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Abstract  

Evidence suggests that neuroinflammation exhibits a dual role in the pathogenesis of Major 

Depressive Disorder (MDD), both potentiating the onset of depressive symptoms and 

developing as a consequence of them. The chemokine fractalkine (FKN) (also known as 

CX3CL1) has gained increasing interest for its ability to induce changes to microglial 

phenotypes through interaction with its corresponding receptor (CX3CR1), which may impact 

neurophysiological processes relevant to MDD. Despite this, there is lack of a clear 

understanding of the role of FKN in MDD. Overall, our review of the literature shows the 

involvement of FKN in MDD, both in preclinical models of depression, and in clinical studies 

of depressed patients. Preclinical studies (N=8) seem to point towards two alternative 

hypotheses for FKN’s role in MDD: a) FKN may drive pro-inflammatory changes to microglia 

that contribute towards MDD pathogenesis; or b) FKN may inhibit pro-inflammatory changes 

to microglia, thereby exerting a protective effect against MDD pathogenesis. Evidence for a) 

primarily derives from preclinical chronic stress models of depression in mice, whereas for b) 

from preclinical inflammation models of depression. Whereas, in humans, clinical studies 

(N=4) consistently showed a positive association between FNK and presence of MDD, 

however it is not clear whether FKN is driving or moderating MDD pathogenesis. Future 

studies should aim for larger and more controlled clinical cohorts, in order to advance our 

understanding of FKN role both in the context of stress and/or inflammation. 

 

 

 

 

 

 

 

 

 

 



1. Introduction: 

Neuroinflammation has garnered increasing interest for its bidirectional role in Major 

Depressive Disorder (MDD) (Slavich and Irwin, 2014). This bidirectionality involves not only 

neuroinflammation increasing the risk for the onset of depressive symptoms (Benros et al., 

2013) but also neuroinflammation developing as a consequence of MDD. This reflects a 

complex interplay between inflammatory processes and the pathogenesis of MDD (see Figure 

1). A pro-inflammatory bias observed in human evolution appears to have favoured the 

emergence of depressive symptoms during periods of heightened inflammation, potentially as 

an adaptive mechanism to reduce the risk of subsequent pathogen exposure (Miller and Raison, 

2016). While meta-analyses have established C-reactive protein (CRP), interleukins (ILs)-3, 6, 

12, 18, soluble IL-2R and tumour necrosis factor α (TNF-α) as common pro-inflammatory 

markers elevated in MDD (Osimo et al., 2020), it is crucial to examine the role of other unique 

mediators including chemokines. This will both allow us to gain a more comprehensive 

understanding of the pathogenesis of MDD and to discern potential therapeutic targets to 

improve outcomes for this complex condition (Maes et al., 2012). Fractalkine (FKN), also 

named CX3CL1, is one such chemokine that is gaining increasing interest.  

 

FKN is the sole member of the CX3C family of chemokines and exists in both soluble 

and membrane bound isoforms (Bajetto et al., 2002). It is predominantly expressed within the 

CNS, with the ligand (CX3CL1) located on neurons and its corresponding receptor (CX3CR1) 

located exclusively on microglia and astrocytes. Ongoing research has implicated a role for 

FKN in the pathogenesis of a multitude of neuropsychiatric conditions including schizophrenia 

(SCZ), post-traumatic stress disorder (PTSD) and Alzheimer’s disease (AD) (Arabska et al., 

2022; Lee et al., 2010; Schubert et al., 2018). In these conditions, FKN has been proposed to 

drive microglial reactivity, which ultimately lead to SCZ behaviours (Zhou et al., 2020), 

impaired neuronal signalling within the limbic system involved in PTSD-related fear circuits 

(Schubert et al., 2018), as well as tau deposition in AD (Joaquín Merino et al., 2016). Within 

mood disorders, like MDD, FKN has been suggested to alter neuron-microglia crosstalk, which 

in turns leads to increased vulnerability to stress (Hinwood et al., 2019).  

 

 



By reviewing the literature, we aim to address the absence of comprehensive 

investigations into both the updated preclinical and clinical evidence for the role of FKN in 

MDD.  Additionally, we intend to identify areas for further research. We will begin by exploring 

the evidence for the differing roles of FKN in in vivo models of depression (i.e., chronic stress 

(CS) and lipopolysaccharide (LPS)). We will then proceed to examine clinical evidence for 

FKN role in MDD patients, discussing studies measuring changes in serum FKN levels (sFKN) 

and FKN single nucleotide polymorphisms (SNP). 

