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Abstract

The development of biologically realistic models of brain microcircuits and regions
constitutes currently a very relevant topic in computational neuroscience. One
of the main challenges of such models is the passage between different scales,
going from the microscale (cellular) to the meso (microcircuit) and macroscale
(region or whole-brain level), while keeping at the same time a constraint on
the demand of computational resources. In this paper we introduce a multiscale
modelling framework for the hippocampal CA1, a region of the brain that plays
a key role in functions such as learning, memory consolidation and navigation.
Our modelling framework goes from the single cell level to the macroscale and
makes use of a novel mean-field model of CA1, introduced in this paper, to bridge
the gap between the micro and macro scales. We test and validate the model



by analyzing the response of the system to the main brain rhythms observed in
the hippocampus and comparing our results with the ones of the corresponding
spiking network model of CA1. Then, we analyze the implementation of synaptic
plasticity within our framework, a key aspect to study the role of hippocampus
in learning and memory consolidation, and we demonstrate the capability of our
framework to incorporate the variations at synaptic level. Finally, we present an
example of the implementation of our model to study a stimulus propagation at
the macro-scale level, and we show that the results of our framework can capture
the dynamics obtained in the corresponding spiking network model of the whole
CA1 area.

Keywords: spiking neural network, hippocampus, mean-field, traveling waves,
oscillations

1 Introduction

The development of large-scale models and simulations of brain activity (going from
thousands of neurons to full regions and whole-brain scale) has seen a great advance
in the last few years, boosted by the increase of the computational power and mod-
elling tools. Many of these models are based on relatively detailed single-cell models
and data-driven connectivity structures, which allows to build simulations that can
capture the specificities of local brain circuits [1-3]. Even when the advances have
been remarkable, these detailed models demand high computational resources and
are restricted to local circuits or brain regions, while building models at whole-brain
level with single-cell resolution is still far from possible. Thus, an alternative solution
that allows to move efficiently between scales (from cells to regions to whole-brain)
is currently of great importance. One possibility has recently emerged which consists
on using mean-field models of neuronal activity to build large-scale simulations [4-6].
Mean-field models use statistical techniques to estimate the activity of large neuronal
populations (from hundreds to thousands of neurons), which allows to reduce the
dimensionality of the system. Thus, the activity of local brain circuits can be described
in terms of a few differential equations, which drastically reduce the need of com-
putational resources. The low-dimensionality of these models make them very good
candidates to be integrated into large-scale simulations. Recently developed compu-
tational tools, such as the The Virtual Brain, make use of mean-field field models
together with connectome information to build whole-brain simulations, and which
can be performed without the need of large computational resources [4]. This approach
has been applied to whole-brain simulations for different species and is being used
in basic research [6, 7] and for clinical applications [8, 9], which shows the relevance
and utility of these methods. Although the results obtained so far are notorious, these
methods are normally based on generic mean-field models (sometimes inspired on cor-
tical microcircuits), which do not incorporate the specificities of the different brain
regions. However, the different activity patterns and functions that characterize each
region is intrinsically linked to the specific cell-types and local connectivity structure
observed in each area. Thus, in order to extend the utility and applicability of these



methods it is of fundamental importance to incorporate the cellular heterogeneity and
structural specificity observed in the brain. Some attempts in this direction have been
done, mostly based on phenomenological mass-models adapted to capture particular
dynamics [10, 11], but which do not capture cell specificity and local connectivity
structures. Only recently detailed mean-field models of a specific sub-cortical microcir-
cuit have been proposed for the cerebellar cortex [12], thalamus [13] and basal ganglia
[14]. Thus, further developments in this direction are of fundamental importance.

In this paper we introduce a multiscale modelling framework of the hippocampus
which incorporates a newly developed mean-field model as the bridge between the
different scales. In particular we focus on the hippocampal CA1, an area known for
playing a key role in main brain functions such as learning, memory consolidation and
navigation [15-17]. To develop the mean-field of the CA1 microcircuit we make use
of a recently developed formalism that follows a bottom-up approach starting from
the single-cell level, which allows to build a mean-field model that incorporates differ-
ent cell types with specific intrinsic firing properties, and their synaptic interactions
mediated by different receptor types [18-20]. In addition we develop a macroscale
simulation of CA1 using the mean-field models as building blocks and incorporating
extended specific connectivity structure based on a recently developed data-driven
method [2] (see Fig. 1 for a diagram of the multiscale framework).

