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Abstract 

In this work a spectrally accurate algorithm has been developed for the simulation of three-

dimensional flows bounded by rough walls. The algorithm is based on the velocity-vorticity 

formulation and uses the concept of Immersed Boundary Conditions (IBC) for the 

enforcement of the boundary conditions. The flow domain is immersed inside a fixed 

computational domain. The geometry of the boundaries is expressed in terms of double 

Fourier expansions and boundary conditions enter the algorithm in the form of constraints. 

The spatial discretization uses Fourier expansions in the stream-wise and span-wise 

directions and Chebyshev expansions in the wall-normal direction. The algorithm can use 

either the fixed flow rate constraint or the fixed pressure gradient constraint; a direct 

implementation of the former constraint is described. An efficient solver which takes 

advantage of the structure of the coefficient matrix has been developed. Taking the advantage 

of the reality conditions enhances the efficiency of the solver both in terms of memory and 

computational speed. It is demonstrated that the applicability of the algorithm can be 

extended to more extreme geometries using the over-determined formulation. Various tests 

confirm the spectral accuracy of the algorithm. 

 

 

Keywords 

Spectral method, immersed boundary conditions method, rough boundaries, three-

dimensional channels. Efficient solver, using reality conditions, over-determined 

formulation. 
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Section 1 

1 Introduction 

Roughness can be found in almost every type of flow systems. They have the ability to 

enhance or deteriorate the functionality of a flow system. The history of the study of the 

effect of surface roughness on fluid flow dates back to the works of Hagen and Darcy [1, 

2] who concluded that roughness always increases flow resistance. The quantification of 

average drag in terms of friction factor was accomplished by Nikuradse and Moody [3, 4] 

who also demonstrated that the drag in laminar flow regime is independent of surface 

roughness. 

The prevailing belief of surface roughness always increasing drag was first contradicted 

by Walsh [5, 6]. His experiments on flows over stream-wise grooves in the form of 

riblets demonstrated that surface roughness can reduce turbulent drag. In their works on 

drag reducing longitudinal grooves (riblets), Choi, Moin and Kim [7] and Chu and 

Karniadakis [8] concluded that though these kinds of grooves have the capability to 

reduce turbulent drag, they always increase laminar drag. 

The pressure losses for laminar flows over rough surfaces regained the focus because of 

the growing interest on the flows in micro-channels and the deviation from the classical 

theory found in the works of Papautsky et al, Sobhan and Garimella, Morini, Sharp and 

Adrian, and Gamrat et al [9-13]. Mohammadi and Floryan [14] investigated the pressure 

losses in grooved channels for laminar flows and found the potential to obtain laminar 

drag reducing grooves by proper shaping of the grooves. Mohammadi and Floryan [15] 

also studied the drag reducing longitudinal grooves and determined the optimal shape for 

such kind of grooves. 

The main difficulty associated with the numerical solution of flow problems bounded by 

rough walls is modeling the effect of surface roughness. Methods based on the mapping 

of the irregular boundary into a rectangular domain can provide very high accuracy. 

However, these methods suffer from two main disadvantages. The coefficient matrix 

associated with these methods is non-sparse type which consequently leads to a high 
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computational cost [16]. This draw back becomes prominent for unsteady problems as 

the coefficient matrix is reconstructed at each time step. Moreover, these algorithms have 

limitations in terms of geometry as they cannot handle singularity in the mapping. 

The immersed boundary (IB) method provides a general conceptual basis for developing 

efficient computational tools to solve flow problems involving complex boundary 

geometries. The original concept was proposed by Peskin [17] in the context of cardiac 

mechanics problems. The method works by discretizing the governing equations within a 

regular computational domain that surrounds the complex flow domain. Special 

procedures are then used to enforce the boundary conditions along the physical 

boundaries, immersed within the computational domain. The computational efficiency of 

this class of methods stems from the elimination of the cost of generating boundary 

conforming grids.  

The essence of the IB method is to impose forcing at the edge of the computational 

domain so that the flow quantities evaluated along the edge of the physical domain 

assume values specified by the boundary conditions. Various implementations have been 

developed over the past few decades [18, 19] with the forcing applied in either a 

continuous or discrete manner. The majority of implementations apply low-order finite-

difference, finite-volume or finite-element techniques for the spatial discretization [20-

22] resulting in limited spatial accuracy.  Some recent implementations employ spectral 

discretization to improve the solution accuracy although the complete solutions are 

nevertheless not spectrally accurate [23, 24]. 

A fully, spectrally-accurate version of the IB method, referred to as the Immersed 

Boundary Conditions (IBC) method was proposed in [25] for two-dimensional flow 

problems. The geometry of the physical boundaries is described by Fourier expansions 

which limits the applicability of the method to periodic domains. The method is 

nevertheless applicable to a very wide class of problems of physical interest. The 

discretization relies on two types of Fourier expansions, one for the field variables and 

one for the boundary conditions. The boundary relations responsible for the enforcement 

of boundary conditions are constructed formally and provide the means to enforce these 
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conditions with spectral accuracy. Use of the Chebyshev expansions in the non-periodic 

direction makes the algorithm effectively gridless and, thus, allows quick adaptation to 

different geometries. The IBC method has been extended to unsteady problems involving 

both fixed [16] and time-dependent boundary shapes [26-29]. It has also been extended to 

three-dimensional problems described by the Laplace operator [30]. From an application 

perspective, the method has been instrumental in the search for drag reducing grooves 

[14, 15 and 31] as well as in the analysis of instabilities of shear layers bounded by 

grooved surfaces [32-38].  

The construction of the boundary relations yields a number of constraints in the IBC 

method in excess of what is required to form a closed system of algebraic equations [39]. 

The “classical” formulation retains enough of these constraints corresponding to the 

lowest Fourier modes to form a closed system. Although spatial discretizations using 

Fourier and Chebyshev expansions lead to the coveted spectral convergence properties, 

the computational cost of the method increases very rapidly with increasing boundary 

complexities. This cost may be lowered by using the over-determined formulation where 

the number of boundary relations is in excess of the field equations [39]. The cost can 

also be lowered by using specialized linear solvers [40, 41]. 

The above discussion shows that most of the existing efforts, with the exception of [30], 

have been focused on two-dimensional problems. There is therefore a need to develop an 

extension of the IBC method suitable for the analysis of three-dimensional flows. One 

needs to pay attention to the memory and computational cost as both of them increase 

rapidly with increased geometric complexity. This is so because the modal equations 

resulting from the discretization of the field equation are coupled through boundary 

properties, unlike the case of a smooth channel [42]. 

The present work deals with the development of the three-dimensional version of the IBC 

method with applications focused on the analysis of flows in domains bounded by rough 

walls. Section 2 introduces the model problem. Section 3 describes the numerical 

formulation of the problem. In particular, Section 3.1 discusses the velocity-vorticity 

formulation and Section 3.2 presents the numerical discretization. Here, Section 3.2.1 
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presents the discretization of the field equations, Section 3.2.2 discusses the discretization 

of the boundary conditions and Section 3.2.3 presents the discretization of the flow 

constraints. Section 4 is focused on the solution process. In particular, Section 4.1 

describes the specialized linear solver used repeatedly during the iterative solution 

process while Section 4.2 discusses efficiencies resulting from taking advantage of the 

complex conjugate property of the unknowns. Section 5 discusses the evaluation of the 

pressure field. Section 6 discusses testing of the algorithm. Section 7 presents the over-

determined formulation of this algorithm and discusses the range of its applicability. 

Section 8 provides a short summary of the main conclusions  
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Section 2 

2 Problem Formulation 

The mathematical formulation of the problem has been presented in this section. Section 

2.1 describes the geometry of flow domain, section 2.2 provides the governing equations, 

the reference flow has been introduced in section 2.3 and section 2.4 presents the flow 

between rough walls. 

2.1 Geometry of the Flow Domain 

Consider a channel formed by rough walls extending to    in the x- and z-directions. 

The upper and lower walls are located at   (   ) and   (   ), respectively. It is 

assumed that the roughness is periodic in the x- and z-directions with wavelengths 

        and         where   and   stand for the wave numbers in the x- and z-

directions, respectively (Figure 1). The channel geometry can be described using Fourier 

expansions of the form 

 

  (   )    ∑ ∑   
(   )

  (       ) 
  
     

  
       

                                               (2.1a)                                                                                    

  (   )     ∑ ∑   
(   )

  (       )  
     

  
     

                                               (2.1b)  

                                                                                      

where half of the mean channel opening   has been used as the length scale 

and    and    denote the  number of Fourier modes required for the description of the 

roughness geometry in the x- and z-directions. The expansion coefficients satisfy the 

reality conditions of the form   
(   )

   
(     ) 

,   
(    )

   
(    ) 

,   
(   )

 

  
(     ) 

 and   
(    )

   
(    ) 

  where star denotes the complex conjugates. As we 

are interested in the effect of flow modulations, we assume that the mean openings of the 

rough channel and the reference smooth channel are the same and, thus, 

 

  
(   )

  ,   
(   )

   .                                                                                                  (2.2)  
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Figure 1: Sketch of the flow and computational domain. 

2.2 Governing Equations 

Flow in the channel is driven by a pressure gradient parallel to the (   )-plane. The 

velocity and pressure fields are described by the continuity and Navier-Stokes equations 

of the form 

 

   ⃗                                                                                                                            (2.3a) 

                                                                                                                                                                

( ⃗   ) ⃗      
 

  
    ⃗⃗  ⃗                                                                                            (2.3b)   

                                                                                                                                    

where   .
 

  
 

 

  
 

 

  
/,  ⃗  (     ) is the velocity vector with  ,  ,   denoting 

components in the x-, y-, and z-directions, respectively,   ⃗     . 
 

  
  

 

  
  

 

  
/, and 

p stands for the pressure. In the above,      and      
  have been used at the velocity 

and the pressure scales with   standing for the density. The proper choice of       is 
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discussed in Section 2.3. The Reynolds number    is defined as       ⁄  where   

denotes the kinematic viscosity. 

