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Danijela Vucevic 1 and Vladimir Jakovljevic 5,6,7

1 Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade,
11000 Belgrade, Serbia; danijela.vucevic@med.bg.ac.rs

2 Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of
Belgrade, 11000 Belgrade, Serbia; milicabrankovic137@yahoo.com (M.B.); jankomedico@yahoo.es (J.S.)

3 Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
jasmina.djuretic@pharmacy.bg.ac.rs

4 Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany; vukdusan@hotmail.com
5 Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69,

34000 Kragujevac, Serbia; drvladakgbg@gmail.com
6 Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of

Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
7 Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8,

Str. 2, 119991 Moscow, Russia
* Correspondence: tatjana.radosavljevic@med.bg.ac.rs; Tel.: +381-11-2685-340

Abstract: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as
nonalcoholic fatty liver disease (NAFLD), encompasses a range of liver conditions from steatosis
to nonalcoholic steatohepatitis (NASH). Its prevalence, especially among patients with metabolic
syndrome, highlights its growing global impact. The pathogenesis of MASLD involves metabolic
dysregulation, inflammation, oxidative stress, genetic factors and, notably, mitochondrial dysfunction.
Recent studies underscore the critical role of mitochondrial dysfunction in MASLD’s progression.
Therapeutically, enhancing mitochondrial function has gained interest, along with lifestyle changes
and pharmacological interventions targeting mitochondrial processes. The FDA’s approval of resme-
tirom for metabolic-associated steatohepatitis (MASH) with fibrosis marks a significant step. While
resmetirom represents progress, further research is essential to understand MASLD-related mito-
chondrial dysfunction fully. Innovative strategies like gene editing and small-molecule modulators,
alongside lifestyle interventions, can potentially improve MASLD treatment. Drug repurposing and
new targets will advance MASLD therapy, addressing its increasing global burden. Therefore, this
review aims to provide a better understanding of the role of mitochondrial dysfunction in MASLD
and identify more effective preventive and treatment strategies.

Keywords: mitochondria; MASLD; MASH; mitochondrial dysfunction; metabolic syndrome; oxidative
stress; mitochondrial quality control

1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously rec-
ognized as nonalcoholic fatty liver disease (NAFLD), encompasses a spectrum of liver
conditions ranging from steatosis to nonalcoholic steatohepatitis (NASH), which involves
inflammation and potential liver damage [1]. The renaming from NAFLD to MASLD
reflects a broader understanding of the disease’s underlying mechanisms and its associ-
ation with metabolic dysfunction. The term NASH has also been revised to metabolic
dysfunction-associated steatohepatitis (MASH) [2,3]. MASLD is commonly associated with
obesity, insulin resistance, type 2 diabetes mellitus (T2DM), dyslipidemia, and metabolic
syndrome [4]. It is becoming one of the most common chronic liver diseases worldwide,
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with the global prevalence ranging from 25% to 45%. The prevalence is shown to be notably
higher among people with metabolic dysfunction [5]. As metabolic dysfunction becomes
more prevalent globally, it further contributes to the rising burden of MASLD. Approxi-
mately 20–30% of MASLD patients may progress to MASH, potentially resulting in further
complications such as liver cirrhosis and hepatocellular carcinoma (Figure 1) [6].
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The pathogenesis of MASLD is multifactorial and involves a complex interplay of
various mechanisms, including metabolic dysregulation, inflammation, oxidative stress,
and genetic factors [7]. Recently, it has been suggested that mitochondrial dysfunction is
strongly associated with the development and progression of MASLD [8–10]. Therefore,
this review aims to provide a better understanding of the role of mitochondrial dysfunction
in MASLD and identify more effective preventive and treatment strategies.

2. Mitochondrial Biology
2.1. Mitochondria and Oxidative Phosphorylation

Mitochondria are essential cellular organelles responsible for various critical functions,
including energy production through oxidative phosphorylation (OXPHOS). OXPHOS
is a metabolic pathway that occurs in the inner mitochondrial membrane and involves a
sequence of enzymatic reactions that generate adenosine triphosphate (ATP), the primary
energy-supplying molecule for cells [11]. During OXPHOS, electrons derived from the
breakdown of nutrients are transferred through a series of protein complexes (complexes
I to IV) in the mitochondrial electron transport chain (ETC). As electrons pass through
these complexes, energy is released and used to pump protons (H+) across the inner mito-
chondrial membrane, creating an electrochemical gradient known as the proton gradient
or proton motive force. The ATP synthase enzyme (complex V) is powered by the proton
gradient, facilitating the phosphorylation of adenosine diphosphate (ADP) into ATP. The
production of ATP is essential for numerous cellular processes, including muscle contrac-
tion, biosynthesis, and active transport [12]. Mitochondrial dysfunction, characterized by
impaired OXPHOS, can lead to a range of cellular and physiological abnormalities [13].