In the next sections we first present the model of the CA1 microcircuit and the
mean-field formalism with more details and describe the development of the CA1l
mean-field model. We test and validate our model by analyzing the multiscale model
response under the main oscillatory activity observed in the hippocampus and compar-
ing the mean-field model results with the ones of an equivalent spiking network model.
Then, we analyze the implementation of synaptic plasticity within our framework, a
key aspect to study the role of hippocampus in learning and memory consolidation.
Finally we will show how the mean-field model can be used to build a macroscale sim-
ulation taking into account the realistic extended connectivity of CA1l. The modelling
framework presented here allows us to go from single-cell models to biologically realis-
tic macroscale simulations while keeping a limited use of computational resources. In
addition, our development is suitable to be incorporated into whole-brain simulation
platforms (such as the TVB [4]), which highlights the importance and usability of this
approach.

2 Materials and methods
2.1 Single-cell model

Our multiscale modelling starts at the single-cell level. To perform single-cell simula-
tions we adopt the Extended-Generalized Integrate-and-Fire neuronal model (EGLIF)
[12, 21]. The equations for the EGLIF model describe the time evolution of membrane
potential (V,,,), slow adaptation current (Ioq4qp) and fast depolarization current (Zgep):

AV, 1
dt = C (?(Vm(ﬂ = Erey) — Iadap(t) + Laep(t) + I + Isyn (1)
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Fig. 1 Diagram of the multiscale modeling framework. A) Starting at the single-cell level, we build
spiking neural networks taking into account cellular and local connectivity properties of hippocampus
CA1. B) We develop a mean-field model of the network dynamics using a recent bottom-up formalism,
which incorporates the the cellular and network specificities. C) Finally we build a macroscale model
using the mean-field models (representing columns or local domains) in combination with realistic
extended connectivity of CAl. The image of CA1l is adapted from Ref. [2]. The color code represent
different neurons in 4 layers of CA1: red: Superficial Pyramidal Cells (SP); yellow: Deep Pyramidal
Cells (SO); blue: Stratum Oriens Inhibitory neurons (SO); green: Stratum Pyramidalis Inhibitory
neurons (SP); black: Stratum Radiatum Inhibitory neurons (SR); magenta: Stratum Lacunosum
Inhibitory neurons (SLM). For simplicity, in this paper we consider only Pyramidal cells and one
type of inhibitory interneurons, but our framework can be extended to incorporate more cell types.
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where Iy, is the synaptic current modeling the synaptic stimulus, Cy, is the mem-
brane capacitance, 7, is membrane time constant, F,., is the reversal potential, I,
is the endogenous current, kqq4q.p and kz are adaptation constants and k; is the decay
rate of I4.p,. When a spike occurs at time ¢,p5, the update rules of the state variables
is given by:

Vin(tip) = Vi (4)



Iadap(t;;k) - Iadap(tspk) + A2 (5)

Liep(typy) = Ar (6)

where t: . is the time instant immediately following ¢k, V; is the reset poten-
tial, and A; and Ay are the model currents update constants. For our simulations
we will consider only two types of cells (pyramidal cells and fast spiking interneu-
rons (FS)), although the model could be extended to incorporate more cell types.
Regarding the selection of our single cell-model, we note that a data-driven adap-
tive GLIF model (AGLIF) has been recently developed [22], specifically conceived to
capture the detailed dynamics observed experimentally in CA1 neurons and interneu-
rons. In this work, we used a simplified EGLIF implementation, which is more easily
adaptable to the multiscale formalism introduced in this paper while still provides an
effective way of simulating the neuronal and population dynamics as will be shown in
the next sections. The model parameters used for each cell type are given in Table 1.
The mean-field formalism used for the analysis in the following sections has shown to
be robust for large variations in neuronal parameters [20, 23], for which the specific
cellular parameters used here serve as a general reference for building our system.

Regarding the synaptic input, we consider a conductance-based interaction and we
write:

Isyn - Gzyn(Ee - Vm) + G;yn(Ez - Vm)a (7)

where E, = 0mV (E; = —80mV) is the excitatory (inhibitory) reversal potential
and Gy, (G,,,) the excitatory (inhibitory) synaptic conductance. When a presynaptic
spike of neuron of type j occurs at time 5y, the conductance is modified according

an alpha-function:
. t—1t _ I tspk
Glyn(t) = QjTZM el ™ Toun , (8)
where @; is the quantal conductance of type j (maximum conductance change
per spike) and 7y, is the synaptic characteristic time. We adopt Qp,, = 1.5n8S,
Qrs = 8.0nS and 7s,, = 5ms respectively.

