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Load dependence of the hardness of silicate g l a s s e s  -
Not just due to indenter tip defects
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The real contact area o f Berkovich indenters wi th typical indenter t ip defects is calculated as a function o f the penetration depth in
a general form and compared wi th literature results for Vickers indenters. The influence o f the t ip defects on the load dependence
of hardness is treated for both types o f indenters, taking into account possible purely elastic deformation at the beginning of contact.
Using the example o f recording microhardness measurements on glass made using a Berkovich indenter, i t is shown that a linear
dependence exists between load and depth o f penetration in the mil l inewton load region which can be explained by a rounded
indenter tip. However, the resulting corrections for the real contact area are not sufficient to compensate for the load dependence
of the hardness in the entire load region. A method is proposed for showing definitely that the load dependence of the hardness is
caused not just by indenter t ip defects but also by material properties. This method is tested on extensive measurements o f the
authors, as well as on results o f Frischat and the Oak Ridge group.

Lastabhängigkeit der Härte von Silicatgläsern  Nicht nur durch Indenterspitzenfehler verursacht

F ü r die typischen Indenterspitzenfehler wird die reale Kontak t f iäche von Berkovich-Indentern als Funkt ion der Eindringtiefe in
einer allgemeinen Form berechnet und mit den Literaturergebnissen für Vickers-Indenter verglichen. Der Einf luß der Spitzenfehler
auf die Lastabhängigkei t der H ä r t e wird für beide Indentertypen behandelt, wobei mögl iche rein elastische Verformungen zu K o n -
taktbeginn berücksichtigt werden. A m Beispiel von registrierenden H ä r t e m e s s u n g e n an Glas mi t dem Berkovich-Indenter w i r d
gezeigt, d a ß im Millinewton-Lastbereich zwischen Last und Eindringtiefe eine lineare Abhängigke i t besteht, die durch eine abgerun-
dete Indenterspitze erklär t werden kann. Die daraus resultierenden Korrekturen für die reale Kon tak t f l äche reichen aber nicht aus,
um die gemessene Lastabhängigkei t der H ä r t e im gesamten Lastbereich zu kompensieren. Es wi rd ein Verfahren vorgeschlagen, mi t
dem eindeutig entschieden werden kann, d a ß die Lastabhängigkei t der H ä r t e nicht allein durch Indenterspitzenfehler, sondern
wesentlich durch die Eigenschaften des Materials verursacht wird . Das Verfahren wi rd an umfangreichen Meßergebnissen der eige-
nen Gruppe, von Frischat und von der Oak Ridge-Gruppe erprobt.

1. Introduction
Vickers, Knoop and Berkovich hardness testing is
associated with a load dependence of hardness, an
effect which is most pronounced at the smallest loads
[1 and 2]. The reasons for this are still in dispute.

This peculiarity is of particular interest if it is due to
the deformation behavior of the material during point
loading. This interpretation is in contradiction to Kick's
law [3] . Before this explanation can be accepted, the con-
tribution of the experimental conditions must be invesd-
gated and isolated. The aim of this paper is to investigate
the influence of imperfect indenter tips on the load de
pendence of the hardness in experiments on different
glasses. Glass is selected for this investigation, because
corrosion of the glass surface has only a minor influence
on the hardness of the glass.

In this work, in analogy to [4], it will be assumed
that:
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a) the determination of the zero point of the load/pene-
tration curve at the moment of contact can be calculated
correctly by a nonlinear regression procedure [5] , and

b) the influence of the parasitic deformation of the in
denter assembly is minimized by sintering the diamond
pyramid in hard metal [6] .