2.2. Mitochondrial Oxidative Stress

Mitochondrial oxidative stress arises from an imbalance between the production of
reactive oxygen species (ROS) and the ability of the cell’s antioxidant defenses to neutralize
them. Mitochondria play a major role in generating ROS within cells, primarily due to the
ETC activity during OXPHOS [14]. Mitochondrial oxidative stress involves a cascade of
interconnected mechanisms. Initially, electron leakage from the ETC complexes can engage
with molecular oxygen, resulting in the formation of superoxide radicals. Subsequently,
these superoxide radicals can undergo enzymatic and non-enzymatic reactions to form
other ROS, such as hydrogen peroxide (H2O2). This process is exacerbated by dysregu-
lation of the ETC or impaired mitochondrial function, which amplifies ROS production.
Factors like mitochondrial DNA (mtDNA) mutations, defects in ETC complexes, and loss of
membrane potential contribute to this increased ROS generation. Additionally, mitochon-
dria possess various antioxidant defenses to counteract ROS accumulation. Antioxidant
enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase, along
with non-enzymatic antioxidants like glutathione (GSH), play crucial roles in scavenging
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ROS and maintaining redox balance [14,15]. However, when the levels of ROS surpass
the capabilities of these defense mechanisms, mitochondrial proteins, lipids, and DNA
are subjected to oxidative damage. This damage compromises mitochondrial function
and integrity, further escalating ROS production in a vicious cycle of oxidative stress. The
repercussions of mitochondrial oxidative stress can have widespread effects on cellular
function and contribute to the pathogenesis of various diseases. This can cause cell damage,
apoptosis, inflammation, and altered signaling pathways, ultimately leading to tissue
dysfunction and disease progression [14,16].

2.3. Mitochondria and Cell Death

Mitochondria are key regulators of apoptosis, a programmed form of cell death es-
sential for maintaining tissue homeostasis and eliminating damaged or unwanted cells.
During apoptosis, mitochondria release pro-apoptotic proteins such as cytochrome c and
Smac/DIABLO into the cytoplasm, initiating a series of events that lead to cell death.
This release of apoptotic factors is regulated by proteins of the Bcl-2 family, which control
mitochondrial outer membrane permeabilization (MOMP). MOMP leads to mitochondrial
membrane depolarization, disruption of ATP production, and activation of caspases, ul-
timately resulting in cell death [17]. Mitochondria also play a role in necrosis, a form
of non-programmed cell death typically associated with cellular injury or stress. Mito-
chondrial dysfunction, oxidative stress, and calcium overload can lead to mitochondrial
permeability transition (MPT), causing mitochondrial swelling, rupture of the outer mem-
brane, and release of pro-inflammatory molecules that promote necrotic cell death [18].
Lastly, mitochondria are degraded through mitophagy, a specialized form of autophagy that
selectively targets damaged or dysfunctional mitochondria. Mitophagy helps maintain mi-
tochondrial quality control and prevents the accumulation of dysfunctional mitochondria,
which can trigger apoptosis or necrosis [19]. Dysregulation of mitophagy can lead to mito-
chondrial dysfunction and contribute to the development of various diseases, including
MASLD [20].

2.4. Mitochondrial Quality Control

Mitochondrial quality control (MQC) refers to the mechanisms by which cells maintain
the health and functionality of their mitochondria. Given the critical role of mitochondria
in cellular energy production, metabolism, and signaling, it is essential for cells to ensure
that their mitochondria remain in a functional state. MQC involves several processes, such
as biogenesis, dynamics, and mitophagy (Figure 2) [21]. Understanding the molecular
mechanisms underlying impaired MQC and developing strategies to enhance or restore
this process could be the key to therapeutic interventions in MASLD.
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2.4.1. Mitochondrial Biogenesis

Mitochondrial biogenesis is a complex process by which cells generate new mito-
chondria to meet their energy demands and maintain cellular homeostasis. It involves
the coordinated synthesis and assembly of mitochondrial components, including proteins,
lipids, and DNA [22]. Mitochondrial transcription factor A (TFAM) is a key regulator of
mtDNA transcription and replication. TFAM binds to mtDNA, promoting its transcrip-
tion and packaging into nucleoids, which are essential for maintaining mtDNA stability
and proper mitochondrial function. The expression of TFAM is regulated by peroxisome
proliferator-activated receptor-γ coactivator 1α (PGC-1α), thereby linking nuclear control
of mitochondrial biogenesis to the maintenance and expression of mtDNA. Additionally,
transcription factors such as nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor
2 (NRF-2), and members of the estrogen-related receptor (ERR) family exert significant
influence by activating promoters of mitochondrial genes [12,23]. Mitochondrial biogenesis
is regulated at the post-transcriptional level as well. The translocase of the outer membrane
(TOM) complex, crucial for protein import into mitochondria, can be modulated by phos-
phorylation by cytosolic kinases. Notably, kinases like casein kinases 1 and 2, along with
protein kinase A (PRKA), have been identified as regulators that can either stimulate or
inhibit protein import into mitochondria, thus impacting mitochondrial biogenesis [24].