The flow is subject to the no-slip and no-penetration conditions at the walls of the form 

 

 ⃗    at     (   ) and     (   ).                                                                       (2.4)                                                                                                                

 

2.3 Flow in a Smooth Channel 

Flow in the smooth channel represents the reference case and the corresponding velocity 

and pressure field have the form 

 ⃗   (          )  0
  

 
  (    )   

  

 
  (    )1                                            (2.5a)                                                                                    

                                                                                                                (2.5b) 

                                                                                                                                            

where  ⃗   (  ,   ,   ) is the reference velocity vector,    stands for the reference 

pressure and    and    denote the pressure gradient components in the x- and z-

directions, respectively. The total pressure gradient and its components are related 

according to the following relation 

 

√  
    

  
 

  
.                                                                                                              (2.6)                                                                                                                                                        

As the fluid flows in the direction of the total pressure gradient, one can choose either the 

x- or z-axis to coincide with this direction without loss of generality. The velocity scale 

     is chosen as the maximum of the velocity of the reference flow in the direction of 

the total pressure gradient. 

2.4 Flow between Rough Walls 

We shall represent flow between the rough walls as a sum of the reference flow and flow 

modifications due to the roughness. The total velocity and pressure field are expressed as 
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 ⃗ (     )  ( (     )  (     )  (     ))  

           (  ( )    (     )   (     )   ( )     (     )),                        (2.7a)                         

 (     )    (   )    (     )             
     

     (     )        (2.7b)                                                                                                                                                 

where subscripts 0 and 1 refer to the reference flow and the flow modification, 

respectively,   
  and   

  denote the modifications of the mean pressure gradient in the x- 

and z-directions, respectively, and   (     ) denotes the periodic part of the pressure 

modifications. 

Substitution of (2.7) into (2.3) yields the following form of the field equations 

   

  
 

   

  
 

   

  
                                                                                                        (2.8a)                                                                                                                                              

  
   

  
   

   

  
   

   

  
 .  

   

  
   

   

  
   

   

  
/                                  

                                                                            
   

  
 

 

  
.
    

    
    

    
    

   /        (2.8b)                                                     

  
   

  
   

   

  
 .  

   

  
   

   

  
   

   

  
/   

   

  
 

 

  
.
    

    
    

    
    

   /       (2.8c)                                                

  
   

  
   

   

  
   

   

  
 .  

   

  
   

   

  
   

   

  
/    

                                                                          
   

  
 

 

  
.
    

    
    

    
    

   /         (2.8d)                                                                                                                                            

The boundary conditions (2.4) can be expressed in the form 

  (  (   ))     (  (   ))                                                                                    (2.9a)                                                                                                                            

  (  (   ))     (  (   ))                                                                                     (2.9b)                                                                                                                           

  (  (   ))                                                                                                             (2.9c)                                                                                                                                                  

  (  (   ))                                                                                                             (2.9d)                                                                                                                                                  
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  (  (   ))     (  (   ))                                                                                   (2.9e)                                                                                                                           

  (  (   ))     (  (   ))                                                                                    (2.9f)                                                                                                                            

The above system needs two closing conditions. We shall consider either the fixed flow 

rate constraint or the fixed pressure gradient constraint in both the x- and z-directions. To 

apply the fixed flow rate constraint we assume that the mean flow rates in x- and z-

directions are known. This constraint in the x-direction takes the form of 

 ( )      
 

   ⁄
∫ ∫  (     )    

  (   )

  (   )

   ⁄

 
   

                    
 

   ⁄
∫ ∫ ,  ( )    (     )-    

  (   )

  (   )

   ⁄

 
     

                                                                                                                         (2.10)                                                                                                                                      

where     and     are the reference flow rate and the flow rate modification due to 

roughness, respectively.     can be specified arbitrarily with    = 0 implying that the 

flow rates in the smooth and rough channels are the same. The flow rate constraint in the 

z-direction can be specified in a similar manner and involves     and     . 

The fixed pressure gradient constraints correspond to the specification of the mean 

pressure gradients in both the x- and z-directions. The mean pressure gradient in the x-

direction can be expressed as 

               
                                                                                                   (2.11)                                                                                                                                           

where    and   
  refers to the pressure gradient of the reference flow and the roughness 

induced modification, respectively.   
  can be selected arbitrarily with   

  = 0 implying 

that flows in the smooth and rough channels are driven by the same pressure gradient. 

The pressure gradient constraint in the z-direction can be specified in a similar manner 

and involves    and    .   
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Section 3 

3 Numerical Solution of the Problem 

This section contains the numerical solution of the flow problem. Section 3.1 provides 

the suitable form of the governing equations for numerical solution. Section 3.1 deals 

with the numerical discretization of the problem where, 3.2.1 presents the discretization 

of the field equations, section 3.2.2 discusses the discretization of the boundary 

conditions and section 3.2.3 presents the discretization of the fixed flow rate constraint. 

3.1 Forms of the Governing Equations Suitable for the 

Numerical Solution 

We shall use the velocity-vorticity formulation. The vorticity vector is defined as  

 ⃗⃗ (     )     ⃗  .  (     )   (     )   (     )/   ⃗⃗  ( )   ⃗⃗  (     )   (3.1)                                           

where  

 ⃗⃗   (                )                                                                                          (3.2a)                                                                                                                                   

 ⃗⃗   (        )  .
   

  
 

   

  
 
   

  
 

   

  
 
   

  
 

   

  
/                                                (3.2b)                                                                                         

In the above,  ⃗⃗   stands for the vorticity of the reference flow and  ⃗⃗   denotes the 

vorticity modifications. The field equations can be reduced to a system of two equations 

for the wall-normal vorticity and velocity components, i.e. for    and   , in the form of 

 

 
 

  
  (    )  .  

 

  
   

 

  
/ (    )  

    

   

   

  
 

    

   

   

  
                            (3.3a)                                                                  

 
 

  
       

   

  
   

   

  
 

   

  

   

  
 

   

  

   

  
                                                   (3.3b)                                                                                         

where 

   
   

  
 

   

  
                                                                                                            (3.4a)                                                                                                                                                     

   
 

  
.
   

  
 

   

  
/  .

  

  
 

  

  
/                                                                            (3.4b)                                                                                                                  
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(    )  

 

  
(    )  

 

  
(    )                       (3.4c)                                                                

     
   

  
   

   

  
   

   

  
 

 

  
(    )  

 

  
(    )  

 

  
(    )                         (3.4d)                                                                 

     
   

  
   

   

  
   

   

  
 

 

  
(    )  

 

  
(    )  

 

  
(    )                    (3.4e)                                                           

The nonlinear terms have been placed on the right hand sides as these terms are 

considered known during the iterative solution process. The solution of (3.3) provides    

and    while    and    are determined from the continuity equation and the definition of 

the wall-normal vorticity by solving the following system 

.
  

    
  

   /     
    

    
 

   

  
 ,                                                                                   (3.5a)                                                                                                                            

.
  

    
  

   /    .
    

    
 

   

  
/.                                                                               (3.5b)                                                                                                                         

The appropriate form of the boundary conditions expressed in terms of    and    will be 

presented later in the text.  

The above formulation has two limiting cases. Surface roughness in the form of 

transverse grooves results in two-dimensional flow modifications. In this case the 

vorticity equation (3.3b) is identically satisfied and the wall normal vorticity becomes 

zero. The velocity equation (3.3a) reduces to 

 
 

  
  (    )    

 

  
(    )  

    

   

   

  
 

 

  
.
   

  
/  

  

  
                                        (3.6)                                                                               

which is equivalent to the equation studied in [42]. When the roughness has the form of 

longitudinal grooves, the flow modifications are independent of the direction of the 

reference flow, the normal and spanwise velocity modifications disappear, the velocity 

equation (3.3a) is identically satisfied and the vorticity equation reduces to the form 

 

  
.
    

    
    

   /                                                                                                         (3.7)                                                                                                                                                
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which is equivalent to the x-momentum equation simplified for such flow configurations 

and studied in [14]. 

In the present case, the wall-normal velocity and vorticity equations are solved as a 

system in both special cases and the properties of the limiting solutions are used for 

verification of the consistency of the algorithm. 

3.2 Discretization Method 

We wish to determine the solution of the flow problem presented in the previous section 

with spectral accuracy. We shall use the Immersed Boundary Conditions (IBC) concept 

in order to deal with the irregularity of the solution domain. We select a fixed rectangular 

computational domain extending over one period in the x- and z-directions and extending 

in the y-direction in such a way that the rough boundaries are completely submerged 

inside the computational domain and replace the flow boundary conditions with the 

equivalent boundary constraints. Figure 1 illustrates the form of the computational 

domain. We shall use Chebyshev polynomials for discretization in the transverse 

direction and, in order to use their standard definition, the y-extent of the computational 

domain needs to be mapped into ,    -. A mapping of the form 

 ̂   ,  (    )-                                                                                                  (3.8)                                                                                                                                        

is used where  ̂  ,    -,     (       ), and    and    stand for the locations of 

extremities of the upper and lower walls (see Fig.1), respectively. 

The wall geometries are expressed in the new coordinate system in the form of 

 ̂  ∑ ∑   
(   )  

     

  
     

  (       )                                                                  (3.9a)                                                                                                         

 ̂  ∑ ∑   
(   )  

     

  
     

  (       )                                                                  (3.9b)                                                                                                            

where  

  
(   )

    0      
(   )

1,    
(   )

    
(   )

 for (   )  (   )                       (3.10a)                                                                
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(   )

    0 (    )    
(   )

1    
(   )

     
(   )

for (   )  (   )              (3.10b)                                                      

The governing equations transform to the following form 

 

 
 

  
.

  

        

  ̂  
  

   /
 

   .  
 

  
   

 

  
/ .

  

        

  ̂ /                     

                                                                                 

  ̂ 

   

  
       

  ̂ 

   

  
           (3.11a)                                                                                   

 
 

  
.

  

        

  ̂  
  

   /      
   

  
   

   

  
  

   

  

   

  ̂
  

   

  

   

  ̂
             (3.11b)                                               

where 

   
   

  
 

   

  
                                                                                                          (3.12a)                                                                                                                                                   

   
 

  
.
   

  
 

   

  
/  .