If these conditions are realized, the main reason for the
load dependence of the hardness which is connected
with the test conditions is imperfection of the indenter
tip. In this case, calculation of the hardness number
leads to a fictive value:

Hr,,  - ^ . (1)
^ ideal

To evaluate the correct hardness number H{s), the real
contact area r̂eai niust be substituted for the contact
area A^^^.^i of the perfect indenter tip:
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Table 1. Real contact area for Vickers indenter;
^realW ^ 26.43 (tto + tti^ + a2 5^)

His) Fjs)

^realW
(2)

ao a i »2

regular t ip 0 0 1

roof edge 0 1^0 1

blunted t ip {s > SQ) 0.93 ô' 250 1

rounded t ip:  6.6SQ 
 0.481^0

S < Sc 
S> Sc 

0
0.025

1.5750

1.04^0

0
1

rounded t ip: Ri \2.1 SQ 
 0.492^0

S> Sc 
0
0.74^^

3.02^0

1.01^0

0
1

"el l ipt ical" t ip 1.04^0 1

Figures l a to e. Schematic representations o f a blunted (flat-
tened) (figures a and d) and rounded (figures b and e) tip of a 
Vickers pyramid and a Berkovich tetrahedron, respectively,
while figure c shows the cross-section o f the indenter in both
cases, s  true penetration depth o f the damaged indenter,
SQ  defect parameter, Sc  altitude o f the ball cap,  missing
part o f the tip, ao  length o f the square side (Vickers) or t r i -
angle side (Berkovich) o f the ground faces o f the blunted in
denter, R  radius o f the ball cap (Ri dio, i.e., radius o f the
circumscribing circle, R2  d2o, i.e., radius o f the interior circle),
d\,d2  parts o f the perpendiculars at the midpoints
o f the sides (dio and (̂ 20 which are correlated to ^o),
(p, yj  characteristic angles for the Berkovich indenter.

The load F F(s) is induced by the resistance of the
indenter against the penetration into the material, and it
can be detected directly only in a closed loop hardness
tester.

The contact area, ^reaiW. of a Vickers impression
can be calculated in dependence on the penetration
depth for different typical tip defects [4] . The results can
be expressed in a general form as a second-degree poly-
nomial:

^realW  ^ 26.43 (ŒQ + tti ^ + CL2 S^) (3)

where a, are geometry parameters which are determined
by the defect parameter, and which are collected in
table 1. The definition of shown in figures la to e 
gives the extent of the defect as the distance between the
intact pyramid faces and the extrapolated tip.

With a Berkovich indenter it is possible to realize the
point contact condition more exactly than with a Vick-
ers indenter. However, the Berkovich indenter is included
in these considerations. The values for the tip angles,
y/  7 7 . 0 3 ° and (p  6 5 . 2 7 ° (see figure Id), are chosen
in such a way that the relation between the contact area
and indentation depth, s, is nearly the same for both
indenters. The influence of tip defects of a Berkovich
indenter on the real contact area, v4reab is calculated ac
cording to equadon (3) in the same manner as for
the Vickers indenter, and the results are collected in
table 2. The geometrical meanings of the symbols used
are explained in figures la to e. For the rounded in
denter, one must distinguish between the two extreme
cases, i.e., that the ball cap touches the indenter faces,
or that it touches the sharp indenter edges. For the
Berkovich indenter, the first geometric condition leads
to the radius of the baU R2  2̂0 5.19 SQ with a cap
altitude  0.476 0̂ (see figure Ic), and the second one
leads to Ri d^o  19.43 0̂ with a cap altitude

 0.494 ^0- For the Vickers indenter, these values are
R2  6.6 So with Sc  0.481 0̂ and Ri \2.1 SQ with
Sc  0.492 respectively. In both cases, the geometric
condidon leading to the smaller ball radius, R2, seems
to be the realistic one.

As the next step, a survey of tables  1 and 2 is used
to discuss the characteristic influences of the most im
portant indenter defects on the load/penetration curve
at the moment of contact.

2. Influence of the tip defects of the indenter
on the loading curve
The (analytical) relation between load and penetration
depth follows from equation (3) by multiplication with
the hardness number, H: 
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F(S)  //fic  • îdeal  f^is)  ^realW , 

Vickers: Fis) 26A3 • H{s) (ao + a^s + a2S^) , (4)

Berkovich:  F{s) = 26.98 • His) (ao + ai  ̂+ a2S^) . 

