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ABSTRACT In the brain-computer interface, the SSVEP (steady-state visual evoked potential) method
serves to foster collaboration between humans and robots. SSVEP-based detection methods require complex
multichannel data acquisition, making them difficult to deploy due to discomfort during extended use and the
complexity of the algorithms involved. On the other hand, single-channel setup offers simplicity and ease
of use. However, in a single channel, achieving encouraging performance in the SD (subject-dependent)
scenario is challenging, and accuracy drops further in the SI (subject-independent) scenario. This requires
the development of a generalized approach to improve performance in both scenarios. This study proposes
(VMD-DNN) to detect SSVEP in single-channel setups for SD and SI scenarios. The novelty of the proposed
method lies in utilizing VMD (Variational Mode Decomposition) as a preprocessor, leveraging harmonic
information and Kurtosis of the cross-correlation function to select harmonics from VMD decomposed
signal. The preprocessed reconstructed signal uses complex spectrum features as input to the DNN for
classification. The results show an average accuracy of 93%, 95.3% in SD and 79%, 92.33% in SI scenarios
tested on two publicly available datasets, respectively. The ITR (Information transfer rate) was 67.50 bit/min,
92.31 bit/min for SD, and 46.13 bit/min, 85.94 bit/min for SI for both datasets, respectively. In SD, accuracy
is improved by 3.34% and 5%, and ITR by 8.87% and 12.91% over baselinemethods for both datasets respec-
tively. The proposed VMD-DNN model is effective, with improved performance and lower computational
complexity. The robust single-channel approach makes it user-friendly for human-robot collaboration.

INDEX TERMS Steady-state visual evoked potential, single-channel, human-robot collaboration, deep neu-
ral network, variational mode decomposition, EEG measurement and classification technique, harmonics.

I. INTRODUCTION
The Brain-Computer Interface (BCI) translates bioelectric
signals of the brain in order to communicate between humans

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Zia Ur Rahman .

and computers or machines. It allows the machine to receive
and respond to commands directly from the brain [1].
Increasing technological advancements, Industry 4.0, and
cyber-physical systems are reshaping the interaction between
humans and machines [2]. The role of humans in highly
automated systems has evolved from simple roles to integral

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 115935

https://orcid.org/0000-0002-4953-9889
https://orcid.org/0000-0002-5263-1408
https://orcid.org/0000-0001-9511-8105
https://orcid.org/0000-0003-4695-7556
https://orcid.org/0000-0001-5270-6599
https://orcid.org/0000-0001-5090-7813
https://orcid.org/0000-0001-9588-0052
https://orcid.org/0000-0002-4948-3870


A. Wahab et al.: Improved Accuracy for SD and SI Deep Learning-Based SSVEP BCI Classification

components [3]. BCI can serve as an efficient interface,
enhancing communication between humans and machines
or robots, and is suitable to implement in noisy environ-
ments [4]. In a human-robot interface, humans and robots
collaborate to accomplish shared tasks, utilizing human intel-
ligence along with robot precision and repeatability [5].
Whenever the human makes a decision, the robot, as a co-
worker, recognizes and executes it accordingly.

The preferable approach for Human-robot Collaboration
(HRC) with BCI uses naturally produced brain signals and
does not require extra training or active thinking by humans.
In addition, it also requires better communication between
humans and robots. Steady-state visual evoked potential
(SSVEP) is a reactive electroencephalogram-(EEG-) based
BCI that occurs as a result of periodic visual stimulation in the
occipital cortex, manifested by brain responses to frequency
and harmonics [6]. SSVEP-based BCI is preferable for its
advantages, such as high signal-to-noise ratio, high infor-
mation transfer rate, and minimal to no subject or operator
training requirement [7]. For the seamless design of human-
robot collaboration, it is important to develop an accurate
and robust algorithm for SSVEP signals classification with
improved Information Transfer Rate (ITR).

FIGURE 1. Two training models (a) Subject-dependent training;
(b) Subject-independent training.

When HRC is used with BCI, two learning agents are
involved: the human operator and the algorithm. Operator
training for SSVEP-based BCIs is minimal or nonexis-
tent compared with other BCIs such as motor imagery.
Generally, the available algorithms for extracting and clas-
sifying SSVEP features can be categorized into three groups:
training-free methods, subject-dependent training methods,
and subject-independent trainingmethods [8]. In the training-
free method, there is no need for training data, so new users
can begin using BCI immediately [9]. Due to subject-to-
subject variability, training-free algorithms are not neces-
sarily robust [10]. Subject-dependent (SD) training methods

involve training a particular subject to extract optimal features
for the same subject as shown in Fig. 1(a). The subject’s train-
ing data reduced the impact of spontaneous background EEG
signals on SSVEP response [11]. In SSVEP identification,
training methods produce higher recognition accuracy than
training-free methods because a machine learning algorithm
is trained on specific subject data and can predict the outcome
later [12]. It is highly desirable to build a general training
model that is applicable for new unseen operators, known as
the subject-independent (SI) training model. The SI approach
requires training data from different subjects to develop a
model that can be used for general purposes. In SI models,
there is no need to collect training data from new unseen
subjects as shown in Fig. 1(b). Once the SI model is trained,
it can be applied to predict data from unseen users [10], [12].

Several factors affect SSVEP signal classification accu-
racy, including the number of channels used for data acqui-
sition, frequency detection algorithm, and signal-to-noise
ratio [9], [13]. To achieve high accuracy in SSVEP detection,
most studies prefer a multi-channel setup, which, though
effective, pose challenges in terms of complexity and dis-
comfort [14], especially for operators wearing EEG caps for
prolonged periods. This discomfort may lead to irritation,
potentially impacting communication between collaborative
robots and operators. Conversely, single-channel setups offer
simplicity and comfort [15], a crucial advantage, particu-
larly when operators are required to wear safety helmets
simultaneously. This is often not feasible with multichannel
setups, also in multichannel data acquisition the processing
algorithmic complexity increases due to data from multiple
electrodes.

However, achieving satisfactory performance in SD sce-
nario with single-channel setups poses a challenge, exacer-
bated by further accuracy drops in SI scenario. Addressing
this challenge necessitates the development of a generalized
approach to enhance SSVEP single-channel performance
across both scenarios. To address this need, our study extends
efforts by incorporating effective preprocessing using VMD
and a lightweight DNN model. Additionally, training data
from multiple subjects is integrated, followed by evaluation.
To the best of our knowledge, the SI training scenario has
not been implemented using single-channel SSVEP setups.
Additionally, single-channel configurations have not been
utilized in smart industries for Human-Robot Collaboration
(HRC).