  

  
 

  

  
/                                                                           (3.12b)                                                                                                                

   
 

  
(    )   

 

  ̂
(    )  

 

  
(    )                                                               (3.12c)                                                                                                        

   
 

  
(    )   

 

  ̂
(    )  

 

  
(    )                                                                (3.12d)                                                                                                        

   
 

  
(    )   

 

  ̂
(    )  

 

  
(    )                                                             (3.12e)                                                                                                     

The fixed flow rate constraint in the new coordinate system is expressed as follows 

 ( )      
 

   ⁄
∫ ∫ 0

 

 
  ( ̂)  

 

 
  (   ̂  )1   ̂  

 ̂ (   )

 ̂ (   )

   ⁄

 
                (3.13)                                                  

while the form of the fixed pressure gradient constraint remains unchanged, i.e. it is given 

by (2.11). 
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3.2.1 Discretization of the Field Equations 

The unknowns are represented as Fourier expansions in the periodic directions of the 

form 

  (   ̂  )  ∑ ∑  (   )( ̂)  (       ) 
    

 
                           

                  ∑ ∑  (   )( ̂)  (       )  
     

  
     

                                               (3.14a) 

  (    ̂  )  ∑ ∑  (   )( ̂)  (       ) 
    

 
            

                   ∑ ∑  (   )( ̂)  (       )  
     

 
  
     

                                            (3.14b) 

  (    ̂  )  ∑ ∑  (   )( ̂)  (       ) 
    

 
                        

                   ∑ ∑  (   )( ̂)  (       )  
     

 
  
     

                                            (3.14c) 

  (    ̂  )  ∑ ∑  (   )( ̂)  (       ) 
    

 
                       

                   ∑ ∑  (   )( ̂)  (       )  
     

  
     

                                             (3.14d) 

where    and    represent truncations in the x- and z-directions, respectively, and 

 (   )   (   )   (   ),  (   ) are the modal functions for the wall-normal vorticity and 

the streamwise, wall-normal and spanwise velocity components, respectively. The modal 

functions satisfy the reality conditions of the form  (   )    (     )    (    )  

  (    )     (   )    (     )    (    )    (    ) ,  (   )    (     ) ,  (    )  

  (    ) ,   (   )    (     ) ,  (    )    (    )  where star denotes the complex 

conjugates. 

Substitution of (3.14) into (3.11) and separation of Fourier modes lead to a system of 

ordinary differential equations for the modal function of the form 

0
   

 

  
    (            )     (           )1  

(   )( ̂)  

    
(   )

                                                                                                                 (3.15a) 
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.
   

  
            /  (   )( ̂)  (             ) 

(   )( ̂)  

    
(   )

                                                                                                                 (3.15b)                                        

for          and          where 

       

                                                                                                                   (3.16a)                                                                                                                                                        

          
                                                                                                        (3.16b)                                                                                                                                                

   
                                                                                                            (3.16c)                                                                                                                                          

  
(   )

   [    
(   )      

(   )]     
   

(   )                                            (3.16d)                                                                                     

  
(   )

      
(   )       

(   )                                                                         (3.16e)                                                                                                                

  
(   )

    〈    〉
(   )   〈    〉

(   )     〈    〉
(   )                                   (3.16f)                                                                           

  
(   )

    〈    〉
(   )   〈    〉

(   )     〈    〉
(   )                                   (3.16g)                                                                            

  
(   )

    〈    〉
(   )   〈    〉

(   )     〈    〉
(   )                                 (3.16h)                                                                         

In the above, 〈    〉
(   ) denotes the Fourier coefficients of the product (    ), i.e. 

(    )  ∑ ∑ 〈    〉
(   )( ̂)  (       ) 

    
 
    .                                                (3.17)                                                                                         

Similar notation is used for the other products, i.e. (    )  (    )  (    ) (    ), 

(    ). Functions   ,   ,   ,    ,   , which are treated as known during the solution 

process, are replaced by their Fourier expansions with   
(   )

,   
(   )

,   
(   )

,   
(   )

, 

  
(   )

 representing the relevant modal functions. Equation (3.15) represents a sixth-

order sub-system for each modal function and requires six boundary conditions. Solution 

of the complete system results in the determination of the modal functions for    and   . 

The modal form of (3.5) provides expressions for the evaluation of the modal function for 

   and   , i.e. 
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 (   )( ̂)  
 

   
 [     (   )      (   )] ,                                                           (3.18a)                                                                                                     

 (   )( ̂)  
 

   
 [     (   )      (    )].                                                          (3.18b)                                                                                                     

System (3.15) written for n = m = 0 leads to  (   )    and  (   )    (see Appendix A) 

and, thus, it does not provide a basis for the evaluation of both  (   ) and  (   ). As these 

two components contribute to the nonlinear terms, it is necessary to provide other means 

for their determination. Here we return to the primitive variables, substitute (3.14b)-

(3.14d) into the x- and z-components of the momentum equation (2.3b) and extract 

modes (   )  (   ) to arrive at 

 

  
   (   )    

   〈    〉
(   )                                                                                 (3.19a)                                                                                                                         

 

  
   (   )    

   〈     〉
(   )                                                                               (3.19b)                                                                                                                       

The above system is fourth-order, requires four boundary conditions and involves two 

unknown constants, i.e.   
  and   

 . For the fixed pressure gradient constraints, both   
  and 

  
  are specified. For the fixed flow rate constraint, the specified flow rate corrections     

and     provide conditions required for the determination of   
  and   

 . We shall discuss 

the numerical implementation of these conditions later in this presentation. 

The solution of the modal equations (3.15) and (3.19) begins with expressing the modal 

functions in terms of Chebyshev expansions of the form 

 (   )( ̂)  ∑   
(   )

  ( ̂)  ∑   
(   )

  ( ̂) 
    
   

 
                                                  (3.20a)                                                                                        

 (   )( ̂)  ∑   
(   )

  ( ̂)  ∑   
(   )

  ( ̂) 
    
   

 
                                                 (3.20b)                                                                                       

 (   )( ̂)  ∑   
(   )

  ( ̂)  ∑   
(   )

  ( ̂) 
    
   

 
                                                 (3.20c)                                                                                       

 (   )( ̂)  ∑   
(   )

  ( ̂)  ∑   
(   )

  ( ̂)    
   

 
                                               (3.20d)                                                                                     
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where   
(   )

,   
(   )

,   
(   )

 and   
(   )

 are the Chebyshev expansion coefficients for the 

modal functions of   (   ),  (   ),  (   )and  (   ),     denotes the k
th

-order Chebyshev 

polynomial of the first kind and    is the number of Chebyshev polynomials retained in 

the solution.  

Algebraic equations for the Chebyshev expansion coefficients are constructed using the 

Galerkin projection method. Equations (3.20) are substituted into (3.15) and (3.19), and 

projections of residua onto the base functions are set to zero. This process is explained 

using equation (3.15a) as an example and similar processes are used with the remaining 

equations.  

Substitution of (3.20) into (3.15a) provides the following expression 

∑ 0
 

  
     

    
 

  
      

   
 

  
          

          
         (    )   

    
   

      
          

         (    )  1   
(   )

   

[      〈    〉
(   )       〈    〉

(   )]  

[(  )  〈    〉
(   )        〈    〉

(   )  (  )  〈    〉
(   )  

   
  〈    〉

(   )]    [       
 〈    〉

(   )        
 〈    〉

(   )]                       (3.21)                                                                                                                                              

where   
(   )

 on the right hand side is written in an explicit manner. All terms on the 

right hand side are considered to be known and need to be expressed in terms of 

Chebyshev expansions as follows 

[〈    〉
(   ) 〈    〉

(   ) 〈    〉
(   ) 〈    〉

(   ) 〈    〉
(   ) 〈    〉

(   )]( ̂)    

∑ 0(   ) 
(   )

 (   ) 
(   )

 (   ) 
(   )

 (   ) 
(   )

 (   ) 
(   )

 (   ) 
(   )

1  ( ̂)    
     

                                                                                                                                      (3.22)                                       

where (   ) 
(   )

 (   ) 
(   )

 (   ) 
(   )

 (   ) 
(   )

 (   ) 
(   )

 (   ) 
(   )

 are 

expansion coefficients for the modal functions of the relevant products, e.g.  (   ) 
(   )

 is 
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the k-th expansion coefficient for the modal function (m,n) of the product (u1u1). These 

coefficients need to be recomputed at the beginning of each iteration with the relevant 

method described in Appendix B. 

Substitution of (3.22) into (3.21) provides the following expression for the residue 

function 

∑ 0
 

  
     

    
 

  
      

   
 

  
          

          
         (    )   

    
   

      
          

         (    )  1   
(   )

 ∑ 20    (   ) 
(   )

 
    
   

   (   ) 
(   )

1     0    (   ) 
(   )

      (   ) 
(   )

     (   ) 
(   )

 

   
 (   ) 

(   )
1    0       

 (   ) 
(   )

       
 (   ) 

(   )
1  3         ( ̂)       

                                                                                                                                      (3.23)                                                                       

Its projections onto the base functions are expressed in terms of the inner product defined 

as  

〈       ( ̂)   ( ̂)〉  ∫        ( ̂)   ( ̂)
 ̂  

 ̂   
 ( ̂)  ̂                                          (3.24)                                                                                  

where    √   ̂ ⁄  is the weight function. Equation (3.24) can be written explicitly 

as 

∑ 0
 

  
〈    

   〉  
    

 

  
〈    

   〉  
   

 

  
〈     〉     〈      

   〉  
    
   

      
 〈       〉     〈    

     〉     〈      
   〉        

 〈       〉  

   〈    
     〉1   

(   )
 ∑ 20    (   ) 

(   )
    (   ) 

(   )
1〈    

   〉  
    
   

0    (   ) 
(   )

      (   ) 
(   )

     (   ) 
(   )

    
 (   ) 

(   )
1〈      〉  

0       
 (   ) 

(   )
       

 (   ) 
(   )

1〈     〉3                              (3.25a)                                                                

where         ,          with (   )  (   ). This process results in 

   equations for each modal function, however, we shall retain only the first    –    

equations in order to make space for the boundary relations (tau method). 
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A similar process applied to (3.15b) results in                                                                                                                                               

∑ 0.
 