 

2. Preclinical and clinical evidence for the role of FKN in MDD 

2.1 Preclinical studies: chronic stress models 

A substantial body of evidence for FKN involvement in MDD comes from five studies 

exposing CX3CR1 knockout (KO) mice to acute or CS conditions (Hellwig et al., 2016; Liu et 

al., 2020; Milior et al., 2016; Rimmerman et al., 2017; Winkler et al., 2017). Although protocols 

for stress induction varied extensively throughout these experiments (see Table 1), all observed 

mice deficient for CX3CR1 were found to be resistant to developing depressive-like 

behaviours. Lower levels of liking-type anhedonia were observed through greater saccharin or 

sucrose preference in the Saccharin Preference (Milior et al., 2016) or Sucrose Preference Tests 

respectively (Rimmerman et al., 2017). Lower levels of despair and anxiety, characterised by 

increased locomotor activity, were observed in the Open Field Test (Hellwig et al., 2016; Liu 

et al., 2020; Winkler et al., 2017), Forced Swim Test (Liu et al., 2020; Winkler et al., 2017), 

Tail Suspension Test (Hellwig et al., 2016; Winkler et al., 2017), Wire Hang Test (Hellwig et 

al., 2016), and Elevated Plus Maze Test (Hellwig et al., 2016; Winkler et al., 2017). One study 

also observed increased cognitive performance, which was measured using the Morris Walter 

Maze (Liu et al., 2020). Overall, this indicates that FKN’s action on its selective receptor plays 

a critical role in the development of depressive behaviours. 

 

With respect to the cellular and molecular underlying mechanisms mediating the 

aforementioned behavioural effects, the FKN-CX3CR1 axis plays a crucial role in the 

mediation of environmental cues via microglia-neuronal crosstalk (Biber et al., 2008; Harrison 

et al., 1998). In particular, in three studies, when compared to CX3CR1 deficient mice, wild-

type (WT) mice showed a greater extent of microglia hyper-ramification/arborisation (Hellwig 



et al., 2016; Liu et al., 2020; Milior et al., 2016) and higher expression of pro-inflammatory 

cytokines like IL-1β/IL-6/TNF-α (Liu et al., 2020). Furthermore, WT mice showed greater 

microglial density, denoted by a shorter nearest neighbour distance (Winkler et al., 2017). In 

addition, WR mice’s microglia demonstrated increased M1/”classically activated” but 

decreased M2/”alternatively activated” phenotypes (Liu et al., 2020). M1 and M2 phenotypes 

have been proposed as mediating pro-inflammatory (Frank-Cannon et al., 2009) and anti-

inflammatory (Colonna and Butovsky, 2017) effects, respectively. However, it should be noted 

that this dichotomous classification has been recognised as oversimplifying the 

multidimensional nature of microglial behaviour (Paolicelli et al., 2022; Ransohoff, 2016). 

Overall, these changes illustrate some of the ways in which FKN drives changes in the 

morphological and inflammatory states of microglia, which ultimately may regulate 

depressive-like behaviours.  

 

Analysing functional implications from FKN-driven changes to microglial morphology 

is challenging due to the inherent complexity of such associations (Paolicelli et al., 2022). 

However, there is some suggestion that microglia utilise ramifications for phagocytosis, 

particularly their terminal “en passant” branches (Sierra et al., 2010; VanRyzin et al., 2019). 

This may offer an explanation as to the presence of increased phagocytic inclusions of Cornu 

Ammonis 1 (CA1) hippocampal pre-synaptic axon terminals and post-synaptic dendritic spines 

observed in one study, especially in WT, but not in CX3CR1 deficient, mice following CS 

(Milior et al., 2016). Similarly, synaptic phagocytosis may offer aetiological explanations for 

the observed neuroplasticity impairment in Long Term Potentiation (LTP) in the same study, 

and in another study, particularly in the Dentate Gyrus (DG) (Liu et al., 2020) and CA1 regions 

(Milior et al., 2016) of the hippocampus.  