2.2 CA1 microcircuit and Mean-Field formalism

The second scale of our modelling framework is at the microcircuit level. For simplic-
ity we will assume that the circuit is made of two cell-types, pyramidal excitatory
cells (Pyr) and fast spiking inhibitory interneurons (FS), where each cell will be
modeled with an E-GLIF model presented in the previous section. For the initial con-
struction of the model we will consider a network of 5000 Pyr-cells and 500 FS-cells



Pyramidal cells (Pyr) | Interneurons (FS)

Crr (pF) 9877.83 2039.66

T (ms) 10955.36 2169.40

E ey (mV) -70.07 -74.01

Fadap (MH™) 0.0084 0.0616

ki (kHz) 0.0007 0.0021

ko (kHz) 0.0042 0.0098
A; (pA) 26.0 92.0
As (pA) 170.0 5.0
1. 0 0

Table 1 Neuronal parameters for the EGLIF model. We consider two cell types, pyramidal
neurons (Pyr) and fast spiking inteneurons (FS).

[24-26]. Neurons in the circuit are interconnected with probability ppy,— pyr = 0.01,
prs—pyr = 0.3, ppyr—rs = 0.2, prs_ps = 0.3 [26, 27]. The local microcircuit receives
external excitatory input from the CA3 area, which will be modeled as an external
poissonian input representing 5000 excitatory neurons. The external input targets both
Pyr and FS cells with probability of peyi—pyr = 0.15 and pegi—rs = 0.3 respectively
[26].

Next, we introduce the mean-field model of the CA1 microcircuit dynamics. To
develop this mean-field model we will adopt a recent formalism adapted for EGLIF
neurons. The formalism is based on a bottom-up approach, starting at single-cell level,
which allows the construction of mean-field models with cellular-type specificity. The
second-order mean-field equations for the E-GLIF network are given by [12]:

% 1 82FH

T i (F —vu) + §Cx\nm 9)
dC)\ F,\(]./T—F )
T dtn = 5>\UTW + (Fx — va)(Fy —vy)
OF)y OF,
+87VNC7”,‘ —+ 871/:(3)\“ — 20)\7], (10)

where v; is the mean neuronal firing rate of the population j, F' is the neuron
transfer function (i.e. output firing rate of a neuron when receiving the corresponding
excitatory and inhibitory inputs with mean rates v}s), and T" is a characteristic time
for neuronal response (we adopt 7' = 5 ms ). In this equation u, v, A\ = {Pyr, F'S} and
the Einstein index notation was used, where repeated indices imply a summation over
all the values of the index. Finally, ¢y, represents the covariance between the activity
of neuronal populations A, v. The value used for the characeristic time T is linked to
the autocorrelation time of the system (see Ref. [18] for details).

Following Zerlaut et al [19] we write the transfer function for each neuronal type as:
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where er fc is the error function, tffe is an effective neuronal threshold, py, oy and
Ty are the mean, standard deviation and correlation decay time of the neuronal mem-
brane potential. The effective threshold can be written as a second order polynomial
expansion:

0

r—x
Vitmviov ) =R+ Y. P (S ) +Pe(tS) (1)
ze{uv,av,r‘y} v gL

where 2%, 620 are constants, the coefficients P, are to be determined by a fit over
the numerical transfer function obtained from single-cell spiking simulations for each
specific cell-type, and where pg is given by:

pe = Z(QjTjVjKj) + 9L (13)
J
with K; = p;—;N; the mean synaptic convergence of type j, being IV; the number
of cells of this type.
We can write the mean membrane potential and standard deviation as [12]:

Y jhGiEj+grErL
=e

Hna
Finally, the standard deviation and correlation decay time of the neuronal
membrane potential can be written as:

oy = \/Zijj(2r;ff+rj)(2( UiTi 2 (15)

pv (14)

i | +75)
>, Kivi(eUjry)?

TV = Uit (16)
23, Ky (2l + 1) ()
with 7¢/f = % and U; = %(EJ — pv), where @; is the quantal

conductance of type j and C), is the membrane capacitance.
The details of the derivation of the mean field equations can be found in Refs. [20]
and [12].

3 Results

We start the construction and validation of our multiscale modelling framework with
the estimation of the transfer function parameters, needed for the implementation
of our mean-field model of CAl. Then we validate this model by comparison with
spiking network simulations, for different situations, and we terminate by showing the
simulation of mesoscale phenomena such as traveling waves in large-scale systems.