  
〈    

   〉  
   

 

  
〈     〉     〈       〉     〈       〉/   

(   )
 

    
   

(   〈        〉     〈        〉)  
(   )

1  

∑ 20    (   ) 
(   )

    (   ) 
(   )

1〈      〉  0(         )(   ) 
(   )

 
    
   

    (   ) 
(   )

     (   ) 
(   )

13                                                    (3.25b)                       

where we retain only    –     leading equations, and applied to (3.19) leads to 

 

  
∑   

(   )〈    
   〉

    
      

 〈     〉  ∑ (   ) 
(   )〈      〉

  
      

                                        (3.26a)                                                        

 

  
∑   

(   )〈    
   〉

    
      

 〈     〉  ∑ (   ) 
(   )〈      〉

  
        

                  (3.26b)                            

where we also retain only    –      of the leading equations. The inner products of the 

Chebyshev polynomials found in (3.25)-(3.26) are given analytically in the form of 

〈     〉  {

                                    
                              

  ⁄                         
                                                                        (3.27)                                                                                                                

The inner products involving the derivatives of the Chebyshev polynomials can be 

expressed analytically with the help of the following relations 

  ( ̂)   ,               ( ̂)   ̂,                             ( ̂)    ̂  ( ̂)      ( ̂)          (3.28)                                                   

    ( ̂)               ,              ( ̂)   ,            ( ̂)                         (3.29)                                        

      ( ̂)          ( ̂)    ̂    ( ̂)        ( ̂)                                 (3.30)                                                         
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Evaluation of the inner products involving the reference flow quantities is explained 

using 〈       〉 as an example.    ( ̂) is expressed in terms of the Chebyshev expansion 

of the form 

  ( ̂)  ∑     ( ̂) 
   ,                                                                                            (3.31)                                                                                                                                       

where    stands for the expansion coefficients. According to (2.5) and (3.8),   ( ̂) can 

also be expressed as   

  ( ̂)  
 

  
  (   ̂      ̂      )                                                                    (3.32)                                                                                                              

where,         and             . Comparison of (3.31) and (3.32) results in 

   
 

  
  .  

  

 
   /,     

   

  
  ,       

    

  
 .                                          (3.33)                                                                       

The inner product 〈       〉 can be written as  

〈       〉  ∫ ∑            ̂ 
    ∑   ∫       

 ̂  

 ̂   
 
   

 ̂  

 ̂   
   ̂                 (3.34)                                                            

Since a product of two Chebyshev polynomials can be expressed as a sum of the form 

     
 

 
(           ),                                                                                           (3.35)                                                                                                                                     

(3.34) can be expressed as 

〈       〉  
 

 
∑   0∫          ̂  

 ̂  

 ̂   
∫            ̂

 ̂  

 ̂   
1 

        

                 
 

 
∑   [〈       〉  〈         〉]

 
                                                         (3.36) 

where the inner products of the individual Chebyshev polynomials are expressed by 

(3.27). The other inner products involving the reference flow quantities are evaluated in a 

similar manner. 
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3.2.2 Discretization of the Boundary Conditions 

Substitution of (3.14) into (2.9) provides the modal form of the boundary conditions, i.e. 

∑ ∑  (   )( ̂ (   ))  (       )  
     

  
     

    ( ̂ )                                    (3.37a)                                                                             

∑ ∑  (   )( ̂ (   ))  (       )      ( ̂ )
  
     

  
     

                                    (3.37b)                                                                             

∑ ∑  (   )( ̂ (   ))
  
     

  (       )  
     

                                                  (3.37c)                                                                                        

∑ ∑  (   )( ̂ (   ))
  
     

  (       )  
     

                                                  (3.37d)                                                                                         

∑ ∑  (   )( ̂ (   ))  (       )  
     

  
     

     ( ̂ )                                  (3.37e)                                                                           

∑ ∑  (   )( ̂ (   ))  (       )     ( ̂ )
  
     

  
     

                                    (3.37f)                                                                         

The form of these conditions expressed in terms of    and    is obtained by substituting 

(3.18) into (3.37), i.e.  

∑ ∑
 

   
 [     (   )( ̂ (   ))      (   )( ̂ (   ))]

  
     

  
     

(   ) (   )

  (       )  

                                      (   )( ̂ (   ))     ( ̂ )                                               (3.38a)                                   

∑ ∑
 

   
 [     (   )( ̂ (   ))      (   )( ̂ (   ))]

  
     

  
     

(   ) (   )

  (       )  

                                       (   )( ̂ (   ))     ( ̂ )                                               (3.38b)                              

∑ ∑  (   )( ̂ (   ))
  
     

  (       )  
     

                                                  (3.38c)                                                                                        

∑ ∑  (   )( ̂ (   ))
  
     

  (       )  
     

                                                   (3.38d)                                                                                         

∑ ∑
 

   
 [     (   )( ̂ (   ))      (   )( ̂ (   ))]

  
     

  
     

(   ) (   )

  (       )  

                                      (   )( ̂ (   ))     ( ̂ )                                              (3.38e)                                
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∑ ∑
 

   
 [     (   )( ̂ (   ))      (   )( ̂ (   ))]

  
     

  
     

(   ) (   )

  (       )  

                                      (   )( ̂ (   ))     ( ̂ )                                                (3.38f)                                  

The above relations involve all modal functions due to the irregularity of the rough walls; 

they can be separated into boundary conditions for the individual modal functions in the 

case of smooth walls.  

We shall now discuss the numerical implementation of the above conditions. The 

discussion is limited to the condition for u1 at the upper wall as the remaining conditions 

can be treated in a similar manner. 

Substituting (3.20) into (3.38a) we obtain 

∑ ∑
 

   
 0∑   

(   )
   ( ̂ (   ))

    
    

  
     

  
     

(   ) (   )

        

                                             ∑   
(   )

  ( ̂ (   ))
    
   1  (       )    

                                          ∑   
(   )

  
    
   ( ̂ (   ))     ( ̂ (   ))                     (3.39)                

Values of Chebyshev polynomials, their first derivative as well as    and    evaluated at 

the rough wall represent periodic functions which can be expressed in terms of Fourier 

expansions of the form 

  ( ̂ (   ))  ∑ ∑ (  ) 
(   )

  (       )((    )   )

   ((    )   )  
((    )   )

   ((    )   )              (3.40a)                                                      

   ( ̂ (   ))  ∑ ∑ (  ) 
(   )

  (       )((    )   )

   ((    )   )  
((    )   )

   ((    )   )           (3.40b)                                                   

  ( ̂ (   ))  ∑ ∑ (  
 )(   )  (       )   

      
 

   
      

                                      (3.40c)                                                                              

  ( ̂ (   ))  ∑ ∑ (  
 )(   )  (       )   

      
 

   
      

                                   (3.40d)                                                                             
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In the above, (  ) 
(   )

, (  ) 
(   )

, (  
 ) 

(   )
 and (  

 ) 
(   )

 are the known Fourier 

expansion coefficients for   ( ̂ ),    ( ̂ ),   ( ̂ ) and   ( ̂ ), respectively. The 

process leading to the evaluation of these coefficients is explained in Appendix C. When 

the shape of the rough wall is described using    Fourier coefficients in the x-direction, 

the Fourier expansion describing values of the Chebyshev polynomial of order (    ) 

evaluated at this wall involves (    )     terms, which explains the summation limit 

in the x-direction in (3.40). Since velocity components of the reference flow are quadratic 

functions of  ̂ , their values evaluated at the rough wall involve     Fourier coefficients. 

Similar arguments explain the limits of expansions in the z-direction. 

Substitution of (3.40) into (3.39) and separation of Fourier modes result in 

∑ ∑ ∑
 

   
 0     

(   )(  ) 
(       )

      
(   )(  ) 

(       )
1

    
   

  
     

  
     

(   ) (   )

  

                                            ∑   
(   )(  ) 

(   )
  (  

 )(   ) 
    
                             (3.41)                      

In the above,         ,          where    (    )        and 

   (    )       . Equation (3.41) provides (     )(     ) boundary 

relations. Their enforcement guarantees the enforcement of the physical boundary 

condition at the rough wall. As the discretization of the field equations resulted in only 

(     )(     ) equations, one can either retain only the leading (    

 )(     ) of the boundary relations or enforce more boundary relations resulting in 

the over-determined system. 

The final form of all boundary relations can be written as follows 

∑ ∑ ∑
 

   
 0     

(   )(  ) 
(       )

      
(   )(  ) 

(       )
1

      
   

  
     

  
     

(   ) (   )

  

                                                ∑   
(   )(  ) 

(   )
  (  

 )(   ) 
    
                       (3.42a)                    

∑ ∑ ∑
 

   
 0     

(   )(  ) 
(       )

      
(   )(  ) 

(       )
1

    
   

  
     

  
     

(   ) (   )
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                                               ∑   
(   )(  ) 

(   )
  (  

 )(   ) 
    
                         (3.42b)                      

∑ ∑ ∑   
(   )(  ) 

(       )
  

    
   

  
     

  
     

                                                    (3.42c)                                                                                            

∑ ∑ ∑   
(   )(  ) 

(       )
  

    
   

  
     

  
     

                                                     (3.42d)                                                                                              

∑ ∑ ∑
 

   
 0     

(   )(  ) 
(       )

      
(   )(  ) 

(       )
1

    
   

  
     

  
     

(   ) (   )

  

                                               ∑   
(   )(  ) 

(   )
  (  

 )(   ) 
    
                      (3.42e)                   

∑ ∑ ∑
 

   
 0     

(   )(  ) 
(       )

      
(   )(  ) 

(       )
1

    
   

  
     

  
     

(   ) (   )

  

                                              ∑   
(   )(  ) 

(   )
  (  

 )(   ) 
    
                         (3.42f)                   

where          ,           The reader may note that boundary relations 

for (   )  (   ) come naturally from (3.42a)-(3.42b) and  (3.42e)-(3.42f). 

3.2.3 Discretization of the Flow Rate Constraint 

In the case of the fixed pressure gradient constraints,   
  and   

  in (3.19) are known and 

the discretization process is complete. In the case of the fixed flow rate constraints, one 

needs to discretize these constraints in order to construct conditions required for the 

determination of   
  and   

 .  We shall now discuss the discretization of the flow rate 

constraint in the x-direction as discretization in the z-direction follows the same path. 

The flow rate in the x-direction can be expressed as 

  ( )  
 

   ⁄
∫ ∫  (     )

  (   )

  (   )
    

   ⁄

 
  

            
 

   ⁄
∫ ∫ ,  ( )    (     )-

  (   )

  (   )

   ⁄

 
      

            
 

   ⁄
∫ ∫   ( )     

 

   ⁄
∫ ∫   (     )    

  (   )

  (   )

   ⁄

 

  (   )

  (   )

   ⁄
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   ⁄
   

( )  
 

   ⁄
   

( )                                                                              (3.43)                                

The first integral on the right had side of (3.43) involves only the reference flow 

quantities and can be evaluated as follows  

   
( )  ∫   ( )    

   ⁄

 
  

              
  

 
  ∫ ∫ (    )    

  (   )

  (   )

   ⁄

 
 

              
  

 
  ∫ 0  (   )    (   )  

  
 (   )   

 (   )

 
1

   ⁄

 
                                  (3.44)                                                                             

where 

    ̂   ,      ,            .                                                                (3.45)                                                                                        

Substituting (3.45) into (3.44) results in 

   
( )  

  

 
  ∫ [    ⁄ ( ̂ 

 (   )   ̂ 
 (   ))

   ⁄

 
    ( ̂ 

 (   )   ̂ 
 (   ))  

  (    )( ̂ (   )   ̂ (   ))]                                                                            (3.46)                                                                                                     

to be followed by expressing   ̂,   ̂  and   ̂  in terms of Chebyshev polynomials, i.e. 