Our proposed method employs VMD as a preprocessing
step, leveraging harmonic information along with Kurtosis
of the cross-correlation function (KCCF) to select necessary
harmonics from the VMD decomposed signal. The resul-
tant reconstructed signal, obtained through preprocessing,
utilizes complex spectrum features as input to the DNN for
classification. This preprocessing step effectively denoises
the SSVEP signal by extracting first and second harmon-
ics while disregarding irrelevant and noisy information.
The integration of a lightweight and improved DNN model
compared to more elaborate neural network architectures
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already presented in the literature [16], aims to generalize
the study, making it applicable to both SD and SI scenarios.
The introduction of the VMD and DNN result in improved
accuracy as reflected by a higher performance of the pro-
posed method (VMD-DNN) compared to several existing
related methods such as Power spectral density analysis
(PSDA), Discrete wavelet transform-PSDA (DWT-PSDA),
Empirical mode decomposition-PSDA (EMD-PSDA) [17],
Canonical correlation analysis (CCA)-DNN, and Filter bank
CCA (FBCCA)-DNN on two publicly available datasets:
AVI-SSVEP [18] and [19]. The proposed approach VMD-
DNN achieved an average accuracy of 93% and ITR of
67.50 bit/min (bpm) for four subjects on the AVI-SSVEP
dataset and 95.3% average accuracy with 92.31 bpm ITR on
a second dataset with 10 subjects when tested on SD training
scenario. Furthermore, it achieved an accuracy of 79% with
46.13 bpm ITR for AVI-SSVEP and 92.33% accuracy with
85.94 bpm ITR for second Dataset when tested on SI training
scenario. Overall, this robust single-channel approach makes
it user-friendly for various applications in the automation
industry and robotics.

The paper is organized as follows. Section II describes the
related work. Section III details the materials and methods,
including the proposed methodology. Section IV shows and
discusses the results, whereas the scope and application of
the work are explained in Section V. The paper concludes in
Section VI.

II. RELATED WORK
A brain-computer interface has historically been used to sup-
port disabled people or patients, such as wheelchairs [20],
electric prostheses [21], and feeding robots [22]. During some
industrial processes, when operator hands are involved, and
robotic collaboration is required to automate the process, BCI
can help humans transfer their decisions to robots. In BCI
systems based on EEG, a variety of brain responses are
used, including SSVEP [5], P-300 [23], and motor imagery
responses [24]. Motor imagery requires additional user train-
ing, whereas SSVEP and P300 rely on visual stimuli. Due to
the SSVEP aligning with the stimulus frequency and possess-
ing notable advantages such as a high signal-to-noise ratio
(SNR), fast information transfer rate, and minimal training
requirements, it can be widely used in various industrial
applications.

Target identification is an essential step in constructing
SSVEP-based BCIs, which translate SSVEP signals into
commands. As the SSVEP frequency aligns with the stimuli
frequency, methods such as PSDA and Canonical Correlation
Analysis (CCA) are used when we have prior knowledge of
the target frequency. Also, the CCA method is commonly
utilized for single-channel data [25]. However, both PSDA
and CCA methods can be affected by background noise [8].
Additionally, the CCA method often inadequately incorpo-
rates harmonic information [26]. Given that SSVEP signals
contain both the target frequency and its harmonics, the

filter bank CCA (FBCCA) was proposed based on a filter
bank approach that effectively integrates the target frequency
and its harmonics information. FBCCA is widely utilized in
various training-free SSVEP methods. The FBCCA method
requires optimization of three parameters: the number of har-
monics in reference signals, the weight vector for sub-bands,
and the number of filter banks for sub-bands. As the perfor-
mance of the FBCCA method depends on these factors, it is
a critical consideration in incorporating a BCI system [10].
Many single-channel SSVEP studies use DWT as a prepro-
cessing method because it allows detailed time and frequency
localization within the signal. However, choosing the right
mother wavelet is a key limitation to optimizing SSVEP
performance. EMD overcomes DWT’s limitations by elimi-
nating the need for decision-making in wavelet selection [17],
[27]. However, the EMD technique has limitations in mix-
ing intermediate modes [28]. VMD effectively addresses the
mode mixing problem and has a solid mathematical foun-
dation for signal decomposition. VMD has the ability to
distinguish between two harmonics with frequencies that are
very close, and this separation effect remains unaffected by
variations in the sampling frequency [29]. This characteristic
of VMD makes it a suitable choice for integrating SSVEP
target frequency information with harmonics.

Many studies in a multichannel setup utilize subject-
dependent training scenarios such as individual template-
based CCA methods, task-related component analysis
(TRCA), and task-discriminant component analysis (TDCA).
These methods contribute significantly to SD classification
scenarios. It was noted that, in SSVEP processing, TRCA
performs was not optimal when dealing with asynchronously
processed data [30].

In the industry, SSVEP is used for HRC usingmultichannel
to perform different tasks such as assembly tasks [2], [5],
picking and placing defective components [31] etc. On the
other hand, a single channel SSVEP based classification
is already practiced in a few applications in SD scenarios
specifically, the convolutional neural network is utilized to
perform an application of BCI spellers [15]. The fuzzy feature
threshold algorithm (FFTA) is utilized for single-channel
control of the mobile robot [32]. Numerous efforts have been
made by utilizing conventional state-of-the-art methods of
multichannel systems when applied to SI scenarios, but the
results are still not satisfactory [12] because SSVEP signals
display non-stationary properties and vary in characteristics
among subjects [10], [11]. Hence, the primary objective of
this research is to address the challenges inherent in single-
channel setups for the SI as well as SD scenarios.

The main challenge in SSVEP-BCI classification is the
signal from the same subject for the particular task at different
times instants may have different patterns due to several
factors such as electromagnetic interference and background
noise etc. The stated challenge greatly affects the perfor-
mance the of conventional machine learning method in the
SD scenario which is even worse in SI scenario [11]. Compar-
ing deep learning with other SSVEP classification methods,
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it offers numerous advantages. Deep learning leverages neu-
ral networks with multiple layers to uncover hidden patterns
in EEG signals, essential for accurate classification. A net-
work learns more complex features as data flows through
it [33]. The network is fed with preprocessed SSVEP signals,
eliminating the need for additional feature extraction. Due to
this property of deep learning, it is used for SSVEP signal
classification. To meet the demands of research, we utilized
a single-channel SSVEP approach using VMD coupled with
a customized deep-learning model. This strategy enhances
the accuracy of classification in both (SD) and (SI) train-
ing scenarios, making it well-suited for implementation in
Human-Robot Collaboration (HRC) systems.

Reviewing the state-of-the-art literature, it is evident there
are numerous techniques available to improve SSVEP perfor-
mance with multichannel systems in both training scenarios,
but they are less preferable due to their complexity and
uncomfortable use. The need therefore remains for a single-
channel SSVEP classification approach that is accurate and
robust with a better tradeoff in accuracy and ITR, which is
addressed in the proposed method.

III. MATERIALS AND METHODS
A. DATASETS
In this study, the performance of the proposed method was
evaluated using two publicly available datasets.