3.1 Mean-Field model of CA1 microcircuit

A key component of our multiscale framework is the incorporation of the mean-field
model of the CA1 dynamics. As explained in the previous section, in the center of the
mean-field formalism is the utilization of a semi-analytical transfer function. Thus, to
build the mean-field model for CA1 the first step is to calculate the corresponding
transfer function for each cell type. This is done by fitting the numerical transfer
function obtained from single-cell simulations to the semi-analytical expression of the
transfer function (Eq.12). In Fig. 2 we show the results of the numerical transfer
function together with the corresponding fit for each cell-type (pyramidal cells and
interneurons). We can see that our semi-analytical transfer function can correctly
captured the one obtained numerically. Once the parameters of the semi-analytical
transfer functions are obtained, together with the cellular and network parameters (as
described in the presentation of the formalism in the previous section), the mean-field
model is fully defined.
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Fig. 2 Numerical transfer function (a,b) and the corresponding semi-analytical approximation fitted
from Eq.11 (c, d) for each cell-type. Solid lines in panels ¢,d correspond to the firing rates obtained
from Eq.11 while filled-squares correspond to the single-cell numerical results. The input firing rates
(Ve, v;) in the single-cell case correspond to the mean rates of a poissonian process simulating the
excitatory and inhibitory neuronal inputs respectively.

3.2 Activity patterns and time varying inputs

To validate the multiscale model of the hippocampus we test the response of the model
to some of the main activity patterns observed in CAl. It is well established that



three main patterns of activity are present in the hippocampus and can be observed
during specific brain states: theta oscillations (4-10Hz) are normally associated with
exploratory behaviour, sharp-wave/ripple complexes (140-200 Hz) are associated with
immobility, and gamma oscillations (40-140 Hz) are normally present in combination
and modulated by the other two rhythms. In Fig. 3.a and b we show results of the
simulation for stimulations on the theta and gamma ranges. We show the results
obtained with mean-field superimposed to the results from the spiking neural network
(SNN). As we can see the mean-field can correctly reproduce the response of the
system for the different input patterns.

In addition, in Fig. 3.c and e we show the response of the system to low and
fast Gaussian-shaped inputs. The fast input can be seen as similar to the activity of
sharp-waves in CA1, while the slow input can be seen as a typical response curve of
place cells in CA1 for space-field selectivity. The mean-field is capable of capturing the
response of the system for both cases. For fast or high-frequency inputs the accuracy
of mean-field is slightly reduced as the typical time of variation in activity gets closer
to the characteristic times of the mean-field.
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Fig. 3 Response of the systems to 6 (a) and v (b) rhythms. Results from the mean-field (bold solid
lines) are superimposed to the firing rates obtained from the spiking-network (SNN) simulations of
the hippocampus (light solid lines). ¢,d) Response of the system to slow and fast Gaussian inputs.
We see that the mean-field can capture the response of the SNN in large frequency-range (from 6Hz
in 0 waves to ~140Hz for the fast Gaussian input), relevant to simulate the different activity patterns
observed in the hippocampus. For high frequency the accuracy of mean-field is reduced as the typical
time of variation in activity gets closer to the characteristic times of the mean-field.



3.3 Synaptic plasticity

The occurrence of long term synaptic depression (LTD) and potentiation (LTP) in
the hippocampus was among the first experimental studies presented on long term
synaptic plasticity and is believed to be related with the role of hippocampus in
learning and memory formation, one of the main known functions of this region [28, 29].
Thus, the capacity of reproducing the effects of synaptic changes in neuronal activity is
a key feature to be captured by a model of this region. To perform this study we analyze
the response of our mean-field model under variations in the synaptic convergence (K,
see methods section). In particular we consider variations in the synaptic convergence
of the simulated CA3 afferent input to the local Pyramidal cells in CA1 (see diagram
in Fig. 4.a). We introduce the parameter W, which quantifies the changes in the weight
of the synaptic convergence, being W, = 100% the baseline level (as considered in the
previous sections), and we analyze the response of the system for a variation in the
range of 50% in the strength of the synaptic convergence for a constant input and a
time varying input. In Fig. 4.a we show the evolution of the response of pyramidal
cells as a function of W, and its comparison with the results from the spiking neural
network. We can see that, although there is a small overestimation of the activity
for certain values of W,, the mean-field model can correctly capture the evolution of
the response obtained in the spiking network. In Fig. 4.b we show the response of
the mean-field and spiking network under a time-varying input of Gaussian shape for
two different levels of W, (W, = 80% and 120%). As we can see the mean-field can
correctly reproduce the response of the network for the different values of W,.. We
note how the response of the neuronal populations to the changes in W, is different for
each cell-type, which becomes more evident for the lower values of W,. This is a direct
consequence of the non-linear response characterizing each neuronal type, which is in
particular captured by each corresponding transfer function. This aspect further shows
the importance of incorporating the cellular specifities within the mesoscale description
for accurately modelling different phenomena, as done within our approach.