The following will be discussed under the assumption
that the hardness is a constant of the material, i.e.,
H(s)  H  constant. This means that the load depend-
ence of the hardness is not induced by the properties
of the material. In this case, one has the consequences
according to [4] and described in sections 2.1 to 2.3.

2 . 1 . B lunted (flattened) indenters, F < FQ 

The plastic deformation resulting in a permanent im
pression starts above the cridcal load FQ HAQ. Be-
cause AQ  tto for the ground faces of the blunted in
denter, one gets:

Vickers: Fo  26A3H  • 0 . 9 3  2A.5%Hsl , 
(5)

Berkovich: F^  26.987/  • 0.91̂ g  24.55Hs^ . 

For  F < FQ, after the first contact the load increases only
elastically in proportion to the penetration depth (Timo-
shenko [7], Pharr et al. [8]):

F m • EQ^AQ^S , 

Vickers: F  5.65EQf(SoS, (6)

Berkovich: F  SJlE^f^SoS . 

The geometrical factor, m , is given in [8], and the effec-
tive elastic modulus follows from:

^eff Fi E2 

Ej are the Young's moduli of the indenter and the
sample, respectively, and jUf are the corresponding values
of Poisson's ratio.

2.2. Rounded indenters, s < Sc

The relation between F and  s at small penetration depths
{s  < Sc) is also linear for rounded indenter tips, but the
deformation process is plastic (represented by the hard-
ness number H  constant) even at the very start of
contact. This is shown by the following relations derived
from the ball indentation method:

Vickers: F  26.437/  • 1.57̂ o s  4\.5HsoS , 
(8)

Berkovich: 7̂  26.987/  • 1.21 0̂ s  32.6HSQS . 

The critical depth, s s^, is reached at the critical load
Fo-

Table 2. Real contact area for Berkovich indenter;
^reai(^)  26.911 (ao + a i5 + a2S^) 

ao »2

regular t ip 0 0 1

blunted t ip
(s > So) 0.91^ 0 ' 2̂ 0 1

rounded dp: R2 5.19̂ 0
 0.416 So 

S<Sc 0 1.21̂ 0 0
S> Sc -0.15^g 1.05̂ 0 1

rounded t ip: Ri 19.34̂ 0
Sc  0.494̂ 0
S < Sc 0 4.51̂ 0 0
S> Sc \.4^sl 1.01̂ 0 1

Vickers: Fo  26.437/  • 0 . 7 8 = 20.15 Hs^ , 
(9)

Berkovich: Fo  26.9%H  • 0 . 5 8 = \5.52Hsl . 

One must add an s^'^ term to take into account the elas-
tic compression; therefore, in experimental practice, a 
simple linear dependence is difficult to detect at the mo-
ment of contact with a rounded indenter. According to
the theory of Hertz [9], the load, F, for a ball indenter
pressed against (onto) a flat plate is:

Vickers: F=— {2.51)sl'^E^^^s^'^ , 
^ (10)

Berkovich: F=— {2.2'%)sl'^E,^s^'^ . 

The radius of the ball is expressed by R2  6.60 0̂ and
7̂ 2 ^ 5.19̂ 0 for the Vickers and Berkovich indenters, re
spectively.

2.3 . All indenter de fec ts , F > F Q , s > Sc

The arguments will be the same for blunted and rounded
indenters and also for those with a roof edge, because
the parameters in the relations for the real contact area
are not essendally different, if the unreahstic maxima of
tip radii are neglegted for the two indenters (Ri  12.7 0̂
for the Vickers indenter; R^  19.34 0̂ for the Berkovich
indenter). The following principal statements can be
made, assuming a homogeneous material hardness
(7/  constant):