2.4.2. Mitochondrial Dynamics

Mitochondria exhibit remarkable dynamism, continuously altering their shape through
fusion and fission processes. The balance between fusion and fission is regulated by various
proteins encoded by nuclear genes [25]. Beyond modulating mitochondrial morphology,
these dynamic processes involve different aspects of mitochondrial dynamics, including
size, quantity, distribution, and intracellular transport [13].

Mitochondrial Fusion

Mitochondrial fusion is a dynamic process through which individual mitochondria
within a cell merge their membranes and contents to form a larger, interconnected network.
This fusion process is mediated by specific proteins and is essential for maintaining mi-
tochondrial function. Key proteins involved in mitochondrial fusion include mitofusin
1 (MFN1), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) [26]. MFN1 and MFN2 are
located in the outer mitochondrial membrane and facilitate the tethering and fusion of
adjacent mitochondria, while OPA1 is found in the inner mitochondrial membrane and
regulates the fusion of the inner mitochondrial membranes [27]. Through mitochondrial
fusion, cells can exchange mitochondrial contents, including mtDNA and its encoded
proteins, and ensure the proper distribution of healthy mitochondrial components.

Mitochondrial Fission

Mitochondrial fission is the process by which a single mitochondrion divides into
two or more smaller mitochondria. This dynamic process is essential for maintaining
mitochondrial quality control, distribution, and turnover within the cell. Mitochondrial
fission is primarily regulated by the activity of dynamin-related protein 1 (DRP1), a GT-
Pase that assembles into spirals around the mitochondrion at constriction sites. DRP1’s
recruitment to mitochondria is facilitated by various adaptor proteins, including mito-
chondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49
and MiD51, respectively), and fission protein 1 (FIS1). Once recruited, DRP1 mediates the
constriction of the mitochondrial outer membrane, leading to mitochondrial division. This
process is tightly regulated by post-translational modifications, including phosphorylation,
SUMOylation, and ubiquitination, as well as by interactions with other mitochondrial
and cytosolic proteins [28]. Through mitochondrial fission, cells can dynamically regulate
mitochondrial morphology and distribution, adapt to changing metabolic demands, and
selectively eliminate damaged mitochondria through mitophagy.
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2.4.3. Mitophagy

As previously mentioned, mitophagy is a specialized form of autophagy that selec-
tively targets damaged or dysfunctional mitochondria. This process plays a crucial role in
maintaining mitochondrial quality control and cellular homeostasis by removing damaged
mitochondria and preventing the accumulation of harmful mitochondrial components.
Mitophagy is typically initiated in response to cellular stress, such as oxidative stress,
nutrient deprivation, or mitochondrial dysfunction [29]. Key regulators of mitophagy
include PTEN-induced kinase 1 (PINK1) and Parkin, which are involved in identifying
damaged mitochondria and tagging them for degradation. PINK1 accumulates on the outer
membrane of dysfunctional mitochondria, where it phosphorylates ubiquitin and recruits
Parkin to ubiquitinate mitochondrial proteins. This ubiquitination serves as a signal for the
autophagic machinery to engulf the damaged mitochondria and deliver them to lysosomes
for degradation. Other proteins that are important for the regulation of mitophagy in-
clude Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), FUN14 domain-
containing protein 1 (FUNDC1), mitophagy protein Atg32 (ATG32), optineurin (OPTN),
and Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3-like (NIX/BNIP3L) [30].
Through mitophagy, cells can selectively remove dysfunctional mitochondria, thereby
maintaining mitochondrial quality and preventing the release of harmful molecules that
could trigger cell death or contribute to disease progression.

