replicating base pairs with 2Fo-Fc 

electron density maps at 1σ contour level.  (A) T:ddADP structure (B) T:dTTP structure 

(C) T:dGTP structure.  The template T base is shown in brown, the incoming nucleotide 

is shown in yellow, and the underlying base pair is shown in grey.  Hydrogen bonds 

represented as blue dashed lines are shown in top views on the left side.  Protein side 

chains involved in hydrogen bonding are shown in cyan. Green spheres represent divalent 

cations. 
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Figure 5 The role of the finger domain in incorporation specificity.  Primer extension 

analysis was used to examine nucleotide incorporation opposite (A) template T base, (B) 

template A base, (C) template G base, and (D) template C base by polι, Dpo4-ι (finger 

domain) chimera, and Dpo4. The first replicating template base and the T template base 

at the 8th position are bolded. Horizontal arrows indicate replication stalling, while 

vertical arrows indicate misincorporation.  Enzymes were incubated with DNA and either 

no nucleotides (0), all four dNTPs (4), or individual dNTPs (A,T,C,G). 
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  Table I Summary of crystallographic data 
 
            Crystal                                    T:ddADP   T:dTTP    T:dGTP 
 
           Space group                              C2     P6522                  P6522 
            Complexes per AUa                 2          1            1 
           Unit cell  

   a, b, c (Å)           140.2, 71.8, 127.4            97.2, 97.2, 201.9           98.1, 98.1, 203.7    
        β (°)                                      112.5 
             Resolution range (Å)b      52.0-2.0 (2.04-2.00)      27.0-2.2 (2.26-2.20)      24.0-2.0 (2.07-2.00) 
            Rmerge

b 
                                                     7.2 (61.7)                        8.44 (83.8)                    12.1(57.7)           

            I / σI                                      24.6 (2.1)              36.8 (2.3)     57.9 (3.0) 
            Completeness (%)b               99.0 (96.3)   99.9 (100)     99.7 (100) 
            Redundancyb                          3.6 (3.1)             11.6 (11.7)     13.3 (8.9) 
            No. reflections (test)       73972 (2%, 1551)            28762 (2%, 604)           38810 (2%, 826) 
            Rwork / Rfree                           20.6 / 25.3    20.9 / 25.8                21.8/ 24.9 
            No. atoms                                  
     Protein                                   6008                                2978                              2903 
     DNA                                       892                                  323                               323 
     dNTP                                      50                                    28                                  30  
     Mg2+ ions                                 -                                      2                                    2 
     Ca2+ ionsc                                 8                                      -                                    - 
     Waters                                    757                                  265                               238 

B-factors 
     Protein     62.5          49.6          43.5 
     DNA                 52.7                            46.6          44.5 
     dNTP     29.0          44.8          48.8 
     Metal ions     35.0          46.1          47.7 
     Water     39.2          59.9          46.8 
             R.m.s.d. bond lengths (Å)         0.016                               0.013                  0.019 
  R.m.s.d. bond Angles (°)           1.96          1.56                     1.82 

 
a  AU means asymmetric unit  

  b  Data in the highest resolution shell are in parentheses 
  c There are five non-catalytic Ca2+ in the structure. 
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