a) Every case yields a2  1; therefore, the pure hardness
of the bulk material will be detected by sufficiently high
loads (F  > Fo); this hardness, which is independent of
every indenter defect, is designated as the load-inde-
pendent hardness value {L2VH) in [10]).
b) The geometry parameter ai can be approximated by
ax=So for rounded indenters and by ai  2̂ o for 
blunted indenters. In practice, the indenter defect is a 
mixture of these two extreme cases. Therefore, one has
to expect the same value for ai using the same indenter
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for the investigation of different materials. When ai is
estimated in this way, the value of the defect parameter,
^0, of the indenter tip can be calculated also,
c) The result of the calculation for the blunted Vickers
indenter is of special interest. A good approximation
yields ao  SQ and ai  ISQ (see table 1); therefore, the
real contact area is given by:

A,,,,(s) 26A3(s + sof . (11)

That indeed is the same expression which is used by dif-
ferent authors [1 and 2] to get a load-independent hard-
ness number by addition of a constant value (here, ̂ o)-
An interpretation of this procedure is that there are sys-
tematic measurement errors of the penetration depth, s 
(or diagonal, d) [1 and 2]. Following this argument, the
value ^0 is a correction term which can be estimated em
pirically by variation of the material being investigated.
The term is specific for an individual indenter and
must be independent of the material being investigated.
The results of Ullner and Höhne [11, table 2] are in con-
tradiction to this argument, indicating the uselessness of
this ^0 correction.

3. Suppositions for an analytical study of the
load dependence of the hardness given in the
literature
Using equation (4) as the basis, the curve of load versus
penetration depth obtained in recording hardness
measurements can be analyzed by the following equa-
tion:

F= bo + biS + bjs" . (12)

The meaning of the coefficients is given by comparison
with equation (4):

Vickers: bo  26.43//ao,  26.43//ai,
b2  26.43//(X2;

Berkovich: bo  26.98//ao, b^  26.98//a 1,
b2  26.98//a2.

The special equation (11) is included in equation (12) for
ao  ^0. aj 2^0. and a2  1. The coefficient bo is
determined by extrapolating the test results to ^ 0 and
taking bo as the difference between the intercept and
zero on the load axis. However, using a mathematical-
statistical program for correction of the zero point, this
difference is smaller than the digit distance for digitally
recorded measurements [5] and is, therefore, many times
smaller than the critical load Fo (i.e., bo  < Fo). Thus, it
seems legitimate to neglect the absolute term bo for the
analysis of the loading curves and to accept the power
series of Bernhardt [12] (see also [10]):

F^ = biS + b2S^ . (13)

With F^ F  bo, the neglecting of bo is expressed
clearly The coefficient bi gives the steepness of the hard-
ness increase in the direction of smaller loads; bi 0 
means constant hardness for an ideal indenter. The pa
rameter b2 is given by the product of the geometry factor
and the hardness number, i.e., /?2  26.43//.

Dividing equation (13) by 26A3s^, one gets the for-
mula for the load dependence of the Vickers hardness
which is preferred over others by Knight et al. [13]:

H  ^ + C 2 (14)
s

with Ci  /?i/26.43, C2  Z?2/26.43. More frequently, the
so-called power law of Meyer [14] is used to analyze the
load dependence of hardness:

F = c s ' \ (15)

If « < 2, equation (15) gives the well-known increase of
the hardness with decreasing load, with the steepness of
this increase being greater for smaller exponents, n. 
However, it is obvious from the literature [15] that the
power-law dependence can be fitted only over a small
load region, at most one order of magnitude. In prin-
ciple, the absence of a physical meaning of the power
law in those cases where the exponent is not an integer
is a strong argument against the use of Meyer's law.