 ̂    ( ̂),   ̂  (  ( ̂)    ( ̂))  ⁄ ,   ̂  (  ( ̂)     ( ̂))  ⁄  .                         (3.47)                                                                   

The resulting expression has the form of  

   
( )  

  

 
  ∫ 0∑ ∑ 2     .(  ) 

(   )
 (  ) 

(   )
/⁄  

     
  
     

   ⁄

 
 

    .(  ) 
(   )

 (  ) 
(   )

/⁄  (      (    )⁄ ).(  ) 
(   )

 (  ) 
(   )

/  

     .(  ) 
(   )

 (  ) 
(   )

/3           1                                                           (3.48) 

where advantage has been taken of (3.40a) and    (    )   and     

(    )  . Since 

 ∫        
   ⁄

 
 {

          
  

 
           ,                                                                               (3.49)                                                                                                                      
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the final expression for    
( ) has the following form 

   
( )  

  

 
  .

  

 
/∑ 2     .(  ) 

(   )
 (  ) 

(   )
/⁄  

       

     .(  ) 
(   )

 (  ) 
(   )

/  (      (    )⁄ ).(  ) 
(   )

 (  ) 
(   )

/⁄   

       .(  ) 
(   )

 (  ) 
(   )

/3       .                                                                    (3.50)                                                                                             

The evaluation of the second integral begins by using    in discretized form and 

expressing its modal functions in terms of the wall-normal velocity and vorticity for all 

modes except mode (   ). This process leads to 

   
 ∫ ∫   (     )    

  (   )

  (   )
       ⁄

 
∫ ∫   (   ̂  )  ̂  

 ̂ (   )

 ̂ (   )

   ⁄

 
  

          ∫ ∫ ∑   
(   )

  ( ̂)  ̂  
    
    

 ̂ (   )

 ̂ (   )

   ⁄

 
   

                 ∫ ∫ ∑ ∑ ∑
 

   
 0     

(   )
   ( ̂)  

    
   

  
     

  
     

(   ) (   )

 ̂ (   )

 ̂ (   )

   ⁄

 

                    
(   )

  ( ̂)1   (       )  ̂    

    ∑ 2  
(   )

∫   (   )  
   ⁄

 
3

    
                 

    ∑ ∑ ∑ 2
 

   
 .     

(   )
     /∫   (   )

   ⁄

 
       3

    
   

  
     

  
     

(   ) (   )

  

    ∑ ∑ ∑ 2
 

   
 .     

(   )
     /∫   (   )

   ⁄

 
       3

    
   

  
     

  
     

(   ) (   )

,(3.51)           

where 

  (   )  0∫   ( ̂)  ̂
 ̂ (   )

 ̂ (   )
1,                                                                                   (3.52a)                                                                                                                          

  (   )  0∫    ( ̂)  ̂
 ̂ (   )

 ̂ (   )
1    ( ̂ )    ( ̂ ).                                               (3.52b)                                                                                       

The analytical evaluation of the integral   (   ) results in 

  (   )    ( ̂ )    ( ̂ ),      (   )  
 

 
(  ( ̂ )    ( ̂ ))                                (3.53a)                                                                          
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  (   )  
 

 
0
    ( ̂ )     ( ̂ )

   
 

    ( ̂ )     ( ̂ )

   
1,       .                                   (3.53b)                                                                            

Since the geometry is periodic, functions formed by values of the Chebyshev 

polynomials evaluated at the upper wall are periodic and, thus, one can write expressions 

for    (   )  and    (   ), with the help of (3.40a) in the form of                                                                                                  

  (   )  ∑ ∑   
(   )

  (       )  
     

  
     ,                                                         (3.54a)                                                                                                

  (   )  ∑ ∑   
(   )

  (       )  
     

  
    ,                                                           (3.54b)                                                                                                     

where  

  
(   )

 (  ) 
(   )

 (  ) 
(   )

,        
(   )

 
 

 
.(  ) 

(   )
 (  ) 

(   )
/                 (3.55a)                                                        

  
(   )

 
 

 
[
(  )   

(   )
 (  )   

(   )

   
 

(  )   
(   )

 (  )   
(   )

   
],         ,                                   (3.55b)                                                                          

  
(   )

 (  ) 
(   )

 (  ) 
(   )

.                                                                                 (3.56)                                                                                                                         

Substituting (3.54) into (3.51) results in 

     
( )     ∑ ∑ ∑ 2  

(   )
  
(   )

     ∫        
   ⁄

 
3

      
   

    
     

    
             

    ∑ ∑ ∑ ∑ ∑ 2
 

   
      

(   )
  
(   )

  (   )  ∫   (   )    
   ⁄

 
3

    
   

  
     

  
     

  
     

  
     

(   ) (   )

 

    ∑ ∑ ∑ ∑ ∑ 2
 

   
      

(   )
  
(   )

  (   )  ∫   (   )    
   ⁄

 
3

    
   

  
     

  
     

  
     

  
     

(   ) (   )

             

                                                                                                                          (3.57) 

Since 

 ∫   (   )    
   ⁄

 
 {

           
  

 
            

,                                                                     (3.58)                                                                                                             

one obtains 
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( )  

  

  
2∑ ∑   

(   )    
   

  
       

(   )
         

 ∑ ∑ ∑ ∑
     

(   )
  
(    )

      
(   )

  
(    )

   
 

    
   

  
     

  
     

  
     

(   ) (   )

  (   )  },     (3.59)                              

Re-naming the indices results in 

   
( )  

  

  
2∑ ∑   

(   )    
   

  
       

(   )
       

 ∑ ∑ ∑ ∑
     

(   )
  
(      )

      
(   )

  
(      )

   
 

    
   

  
     

  
     

  
     

(   ) (   )

     }     (3.60)                               

where         . 

Substituting the expressions for    
( ) and    

( ) into (3.43) and replacing the index m 

with q results in the discretized expression for the flow rate of the form 

   ( )  
  

 
  .

  

 
/∑ 2     .(  ) 

(   )
 (  ) 

(   )
/⁄  

       

       .(  ) 
(   )

 (  ) 
(   )

/  (      (    )⁄ ).(  ) 
(   )

 (  ) 
(   )

/⁄   

         .(  ) 
(   )

 (  ) 
(   )

/3       

    
  

  
2∑ ∑   

(   )    
   

  
       

(   )
       

    ∑ ∑ ∑ ∑
     

(   )
  
(      )

      
(   )

  
(      )

   
 

    
   

  
     

  
     

  
     

(   ) (   )

     }        (3.61)                                       

which demonstrates that the flow rate is a periodic function of x. This expression can be 

written in a simpler form of 

  ( )  ∑   
( )

      
    .                                                                                         (3.62)                                                                                                                                  
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In the case of the fixed volume flow rate constraint, mode zero of the above expression 

represents the mean flow and has to be specified. The mean flow rate has two 

components, i.e.  

  
( )

                                                                                                                 (3.63)                                                                                                                                                  

where     stands for the flow rate of the reference flow and     represents the flow rate 

modification due to the presence of the roughness. Extracting mode zero from (3.61) 

results in 

  
( )

 
  

 
  .

  

 
/ 2     .(  ) 

(   )
 (  ) 

(   )
/⁄   

     .(  ) 
(   )

 (  ) 
(   )

/  (      (    )⁄ ).(  ) 
(   )

 (  ) 
(   )

/⁄    

       .(  ) 
(   )

 (  ) 
(   )

/3  

  

  
{∑   

(   )
  
(   )    

    ∑ ∑ ∑
     

(   )
  
(     )

      
(   )

  
(     )

   
 

    
   

  
     

  
     

(   ) (   )

}   (3.64)                              

Substitution of (3.64) into (3.63) results in the following form of the flow rate constraint 

 

 
∑ ∑ ∑
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(   ) (   )
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 (  ) 
(   )

/3 =                                                                   (3.65)                                                     

where all unknowns are on the left hand side. A similar procedure applied to the fixed 

flow rate constraint in the z-direction results in 
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      .(  ) 
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 (  ) 
(   )

/  (      (    )⁄ ).(  ) 
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 (  ) 
(   )

/⁄   

       .(  ) 
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 (  ) 
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/3 =                                                                   (3.66)                                                        
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Section 4 

4 Solution Process 

 

The system (3.25) - (3.26) together with the boundary relations (3.42) and the flow rate 

constraints (3.65) - (3.66) represents a coupled nonlinear system of algebraic equations. 

This system is solved using the first-order fixed-point iterative method whose details are 

described later in this Section. The solution results in the determination of the Chebyshev 

expansion coefficients of the wall normal velocity, the wall normal vorticity, modes (0, 0) 

for u1 and w1 as well as the pressure gradient corrections in the case of the fixed flow rate 

constraints. The remaining modal functions for u1 and w1 are evaluated using (3.19). 

 

Considering that all the nonlinear terms are placed at the right hand side and are treated 

as known, one needs to solve a linear system at each iteration step and, subsequently, 

determine the new approximation for the nonlinear terms.  The process of constructing 

the new approximation for the unknowns can be summarized as follows 

 

* +    * +    [* +(    )  * + ]                                                                       (4.1)        

                                                                                                        

where X is the vector of unknowns, the superscripts j and j+1 identify the current and 

next approximations, and the superscript      denotes the solution computed at the new 

iteration. The iteration process is controlled using the under-relaxation parameter   .  

 

At each iteration step, the nonlinear terms are computed using the information available 

from the previous iteration. These terms involve velocity products (i.e.     ,     , ….) 

which are evaluated in the physical space on a grid involving Chebyshev points in the  ̂- 

direction and a uniformly distributed grid in the x- and z-directions. The modal functions 

for these velocity products (i.e. 〈    〉
(   ) , 〈    〉

(   ),…) are computed using two-

dimensional Fast Fourier Transform (FFT) for each Chebyshev point using the 3/2 rule to 

control the aliasing error [43].  This data is subsequently used to determine the 
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Chebyshev expansion coefficients of the modal functions using the method described in 

Appendix B.  