3. Mitochondrial Dysfunction and MASLD

Oxidative stress compromises mitochondrial function, leading to impaired ATP pro-
duction, ETC dysfunction, and mtDNA damage (Figure 3) [14]. Dysfunctional mitochon-
dria further contribute to ROS generation, including superoxide radicals and H2O2, as
byproducts of ETC activity. Studies have shown that patients with MASH exhibit increased
levels of ROS and ROS-induced mtDNA damage [31–33]. Elevated ROS levels contribute to
oxidative stress, causing cellular damage, lipid peroxidation, and inflammation in the liver,
exacerbating MASLD’s pathology. The onset of this damaging cycle of ROS is thought to be
triggered by the accumulation of long-chain free fatty acids (FFAs) in hepatocytes. ROS can
originate from various sources within mitochondria. It has been shown that superoxide gen-
eration primarily occurs at the flavin mononucleotide group of complex I through a process
known as reverse electron transfer. ROS can also be generated by apoptosis-inducing factor
(AIF), which exhibits NADH oxidase activity [34]. Prolonged stimulation of mitochondrial
activity under conditions of lipid overload may cause excessive electron leakage, mainly
due to the upregulation and activity of uncoupling protein-2 (UCP2) [35]. Moreover, ROS
may disrupt mitochondrial permeability transition pores (MPTPs), causing the leakage
of mtDNA into the cytoplasm [36]. This leakage can activate various cellular receptors,
including Toll-like receptor 9 (TLR-9), triggering their subsequent signaling pathways [34].
ROS can modulate inflammatory signaling pathways, including nuclear factor-kappa B
(NF-κB) and nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflam-
masome signaling pathway, leading to increased production of inflammatory cytokines
such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha
(TNF-α) [37]. TNF-α intensifies oxidative damage and inflammation while also activat-
ing mitogen-activated protein kinases (MAPKs). This activation leads to the production
of ROS, particularly superoxide (O2

•−). The resulting oxidative stress further damages
cellular components and induces the production of more TNF-α, creating a vicious cycle of
inflammation and oxidative damage. Additionally, pro-inflammatory cytokines activate
Kupffer cells, which further amplify the inflammatory response and exacerbate liver injury
in MASLD [38].

Dysregulation of proteins involved in mitochondrial fusion (MFN1, MFN2, and OPA1)
may contribute to aberrant mitochondrial morphology and impaired function in MASLD.
Various studies have shown that a high-fat diet decreases the expression of MFN1, MFN2,
and OPA1 [39,40]. Reduced levels of MFN2 have also been observed in liver biopsies
from patients with MASH and experimental models of steatosis or NASH [41]. Further-
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more, studies have demonstrated that elevated glucose levels can lead to mitochondrial
fragmentation and impaired cellular function by modulation of OPA1 [42,43]. Contrary
to previous findings, overexpression of OPA1 has shown beneficial effects in various ex-
perimental models [44,45]. Additionally, recent studies found that OPA1 depletion may
prevent steatosis and exert protective effects in MASLD/MASH [46–48].
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As previously mentioned, key regulators of mitochondrial fission include DRP1,
MFF, MiD49 and MiD51, and FIS1. The altered expression or activity of these proteins
can disrupt the balance between fission and fusion dynamics, leading to mitochondrial
fragmentation and dysfunction. A recent study discovered that the expression levels of
fission proteins, including DRP1 and FIS1, were increased, while there was a significant
decrease in the expression of fusion proteins, such as MFN2 and OPA1, in the group of
mice fed with a high-fat diet [49]. Moreover, research has shown that the expression of
the dynamin 1-like (DNM1L) protein, the human homolog of DRP1, in adipose tissue is
associated with obesity and insulin resistance, indicating a potential role for mitochondrial
fission in metabolic disorders [50]. In a murine model of MASLD, reduced mitochondrial
fission has been associated with the amelioration of hepatic steatosis [51]. This leads to the
maintenance of mitochondrial integrity and function, thereby preserving lipid metabolism
and reducing the accumulation of triglycerides in the liver. It also attenuates oxidative stress
and inflammation, key drivers of MASLD’s progression. Moreover, increased expression of
isocitrate dehydrogenase 2 (IDH2) suppresses ROS production and reduces the levels of
DRP1 and FIS1 [40], suggesting a potential therapeutic target for MASLD.

The signaling pathways that regulate mitophagy, such as those involving PINK1 and
Parkin, may be dysregulated in MASLD. Reduced activation of these pathways can impair
the selective targeting of damaged mitochondria for degradation. Zhou et al. demon-
strated a close association between MASLD and impaired Parkin-related mitophagy due
to macrophage-stimulating 1 (MST1) upregulation [52]. A recent study has revealed that
mitophagy dysfunction manifests early in MASLD. Additionally, this study found a correla-
tion between reduced Parkin levels and accelerated disease progression [53]. Furthermore,
the targeted deletion of lysocardiolipin acyltransferase 1 (ALCAT1) has been shown to
reverse mitophagy arrest and mitigate mitochondrial dysfunction in MASLD. Depletion of
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BNIP3 resulted in increased lipid synthesis and disruption of mitochondrial membrane
integrity [54]. Dysregulation of mitochondrial dynamics, including aberrant mitochondrial
fusion and fission processes, can also affect mitophagy [55]. Fragmented mitochondria
resulting from excessive fission may be less efficiently targeted for degradation. Accumula-
tion of dysfunctional mitochondria further exacerbates ROS production and cellular stress,
contributing to sustained inflammation. Damaged mitochondria can also release mtDNA
into the cytoplasm, which is recognized by the immune system as a damage-associated
molecular pattern (DAMP). This recognition further stimulates inflammatory pathways,
amplifying the inflammatory response. Inflammatory cytokines, including interleukin-1
alpha (IL-1α), IL-1β, and interleukin-18 (IL-18), may interfere with mitophagy signaling
pathways, exacerbating mitochondrial dysfunction [56].