 

FKN-driven effects on microglia may result in decreased neuroplasticity via a multitude 

of mechanisms (see Figure 2) (Innes et al., 2019): 1) CS-induced microglial state changes have 

been shown to result in unpotentiated (Petersen et al., 1998) and silent synapses (Kerchner and 

Nicoll, 2008; Liao et al., 1995), which are unable to undergo multiple episodes of LTP; 2) 

Hyper-ramified microglia may identify and phagocytose silent synapses by recognising their 

membranes as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 

deficient (Kerchner and Nicoll, 2008; Liao et al., 1995); and 3) FKN-driven changes to 



microglia may induce Long-Term Depression (LTD) (Bertollini et al., 2006), via the activation 

of adenosine receptors (AdR) (Lauro et al., 2008). The latter mechanism would allow post-

synaptic Calcium ion influx that inhibits Adenylate Cyclase (AC) and subsequently drives LTD 

by increasing levels of protein phosphatases (PP) and decreasing protein kinases (PKA) 

(Ragozzino et al., 2006). FKN’s effects on LTP in mouse models are salient as they could 

explain how FKN potentiates MDD symptoms in humans. Hippocampal LTP is essential to 

learning and memory (Luscher and Malenka, 2012; LYNCH, 2004), and these two aspects of 

impaired cognition are important features of MDD (Lam et al., 2014). Abnormalities in this 

brain region have additionally been observed in MDD patients (Cantone et al., 2017; Geerlings 

and Gerritsen, 2017), and so FKN’s effects on hippocampal LTP due to microglial state change 

in CS models offers a potential explanation for the development of this symptom.  

 

In addition to LTP, other mechanisms were identified in studies of FKN in CS murine 

models of MDD (see Figure 3). Previous evidence has shown a decrease in hippocampal 

volume in MDD patients (Videbech, 2004), potentially due to stress-induced suppression of 

hippocampal neurogenesis (Duman and Monteggia, 2006). In line with this, CX3CR1 deficient 

mice demonstrated resistance to stress-induced reductions in hippocampal neurogenesis in one 

study (Rimmerman et al., 2017). It should be noted that the baseline level of neurogenesis 

within the DG of CX3CR1 deficient mice before stress induction was lower than that of the 

WT group. This may be due to CX3CL1-CX3CR1 axis involvement in neuron-microglia 

crosstalk that leads to the removal of apoptotic cells, allowing space for the genesis of new 

neurons (Bachstetter et al., 2011). Whether a lower baseline level of hippocampal neurogenesis 

decreases susceptibility to depressive-like behaviour following CS however needs further 

investigation. 

 

Another significant finding was that CX3CR1 deficiency attenuated stress-induced 

Blood Brain Barrier (BBB) permeability (Liu et al., 2020) in one study, implying that FKN 

drives this process. The attenuation was suggested by the authors to be a consequence of M1 

towards M2 polarisation in microglial phenotypes, with the former expressing pro-

inflammatory cytokines (IL-6 and IL-1β) implicated in potentiating BBB hyperpermeability 

(Obermeier et al., 2013). BBB permeability may be a mechanism through which peripheral 



inflammation could drive neuroinflammation, leading to MDD symptoms and the observed 

changes in depression-related brain networks (Kitzbichler et al., 2021).  

 

FKN may additionally play a role in suppressing hypothalamic-pituitary-adrenal axis 

(HPAa) reactivity in MDD (Winkler et al., 2017) as WT mice showed lower HPAa activity than 

their CX3CR1 deficient counterparts in one study. The HPAa has been hypothesised as a 

determinant in stress-coping styles (Koolhaas et al., 2010). While heightened HPAa activity 

and subsequent cortisol elevation are often observed in melancholic depression (Keller et al., 

2017), atypical depression is instead characterised by decreased cortisol level and HPAa 

hypoactivation (Juruena et al., 2018). These findings suggest that FKN may play a role in the 

pathogenesis of atypical depressive symptoms.  

 

2.2 Preclinical studies: acute inflammation models 

Only two studies investigated the role of FKN in depressive-like behaviour following 

LPS challenge (Corona et al., 2013, 2010), see Table 2. In contrast with the aforementioned 

studies using models of stress, the two studies show that CX3CR1 deficient mice exhibited a 

protracted period of depressive behaviour following LPS injection (Corona et al., 2013, 2010), 

when compared with the WT group (Corona et al., 2010). Both studies used the tail suspension 

test, an assay aimed to measure anhedonic behaviour. In addition, this behavioural outcome 

was accompanied by an increased cortical concentration of IL-1β and a protracted period of 

pro-inflammatory microglial state. In addition, within the CX3CR1 deficient group, there was 

an exaggerated induction of indoleamine 2,3-dioxygenase (IDO) which catabolises tryptophan 

(TRP), a serotonin precursor, into kynurenine (KYN) (Guillemin et al., 2005). KYN 

metabolites have been found to exert a depressive-like behaviour inducing effect via 

interruption of glutamatergic and dopaminergic neurotransmission (Dantzer et al., 2011; 

Haroon et al., 2012) (see Figure 4). Of relevance, inhibition of IDO by 1-methyl-tryptophan 

was shown to attenuate depressive-like behaviour following LPS in the same study (Corona et 

al., 2013). 