 

The iteration process is continued until a suitable convergence criterion is satisfied. The 

convergence criterion used in the present work is of the form 

 

|, -(   )  , -( )| |, -(   )|      ⁄                                                                        (4.2) 

                                                                                                           

where |, -(   )  , -( )| is the    norm of the difference between the solution vectors 

computed at two consecutive iterations and  |, -(   )| is the    norm of the current 

solution vector.            has been used in all tests reported in this paper. 

Relaxation factors        were typically used in the computations. 

4.1 Specialized Direct Solver 

The linear system of equation, which needs to be solved at each iteration step, has the 

form of 

                                                                                                                               (4.3)                                                                                                                                                                    

where   is the coefficient matrix of the size    , with   (     )(     )    

for the fixed pressure gradient case and   (     )(     )      for the fixed 

flow rate case.   is the vector of unknowns with dimension   and   is the  -dimensional 

right hand side vector that contains the nonlinear terms. Figure 2 illustrates the structure 

of   for both the fixed pressure gradient constraint and the fixed flow rate constraint. The 

matrix is organized by varying the index for the x-direction from     to    and for 

each such index varying the index for the z-direction from     to   . Two blocks are 

entered for each index pair, one for the velocity and one for the vorticity. As a result, two 

top left blocks in Fig. 2 represent mode (       ), two central blocks represent mode 

(   ) and the two bottom right blocks represent mode (     ). The computational cost 

of solving this linear system is potentially very high due to its size. To reduce the cost, a 
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specialized direct solver which takes advantage of the structure of the coefficient matrix 

has been developed, following ideas described in [39].  

 

(A) 

 
(B) 

Figure 2: Structure of the coefficient matrix   for      ,          For the fixed 

pressure gradient constraint (Fig. 2A)   (     )(     )     and for the fixed 

flow rate constraint (Fig. 2B)   (     )(     )     . The black color 

identifies the non-zero elements with    giving their total number. The blocks assume 

various shades of grey depending on the density of the non-zero elements. 
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The construction of the efficient solver is described in the context of the fixed pressure 

gradient constraint. The first step of the solution involves the re-arrangement of the 

coefficient matrix in such a way that entries corresponding to the field equations are 

grouped at the upper portion of the matrix while the boundary relations are grouped at the 

bottom. The second step involves extraction of the largest possible block diagonal matrix 

from the part of the matrix associated with the field equations. In order to do so, the first 

four unknowns from each modal velocity equation and the first two unknowns from each 

modal vorticity equation are moved to the end of the vector of unknowns. For modes (0, 

0), the first two unknowns for  (   ) and  (   ) are moved to the end of the vector of 

unknowns. The resultant matrix has the structure illustrated in Fig. 3. Here A is the 

largest possible block diagonal structure with invertible blocks. Equation (4.3) can now 

be written in the form of 

          ,                                                                                                        (4.4a)                                                                                                                                                

          .                                                                                                        (4.4b)                                                                                                                                                  

In the above,    denotes the vector of unknowns of length  (     )    that contains 

all unknown expansion coefficients of the order higher than three for the velocity and 

higher than one for the vorticity for all Fourier modes except mode (0,0), and contains all 

unknown expansion coefficients of order higher than one for  (   )and  (   ) where 

  (     )(     ).    denotes a vector of length      that contains the 

remaining unknowns. Matrices         and   have sizes , (     )   -  

, (     )   -, , (     )   -  ,    -, ,    -  , (     )   - and 

,    -  ,    -, respectively, while the right hand vectors    and    have lengths 

 (     )    and     , respectively.   

System (4.4) has a solution of the form 

   (       )  (         )                                                                       (4.5a)                                                                                                             

      (      )                                                                                                  (4.5b)                                                                                                                                        
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Matrix A consists of the uncoupled blocks associated with each Fourier mode and, thus, 

can be inverted block by block. This results in a significant reduction of the 

computational cost. 

 

Figure 3: The structure of the re-arranged coefficient matrix for      ,       

   The black color identifies the non-zero elements with    giving their total number. The 

blocks assume various shades of grey depending on the density of the non-zero elements.   

Equation (4.5) demonstrates the potential for the development of various solution 

strategies depending on the aspect of the computational cost which is dominant. In the 

most memory efficient strategy, each individual set of blocks   ,   ,    is constructed 

only when required and deleted immediately after its use. This allows the construction of 

   ,     ,      ,       and      block by block rather than working with the 

complete matrices. Although this method reduces the memory requirement substantially, 

it is relatively slow in terms of execution time. This happens for two reasons: (i) this 

strategy requires evaluation of all    s and    s twice, i.e. for evaluation of    and then 

for evaluation of    , and (ii)    needs to be updated in each iteration which requires re-

computation of    ,    and    at every iteration. To overcome this difficulty, we compute 

and save (       ),      and      before initiation of the iteration process.  
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4.2 Implementation of the Reality Conditions 

The unknowns are represented in terms of Fourier expansions of the form 

 (     )  ∑ ∑  (   )( )  (       )  
     

  
     

                                                   (4.6)                                                                                          

The coefficients of these expansions are related through the reality conditions with 

 (   )   (     ) ,  (    )   (    )  and star denoting the complex conjugate. It is 

sufficient to solve only for the modal function with the positive n and m indices and the 

positive n and negative m indices. The first step in the implementation of this property 

involves separation of the unknowns into the real and imaginary parts, i.e. 

 (   )    
(   )

    
(   )

                                                                                             (4.7a)                                                                                                                                      

 (   )    
(   )

    
(   )

                                                                                            (4.7b)                                                                                                                                   

 (   )    
(   )

    
(   )

                                                                                             (4.7c)                                                                                                                                    

 (   )    
(   )

    
(   )

                                                                                          (4.7d)                                                                                                                                   

where the subscripts r and i denote the real and imaginary parts, respectively. In the 

second step, the governing equations, the boundary relations and the flow constraints are 

separated into the real and imaginary parts. This results in a system of two real 4
th

 order 

and two real 2
nd

 order equations along with 12 boundary conditions for each mode except 

mode (0,0) and four real 2
nd

 order equations and eight real boundary relations for mode 

(0,0)  for fixed pressure gradient constraint. In case of the fixed flow rate constraint, the 

real and imaginary parts of the flow constraint equations are added to the system. The 

Fourier mode indices vary from (     ) to (     ). A schematic diagram of the 

coefficient matrix for the fixed pressure gradient constraint is displayed in Fig. 4. The 

size of the matrix is    , where   [((    )(     ))       ].  
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Figure 4: Schematic diagram of the coefficient matrix for the fixed pressure gradient 

constraint with all unknowns separated into real and imaginary parts. Each small block 

contains coefficients of the unknowns written in the block. 

The system is solved for the real and imaginary parts of the wall-normal velocity and 

vorticity for all modes except mode (0,0) and for the real parts of  (   ) and  (   ). Since 

the (   ) mode of    is zero, Eq.(3.18) demonstrates that the imaginary parts of   (   ) 

and  (   ) are also zero. This procedure results in a reduction of the computational time 

by as much as 40% (Fig. 5A) and reduction of the memory requirement by up to 47% 

(Fig. 5B) with the advantage increasing with the increase of the number of Fourier modes 

used.  
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(A) 

 

(B) 

Figure 5: Variations of the computational time per iteration (Fig. 5A) with and without 

taking advantage of the complex conjugate property and variations of the memory 

savings when taking advantage of the complex conjugate property (Fig. 5B) as functions 

of the number of Fourier modes used in the solution.       Chebyshev polynomials 

have been used in the tests. 
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Section 5 

5 Evaluation of the Pressure Field 

Evaluation of the pressure field is a part of the post-processing which comes after the 

determination of the vorticity and velocity fields. We start with the x, y and z-components 

of the of the momentum equations (2.3b) of the form 
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Now using the Fourier expansions of the velocity components (3.14b-3.14d) and the 

expression for pressure (2.7b) we can write the modal function for the pressure as follows 

 (   )( ̂)   
 

   
, 

 

  
(      

 ) (   )( ̂)        (   )( ̂)      
(   )( ̂)  

              (   )( ̂)     (    )
(   )( ̂)     (    )

(   )( ̂)], for    ,    (5.2a)                                 

 (   )( ̂)   
 

   
[    ⁄ (       ) (   )( ̂)    

(   )( ̂)       (   )( ̂)  

                 (    )
(   )( ̂)     (    )

(   )( ̂)], for    ,                              (5.2b)                                                                 

 (   )( ̂)   (    )
(   )( ̂)    ,                                                                               (5.2c)                                                                                                                          

where    is an arbitrary constant. 
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Substituting the Chebyshev expansions for the velocity components (3.20b)-(3.20d) and 

velocity products (3.22) and the following for the pressure 

 (   )( ̂)  ∑   
(   )

  
 
   ( ̂),                                                                                     (5.3)                                                                                                                            

and using the orthogonality property of the Chebyshev polynomials we get 
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Section 6 

6 Performance of the Algorithm 

To demonstrate the accuracy of the algorithm, we select a simple model problem with the 

smooth upper wall and a rough lower wall with the roughness geometry described by one 

Fourier mode, e.g. 

    ,                      (  )   (  ).                                                             (6.1)                                                                                                      

 

 

Figure 6: Geometry of the lower wall described by (6.1) with       ,       for 

two periods in the x- and z-directions. 

As the first test, we reproduced results presented in [14] for the transverse grooves ( = 

0). Figure 7 depicts the difference between the velocity fields obtained by the two solvers 

at narrowest and widest channel opening. 
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                                      (A)                                                                       (B) 

Figure 7: Difference between the velocity fields obtained by current algorithm and 

algorithm described by [14] for transverse grooves at narrowest channel opening (Fig.7A)  

and widest channel opening (Fig.7B). Calculations have been carried out with         

and     for     . 

 

As the second test, we reproduced results for the longitudinal grooves ( = 0) presented 

in [14, 15, 35]. Figure 8 presents the difference between the velocity fields between the 

two solvers at the  narrowest and widest channel opening.   