4. Experimental investigations with the
Berkovich indenter in the region FKFQ 
Experiments with a Berkovich indenter on soda-lime-
-silica glass are chosen as a representative example to
demonstrate the hardness behavior at the moment of
contact. The hardness tester used was constructed as a 
closed-loop system. Therefore, the accumulated digital
data could be used to correct the values for load and
penetration depth resulting from the mathematical-sta-
dstical extrapolation of the zero point [5]. The digit dis
tance amounts to the load detection limit of 0.4 mN.
That means that the load error is smaller than 0.2 mN
for these experiments [5]. A representative load/penetra-
tion curve is shown in figure 2a. Logarithmic scales are
used to accentuate the situation at small loads. The
monotonically increasing slope of the curve from
n  1.02 near /^ 0.4 mN to 1.74 at F  1 N con-
firms the frequently encountered experience (see sec-
tion 3.) that Meyer's power law is not suitable for analyz-
ing the load dependence of the hardness. But the plot
FIs versus s with respect to equation (13) fits the exper-
imental resuks very weU (figure 2b). The same thing is
seen in the results of Pharr et al. [16], which will be ana-
lyzed later.

The relations between load and penetration depth
given in secdon 2. can be checked. The linearity at smal-
lest loads at the moment of contact gives (F/^)exp

 0.06 N/pm. The defect parameter, ^0. is calculated by
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equation (6) to be ~0.1 jim, taking Fgff  70 GPa, as-
suming the existence of a pyramid frustum which in
duces elastic compression.

According to equation (5), this value of SQ leads to a 
critical load FQ 0.3 mN, which is lower than the detec
tion limits in these experiments. Therefore, blunting of
the Berkovich indenter cannot be responsible for the lin-
ear F-s dependence at the first contact.

Assuming a rounded indenter tip, one must dis
tinguish between elastic indentation, such as Hertzian
compression, and plastic indentation, such as found in
ball indentation hardness testing. The elastic defor-
mation can be obtained using equation (10), and the
plastic deformation using equation (8). Expressing these
results as a ratio yields:

aplastic  32.6 HSo s 

f̂ elastic 3.04Feff^r^-'^-
 10.7

H

^eff

So

\ s / 

1/2

With the well-known material parameters of soda-lime-
-silica glass (// 5 GPa; Feff 70 GPa), one gets:

TV,.elastic

Clearly, it follows that the elastic and plastic coniri-
butions to the indentations load have the same order of
magnitude, if the indentation depth, s, is nearly equal to
the tip defect parameter, SQ. At  S < SQ, the plastic defor-
madon will dominate. Using equation (8), the value
(^/'^)exp  0.045 N/̂ im leads to ^ 0.3 |am (R 
 1.6 |im), which gives a load limit of FQ  0.007 N,

according to equadon (10). Both results agree very well
with the experimental results shown in figure 2a labelled
by Fo, and ô

The influence of the real contact area of this rounded
dp on the correct hardness number. His), is shown in
figure 3. Indeed, the load dependence of the hardness is
partially reduced but not eliminated at smaU loads. It
will be shown in section 5. that this result is also valid
in a more general sense.

5. Investigation of the load dependence of
hardness on the region F> FQ 
A profitable way to identify the influence of tip defects
of the indenter is by calculation of the ratio bi/b2, taking
into account the regression parameters for the fitting
procedure of the recorded load/penetration curves. This
yields bi/bi  C1IC2  a\la2, comparing equations (12
and 14), respectively. As was shown in section 3., one has
to expect a constant value in the range SQ  <  b^lb2 <2SQ 

independent of the material investigated, if the tip de
fects alone are responsible for the load dependence of
hardness. The lower limit is due to a rounded tip and the
upper limit to a blunt tip. In the following, experimental
results of different authors will be tested with respect to
these conditions. It will be assumed that each set of

10^

- ^ 

10'̂

2

11
0.5

0.4

e
\ 0.3

_c
to 0.2

u:
0.1

0

r Q) n - 174 ^ 

1 . ? 1 I I

3 4 10'̂  2 31. 10^ 2 3 10°  2  3 4 

5  111 jJlil ^ 

b)

^ 1  1 

0 1 2 3

Figures 2a and b. Meyer plot (double logarithmic scales) o f the
load, F, versus penetration depth, s, for a Berkovich hardness
measurement on soda-lime-silica glass (figure a) and analysis
o f the load dependence o f the Berkovich hardness in a plot o f
FIs versus  s (figure b). The full line is a fit o f a linear and a 
power funcdon, respectively; the 95 % confidence l imi t is
smaller than the point diameter.

authors used the same indenter for all of its indentation
experiments analyzed here. In every case, the correctness
of the zero point of the accumulated load/penetra-
tion data was verified by a mathematical-statistical pro-
gram [5].