1) DATASET A
This dataset is known as the AVI-SSVEP Dataset [18]. There
are four subjects in this dataset, consisting of three males and
one female, with an age range of 27-32 years. The trials for all
four subjects were performed for seven frequencies flickering
at 6 Hz, 6.5 Hz, 7 Hz, 7.5 Hz, 8.2 Hz, 9.3 Hz, and 10 Hz. The
single electrode was placed at the ‘Oz’ position, while the
reference and ground electrode positions were ‘Fz’ and ‘Fzp’
respectively. The electrodes were set as per 10-20 interna-
tional standards for the placement of electrodes. The duration
of each dataset trial consisted of 30 seconds at a 512 Hz
sampling rate. The data for each frequency was collected at
least three times for all subjects. For four subjects, 92 trials of
data were conducted using seven frequencies. For Dataset A,
the train-test split was set to 75% training and 25% testing in
the SD scenario. Table 1 provides detailed information about
Dataset A.

TABLE 1. Dataset A: Details of the AVI-SSVEP dataset.

2) DATASET B [19]
This dataset was collected for 12 classes ranging from
9.25 Hz to 14.75 Hz with a step size of 0.5 Hz. A total of

10 subjects with normal or correlated normal vision were
selected to sit 60 cm away from a 27-inch LCD monitor in
a dim room. The eight channels (O1, O2, Oz, PO3, PO4,
PO7, PO8, and POz) were used to acquire EEG data at the
occipital region. A sampling rate of 2048 Hz was used for
data collection, which was then down sampled to 256 Hz for
computation. For each class, 15 trials were conducted, and
each trial duration was 4sec.

The data was placed in 4-D matrix format (Number of
targets, Number of channels, Number of data points, Number
of trials). We used single-channel (Oz) data for this study.
In Dataset B, 12 out of 15 trials were used for training, and
the remaining 3 for testing in the SD scenari. However, in the
SI training scenario, we tested the subject with the lowest
accuracy in the SD scenario as the unseen subject in each
dataset to evaluate the performance of the proposed method.
The DNN model was trained using combined data from the
remaining subjects in the same dataset. Table 2 provides
details on Dataset B.

TABLE 2. Details of the Dataset B.

Besides the fundamental frequency, the SSVEP signal also
contains its harmonic components, which are its integral
multiples [6], [7]. Harmonics analysis is also effective for fea-
ture extraction and improved classification performance. The
SSVEP signal of 10 Hz of subject 2 of Dataset A is shown in
Fig. 3(a). The frequency spectrum of the 10 Hz SSVEP signal
represents the fundamental frequency (first harmonics), 2nd

and 3rd, harmonics with respect to normalized amplitude as
shown in Fig. 3(b).

The first harmonic’s amplitude is higher than the second
and third harmonics. However, in some cases, the second har-
monic’s amplitude is more than the first harmonic [7]. While
the third harmonic holds minimal significance in comparison
to the first and second harmonics.

The SSVEP signals contain the stimulus frequency, its
harmonics, and noise. To reduce the noise, a moving average
filter (MAF) is applied because VMDperformance is affected
by the noise in the signal. MAF is a time domain finite
impulse response filter commonly used for smoothing [34].
The MAF reduces noise without disturbing sharp steps [35].
Initially, the recorded EEG signal is normalized by its abso-
lute maximum amplitude [27]. We scale the values based on
the maximum signal value. EEG signal normalization can be
expressed as follows.

Oi =
Ri∥∥R̄∥∥

∞

(1)

where, R is the recorded EEG signal and
∥∥R̄∥∥

∞
is the max-

imum value of the recorded signal. The normalized signal is
represented as O. Then, MAF is applied to suppress noise
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added during recording. The MAF is expressed as follows.

zi,k =
1
Nk

∑N−1

j=0
O(i− j) (2)

where z is the MAF output signal, and N is the filter length.
The O(i− j) and i represent the impulse delayed by j sample
and current index value, respectively. It is important to choose
an appropriate MAF filter window length for optimal results.

FIGURE 2. An optimal MAF window length is selected by the maximum
SNR of the SSVEP signal.

A shorter filter length may lower the SNR, while a longer
filter length can distort the signal and incur higher com-
putational costs. We optimized the MAF length based on
the maximum SNR of the EEG signal. The SNR can be
represented as below [36].

SNRk = 10 log10
Sk
Nk

(3)

where Sk and Nk are the signal power and noise power
respectively. In this study, we consider the power of both
the flickering frequency (10 Hz) and its second harmonic
(20 Hz) as the power of the required signals, while treating
the power of all other frequencies as noise power. Initially,
the SNR of the recorded EEG signal is −5.85 dB which
increases to −3.27 dB by applying MAF with a filter length
of 22 as shown in Fig. 2. The MAF improves the SNR value
by 44.19%. Even though the SNR has improved following
MAF, the negative sign indicates that the signal power is less
than the noise power. Therefore, VMD is applied to further
enhance the SNR of the SSVEP signal.

B. VARIATIONAL MODE DECOMPOSITION
VMD technique is used to decompose the non-stationary
and nonlinear signal into various components called intrinsic
mode functions (IMFs). Each IMF central frequency and
bandwidth are determined by an iterative search for opti-
mization results [37]. The original signal is the sum of all
individual IMFs. The harmonics and inter harmonics of the
original signal are found by VMD application with the setting

FIGURE 3. (a) Normalized acquired EEG 10 Hz signal of subject 2;
(b) FFT-based PSDA of the EEG signal.

of suitable mode numbers [38]. In this study, the EEG signal
is converted into its harmonics and inter harmonics using the
VMD technique. The z(t) is the output of MAF, which can be
decomposed using VMD. The equation of IMF produces as a
result of VMD is written as:

uk (t) = Ak (t) cos (∅k (t)) (4)

where Ak (t) is the instantaneous amplitude of signal uk (t) of
kth mode and Ak (t) ≥ 0. Øk (t) is a non-decreasing phase
function and Øk (t) ≥ 0. Each IMF bandwidth is found by
adopting the following steps:

1. The analytical signal is determined for eachmode using
the Hilbert transform to get a unilateral spectrum.

2. The mode spectrum is shifted to the baseband by com-
bining with an exponential tuned to central frequency.

3. The signal bandwidth is obtained by applying H1 Gaus-
sian smoothness. The constraint problem is depicted as:

min{uk },{ωk }

{∑
k

∥∥∥∥∂t [(δ(t) +
j

π t
) ∗ uk (t)]e−jωk (t)

∥∥∥∥ 2
2

}
(5)

Subjected to:
∑

k uk (t) = f where uk (t) is the Kth IMF
produced by VMD and ωk (t) is the central frequency
of each component. δ(t) is the unit pulse function and
∗ is represented as the convolution symbol. Time index
is represented by t, {u} = {u1, u2, . . . , uk} and {ω =