 

  

                                        (A)                                                                   (B) 

Figure 8: Difference between the velocity fields obtained by current algorithm and 

algorithm described by [14, 15, 35] for transverse grooves at narrowest channel opening 

(Fig.8A) and widest channel opening (Fig.8B). Calculations have been carried out with 

        and     for     . 
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As the third test, we reproduced results for the straight, two-dimensional grooves inclined 

with respect to the flow direction presented in [14]. This test is particularly useful as flow 

over such grooves can be determined using two-dimensional solution coupled with 

special transformations [14] while in the present case we treat the groove geometry as 

three-dimensional in the reference system where one axis is aligned with the flow 

direction and solve it as a three-dimensional problem. In all cases the solution produced 

using the algorithm presented in this paper agreed within at least 12 digits with the 

solutions obtained using other methods. 

 

In the rest of this discussion we focus on the demonstration of the spectral accuracy of the 

three-dimensional algorithm implemented with the fixed pressure gradient constraints 

with the reference flow directed along the x-axis unless otherwise noted. 

 

Two measures of the solution error have been used. The first measure uses the maximum 

difference between the computed solution and a reference solution over the whole 

physical domain. The solution obtained using         Chebyshev polynomials and 

         Fourier modes has been used as the reference solution. The second 

measure uses the difference between the computed solution at the boundary and the 

known boundary condition. These measures are defined for the u-velocity component as  

 

                (     )         
  

 
                      

  

 
     (6.2a)                                            

               |      |      
  

 
     

  

 
                                                  (6.2b)                                                                                          

where 

   (     )           (     )            (     )                                               (6.3a)                                                                                      

      (   )           (    (   )  )                                                                      (6.3b)                                                                                                            

 

In a spectrally accurate algorithm the solution should converge exponentially with the 

increasing number of Chebyshev polynomials. Figure 7 verifies that the algorithm 

delivers spectral accuracy in the y-direction. While conducting this test, it has been 

verified that the number of Fourier modes used was sufficient to reduce the associated 
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error to a low enough level so that the remaining error was dominated by the truncation 

of Chebyshev expansions. 

 

 

Figure 9: Variation of          as a function of the number of Chebyshev polynomials 

NT used in the solution. Calculations have been carried out with          for the 

roughness geometry described by (6.1) with       for     . 

Figure 8 demonstrates that the modal functions develop a boundary layer near the rough 

boundary. These layers become extremely thin for larger values of the roughness wave 

number and for higher Fourier modes. The modal functions have rapid variation with 

respect to   inside the boundary layer, while their value remains close to zero in the rest 

of the domain. In order to capture these variations and to avoid any spurious oscillation in 

the distributions of the modal functions, a sufficient number of Chebyshev polynomials 

should be employed. This implies that in order to reach a certain absolute level of 

accuracy the number of Chebyshev polynomials needs to be increased with increasing the 

magnitudes of wave numbers   and/or   (short wavelength roughness), especially when 

the higher Fourier modes begin to play a significant role in the solution. 
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(A) 

 

 

(B) 

Figure 10: Variation of the modal functions close to the rough boundary. Calculations 

have been carried out with       for the roughness geometry described by (5.1)  

     ,        for     . In Fig. 8A, m changes while n = 10 and in Fig.8B n 

changes while m = 10. Formation of boundary layers near the rough wall and rapid 

growth of modal functions across these layers are clearly visible. 
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The magnitude of the modal functions   (   ) can be measured using the Chebyshev 

norm defined as 

 

‖ (   )‖
 

 √∫  (   ) (   )  ( ̂)  ̂
 

  
  .                                                                   (6.4)       

                                                                                                    

Results displayed in Fig. 9 demonstrate that the magnitude of the modal functions 

decreases exponentially with increasing the mode index, which confirms the spectral 

convergence of discretization in the x- and z-directions. 

 

 

Figure 11: Variation of the Chebyshev norm of the modal function  (   ) as a function 

of the Fourier mode index     for the roughness geometry described by (6.1) with 

      for     . Computations have been carried out with          

Fourier modes and       Chebyshev polynomials. 

An important aspect of the spectral accuracy involves the convergence of the truncated 

Fourier series describing the x- and z-variations of the flow field. Figure 10 shows that 

the algorithm delivers spectral accuracy in the x- and z-directions with increasing number 

of    and    respectively. Note that the magnitude of contributions of higher modes 

decreases exponentially. It is also noticeable that the maximum error of the solution 
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occurs at the boundary when sufficient number of Chebyshev polynomials is used. In 

other words 

‖   ‖  ‖      ‖ 
  when   

 

   
(‖   ‖ )                                                             (6.5)                                                                                                 

The same relationship holds for other components of the velocity. 

 

 

(A) 

 

(B) 

Figure 12: Variation of ‖   ‖  and ‖      ‖ 
 as a function of the number of Fourier 

modes used in the computations for the roughness geometry described by (5.1) with 

      for Re = 5. Calculations have been carried out using      , and       

(Fig. 10A) and       (Fig. 10B). 
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Distributions of the boundary errors over a single period are illustrated in Fig. 11. The 

maxima are located at the largest channel opening. This fact can be explained by noting 

that all modal functions attain their maxima close to the maximum channel width. The 

contributions of the higher modes to the complete solution are largest at these locations 

and, thus, the rate of error reduction with an increase of the number of Fourier modes 

used in the solution is smaller. Increasing the wave number amplifies this effect due to 

the decrease of the thicknesses of the modal boundary layers. 

 

 

(A) 

 

(B) 
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(C) 

Figure 13: Distributions of the boundary errors       (   ) (Fig. 11A),       (   ) (Fig. 

11B) and       (   ) (Fig.11 C) for the roughness geometry described by (5.1) with 

      for Re = 5 over one period in the x- and z-directions.   

The construction of the boundary relation is based on the removal of all harmonics of the 

order lower than (     ). This property provides a test for the accuracy and 

consistency of the algorithm. The boundary error can be expressed by following Fourier 

expansions 

      (   )  ∑ ∑       
(   )

  (       ) 
    

 
    ,                                                        (6.6)                                                                                               

where       
(   )

 represent the Fourier expansion coefficients of the boundary error. 

Spectral decomposition of the error at the rough wall displayed in Fig. 12A demonstrates 

the absence of the first 8 Fourier modes in the x-direction and first 7 Fourier modes in the 

z-direction which is in agreement with the theoretical basis underlying the construction of 

the boundary relations. Figure 12B displays the result of computation for the same 

conditions as in Fig. 12A but the computational box doubled in size in the periodic 

directions. The error spectrum has the same form as in Fig.12A with the non-zero 

elements separated by zero elements as expected from the construction of the boundary 
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relations. These results demonstrate the absence of any spurious sub harmonics which 

could be potentially produced by the algorithm.  

 

(A) 

 

(B) 

Figure 14: Spectral decomposition of       (   ) for the roughness geometry described 

by (6.1) with      ,        for Re = 5. Results displayed in Fig. 12A have been 

obtained using computational box with      ,      and      Fourier modes 

and those displayed in Fig.12B have been obtained using computational box with 

       ,       and        Fourier modes. In both cases,       

Chebyshev polynomials were used. 
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The dependency of the boundary error on the wave numbers (or shape parameters)   and 

  and on the roughness amplitude    have been investigated. Results displayed in Fig.13 

demonstrate that the error remains at the machine level for the wave numbers and 

amplitudes below a threshold value. The error increases exponentially when either the 

roughness amplitude or the roughness wave number surpasses this threshold. This 

threshold can be increased by increasing the number of Fourier modes used in the 

solution, however, the qualitative behavior of the error remains unchanged. 

 

          (A) 

 

(B) 

Figure 15: Variations of the error norm ‖      ‖ 
 as a function of the roughness 

amplitude    (Fig.13 A) and as a function of the roughness wave number with     
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(Fig.13 B) for the roughness geometry described by (6.1). Calculations have been carried 

out using       Chebyshev polynomials and         (solid lines) and    

      (dash lines) Fourier modes. 

Effects of the Reynolds number can be assessed by studying variations of ‖      ‖ 
 

displayed in Fig. 14. The error is unaffected by an increase of Re until Re reaches a 

certain threshold. The error starts to grow rapidly for Re above this threshold. The 

qualitative character of the error variations does not depend on the roughness amplitude 

but its magnitude increase with an increase of   . 

 

Figure 16: Variation of the error norm ‖      ‖ 
 as a function of the Reynolds number 

Re for the roughness geometry described by (6.1) with       and different values of 

  . Computations have been carried out using       Chebyshev polynomials and 

         Fourier modes. 
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Section 7 

7 Over-determined Formulation 

Results displayed in Fig. 13 demonstrate that the error increases rapidly when a certain 

threshold expressed in terms of a combination of (    ) is breached. The algorithm is 

based on two sets of Fourier expansions, one for the field variables and another one for 

the boundary conditions. The algorithm described above uses the same number of Fourier 

modes for the field equations and for the boundary conditions, and is sometimes referred 

to as the “classical formulation” [25]. When the roughness geometry becomes more 

extreme, the rate of convergence of expansion for boundary conditions slows down and 

this suggests the use of a larger number of terms from this expansion. Such an approach 

leads to an over-determined formulation as the number of equations (field equations and 

boundary relations) becomes larger than the number of unknowns. We shall now describe 

such a formulation. 

 

The over-determined system is created using      and     Fourier modes in the x- and 

z-directions, respectively, in the construction of the boundary relations (3.30) where 

          ,             and           and        

  . This results in ,(      )  (      )  (     )   - boundary relations. 

When        and        the system reduces to the classical form. The over-

determined system can be written as 

 

                                                                                                                             (7.1)  

                                                                                                                                                               

where    is the coefficient matrix of dimension     with   (     )(    

 )    and      ,(      )(      )  (     )(     )-,   is the 

vector of unknowns with dimension   and    is the  -dimensional right-hand side vector. 

Figure 15A illustrates the structure of    for        ,           and 

     . For the efficient solution, the matrix is re-arranged by placing the entries 

corresponding to the field equations in matrix   of size     with   ,(    
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 )(     )(     )   - and entries corresponding to the boundary constraints in 

matrix    of size (   )   , following ideas described in [27].   has a block diagonal 

structure with each block having the size (     )      whereas    is full and 

provides the coupling between the Fourier modes. 