Many experimental results of recording Vickers
hardness measurements are known for optical glasses [17
and 18]. The regression parameters b\ and b2 were calcu-
lated by least-square fits based on equation (13); the
results are drawn in figure 4a for flint glasses and in
figure 4b for crown glasses. The expected linear corre-
lation between the two parameters is not confirmed.
Values between 0.07 and 0.55 |im were found for the
ratio /?i//?2- This difference of nearly one order of
magnitude does not agree with the expected constancy
0{b,lb2.

As a second example, the results of Frischat et al.
[19] were analyzed. These results were obtained with a 
recording Vickers microhardness tester constructed by
these authors. The bx values must be corrected according
to [5] with respect to the preload of 0.04 N used for the
load sensor. The values for the calculated ratio bxibi col-
lected in table 3 range from 0.90 to 2.28 \im. A system-
atic dependence on the chemical composition of the
glasses could not be confirmed. A Student test was used
to calculate the significance of the differences between
the 78 possible combinations for the 13 glass types. With
a confidence limit of 95 %, it was found that 78 % of the
78 possible combinations are significantly different.
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Figure 3. Load dependence of the Berkovich hardness (LBeH) 
calculated using the results o f figure 2a taking the contact area
of an ideal t ip and a real contact area o f a rounded tip.
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Figures 4a and b. Correlation between the parameters bi and
Z?2 o f equation (13) for analysis o f different glasses, a) flint
glasses (Abbe number Ve < 50); SF  dense f l in t , BaSF  bar-
i u m dense fl int , L F  light f l int , B a L F  bar ium light flint,
K z F  short f l int , LaF  lanthanum fl int , F  f l int , L L F  

 double light f l int ; b) crown glasses (Abbe number  > 50);
B K  borosilicate crown, F K  fluoride crown, B a K  barium
crown, Z K  zinc crown, SSK  high-density crown,
B a L K  barium light crown, SK  dense crown, K  crown,
K F  crown fl int .

Finally, results of Pharr, Oliver, and Clarke given in
[16] were tested. The indentadon load/displacement data
were obtained with the Nanoindenter® at Oak Ridge
National Laboratory using a Berkovich diamond. The
results are redrawn in a plot of FIs versus s in figure 5 
for vitreous sihca at very small loads (7^ <  5 mN) and in
figures 6a and b for soda-lime-silica glass and silicon
single crystals (F < 120 mN). The parameters for linear
regression are collected in table 4 and compared with

Figure 5. Plot o f F i s versus  s for analyzing the load dependence
of hardness o f the Nanoindente r® measurements [16] on
vitreous silica. The full line is calculated by a linear f i t , the
dotted lines represent the 95 % confidence l imi t .

the experimental results of the present authors shown in
figure 2b. The most important fact in this case also is
the broad range of /?i/Z?2 values, indicadng once more
the influence of material behavior and not tip defects on
the load dependence of the hardness at small loads.

It is remarkable that nearly the same hardness values
for soda-lime-silica glass, i.e., L2VH  0.03784 • b2, 

were found by the three different groups of authors
using different experimental conditions and working in
different load regions.

6. Summary and conclusions
It is weh-known that the Knoop, Vickers and Berkovich
microhardness values determined in the region of ultra-
low loads by measuring the diagonal of the unloaded
impression or the penetration depth of the loaded im
pression are load-dependent. This result is unexpected
in view of the self-similarity of the geometrical shape of
each of these indenters.