4. Potential Therapeutic Approaches for MASLD

There is a growing interest in exploring the therapeutic potential of enhancing mi-
tochondrial function in MASLD (Table 1). Various strategies have been proposed in this
regard, including combinations of lifestyle modifications and pharmacological therapy, each
aimed at distinct objectives in addressing the complex pathology of MASLD (Figure 4) [57].
Until recently, there were no medications specifically approved for the treatment of MASLD.
However, in March 2024, the FDA approved the drug resmetirom (Rezdiffra) for the treat-
ment of MASH with moderate-to-advanced fibrosis [58]. Resmetirom, a selective thyroid
hormone receptor-β (THR-β) agonist, demonstrated a favorable side-effect profile, signifi-
cant improvements in fibrosis, and a reduction in MASLD progression [59]. By activating
THR-β, a nuclear hormone receptor, resmetirom modulates various genes that promote
mitochondrial biogenesis, mitophagy, and β-oxidation in hepatocytes [59,60]. Resmetirom
is now a recommended treatment for adult patients with MASH, along with lifestyle
modifications [58].
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Lifestyle modifications, including exercise and a healthy diet, have demonstrated
efficacy in improving mitochondrial function among patients with MASLD [61]. Regular
physical activity has been associated with improvements in various aspects of MASLD’s
pathophysiology. Exercise has been shown to reduce fat accumulation in the liver by
enhancing fatty acid oxidation and inhibiting lipogenesis, primarily through the activation
of the AMP-activated protein kinase (AMPK) pathway [62]. Moreover, the beneficial ef-
fects of physical activity on reducing chronic inflammation and oxidative stress are well
established [63]. Exercise can reduce the production of pro-inflammatory cytokines such
as TNF-α and IL-6 while promoting the release of anti-inflammatory cytokines such as
interleukin-10 (IL-10) [64]. A recent study demonstrated that exercise-induced irisin, a
PGC1-α-dependent myokine, has anti-inflammatory effects and improves MASLD by com-
petitively binding with myeloid differentiation factor 2 (MD2) [65]. Additionally, engaging
in regular exercise increases the production of endogenous antioxidants such as SOD, GSH
peroxidase, and catalase [66]. While the precise effect of exercise on mitochondrial quality
in MASLD remains to be fully elucidated, a recent experimental study suggested that
exercise improves mitochondrial function/morphology and enables mitophagy [67]. These
findings emphasize the potential of exercise as a strategy for targeting mitochondria and
treating MASLD.