ω1, ω2, . . . , ωk} are denoted as the modal number and
center frequencies after decompositions respectively.
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1) VMD PARAMETER OPTIMIZATION
VMD decomposes the signal into different modes number
K and the decomposed components are called IMFs. With
proper parameter setting, the VMD method shows better
robustness, otherwise, it will significantly affect the accuracy
of the decomposition results. VMD parameter optimization
mainly depends upon two parameters, which are mode num-
ber K and plenty factor α [39]. If the value of K is very small,
mode aliasing will occur and if K is very large, it will pro-
duce false decomposed components. Each IMF has a limited
bandwidth size for a particular mode number K and plenty
factor α. The bandwidth size mainly depends on the plenty
factor α. If α is small, then bandwidth is also small and the
larger bandwidth shows the lager value of α [40].
Many methods are available for VMD parameter opti-

mization, but we used the Kurtosis maximum method for
optimization [41]. In Kurtosis maximum method, plenty fac-
tor α is initially assigned a value and then optimal mode
number K is found based on Kurtosis maximum. Afterward,
the α value is optimized using the optimized K value. The
optimized plenty factor value is determined as the value that
produces the maximum Kurtosis within the defined range of
α. The steps of Kurtosis maximum method are applied to
Dataset A of subject 2 of 10 Hz frequency (shown in Fig. 3)
and these steps are as follows.

First, mode number K is optimized. We assigned K = 2
because we are interested in selecting the first two
harmonics).

1. Based on the two harmonics approach). Initialize the
plenty factor α and bandwidth τ with default values
such as α = 2000 & τ = 0. Select the range of
the K (K ∈ [2, 20]). Each IMF kurtosis value (Ku) is
calculated under this mode number K, which is written
as

Kum = (Ku1,Ku2, . . . ,KuK) (6)

where Kum is the Kurtosis value for each IMF and
the subscript ‘‘m’’ indicates the Ku value during the
mode number optimization process. The local maxi-
mum value for each mode number K is written as

Kumax
K,l = max(Ku1,Ku2, . . . ,KuK) (7)

We select the K as K ∈ [2, 20] so there are 19 local
maxima. Therefore, it can be written as

Kumax
m,l = Kumax

2,l ,Kumax
3,l , . . . ,Kumax

20,l (8)

The global maximum of the Kurtosis is depicted as

Kumax
9,g = Kumax

m,g = max(Kumax
2,l ,Kumax

3,l , . . . ,Kumax
20,l )

(9)

The mode value K against this Kurtosis value Kumax
m,g is

called the optimizedmode numberK ′. The global max-
imum Kurtosis value is 11.76 under the mode number
9 as shown in Fig. 4. The optimized mode number is
K ′

= 9.

FIGURE 4. Relationship between kurtosis and mode number.

2. Afterwards the plenty factor α is optimized. The K ′

value is used to optimize the plenty factor α. Set the
value of K as the optimized valueK ′ and the bandwidth
value as τ = 0. The range of the plenty factor α is
selected as α ∈ [10, 2000] and the search step size is
10. The kurtosis value of each IMF under the plenty
factor α is written as

Kp = (Kup1,Ku
p
2, . . . ,Ku

p
K′ ) (10)

The local maximum of the Kumaxp,l against each plenty
factor α is given as

Kumax
p,l = max(Kumax

1,l ,Kumax
2,l , . . . ,Kumax

K′,l ) (11)

There are 201 values of the plenty factor α, the opti-
mized value of α is found when the kurtosis value is
maximum. Therefore, we obtained.

Kumax
p = Kumax

10,l ,Ku
max
20,l , . . . ,Ku

max
2000,l (12)

The global maximum Kumaxp,g can be written as

Kumax
p,g = max(Kumax

10,l ,Ku
max
20,l , . . . ,Ku

max
2000,l) (13)

The plenty factor α at which Kurtosis value is Kumaxp,g is called
the optimized value of the plenty factor α and it is denoted as
α′. The global Kurtosis maximum value is 12.97 when α′ is
770. The optimized value obtained from step 1 and step 2 is
[K ′, α′] = [9, 770].

C. PROPOSED METHOD
The proposed method (VMD-DNN) used to detect the tar-
get frequency is represented as a flowchart in Fig. 5. The
recorded single channel EEG signal is normalized by its
absolute maximum amplitude. Normalization means dividing
each component value by the maximum component value of
the signal, scaling all values relative to the maximum. This
approach facilitates optimization processes, such as improv-
ing deep learning model convergence, by distinguishing
signal components close to the maximum value or signifi-
cantly smaller. To improve the signal-to-noise ratio (SNR),
normalized EEG signals are filtered with MAF. Then, the
filtered signal is decomposed into an optimized number of
IMFs using VMD. The kurtosis of cross-correlation function
(KCCF) is used to segregate the effective VMD-IMFs, which
contain the target frequency and its second harmonic. Then
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FIGURE 5. Flow chart of the proposed method (VMD-DNN).

the EEG signal is reconstructed by adding those effective
VMD-IMFs containing the first and second harmonics of the
target frequency. The SNR of the restored signal is enhanced
by removing noise from the EEG signal. The FFT of the
reconstructed EEG signal is computed to obtain the com-
plex spectrum and subjected to a deep neural network for
classification.

There are two challenges associated with the application of
the VMD method. Firstly, it requires the optimization of two
parameters to achieve accurate signal decomposition: mode
number and penalty factor, as explained in Section III-B.
Secondly, for SSVEP signal reconstruction, it is necessary to
select effective IMFs that contain harmonics.

Various methods have been developed for the detection of
harmonics of the VMD decomposed signal such as Strong
tracking extendedKalman filter (STEKF) [42], Teager energy
operator (TEO) [43], Permutation Entropy (PE) [44], Pearson
Correlation Coefficient (PCC) [45]. Using these methods,
harmonics were picked based on thresholds. Selection of an
effective threshold is challenging and can lead to incorrect
harmonic identification. Therefore, we introduce the kurtosis
of the cross-correlation function (KCCF) for harmonic selec-
tion. The KCCF method efficiently identifies the harmonics
of the decomposed SSVEP signal based on its minimum
value.

Initially, this method calculates the cross-correlation func-
tion (CCF) between each VMD-IMF and its parent signal to
find similarities between them. The following equation can be
used to calculate the CCF of each IMF with its parent signal.

CCFz,uk (r) =

∑+∞

−∞
z (t) uk (t − r)dt (14)

The subscript z, uk of cross-correlation, indicates the
sequences are correlated, and r is the time shift (lag) param-
eter. In (14) when r changes from positive to negative, only
the signal uk (t) shifts from right to left. There is a special case
when z (t) = uk (t), known as autocorrelation.

Afterwards, the kurtosis value of each CCF is obtained.
The Kurtosis value defines the signal’s impulsiveness. If kur-
tosis is greater than three, the signal is impulsive, otherwise,
it is sinusoidal [46]. Accordingly, IMFs with less than three
KCCF values were ignored. The KCCF (κ) is defined as the
following equation.