In the present work, the influence of tip defect on
the load/penetration relation was calculated and dis-
cussed in detail for blunted and rounded Vickers and
Berkovich indenters. Theoretically, for loads smaller
than a critical value, F Q , there should be a linear depend-
ence on elastic contact pressure for a blunted indenter
and on plastic ball indentation for a rounded indenter.
Indeed, these linear relations between load and penetra-
don depth are found experimentally for glass, but the
defect parameter, arising from these results is too
small to compensate for the load dependence of the
hardness over the entire load scale investigated.

This result agrees very well with experiments done
above the critical load FQ. It could be shown that the
relation between the load, F, and the penetration depth,
s, in this region can be fitted by F b^s  + b2S^. If the
parameter ¿ 1 , which represents the steepness of the load
dependence of the hardness, is determined by the tip de
fect alone, then the value of the ratio bilb2 must be inde-
pendent of the material being investigated (for the
same indenter).

Recording hardness measurements made by the pres-
ent authors on many different flint and crown optical
glasses show that the value of /?i/Z?2 had a scatter of
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Figures 6a and b. Plot o f FIs versus  s for analyzing the load dependence o f hardness o f the N a n o i n d e n t e r ® measurements [16] on
a) soda-lime-silica glass, b) rhombic dodecahedron (110) surfaces o f silicon single crystals.

Table 3. Load independent microhardness o f different glasses (from [19, tables 1 and 2])

glass no. glass composition in b2 i n bi/b2 standard
in m o l % N / m m GPa in GPa i n | i m deviation i n % 

1 100 Si02 90 99.9 3.78 0.90 12.8
2 76.6 Si02, 13.6 NasO, 9.5 CaO 110 56.3 2.13 1.95 26.6

3 75 Si02, 25 Na20 95 74.5 2.82 1.27 9.7
4 75 Si02, 18.7 Na20, 6.3 Rb20 157 68.7 2.60 2.28 13.6
5 75 Si02, 12.5 Na20, 12.5 Rb .O 71 60.0 2.27 1.18 9.9
6 75 SiO., 6.3 Na20, 18.7 Rb2Ö 110 72.7 2.75 1.51 20.6
7 75 Si02, 25 Rb20 133 75.1 2.84 2.03 45.0

8 74 SiO., 17.4 Na20, 8.6 CaO 120 71.6 2.71 1.68 11.8
9 73.9 Sib2, 16.2 Na20, 1.2 CS2O, 8.5 CaO 114 70.6 2.67 1.62 16.3

10 73.9 SiO., 13.6 Na20, 3.7 CS2O, 8.6 CaO 83 58.7 2.22 1.43 28.1
11 74 SiO., 9.8 Na20, 7.5 CS2O, 8.6 CaO 110 53.4 2.02 2.06 15.2
12 74 SiO., 6.8 Na20, 10.6 Cs.O, 8.5 CaO 118 63.2 2.39 1.87 17.3
13 73.9 SiO., 3.6 Na20, 13.6 Cs.O, 8.6 CaO 73 65.8 2.49 1.11 32.6

1) Corrected on preload FV  0 .04N [5]. L2VH  0.03784 • Z?2 [10].

Table 4. Comparison o f recording hardness measurements with different load detection limits F H ,

test
laboratory

test condidons bi in N / m m ¿2 in GPa bi/b2 in j i m L2VHm GPa

Halle^) soda-lime-silica glass
Fum  5 m N ,
Vickers indenter

8 5 . 6 ± 4 . 6 (5.4%) 8 8 . 5 ± 0 . 8 8 (1 .0%) 0.97 ± 0 . 0 6 2 (6 .4%) 3 . 3 5 ± 0 . 0 3 3 (1.0 %o)

Freiburg"^^ soda-lime-silica glass
FH„ ,  0 . 4mN,
Berkovich indenter

66 .5±0 .77 (1.2%) 8 6 . 5 ± 0 . 3 3 (0.38 % ) 0.77 ± 0 . 0 4 9 (6 .4%) 3 . 2 7 ± 0 . 0 0 1 (0.03%)