 

Overall, these results suggest that while FKN is involved in the development of 

depressive-like behaviour and in the activation of pro-inflammatory pathways in the context of 



stress, it can instead play a protective role when in presence of LPS, leading to a reduction of 

depressive symptoms and of microglial reactivity. Whilst these findings offer valuable insight 

into the role of FKN in an acute inflammatory model of MDD, it is critical to note the small 

number of studies (N=2) currently available investigating FKN in this context. Further research 

is therefore needed to validate these findings.  

 

2.3 Clinical studies: serum FKN concentration and FKN polymorphisms in human MDD 

patients 

Three studies compared the concentration of serum FKN in MDD patients versus 

healthy controls (Merendino et al., 2004; Miranda et al., 2017; Zhou et al., 2021) (see Table 3 

and Figure 5). The first cross-sectional study compared concentration of s[FKN] in 9 female 

patients diagnosed with MDD and 15 healthy volunteers (Merendino et al., 2004). In all 9 MDD 

patients, s[FKN] levels were found to be significantly elevated, at a mean of 1078.29±302.3 

pg/ml. In contrast, only 4/15 healthy controls exhibited detectable levels of s[FKN], at a mean 

of 212.59±63.5 pg/ml. Despite the small sample size, this study provides evidence for the 

association between FKN and depressive symptoms, also in humans. Furthermore, it points to 

FKN as a potential biomarker in MDD. 

  

Similarly, a larger study examined s[FKN] in 33 treatment-resistant MDD patients 

(trMDD), 33 treatment-resistant MDD patients with chronic pain, and 60 healthy controls 

(Zhou et al., 2021). Mean s[FKN] at baseline was significantly elevated (p<0.05) in patients 

with trMDD (~250pg/ml) and trMDD with chronic pain (~400pg/ml), when compared with 

healthy controls (~200pg/ml). Interestingly, s[FKN] concentration decreased following 

treatment with intravenous ketamine (0.5mg/kg), a psychotropic agent with established 

antidepressant and analgesic effects (Nikolin et al., 2023), and this was associated with a 

reduction in MDD symptoms, again suggesting that s[FKN] may serve as a putative biomarker 

in MDD. 

 

The third study examined the relationship between s[FKN] and MDD in colorectal 

cancer (CRC) patients versus healthy controls (Miranda et al., 2017). The CRC cohort 

consisted of four groups undergoing treatment (n=20/group): those who had not undergone 



tumour surgical resection (Group 1); patients who underwent resection but were not started on 

adjuvant therapy (Group 2); those undergoing chemotherapy for ~3 months (Group 3); and 

patients who completed adjuvant chemotherapy regimen for ~6 months (Group 4). Within all 

groups, except healthy controls and CRC patients who had completed adjuvant chemotherapy, 

results show a significant correlation between s[FKN] concentration and high scores on the 

Hospital Anxiety and Depression Scale (HADS) (Zigmond and Snaith, 1983). Within the 

healthy control group, a mean s[FKN] ~60pg/ml was measured and 0% of the group had 

HADS≥19; in Group 1, the mean s[FKN] was ~200pg/ml, and 65% had HADS≥19; in Group 

2, the mean s[FKN] was ~175pg/ml and 60% had HADS≥19; in Group 3, the mean s[FKN] 

was ~85pg/ml and 60% had HADS≥19;  in Group 4, the mean s[FKN] was ~75pg/ml and 40% 

had HADS≥19. These findings not only imply the involvement of FKN in MDD, but also point 

to an association between s[FKN] and symptom severity. Overall, clinical findings support 

studies in pre-clinical models in establishing an association between FKN and MDD as well as 

pointing to FKN as a potential biomarker. 