Finally, we note that, as a first approach, we only considered variations in the
synaptic convergence, which allowed us to analyze in a general way the impact of the
change of synaptic properties in the neuronal activity in our model. However, further
analysis can be done around other synaptic parameters with our approach, such as the
quantal conductance (@;) or the synaptic decay times, and the modelling of specific
receptors as it has been recently shown [12, 30].

3.4 Detailed connectivity structure and macro-scale
simulations of the CA1 network

In this section we show an example of the passage from the mesoscale to the macroscale
with the use of the mean-field model. As discussed before, one of the main goals of
our approach is to build a model of a specific area with realistic connectivities based
on available physiological, morphological and anatomical data. In this section we will
present the results of simulations of a network representing a slice of hippocampal
CA1 area. To this end we will adopt a recently developed method to incorporate real-
istic morpho-anatomical connectivities based on the geometrical probability volumes
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Fig. 4 Synaptic potentiation and depression in the mean-field model. a) Evolution of the response of
pyramidal and fast spiking cells as a function of the strength of synaptic convergence (We). We show
the results obtained for the mean-field model (dark green and dark red respectively circles) and the
spiking neural network (light green and light red) for a constant external input of v = 5Hz. A level
of We = 100% correspond to the baseline level (described in the Methods section). Inset: diagram
of the network and indication of the change in convergence. b) Time varying inputs for two levels of
We. We show the firing rates of the F'S and Pyr cells obtained from the mean-field and the spiking
network together with the applied input (ve).

associated with pre- and postsynaptic neurites [2]. The method has been benchmarked
for the mouse hippocampus CA1 area, and the results show that this approach is able
to generate full-scale brain networks that are in good agreement with experimental
findings. Following Gandolfi et al [2], we will focus on a particular case where only exci-
tatory connections are taken into account, a case which has been previously compared
to experimental results [2]. In Fig.5.a-b) we show a diagram of the geometric proba-
bility volume associated with pyramidal cells and the distribution of Pyr cells in CA1,
adapted from Ref.[2]. We will assume that the Pyr cells are homogeneously distributed
over the Pyr and SO layers. The geometric probability volumes associated with the
basal, apical dendrites and axon are indicated in green, pink and grey respectively.
Axonal volumes can be represented by a combination of two elliptical volumes, while
dendritic volumes can be represented by conical volumes. The most relevant region for
Pyr-to-Pyr connectivity lies within the Pyr-SO region, we will therefore concentrate
our attention on this area to build our network. We will consider a slice covering a
surface of 1.5x1.5 mm? along the Pyr-SO layer. We will divide this area in compart-
ments of 100umx100um containing about 200 neurons each and we will describe each
of this compartment with a single mean-model as described in the previous sections.
To build the connectivity between compartments we will make use of the geomet-
ric probability volumes. In Fig.5.c) we show a diagram of the compartmentalization
and the corresponding single-cell probability volumes. The connectivity between com-
partments (given by the parameter K in Eq.13) will be defined as proportional to
the normalized probability of connections given by the probability volumes. Here we
assume that the dendritic volumes extend through the entire transverse length of the
Pyr-SO layer, for which we assume that the main constraint for the connectivity is
given by the axonal volume (see Fig.5).

11
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Fig. 5 a) Realistic morphology of a superficial pyramidal cell (PC) with basal dendrites in green,
apical in pink, and axon in gray, oriented within a region of a transversal CA1 hippocampal slice. Red
triangles correspond to PC soma location within the stratum pyramidalis whereas orange triangles
represent the scattered distribution of deep PCs within the SO. b) Probability clouds of connectivity
represented as two triangles (2D of a cone) and an ellipse (2D of an ellipsoid). Color code respects
the realistic morphology. The dashed rectangle in dark-orange corresponds to the area covered by
a single mean-field compartment described in panel (c). c) Top-view of panels (a-b) and diagram
of the compartmentalization for the mean-field description of the hippocampal network with the
corresponding single-cell probability clouds. Color code follows panels (a) and (b). Axonal probability
clouds are shown for 5 pyramidal cells (with somas indicated in red-circles) located at the border of a
compartment (indicated in dark-orange). Neighboring compartments are shown in dashed blue lines.
Probability cloud for basal dendrites of single PC cell is shown at the bottom right with the soma
located at the center of the compartment (red circle). Panels (a), (b) are adapted from Ref.[2]