Oak Ridge^) soda-lime-silica glass
Fiin, 2.5 m N ,
Berkovich indenter

11.11 ± 2 . 2 3 (20.1 % ) 8 4 . 2 ± 3 . 3 (3.92%) 0.132 ± 0 . 0 3 2 (24.2%) 2 . 9 4 ± 0 . 1 1 5 (3.91 %o)

Oak Ridge^> fused silica
Fun,  0.1 m N ,
Berkovich indenter

3 .52±0 .176 (5.0%) 110 .2±1 .4 (1.27%) 0 . 0 3 2 ± 0 . 0 0 2 (6 .3%) 4 . 1 5 ± 0 . 0 5 3 (1.27%)

Oak Ridge^^ (110) silicon single
crystals,  0.1 m N ,
Berkovich indenter

11.4± 1.22 (10.7%) 177 .0±2 .2 (1.24 % ) 0.0643 ± 0 . 0 0 7 7 (11.9%)) 6 . 7 0 ± 0 . 0 8 3 (1.24 %o)

Explanation: The values in brackets stand for the deviation in %.
Laboratory o f the authors P. Grau, G. Berg and W. Fränzel : Fachbereich Physik, Mar t in -Lu the r -Un ive r s i t ä t , Halle (Germany).
Laboratory of the author M . Schinker: Fraunhofer-Institut für Werkstoffmechanik, Freiburg (Germany).
Laboratory of G. M . Pharr, W. C Oliver and D. R. Clarke: Oak Ridge National Laboratory, Oak Ridge, T N ( U S A ) .

=  =

 =

 =

 = 

=

 = 



nearly one order of magnitude. Experimental results of
Frischat et al. [19] on Na/Rb and Na/Cs silicate glasses
showed that the ratio bxlb2 was significantly different for
78 % of the possible combinadons of materials. Finally,
the hardness measurements of the Nanoindenter® group
at Oak Ridge [16] analyzed in this paper also led to the
same conclusion for soda-lime-silica glass, vitreous sil-
ica, and silicon single crystals. Moreover, it is remarkable
that this analysis of the experimental results for soda-
-lime-silica glass obtained by three different groups of
authors in three different load regions gives essendally a 
single value for the parameter Z?2, which is interpreted as
the load-independent hardness value LjVH in [10].

In summary, the experimental results show clearly
that the load dependence of the microhardness cannot
be caused solely by tip defects of the indenter. Therefore,
the conclusion is that the cause of the load dependence
is the material itself, responding to deformation with
sharp indenters [20]. Experiments with small bah in
denters are planned to test this conclusion.

The authors thank the Minis tenum für Wissenschaft und
Forschung o f Sachsen-Anhah (Germany) for sponsoring a part
o f this work under project no. 029A03118.

7. Nomenclature

7 .1 . Symbols

A contact area in m^
« 0 length of the square side (Vickers) or triangle

side (Berkovich) of the ground faces of the
blunted indenter

bi empirical parameter of equations (12 and 13)
Ci empirical parameter of equation (14)
c parameter of the Meyer law in equation (15)
di diameter of indentation in mm
E Young's modulus in Pa
F force of the indenter in N 
H hardness number in Pa
LBeH load-dependent Berkovich hardness in Pa
LVH load-dependent Vickers hardness in Pa
m geometrical factor in equation (6)
n Meyer exponent in equation (15)
R radius of the curvature of the spherical indenter

defect in m 
s penetration depth in m 

aldtude of the ball cap
missing part of the indenter dp

^0 defect parameter of the indenter tip in m 

a/ geometrical parameters in equation (3)
fii Poisson number
Ve Abbe number
(p, y/ tip angles of the Berkovich indenter

7.2. Subscripts

b Bernhardt
c ball cap
e green mercury line
eff effective
exp experimental
fic fictive
/ index number
k critical
lim limit
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