κm =
1
N

∑N

i=1

(yi,m − µm)4

σ 4
m

(15)

where 1 ≤ m ≤ κ . The κ represents the KCCF value, y is the
output of (14) and N is the sampling length of y. The µ and
σ are the mean and standard deviation of y, respectively.
The filtered signal is decomposed into 9 IMFs based on

VMD using optimized parameters. The VMD-IMFs and their
FFT-based PSDA are shown in Fig. 6. The VMD-IMFs pro-
duce the impulse response of the first and second harmonics:
IMF-7 and IMF-4 respectively.

FIGURE 6. Dataset A: (a) 09 IMFs of VMD decomposed signal of 10 Hz;
(b) and their FFT-based PSDA responses.

Unlike impulsive IMFs, noisy IMFs have more peaks and
a higher kurtosis value [47]. Therefore, those VMD-IMFs
are declared effective IMFs with greater than 3 KCCF val-
ues since less than 3 KCCF values are sinusoidal in nature
and not impulsive. The KCCF value of each VMD-IMFs is
represented in Fig. 7.

The IMF-7 and IMF-4 represent the first and second har-
monic values, respectively, and have the lowest KCCF value.
Thus, IMF-7 and IMF-4 were chosen as effective IMFs since
this study considers only two harmonics.

All the other IMFs showing higher KCCF values are due to
noise. The equations for selecting effective IMFs containing
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first and second harmonics based on KCCF technique are as
follows:

κ = {κi} (16)

where κi is the KCCF value of the ui(IMF corresponding to
κi); 1< i<K ′, andK ′ is the total number of optimized IMFs.

Rs = ui (min {κi}) + uj({min} κj); (17)

where κi and κj > 3, Where i ̸= j and 1 ≤ i, j ≤ K and Rs
represents the reconstructed signal with a higher SNR than
the recoded signal.

FIGURE 7. Dataset A: Kurtosis of the cross-correlation function (KCCF)
of 9 VMD-IMFs.

1) DEEP NEURAL NETWORK MODEL
The two available SSVEP datasets were used to test the
proposed method of VMD-DNN. The pre-processing steps
included SSVEP signal normalization, MAF to enhance the
SNR, selection of effective VMD-IMFs based on the stimulus
frequency and its second harmonics. Subsequently effective
IMFs were added to restore the clean SSVEP signal. The
complex spectrum features of the reconstructed signal are
obtained and given to the DNN model as input. The DNN
model was trained for each subject with 1sec, 2sec, and 3sec
time windows.

The single feature vector (x) in time domain of the recon-
structed signal has dimensions Nc · Ndp. Where Nc is the
number of channels used for recording EEG data, and Ndp
is the length of the data points. The value of Nc is equal to
1 because we used single channel to record the EEG data.
Whereas Ndp value is different for different time window
(1sec, 2sec and 3sec). The shape of the Ndp = fs · tw.
Whereas fs represents the sampling frequency and tw is the
time window. We provide the model with frequency domain
data by performing FFT on the time domain data. The output
of the FFT can be expressed as

FFT = Re [FFT (x)] + i Im[FFT (x)] (18)

where x is the time domain signal contains Ndp values and i
represent the imaginary part. The Re[.] and Im[.] represents
the real and the imaginary value of FFT. The magnitude
spectrum Xmag can be written as

Xmag =

√
Re[FFT(x)]2 + Im[FFT(x)]2 (19)

Then the complex spectrum can be obtained by concatenating
the real and the imaginary parts into a single vector.

Xcomp = Re [FFT (x)] ||Im[FFT(x)] (20)

The magnitude spectrum contains information related to
magnitude, but phase related information is missing. On the
other hand, the complex spectrum provides both magnitude
and phase-related information. Thus, inspired from the pre-
vious studies, we use complex spectrum to preserve both
magnitude and phase related information, also complex fea-
tures perform better than when considering only magnitude
spectrum [16], [30]. The complex feature input given to the
model is expressed as

Icomp = [Xcomp(CHOz )] (21)

where CHOz describe the data from the EEG Oz channel.
In this study, the proposed deep neural network (DNN)

model consists of 5 layers and an output layer. The input
layer is a dense layer containing 32 neurons with ReLU
activation functions. This layer receives the input data and
applies a linear transformation by computing a weighted sum
of its inputs, adding a bias term, followed by a non-linear
activation function (ReLU). This allows the model to learn
more complex patterns. Neurons in dense layers transform the
input features into a higher-dimensional space, allowing the
model to capture complex patterns and relationships within
the data.

In the second layer, 32 neurons are activated by ReLU, fol-
lowed by a third dropout layer with a 30% dropout rate as in
Fig. 5. Dropout is a regularization technique used to prevent
overfitting as during training, neurons are dropped randomly,
so the network is forced to learn redundant representations,
which improves generalization.

The fourth layer consists of 32 neurons with ReLU acti-
vation, while the fifth layer has 64 neurons with ReLU
activation. This increase in neurons adds more complexity to
the network, helping it capture more complex interactions in
the data but with an increase in classification time.

Finally, an output layer with the number of neurons aligned
with the total number of classes (Dataset A: 7 classes, and
Dataset B: 12 classes). The output layer activation function is
Softmax, for multi-class classification. Softmax produces a
probability distribution for each class in the outcome and the
class with the maximum probability value is the final output
of the model.

The number of neurons in a neural network layer affects its
learning capabilities and performance. More neurons capture
complex patterns, enhancing performance but risking overfit-
ting and requiring more computational resources. In contrast,
fewer neurons reduce the risk of overfitting and demand
less computation but may lead to underfitting and poor
performance. The proposed model balances accuracy and
complexity, highlighting this tradeoff.

Table 3 summarizes the DNN model according to layer
type, output shape, trainable parameters, and FLOPs (float-
ing point operations) of each layer for both datasets. The
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TABLE 3. DNN model summary in terms of trainable parameters and
FLOPs for 2sec time windows.

output shape specifies the shape of the output produced by
each layer and depends on the number of neurons associated
with the specific layer of the DNN. The (NC) in the final
layer represents the total number of classes for each dataset,
which is 7 for Dataset A and 12 for Dataset B respectively.
The parameters indicate the number of trainable parame-
ters (weights and biases) associated with each layer of the
model when trained on each dataset. The FLOPs represent
the number of floating-point operations required for each
layer of the model when processing data from each dataset.
FLOPs are a measure of the computational complexity of the
model during inference or training on the dataset. The total
number of parameters for Dataset A are 12.935K, 21.127K,
and 37.511K with FLOPs 25.536K, 41.920, 74.688K for the
time window of 1sec, 2sec, and 3sec respectively, For Dataset
B, the total number of parameters are 9.164K, 13.260K, and
21.452K, with FLOPs 17.984K, 26.176K, and 42.560K for
time windows of 1sec, 2sec, and 3sec respectively. Over-
all, considering the number of trainable parameters and
FLOPs, the proposed DNN model appears to be lightweight
and improved compared to more elaborate neural network
architectures already presented in the literature [16]. It is
evident that the more complex the deep learning model is,
the more computationally expensive it will be and requires
large amount of data for sufficient training [33]. The proposed
study underlines a balance between accuracy and compu-
tational efficiency, which may also be suitable for certain
applications where computational resources are limited or
where a simpler model is preferred.