The impact of a nutritious diet on mitochondrial function is also an area of ongo-
ing research. Opting for nutrient-dense foods such as fruits, vegetables, whole grains,
and lean proteins provides essential vitamins, minerals, and antioxidants that are impor-
tant for mitochondrial health [68]. Conversely, diets rich in processed foods, sugars, and
saturated fats can cause inflammation, insulin resistance, and oxidative stress, thereby
exacerbating mitochondrial dysfunction [69]. The Mediterranean diet (MedDiet), abun-
dant in extra-virgin olive oil, omega-3 fatty acids, fruits, and polyphenol-rich plants and
vegetables, ameliorates hepatic steatosis in patients with MASLD [70]. Moreover, numer-
ous studies have demonstrated the benefits of the MedDiet on mitochondrial metabolism
and biogenesis. Polyphenols possess antioxidant properties that help to scavenge ROS,
thereby reducing oxidative stress and inflammation [71,72]. Additionally, polyphenols
can modulate mitochondrial biogenesis, as well as regulating mitochondrial membrane
potential and mitochondrial enzyme activity [73]. Resveratrol has shown antioxidative
and anti-inflammatory properties by activating sirtuin 1 (SIRT1) and triggering the AMPK
pathway [72]. Additionally, resveratrol acts as a PGC-1α activator alongside compounds
like bezafibrate, thereby promoting mitochondrial biogenesis [74,75]. Similarly, neohes-
peridin has been shown to enhance PGC-1α-mediated mitochondrial biogenesis and reduce
hepatic steatosis [76]. Hydroxytyrosol, a polyphenol from olive oil, has demonstrated the
potential to improve mitochondrial function and alleviate MASLD. This effect may be
mediated by its ability to activate mitophagy through the AMPK/PINK1 pathway [77].
Berberine, an isoquinolone alkaloid, enhances the activity of sirtuin 3 (SIRT3) and improves
OXPHOS [78]. Various studies suggest that berberine holds promise as a therapeutic
approach for MASLD by modulating inflammatory signaling pathways and reducing ox-
idative stress [79–81]. Genistein, an isoflavone, has also gained attention for its potential
role in treating MASLD. Studies suggest that genistein possesses anti-inflammatory, antiox-
idant, and lipid-lowering properties. Additionally, genistein may exert protective effects on
hepatocytes through its ability to regulate insulin sensitivity and improve mitochondrial
function [82,83]. Flavonoids, such as silymarin and silybin-phospholipid, have recently
shown hepatoprotective effects, primarily by reducing oxidative stress and preventing
mitochondrial dysfunction [84,85]. Among their numerous functions, silymarin helps
maintain the integrity of mitochondrial membranes, while silybin-phospholipid regulates
mitochondrial energy metabolism [74]. In a recent experimental study, avocado oil has been
shown to decrease inflammation, improve mitochondrial function, and reduce oxidative
stress [86]. Although the roles of different natural compounds are still being investigated,
emerging evidence strongly suggests that targeting oxidative stress represents a promising
strategy for MASLD.
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Mitochondria-targeted agents, including Mito-quinone (MitoQ), MitoTEMPO, and
elamipretide (SS-31), represent innovative approaches aimed at directly targeting mito-
chondrial dysfunction [87]. These agents offer potential therapeutic benefits for a variety
of disorders associated with impaired mitochondrial function, including MASLD. MitoQ
acts as an antioxidant, scavenging harmful ROS and reducing oxidative stress. By reduc-
ing oxidative damage within the mitochondria, MitoQ helps to preserve mitochondrial
function and integrity [88]. Williamson et al. have recently demonstrated that MitoQ
supplementation has a protective effect on mtDNA [89]. Furthermore, numerous studies
have shown that the combination of MitoQ with other agents improves mitochondrial dys-
function and reduces oxidative stress [90–92]. Elamipretide (SS-31) improves mitochondrial
function by targeting cardiolipin, a phospholipid in the inner mitochondrial membrane. By
interacting with cardiolipin, elamipretide stabilizes mitochondrial membranes, improves
ETC activity, and reduces oxidative stress [93]. The beneficial effects of elamipretide have
been demonstrated in numerous studies and various conditions [93–95]. Another novel
compound, MitoTEMPO, neutralizes ROS and helps maintain mitochondrial function and
integrity [96–98]. Although the beneficial effects of these drugs have been demonstrated in
various diseases, their precise role in treating MASLD is still being investigated.