 

The system represented by (7.1) can only be solved in a least squares sense. The solution 

can be expressed as 

 

    
                                                                                                                          (7.2)                                                                                                                                                                

 

where   
  represents the generalized inverse (or pseudo inverse) of   . Both QR 

factorization and Singular Value Decomposition (SVD) methods have been used to 

evaluate   
 . QR factorization is based on the decomposition of the matrix         into 

the product of a unitary matrix        and an upper triangular matrix        in 

such a way that 

 

       (  
 
)                                                                                                          (7.3)                                                                                                                                                

 

where         is an upper triangular matrix. The pseudo inverse   
  takes the 

following form 

 

  
  (  

   )                                                                                                   (7.4)                                                                                                                                   

 

where the superscript   stands for the conjugate transpose. 

 

The singular value theorem states that for any matrix         of rank  , there exist 

unitary matrices        and        such that  

 

       ,   .
   
  

/                                                                                            (7.5)                                                                                                                                      
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where       ,        (            ) and                 .                                                                                                                                  

 

In the above,    represents the singular values of    . The pseudo inverse for this case has 

the form 

 

  
   (  

   
  

)  .                                                                                                   (7.6)                                                                                                                                          

 

The efficient solver for the over-determined system is constructed in a similar manner as 

described in Section 4.1. The first step involves the extraction of the largest possible 

square matrix   (Fig. 14B) of size     from  .   and   are block diagonal whereas    

and    are full and rectangular with dimensions (   )    and (   )  (   ), 

respectively. The system (7.1) can now be written as 

 

        (  ) ,            (  )                                                             (7.7)                                                                                                  

 

where    and    are the vector of unknowns and the right hand side vectors (  )  and 

(  )  have the sizes   and (   ) respectively. The solution of (7.8) can be written as 

 

   (      
   ) ,(  )     

  (  ) -,        ,(  )     -.              (7.8)                                                     

 

The block diagonal structure of   and   permits evaluation of    (  ) and      block 

by block leading to a significant reduction of the computational time and memory. Part of 

the system representing the field equations is solved exactly while the part representing 

the boundary conditions is solved in the least squares sense.  
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(A) 

 

(B) 

Figure 17: Structure of the coefficient matrix    for the over-determined formulation 

with        ,           and      . Black color represents the non-

zero elements with    denoting their number. Figure 15A displays the initial form of the 

matrix while Fig. 15B shows the form after extractions of the largest diagonal matrix A 

from H. The blocks assume various shades of grey depending on the density of the non-

zero elements. 
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Figure 16 displays Fourier spectrum of the boundary error       (   ) (see 6.3b). This 

error is distributed over several Fourier modes including modes with (   )  (     ) 

as expected from a least squares solution. Results displayed in Fig. 17 demonstrate that 

the over-determined formulation expands the applicability of the IBC method by about 

30% measured in terms of both the roughness amplitude and the roughness wave number. 

This expansion can be partially attributed to the distribution of the boundary error over all 

modes associated with boundary relations, as illustrated in Fig.16. There is no noticeable 

difference between the solution obtained using the QR and SVD methods. There is an 

optimal number of boundary relations that provides the maximum gain and use of a larger 

number of such relations does not provide any benefits. This optimal number is 

approximately 50% bigger than the number of Fourier modes used for the discretization 

of the field equations.  

 

 

Figure 18: Spectral decomposition of       (   ) at the rough wall for the roughness 

geometry described by (6.1) with      ,         for Re =10. Computations have 

been carried out using       Chebyshev polynomials,           Fourier modes 

for the field equations, and            Fourier modes for the boundary 

conditions.   
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             (A) 

 

                (B) 

Figure 19: Variations of the error norm ‖      ‖ 
 as a function of the roughness 

amplitude    (Fig.17 A) for the roughness geometry described by (6.1) with       

for Re = 10 and as a function of the roughness wave number     (Fig.17 B) for the 

roughness amplitude    = 0.08. Calculations have been carried out using       

Chebyshev polynomials and          Fourier modes for the field equations. 
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Section 8 
  

8 Limitations of the Algorithm 

 

The IBC algorithm is highly accurate and delivers spectral accuracy but there are some 

limits to its applicability. The algorithm loses accuracy when the wall geometry becomes 

too extreme. Various tests reported in this thesis demonstrate that the extreme geometry, 

in the sense applicable to this algorithm, corresponds to large roughness amplitude and 

wave number. These problems can be overcome by using a larger number of Fourier 

modes combined with the over-determined formulation. 

 

The algorithm uses Fourier expansions to represent wall geometry and, thus, all 

limitations associated with such expansions limit the performance of the algorithm. 

Geometries with corners and with segments characterized by infinite derivatives provide 

illustrative examples with difficulties more pronounced in the latter case due to the 

Gibb’s phenomenon [44-46]. It has been found that use of a larger number of Fourier 

modes combined with the over-determined formulation and with the use of proper 

filtering techniques [47] can control the associated error. 

 

The spectral accuracy of spatial discretization is independent of the Reynolds number. 

The increasing role of nonlinear effects at higher Reynolds numbers leads to an increase 

of the magnitude of the error but this can be counteracted through an increase in the 

number of Fourier mode and Chebyshev polynomials used in the computations. The 

convergence rate of the iterative process is linear as the first order fixed point iterative 

method is used and the rate of convergence slows down significantly for higher values of 

Re. Development of the second order iterative methods would address the problem of 

slow convergence in such situations. 
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Section 9 

9 Conclusion 

 

An efficient algorithm for the analysis of flows in rough channels has been developed. 

The algorithm is able to model any three-dimensional roughness shapes expressed in 

terms of Fourier expansions. The algorithm is based on the velocity-vorticity formulation 

and can accommodate the fixed flow rate constraints as well as the fixed pressure 

gradient constraints. The spatial discretization is based on the Fourier expansions in the 

streamwise and spanwise directions and on the Chebyshev expansions in the transverse 

direction. The domain irregularity associated with the roughness is accounted for by 

using the immersed boundary conditions (IBC) concept. The field equations are 

discretized using a computational domain in the form of a hexahedron while the rough 

channel is immersed inside this domain. The Galerkin procedure is used to develop 

algebraic equations corresponding to the field equations. The tau procedure is used for 

the inclusion of the flow boundary conditions. The forms of these conditions suitable for 

numerical computations have been constructed using Fourier expansions based on the 

shape of the rough wall resulting in the internal constraints which are then used to close 

the system of equations. The flow constraints are discretized with spectral accuracy and 

are solved simultaneously with the remaining equations. The discretization results in a 

gridless algorithm which permits efficient analysis of different patterns of surface 

roughness with minimal effort spend on geometry modelling. The nonlinear algebraic 

equations resulting from the discretization process are solved using the first-order fixed-

point iterative method where the nonlinear terms are approximated using values from the 

previous iteration. A special linear solver has been developed based on taking advantage 

of the structure of the coefficient matrix. A method for reduction of the computational 

and memory requirements through the use of the complex conjugate property has been 

described. It has been demonstrated that the algorithm delivers spectral accuracy. The 

applicability of the algorithm is limited to roughness shapes that are not too extreme due 

to the reduction in the convergence rates of the Fourier expansions used for the 
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construction of the boundary relations. The algorithm applicability can be extended to 

more demanding geometries through inclusion of additional boundary relations leading to 

the over-determined formulation. In this case, the resulting system is solved in such a 

way that the part associated with the field equation is solved exactly while the part 

associated with the boundary relations is solved in the least squares sense. The best 

results are obtained when the number of boundary relations is approximately 50% greater 

than the number of Fourier modes used in the discretization of the field equation. 
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Appendices  

Appendix A 

Analysis of Mode (0,0) 

Modal equations for mode (0,0) for the wall-normal vorticity and velocity can be 

obtained using the modal form of the definition of the wall-normal vorticity and the 

continuity equation.  These have the form of  

    (   )      (   )   (   ),                                                                                (A.1)                                                                                                                         

    (   )    (   )      (   )                                                                          (A.2)                                                                                                              

and reduce for  (   )  (   ) to 

 (   )   ,                                                                                                                      (A.3)                                                                                                                                                             

  (   )                                                                                                                       (A.4)          

The second equation gives 

 (   )             .                                                                                               (A.5)      

The total flow rate for one period through any plane parallel to the x-z plane is 

proportional to  (   ) and, therefore, is constant. This can be demonstrated as follows 
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Since the net flow rate in the transverse direction is zero, it can be concluded that 

 (   )   .                                                                                                                      (A.7) 

Appendix B 

Determination of Chebyshev Expansion Coefficient for a Known Modal Function                                                                                                                                                             

A known modal function  (   )can be expressed in terms of the Chebyshev expansion of 

the form 

 (   )( ̂)  ∑   
(   )

  ( ̂)    
                                                                                      (B.1)                                                                                                                           

where   
(   )

 are the expansion coefficients. In order to compute   
(   )

, we evaluate 

 (   )( ̂) at NT  Chebyshev points along   ̂ . This results in a system of    equations of 

the form 

  ,  ( ̂ )-2  
(   )

3  * (   )( ̂ )+                                                                                (B.2)                                                                                                                       

whose solution determines   
(   )

. 

 

Appendix C 

Evaluation of Fourier expansions representing periodic functions formed by the 

values of the Chebyshev polynomials, its derivatives and the reference flow velocity 

evaluated along the rough boundary  

Functions formed by values of the Chebyshev polynomials and its derivative evaluated 

along the upper wall are expressed as Fourier expansions of the form given by (3.40a)-

(3.40b). Use of the recurrence relation (3.28) and the Fourier representation of the wall 

geometry (3.9a) results in the relations of the form 
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which permit evaluation of all required Fourier coefficients in (3.40a). A similar process 

applied to the derivative of the Chebyshev polynomials and use of (3.30) result in the 

following relations  
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  ,  (  ) 
(   )

   for   (   )    and (  ) 
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                                                                        for   (   )                                       (C.5) 

 

which permit evaluation of all required Fourier coefficients in (3.40b). In order to 

evaluate the Fourier expansion coefficients of the function formed by the values of the u-

component of the reference velocity evaluated along the rough wall, one starts with 

(3.32) of the form 

 

  ( ̂ (   ))  
 

  
  (   ̂ 
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expresses  ̂  using (3.9a), evaluates  ̂ 
  with the help of (3.9a) resulting in the following 

relation 
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substitutes (3.9a) and (C.7) into (C.6), separates Fourier components and compares the 

resulting expression with  (3.40c) resulting in the following relations for the Fourier 

coefficients required in (3.40c) 
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A similar process applied to the w-component of the reference velocity results in the 

following expressions for the Fourier coefficients required in (3.40d) 
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