We have presented a custom model that represents a
feedforward neural network with multiple hidden layers,
employing dense, dropout regularization, ReLU and Softmax
activation for multi-class classification tasks. The specific
values for the number of neurons, activation functions, and
dropout rate were chosen empirically can be adjusted based
on the requirements of the task and the characteristics of the
data.

2) TRAINING PARAMETERS
We performed several training experiments with several
learning rate settings to choose the best hyper-parameters.

The number of training epochs and optimizer was fixed to
100 and ‘Nadam’ (Nesterov-accelerated Adaptive Moment
Estimation) respectively. Table 4 shows the few training iter-
ation results regarding the model’s validation loss, accuracy,
and overall testing accuracy. A backpropagation technique
minimizes categorical cross-entropy loss functions to train
the network. ‘Nadam’ was used to train the model as an
optimizer to minimize errors (loss functions) or maximize
accuracy. ‘Nadam’ is an extension of Adaptive Movement
Estimation (Adam) that adds Nesterov’s Accelerated Gra-
dient (NAG), an improved version of momentum. The
validation split was set to 20 percent of the training data. The
batch size (Bs) was set a 2s, s ∈ {5}. The split of both datasets
for training and testing is described in Section III-A.

TABLE 4. The choice and fine-tuning of hyper-parameters.

IV. RESULTS AND DISCUSSION
The raw SSVEP signal consists of an effective signal along
with noise. The MAF is applied in such a way as to improve
the SNR of the SSVEP signal without disturbing the signal
characteristics [35]. It is necessary to suppress noise with
MAF as a first step since VMD is affected by noise, and
background noise can influence decomposition [48]. The
optimumMAF window length for EEG signals is determined
based on the maximum SNR. As a result, different window
lengths and SNR values were iteratively checked to meet the
requirement. A plot of SNR versus window size reveals that
MAF optimum window size is 22, as represented in Fig. 2.

The VMD approach is capable of effectively separating
harmonics of extremely close frequencies [37]. Due to this
capability, VMD is used to identify target frequency and its
higher harmonics by SSVEP signal decomposition. In this
work, two harmonics are chosen for SSVEP features extrac-
tion. We select the two VMD-IMFs based on the lowest
KCCF which contains the first and second harmonic peaks.
The cross-correlation function between each VMD mode
and its parent signal indicates their similarity [49], and
the kurtosis defines the impulsiveness of the function [50].
As SSVEP’s harmonic order rises, the energy at harmonic
frequency points decreases gradually [12], [51]. First and
second harmonic IMFs are more impulsive and contain more
energy than other IMFs. In addition, kurtosis values greater
than three indicate impulsive behavior. Therefore, we select
harmonic IMFs with the least KCCF value but greater than
three. Based on (3), the SNR after each technique, such as
MAF and VMD, is shown in Fig. 8.
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FIGURE 8. SNR of the SSVEP signal after each technique.

According to Fig. 8, VMD significantly improves the SNR
of filtered SSVEP signals. The improvement in SNR from
MAF to VMD is 5.49 dB and the overall improvement is
8.08 dB. Thus, in terms of percentage the MAF enhanced
the SNR by 44.19% whereas VMD enhanced it by 168.04%.
Hence, the overall SNR improved to 212.23%. For SSVEP,
the VMD technique demonstrated a significant increase in
SNR despiteMAF’s improvement. Using theVMD technique
directly on raw EEG signals without MAF reduces the SNR
to 0.23 dB, resulting in an 89.73% drop in SNR. Therefore,
VMD performance can be improved with MAF.

The performance of BCI systems was evaluated based on
classification accuracy (CA) and information transfer rate
(ITR). CA indicates the percentage of correctly classified
prediction, and it is defined as the ratio of correctly classi-
fied frequencies to the overall number of frequency classes.
CA is determined by evaluating the trained model on unseen
data splits (SD and SI training scenarios) as described in
Section III-A. CA can be expressed as [52]

CA =
TP + TN

TP + TN + FP + FN
(22)

where, TP is the true positive (number of correctly classified
target frequency), TN is the true negative (number of cor-
rectly classified non-target frequency), FP is the false positive
(number of incorrectly classified non-target frequency as tar-
get frequency) andFN is false negative (number of incorrectly
classified target frequency as non-target frequency). Whereas
the ITR measures the communication speed of the BCI sys-
tem, and it depends mainly on its classification accuracy
and processing time. The below equation was proposed by
Walpow et al [53] to calculate the ITR of the BCI system.

ITR =
60
T

[
log2 C + (CA) log2 (CA)

+

(
1 − (CA) log2 (

1 − (CA)
C − 1

)
]

(23)

where C is the total number of classes, and T is the BCI
system processing time. The custom-built model is capa-
ble of identifying the unique pattern in each class of the
dataset. Initially, the proposed neural network model was

trained and tested on subject-dependent scenarios; that is,
the model was trained and validated using the same subject
with a certain split of the entire dataset into training and
testing data. Additionally, the proposed model was trained
and validated on all the subjects of Dataset A and Dataset B
for different time windows such as 1sec, 2sec, and 3sec. The
time window length determines the size of the feature vector
utilized for classification purposes. Results of the proposed
method (VMD-DNN) on SD-trained model for both datasets
are given in Table 5 and Table 6.

TABLE 5. Dataset A: Classification accuracy of SD-trained models for
different time windows.

Based on the above results, it is evident that the classifica-
tion accuracy for the 2sec time window decomposed signal is
better than the 1sec and 3sec for both datasets. For extensive
experimental evaluation, we further analyze the 2sec split
signal in comparison with several methods such as PSDA,
DWT-PSDA, EMD-PSDA, CCA-DNN, and FBCCA-DNN.