 

Finally, a case-control genomic study of 502 MDD patients and 504 healthy controls 

revealed an association between SNP of rs170364 in the FKN gene and diagnoses of MDD 

(Peng et al., 2020). However, the T allele and GT + TT genotype, identified in this study, were 

found to be protective against MDD. This is supported by evidence suggesting that FKN 

inhibits nitric oxide and TNF-α synthesis (Mattison et al., 2013), and may act in human MDD 

in a similar way as in animal studies upon LPS exposure. 

 

3. General conclusions and limitations 

Overall, our review strongly suggests the involvement of FKN in MDD both in 

preclinical and clinical studies. Preclinical studies seem to point towards two alternative 

hypotheses for FKN role in MDD, namely that FKN either drives pro-inflammatory changes 

to microglia that contribute to MDD pathogenesis; or it inhibits pro-inflammatory changes to 

microglia thereby exerting a protective effect against MDD pathogenesis. Evidence for the 

former primarily derives from preclinical CS models in mice, whereas for the latter from 

preclinical LPS models. Whereas, in humans, clinical studies consistently showed a positive 

association between FNK and the presence of MDD, it is not clear whether FKN is driving or 

moderating the pathogenesis of MDD. 



 

Firstly, it is fundamental to mention that evidence is relatively limited at present, and 

therefore a comprehensive understanding of the complexity of the FNK involvement in MDD 

remains incomplete. Furthermore, whilst behavioural findings in CS murine models were 

generally homogenous, there were a wide array of histological changes in mice exposed to 

stress. Some studies observed increased microglial soma size (Rimmerman et al., 2017), others 

observed hyper-ramification (Hellwig et al., 2016; Liu et al., 2020; Milior et al., 2016), and 

others reported increased pro-inflammatory cytokine expression (Liu et al., 2020). This may 

be a consequence of the different stress paradigms employed across the studies (i.e., food 

deprivation, forced swimming, predator scent exposure), and different timing schedules of 

experimental manipulation (i.e., time of treatment, time of behavioural/histological 

assessments). To add, only one of the five CS studies was conducted both in male and female 

mice (Hellwig et al., 2016), therefore making it difficult to generalise the validity of the finding 

in relation to gender. 

 

Another important limitation is the fact that a single dose of LPS is mimetic of an acute 

inflammatory response within the murine central nervous system (Yin et al., 2023) that may 

not be an effective representation of the chronic low-grade inflammation observed in MDD 

patients (Berk et al., 2013). Acute inflammation may result in compensatory anti-inflammatory 

microglial mechanisms (Qin et al., 2023) in which FKN may act as a mediator. Hence, the roles 

of FKN in acute inflammatory responses in mice may vary from those observed in MDD 

patients – potentially explaining the discrepancies between LPS and CS murine models. 

 

Similarly, clinical research has thus far been very limited, with only 1 out of 3 studies 

assessing s[FKN] in healthy controls versus MDD patients without comorbidities (Merendino 

et al., 2004). The other 2 studies assessing s[FKN] did so in the context of CRC (Miranda et 

al., 2017) and chronic pain (Zhou et al., 2021). This may limit their applicability to isolated 

MDD, given that variation in stressors may lead to FKN exhibiting either a pro-depressive or 

anti-depressive role, evinced by the discrepancies between LPS and CS preclinical models. The 

Merendino et al. study suffered from a small sample size of only 9 patients, all of whom were 

female and were not screened for possible confounding comorbidities that are additionally 

associated with s[FKN] elevation. For example, common pathologies like atherosclerosis, 



diabetes (Shah et al., 2015) and poly-cystic ovarian syndrome (Demi̇r et al., 2019) have been 

associated with elevations in s[FKN]. Therefore, more research into s[FKN] in larger cohorts, 

without comorbidities (or controlling for comorbidities), and inclusive of both sexes, should 

be conducted to validate these findings. 

 

To conclude, the present review of preclinical and clinical evidence for FKN role in 

MDD reveals a complex and multifaceted relationship. Preclinical evidence from murine 

models, particularly in their response to CS and LPS challenges, suggest a critical role for FKN 

in MDD, albeit with contrasting findings. Similarly, clinical evidence of elevated s[FKN] in 

MDD patients suggests its involvement in MDD, although the study on FKN gene 

polymorphisms proposes a potential protective role of FKN in MDD pathogenesis. Future 

research should aim for a better understanding of FKN’s role in stress versus inflammation 

paradigms.  
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