It has been shown experimentally that in the absence of synaptic inhibition CA1
activity shows strong directionality from the CA3 side to the subiculum side. This
has been also reproduced by spiking network simulations of CA1 following the same
geometric connectivity volume approach. To validate our network we show in Fig.6
the results from the mean-field network slice together with the results from the corre-
sponding spiking network simulation. In this simulations a short stimulus is applied to
a single compartment in the case of the mean-field and to ~ 200 neurons close to the
CA3 region. As we can see the connectivity profile induces a strongly directed propa-
gation from the CA3 to the Subiculum direction. In addition, the propagation evolves
with an increase in neuronal recruitment which in turns leads to the appearance of a
lateral propagation as the activity gets closer to the CA1-Subiculum edge. These two
features can be well captured by the mean-field network.

4 Discussion

In this paper we have introduced a multiscale modelling framework of the CA1l
microcircuit, which goes from the single-cell to the macroscale level. This framework
incorporates a newly developed mean-field model that allow us to perform an efficient
passage between the different scales. The mean-field model was built using a recently
introduced formalism that follows a bottom-up approach, starting at the single-cell
level, which made possible to incorporate cellular and synaptic specifities of CA1
within the mean-field formulation. The single-cell parameters were based on previous
detailed data-based modeling of CA1 pyramidal neurons and fast-spiking interneurons

12
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Fig. 6 Simulation of a local stimulation in a CA1l network. Activity is evoked near the CA3 side
in area of le4u? containing approximately 200 pyramidal neurons, represented by a single mean-
field model. The stimulation induces a rapid propagation of the activity in the transversal direction
(antero-posterior) of the network (4,10ms) with a gradual increase in neuronal recruitment and a
subsequent propagation in the longitudinal direction (medio-lateral). The network correspond to a
slice of 1.5x1.5 mm. Firing rates are indicated on the colorbar. Scale bar 300um. b) Stimulation
protocol equivalent to (a) performed in a full CA1 spiking network, adapted from Ref.[2]. Scale bar
1 mm. Activity is color coded from blue (rest) to white (spike), to visualize action potentials, with a
fixed 2 ms transition time.

[22], and synaptic connectivity information was based on experimental data [26, 27].
We have tested the model by analyzing its response under different oscillatory rhythms
found in CA1 and we have validated the results by comparison with the corresponding
spiking network model. We have shown in Section 3.2 that the mean-field is capable
of capturing the results of the spiking-network for activity patterns related with some
of the main patterns observed in CA1l (theta oscillations, sharp-waves and gamma
oscillations).

In addition, we have explored how variations at the synaptic level can be captured
by our model, which is a key aspect to incorporate in a model of this region. Although
this represents a simple illustration of the use of our model for studying synaptic
changes, we note that the analysis can be extended to other synaptic parameters within
our approach, such as the quantal conductance (@) or the synaptic decay times, and
the modelling of specific receptors as it has been recently shown [12, 30].

Finally we have shown an example of the implementation of a macroscale simula-
tion within our framework. In particular we built a simulation of a slice of CA1 with
specific connectivity structure, based on a recently developed data-driven method [2].
Furthermore, we compared the results of our simulations with an equivalent simula-
tions of a spiking-network model of CA1, showing that our model can capture some
of the main features of the spiking simulations, which further validates our model.

Among the limitations of our approach we notice that the connectivity between
local populations is assumed to be random within the mean-field formalism. A possible
solution to build systems with specific connectivity structures consists in the combi-
nation of multiple mean-field models (with random local connectivity, but structured
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longer range connectivity), as done in Section 3.4 of our paper. In addition, the intro-
duction of heterogeneity within this mean-field formalism has been studied in a recent
paper [31].

The modelling framework presented in this work is a step forward to the develop-
ment of region-specific multiscale models. In addition, the framework developed here
is suitable to be included in whole-brain simulation platforms [4], which extends the
importance and utility of our study. Furthermore, methods to estimate brain signals
(LFP, EEG, MEG, fMRI) from the type of mean-field used here have already been
developed [30, 32|, which will also allow the comparison with experimental results
on whole-brain activity. In combination, these developments provide an efficient solu-
tion to the complicated task of modeling the brain at different scales and open new
perspectives for future studies.
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