In Tables 7 and 8, it is evident that the proposed method
(VMD-DNN) achieved an average accuracy of 93% with
67.50 bpm ITR in Dataset A and 95.3% with 92.31 bpm ITR
in Dataset B, indicating that it performs better in terms of
accuracy and ITR than other baseline methods. As compared
to EMD-PSDA, the proposed method improved accuracy
by 3.34% and ITR by 8.87% for Dataset A. Additionally,
accuracy improved by 5% and ITR by 12.91% over FBCCA-
DNN for Dataset B. The baseline methods such as PSDA
and CCA showed deteriorating performance because both are
influenced by noise [8]. Additionally, harmonic information
is often not sufficiently incorporated into CCA [26]. In the
case of DWT, the selection of the right mother wavelet is
the key limitation for SSVEP optimized performance [17],
[27]. However, EMD is challenged by mixing intermediate
modes, [28] which affects its performance in both datasets.
Moreover, FBCCA showed comparable performance to our
proposed method. The key challenge associated with the
FBCCA method is the optimization of three parameters: the
number of harmonics in the reference signals, the weight
vector for sub-bands, and the number of filter banks for
sub-bands. Choosing suitable values for these parameters is
critical, as only the appropriate values will ensure optimized
performance in FBCCA, making this a complex task [10].
On the other hand, VMD properly decomposes the EEG
signal using optimized parameters (mode number and plenty
factor). In the proposed method, MAF reduced the noise to
44.19% in the EEG signal and VMD further suppressed the
noise to 168.04% (as shown in Fig. 8) by picking relevant

115944 VOLUME 12, 2024



A. Wahab et al.: Improved Accuracy for SD and SI Deep Learning-Based SSVEP BCI Classification

harmonics IMFs using the KCCF method. The DNN facil-
itates robust classification of target frequencies. Therefore,
compared to baseline methods, the proposed method per-
formed better in terms of classification accuracy and ITR.

TABLE 6. Dataset B: Classification accuracy of SD-trained models for
different time windows.

We conducted a detailed comparative analysis of the KCCF
method with other methods on two subjects from each
dataset, as shown in Table 9. The subjects were chosen based
on the highest accuracy (Dataset A: subject 4, Dataset B:
subject 7) and lowest accuracy (Dataset A: subject 3, Dataset
B: subject 4) values across each dataset. The KCCF method
selects only the minimum value and sets criteria for choos-
ing effective IMFs for SSVEP signals, while other methods
use either a set of values or a threshold value, which can
vary with different signals. The KCCF method outperforms
other related methods in selecting the number of harmonics
(NoH), as shown in Table 9. KCCF has a computational
cost (CC) comparable to TEO, PCC, and STEKF, while
PE exhibits relatively high computational costs. Overall, the
KCCFmethod demonstrates superior performance than other
methods analyzed. Table 9 shows the results for selected
harmonic frequencies from both datasets. Dataset A includes
42 trials for 7 classes of subjects 3 and 4, as shown in Table 1.
Similarly, Dataset B includes 360 trials for 12 classes of two
subjects, as represented in Table 2. As the other frequencies
exhibited similar behavior, we focused on these frequencies
to avoid generating excessively large data in the Table.

It is observed that classification results are improved when
signals in frequency domain [16] because in the frequency
domain, the magnitude spectrum is distinguishable according
to each class which improves the classification capability of
the DNN. In Fig. 6(b), the FFT based PSDA of the VMD
decomposed signal is represented, while the time domain
VMD decomposed signal is shown in Fig. 6(a). In frequency
domain, the magnitude spectrum for each class has higher
strength at a target frequency and its second harmonics
whereas other frequencies are suppressed, and this effect is
not present for a signal in time domain.

For extensive evaluation of the proposed VMD-DNN sev-
eral tests are performed for subject-independent scenario.

To evaluate the performance of the proposed method on
unseen subjects, we isolated the data of the subject with the
lowest accuracy in the SD training scenario from that of the
remaining subjects. The DNN model was then trained using
the combined data from the remaining subjects. In dataset A,
subject 3 showed degraded performance as compared to the
other subjects in the SD evaluation scenario, as illustrated
in Table 7. As a result, Subject 3 was checked as unseen
using a DNN-trained model based on the combined data of
other subjects. In dataset B, data from nine subjects were
combined to train the model; this model’s performance was
evaluated for the lowest performer (subject 4) in the SD
case, as shown in Table 8. In the same manner, the second
lowest (subject 8) and the third lowest (subject 10) were also
evaluated as unseen subjects separately. The result of the SI
training scenario for different time windows is represented in
Table 10.
The proposed method is evaluated across different time

windows, such as 1sec, 2sec and 3sec for SI training scenar-
ios, as shown in Table 10. In Dataset A, Subject 3 exhibited
encouraging performance with 79% classification accuracy
and 46.13 bpm ITR when evaluated against the trained model
as unseen for a 2sec time window. Furthermore, in Dataset B,
containing 12 classes and 10 subjects, the three subjects tested
as unseen by the DNN model showed significantly improved
average accuracy of 92.33% with 85.94 bpm ITR for the 2sec
time window. However, the CA and ITR of the proposed
method for the 1sec and 3sec time windows are lower than
for the 2sec across both datasets. From Table 5, Table 6, and
Table 10, it is evident that in the SD scenario where training
and evaluation utilize the same subject data, the CA and ITR
are notably superior to the SI scenario. This is because, in the
SI scenario, training and evaluation involve different subjects.
The challenge in achieving better performance in SI scenario
lies in the fact that SSVEP signals display non-stationary
properties and vary in characteristics among subjects for
the same task [10], [11]. However, integrating the proposed
DNN architecture aims to enhance the study’s generalizabil-
ity. Results from the SI scenario indicate that incorporating
training data from a diverse and larger number of subjects
can significantly improve accuracy and ITR, as demonstrated
in Table 10 for dataset B. This underscores the potential for
enhancement even in the SI scenario.

From Tables 5, 6, and 10, it is found that the classification
accuracy of the 2sec time window is better than the 1sec and
3sec. Usually, shorter time windows lead to lower accuracy
but higher ITR and vice versa [30]. A shorter window length,
such as 1sec, may encompass less SSVEP information or
fewer flickering cycles compared to a longer window length.
As a result, 1sec has a lower accuracy than 2sec and 3sec
However, in our case with longer time window lengths such
as 3sec there is more noise and more feature information.
Because we add two effective IMF (containing the first and
second harmonics) during the reconstruction phase. This
addition not only improves the signal component but also
increases the noise component. An increase in time window
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TABLE 7. Dataset A (Comprising of 7 classes): Comparison of proposed method VMD-DNN with different methods in terms of classification accuracy (CA)
in percentage and information transfer rate (ITR) in bpm.

TABLE 8. Dataset B (Comprising of 12 classes): Comparison of proposed method VMD-DNN with different methods in terms of classification accuracy
(CA) in percentage and information transfer rate (ITR) in bpm.

TABLE 9. Comparison of the KCCF method with different methods in terms of Number of harmonics (NoH) selection and computational costs (CC).

TABLE 10. Classification accuracy (CA) in percentage and ITR in bpm
subject-independent (SI) training scenario on different time window.

size means an increase in the length of a feature vector. Each
time window length is linked to a temporal aspect. Shorter
windows offer enhanced temporal resolution, allowing for
more precise capture of rapid changes in the SSVEP signal.
Conversely, longer windows provide a broader perspective
of the signal and a chance of more noise because of the

addition of effective IMFs. This can potentially lead to miss-
ing quick-changing elements.We found that the classification
accuracy of the 3sec window is slightly lower than that of the
2sec window because of this effect. This is also evident in
Table 5, 6, and 10. Furthermore, one additional factor is the
number of feature vectors provided to the DNN model. Since
in the case of the 3sec window, we are dividing the feature
vector length by 3, hence a smaller number of feature vectors
are produced and used in training of DNN model.