PPAR agonists work by activating peroxisome proliferator-activated receptors (PPARs),
which are nuclear receptors that play a key role in regulating various metabolic processes,
including lipid metabolism, inflammation, and insulin sensitivity. There are three sub-
types of the PPAR receptor family: PPAR-α, PPAR-δ, and PPAR-γ [99]. PPAR-α regulates
genes that are crucial for peroxisomal and mitochondrial β-oxidation [100]. PPAR-δ plays
an important role in enhancing mitochondrial function and promoting mitochondrial
biogenesis [101]. PPAR-γ is also involved in mitochondrial biogenesis by activating tran-
scription factors such as PGC-1α [102]. Elafibranor, a dual PPAR-α/δ agonist, is currently
pending approval for the therapy of primary biliary cholangitis. Results from the ELA-
TIVE Phase III trial demonstrated its efficacy and safety [103]. While several studies have
shown promising results suggesting that elafibranor improves steatosis, inflammation,
and fibrogenesis in MASLD/MASH [104–106], the results from the REVOLVE-IT Phase
III trial did not demonstrate the efficacy of elafibranor in comparison to the placebo [107].
Thiazolidinediones (TZDs), as PPAR-γ agonists, are primarily indicated for the treatment
of T2DM due to their ability to increase insulin sensitivity [108]. However, their potential
use in MAFLD/MASH has also been explored. These drugs have shown promise in preclin-
ical and clinical studies for their ability to improve insulin sensitivity and reduce hepatic
steatosis, inflammation, and fibrosis [109–111]. Various experimental studies have shown
that TZDs, such as pioglitazone, may promote mitochondrial biogenesis and enhance mito-
chondrial function [112–114]. Their mechanism of action involves the induction of PGC-1α,
which regulates genes involved in lipid metabolism, adipogenesis, insulin sensitivity, and
inflammation. Moreover, TZDs inhibit the mitochondrial pyruvate carrier (MPC), which is
responsible for transporting pyruvate across the mitochondrial inner membrane, reducing
the flow of pyruvate into mitochondrial metabolic pathways [115]. Azemiglitazone potas-
sium (MSDC-0602K) is a new medication classified as a PPAR-γ-sparing thiazolidinedione
(Ps-TZD). It represents a novel approach to insulin sensitization by retaining the beneficial
effects of TZDs while targeting MPC [116]. By sparing PPAR-γ activation, drugs like MSDC-
0602K may offer potential benefits in terms of metabolic control while reducing the risk of
side effects commonly associated with conventional TZDs [117]. MSDC-0602K is currently
undergoing Phase III clinical trials involving patients with pre-T2DM or diagnosed T2DM
who also exhibit signs of MASLD/MASH [118]. Furthermore, studies have highlighted the
efficacy of saroglitazar, another dual PPAR-α/γ agonist, in reducing steatosis, alongside
favorable improvements in various metabolic parameters [119–121]. Lanifibranor, the first
pan-PPAR agonist targeting three distinct PPAR isotypes, is currently undergoing Phase
III clinical trials involving patients diagnosed with MASH and fibrosis [122]. The Phase
IIb trial results showed significant improvements in hepatic steatosis, inflammation, and
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fibrosis [123]. These trials mark a significant advancement in liver disease research, as they
address the critical need for effective treatments for MASLD and MASH.

Sodium-glucose co-transporter 2 (SGLT2) inhibitors, such as empagliflozin and da-
pagliflozin, are a class of medications used in the treatment of T2DM, heart failure, and
chronic kidney disease [124]. Numerous studies have shown their beneficial effects in
improving mitochondrial function among a range of health conditions [125–130]. Some
proposed mechanisms for modulating mitochondrial function include upregulating tran-
scription factors like PGC-1α and TFAM, regulating mitophagy through FIS1, MFN1,
MFN2, and OPA1, and impacting various cellular pathways [126,131,132]. Evidence
suggests that SGLT2 inhibitors decrease the production of ROS and help maintain ion
homeostasis [133,134]. In an experimental model of T2DM induced by a high-fat diet com-
bined with streptozotocin, chronic administration of dapagliflozin has shown promising
effects on mitochondrial morphology and OXPHOS. Specifically, dapagliflozin normalized
the mitochondrial size in hepatocytes, increased the mitochondrial DNA copy number,
and upregulated the expression of genes involved in mitochondrial dynamics, such as
PGC-1α, MFN2, and DRP1 [125]. Additionally, low concentrations of dapagliflozin may
protect mitochondria by reducing H2O2 production, thereby mitigating oxidative stress.
However, this effect was not observed with an increase in the dose [135]. Another SGLT-
2 inhibitor, ipragliflozin, demonstrated antioxidative and anti-inflammatory properties
through the modulation of distinct pathways, potentially improving the progression of
MASH [136,137]. A recent study indicated that SGLT2 inhibitors are the preferred choice
among other antidiabetic drugs for patients with MASLD [138]. Moreover, positive out-
comes were observed in the Phase II LEGEND study, which investigated the combination of
lanifibranor with empagliflozin in patients diagnosed with non-cirrhotic MASH and T2DM.
Notably, patients treated with lanifibranor, alone or in combination with empagliflozin,
had significant reductions in hepatic steatosis and fibrosis [139]. Despite these promising
findings and the presence of strong evidence suggesting positive effects of SGLT2 inhibitors
in MASLD [138,140,141], further investigation is needed to better understand their role in
modulating mitochondrial function.

Metformin has gained attention for its potential therapeutic role in MASLD, beyond
its conventional use in T2DM [142]. Among its various established mechanisms, metformin
activates AMPK, a cellular energy sensor that regulates multiple metabolic processes. Ac-
tivation of AMPK leads to increased mitochondrial biogenesis, improved mitochondrial
function, and enhanced fatty acid oxidation [143]. Metformin also exhibits antioxidant
properties by modulating mitochondrial respiratory chain complex I [142,144]. In an animal
model of palmitate-induced hepatic cell death, metformin reduced cellular ROS production
while simultaneously increasing the production of SOD [145]. These effects are believed
to occur through an AMPK-independent mechanism, suggesting alternative mechanisms
at play. Experimental studies have revealed further possible mechanisms of metformin’s
action, including the inhibition of mitochondrial glycerol-3-phosphate dehydrogenase (mG-
PDH) and mitochondrial respiratory chain complex IV [146,147]. Additionally, metformin
has demonstrated positive effects on mitophagy and biogenesis, as evidenced by increased
levels of the mitophagy markers PINK1 and Parkin, alongside the mitochondrial biogenesis
marker PGC1α [148].