However, this is not the only case, in some individual cases
the classification accuracy of the 3sec is higher as compared
to 1sec and 2sec but considering the overall performance of
algorithm for our datasets, we found that selection of 2sec
window is better. Moreover, the ITR rate is a crucial factor
for practical implementation which is highest for the case of
1sec but has lower classification accuracy when compared to
2sec and 3sec windows. Thus, the 2sec window is the optimal
window size for classification accuracy and ITR for practical
implementation.

115946 VOLUME 12, 2024



A. Wahab et al.: Improved Accuracy for SD and SI Deep Learning-Based SSVEP BCI Classification

FIGURE 9. (a) Dataset A: Confusion matrix of Subject 3 (minimum accuracy) in SD scenario; (b) Dataset A: Confusion matrix of subject 4
(maximum accuracy) in SD scenario; (c) Dataset B: Confusion matrix of subject 4 (minimum accuracy) in SD scenario; (d) Dataset B: Confusion
matrix of subject 7 (maximum accuracy) in SD scenario; (e) Dataset A: Confusion matrix of unseen subject 3 in SI scenario; (f) Dataset B:
Confusion matrix of unseen subject 4 in SI scenario.

We have added four representative confusion matrices
based on the minimum and maximum accuracy values from
both datasets in the SD scenario. Additionally, two confu-
sion matrices are also incorporated, one from each dataset
(Dataset A: subject 3 and Dataset B: subject 4) to represent
the SI scenario classification details of the unseen subject
(lowest performer in SD scenario). These confusion matrices
are added to show the accurate classified and misclassified
samples for each class and for both datasets, as shown in
Fig. 9.

However, despite the advantages of the proposed study
in accuracy and ITR, some limitations still exist. The lim-
itation of our proposed method is that it generally detects
two harmonics successfully. However, further improvements
are needed to detect more numbers of harmonics. Fur-
thermore, the study is evaluated on two publicly available
datasets. To address this limitation, future research will
involve the inclusion of additional SSVEP single-channel
custom datasets, as well as an evaluation of the method’s
performance in an online scenario. Considering the impor-
tance of SSVEP-based BCI systems, the technology needs
to be widely adopted in industrial applications. Therefore,
optimized setups are required to be developed to leverage the
benefits of this study.

V. SCOPE AND APPLICATION
Initially, the SSVEP-based BCI system found application
in various domains to assist disabled individuals, including
controlling robotic wheelchairs, prostheses, and robots for
patient care, such as assistive feeding robot etc. With the
emergence of Industry 4.0 and cyber-physical systems, there
have been remarkable advancements in human-robot collab-
oration, especially in leveraging SSVEP-based interfaces for
interaction between humans and robots. HRC with SSVEP-
based BCI is widely employed in various smart industries
for tasks such as assembly [5] and segregation of defec-
tive parts [31], utilizing a multichannel EEG cap for high
accuracy.

The proposed work focuses on a single-channel setup,
which offers more comfort for the operator while maintaining
better accuracy. For smart industries and automation, where
real-time monitoring and control are crucial, the study’s
emphasis on single-channel setups and efficient classifica-
tion methods could be particularly beneficial. The ability
to extract meaningful information from SSVEP signals with
high accuracy and speed suggests that SSVEP-based BCIs
could contribute to improved human-machine interaction
and automation processes. Considering the importance of
automation there is huge demand for extensive research in
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this domain. In the future, we can expect even more diverse
applications and broader adoption of SSVEP-based BCI.

For practical implementation, the following guidelines and
mitigation measures can be used for better performance.
A single electrode (Oz) should be installed for data acquisi-
tion rather than data extraction from an EEG cap containing
multiple electrodes. Additionally, the LED monitor used to
display the flickering frequency should have a high refresh
rate (60 Hz or above) because it provides more comfort for
the user by ensuring accurate frequency presentation. It is
important to keep the lab and real environment as close
as possible, such as maintaining a quiet, dimly lit room to
minimize noise. The operator sits at a suitable distance from
the LCD, and for classification, uses the optimum window
size to reduce noise and improve the SNR. In the case of an
inexperienced user, additional measures should be taken like
explaining him/her complete guidelines before use and a suit-
able rest period should be provided for the user between two
data acquisition trials. More comprehensive information for
practical implementation of multichannel setup is provided in
reference [5], [31].

VI. CONCLUSION
In this work, we propose an effective and efficient method
(VMD-DNN) for detecting SSVEP frequencies using a
single-channel setup. The SSVEP signal is decomposed into
its harmonic IMFs and noisy IMFs by VMD. Based on the
lowest value of the KCCF, effective IMFs are selected that
contain the first and second harmonics of the target frequency.
This method employs VMD as a preprocessor and DNN for
effective feature extraction and classification of the SSVEP
signal.

The efficacy of the VMD-DNN (proposed method) was
subsequently validated by utilizing two publicly available
datasets in two training scenarios: subject-dependent and
subject-independent. Additionally, the proposed method is
evaluated against existing relevant methods and results fur-
ther validates the effectiveness of the VMD-DNN.

Following are the conclusions drawn from the study.

• By incorporating KCCF, the signal-to-noise ratio
is enhanced by selecting the stimulus frequency
and its harmonics. This can be achieved by drop-
ping the irrelevant noisy VMD-IMFs from the EEG
signal.

• In the SD training scenario, Dataset A achieves an aver-
age accuracy of 93% and ITR of 67.50 bpm, while
Dataset B attains 95.30% accuracy and 92.31 bpm ITR.

• The proposed approach was also tested for the SI train-
ing scenario, achieving 79% accuracy with 46.13 bpm
ITR (Dataset A) and 92.33% average accuracy with
85.94 bpm ITR (Dataset B).

• According to the results, the proposed approach outper-
forms existing related methods such as PSDA, DWT-
PSDA, EMD-PSDA, CCA-DNN, and FBCCA-DNN in
terms of accuracy and ITR.

• The results highlight the generalization capability of the
deep learning model and eliminate the need for addi-
tional training sessions for new unseen operators.

• The proposed method, VMD-DNN, is based on single-
channel SSVEP frequency detection, which provides
more comfort for the operator during longer durations
of work.

• The proposed VMD-DNN model appears to be
lightweight and more effective in performance with
fewer trainable parameters and FLOPs and unified
approach for both scenarios that is SD and SI.

This makes our proposed method user-friendly and a suit-
able choice for Human-Robot Collaboration (HRC) appli-
cations within the smart industry. In future work, we will
implement the proposed method (VMD-DNN) for seam-
less HRC to enable a single robot to perform multiple
tasks.
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