Sirtuins, particularly SIRT1, SIRT3, and SIRT6, play an important role in regulat-
ing mitochondrial quality control, making them promising targets for the treatment of
mitochondrial dysfunction [149]. SIRT1 activation increases the expression of genes in-
volved in mitochondrial biogenesis, including the upregulation of PGC-1α, a key regulator
in this process. In an animal model of MASLD, decreased levels of SIRT1 and PGC-1α
were observed [150]. Activation of SIRT3 increases the expression of proteins involved
in mitochondrial fusion, such as OPA1, MFN2, and DRP1. Moreover, SIRT3 enhances
the enzymatic activity of SOD2, leading to a reduction in oxidative stress [151]. Similarly,
SIRT6 activation can improve mitochondrial function and reduce oxidative stress [152].
As mentioned earlier, lifestyle modifications such as exercise and calorie restriction, along
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with compounds like resveratrol, have demonstrated the ability to activate both SIRT1 and
SIRT3. In recent years, several small-molecule modulators have been developed, and they
are currently undergoing clinical trials. Among them, SRT2104 (SIRT1 activator) stands
out as one of the most promising candidates [153]. Other members of the SIRT family have
also demonstrated protective effects in MASLD [154,155]. However, additional research is
necessary to fully understand their therapeutic potential.

Among the promising strategies to alleviate mitochondrial dysfunction is gene therapy.
Gene therapy approaches aim to correct genetic mutations or defects affecting mitochon-
drial function. This may involve gene editing techniques such as CRISPR-Cas9 and targeted
gene therapies. Numerous candidate genes associated with the progression and develop-
ment of MASLD/MASH have been identified [156]. While gene therapy for MASLD is
not yet available, there has been substantial advancement in treating Leber’s hereditary
optic neuropathy (LHON). The Phase III clinical trials evaluating the efficacy and safety
of lenadogene nolparvovec have demonstrated positive outcomes [157]. This progress
represents a significant step forward in utilizing gene therapy for mitochondrial disor-
ders, paving the way for developing treatments for various conditions associated with
mitochondrial dysfunction, including MASLD.

Table 1. List of potential mitochondria-enhancing therapies for MASLD.

Category Name Function References
PPAR agonists Elafibranor

Thiazolidinediones
Pioglitazone

Azemiglitazone potassium
(MSDC-0602K)

Improves steatosis, inflammation, and
fibrosis
Potential effects on mitochondria

Promotes mitochondrial biogenesis
Inhibits the mitochondrial pyruvate
carrier (MPC)

[104–106]

[112–114]
[115–117]

SGLT2 inhibitors Empagliflozin
Ipragliflozin
Dapagliflozin

Decreases ROS production
Up-regulates transcription factors
(PGC-1α and TFAM), regulate mitophagy
Normalizes mitochondrial size in
hepatocytes
Increases mtDNA copy number

[133,134]
[126,131]

[125,135]

Biguanides Metformin Increases β-oxidation and mitochondrial
biogenesis
Modulates mitochondrial respiratory
chain complexes I and IV

[143]

[144,146]

Sirtuins (small molecule
modulators)

SRT2104 (SIRT1 activator) Increases the expression of genes
involved in mitochondrial biogenesis

[153]

Mitochondria-targeted agents MitoQ

MitoTEMPO

Elamipretide (SS-31)

Reduces oxidative stress
Protective effect on mtDNA

Reduces oxidative stress

Interacts with cardiolipin, which
stabilizes mitochondrial membranes,
improves ETC activity and reduces
oxidative stress

[88]
[89]

[96–98]

[93]

Gene therapy Corrects genetic mutations or defects
affecting mitochondrial function

[156]

5. Conclusions

Strong evidence of an association between MASLD and mitochondrial dysfunction
underscores the urgent need for effective therapeutic interventions. The dysregulation
of mitochondrial processes contributes significantly to MASLD’s pathogenesis. Targeting
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mitochondrial dysfunction through innovative therapies, such as gene editing techniques
and small-molecule modulators, along with lifestyle interventions, holds promise in miti-
gating MASLD’s progression. Additionally, repurposing drugs and identifying new targets
are crucial aspects that can enhance the efficacy of MASLD therapy. However, further
research is essential for a better understanding of the specific mechanisms underlying
MASLD-related mitochondrial dysfunction, and for the development of targeted therapies.
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