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Highlights for: Industry Return Prediction via Interpretable Deep Learning 

 

• We apply LassoNet to forecast and trade U.S. industry portfolio returns. 

• The model combines a regularization mechanism with a neural network architecture. 

• Our findings reveal that the LassoNet outperforms various benchmarks. 

•  Valuation ratios are the most crucial covariates behind LassoNet performance. 

• A trading application translates the forecasts to profitable trades. 
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Industry Return Prediction via Interpretable Deep Learning 

Lazaros Zografopoulos†, Maria Chiara Iannino*, Ioannis Psaradellis†, Georgios Sermpinis§±  

 

 

Abstract 

We apply an interpretable machine learning model, the LassoNet, to forecast and trade U.S. 

industry portfolio returns. The model combines a regularization mechanism with a neural 

network architecture. A cooperative game-theoretic algorithm is also applied to interpret our 

findings. The latter hierarchizes the covariates based on their contribution to the overall 

model performance. Our findings reveal that the LassoNet outperforms various linear and 

nonlinear benchmarks concerning out-of-sample forecasting accuracy and provides 

economically meaningful and profitable predictions. Valuation ratios are the most crucial 

covariates, followed by individual and cross-industry lagged returns. The constructed industry 

ETF portfolios attain positive Sharpe ratios and positive and statistically significant alphas, 

surviving even transaction costs. 
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1. Introduction 

There is a significant strand of literature showing that traditional asset pricing factor models do not 

perform well, or at least as well as initially advertised, in explaining the cross-section of stock returns 

or stock return predictability (Ferson and Harvey, 1991; Ferson and Korajczyk, 1995; Ferson and 

Harvey, 1999; Avramov, 2004, Lewellen, et al., 2010). The return predictability they evinced could 

result from asset pricing misspecifications. Scientific remedies suggest constructing efficient aggregate 

portfolios, such as industry portfolios. However, even these solutions still need to improve the 

explanatory power of linear asset pricing models (see Lewellen et al., 2010). For that reason, recent 

studies investigate stock return predictability via machine learning (ML) techniques better suited to 

uncover nonlinear patterns and cross-sectional relationships among firm and fund characteristics (see 

among others, Krauss et al., 2017; Fischer and Krauss, 2018; Gu et al., 2020; DeMiguel et al., 2023). 

Those techniques have the advantage of addressing issues arising from many irrelevant or highly 

correlated predictors while minimizing the risk of overfitting, contrary to the widely used linear 

methods. 

However, there are only a few insights into how these methods capture precisely the relationships 

between predictors and forecasts in the context of asset pricing. ML interpretability is an essential 

tool in empirical asset pricing applications as we can understand which input variables affect the 

output the most and better identify the problem (see Brigo et al., 2021); likewise, a human who can 

consistently predict the result of a model and explain the logic behind the result (see, Kim et al., 2016). 

Existing literature using linear asset pricing models has shown that profitability (see Fama and French, 

2015 and Ball et al., 2016), liquidity (see Pastor and Stambaugh, 2003) and industry interdependencies 

(see Rapach et al., 2015) are some of the most significant factors in determining expected returns of 

stocks and industry portfolios of stocks. Thus, it is worth revising those empirical findings under the 

prism of a nonlinear investigation.  

Moreover, sparse literature investigates the aggregate stock return predictability at the industry 

portfolio level. Most of the studies mainly focus on applying linear methodologies, such as the 

Ordinary Least Squares (OLS) and Lasso to industry returns forecasting, and they often rely on a 

relatively small number of predictors (see Cohen and Frazzini, 2008; Menzly and Ozbas, 2010; Rapach 

et al., 2015, 2019). Besides the aggregate market return predictability, the increasing popularity of 

industry exchange-traded funds (ETFs) and efficient capital allocation across industries make industry-

sorted portfolios’ predictability an interesting topic for academics and practitioners.  

     This study uses a deep learning framework that uniquely unveils the underlying structure between 

forecasts and predictors to predict industry portfolio returns. Specifically, we apply the LassoNet 
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method of Lemhadri et al. (2021) to forecast U.S. industry portfolio returns by extracting information 

from a large-scale dataset of multiple predictors. This is achieved by jointly selecting a subset from a 

large class of input variables and minimizing the objective loss function of a neural network in a 

mathematically elegant way. Lasso and Neural Network specifications have received great attention 

from numerous studies over the past years, which highlight the high performance of those methods 

in financial applications (see Huang and Shi, 2022; Chen et al., 2023, DeMiguel et al., 2023). LassoNet 

can capture data nonlinearities via a deep learning mechanism and perform feature selection due to 

its Lasso-type component simultaneously, unlike standard neural network architectures.1 As a result, 

the set of the selected covariates drives the model's forecasts endogenously, thus providing more 

accurate predictions.  

However, LassoNet is only partially interpretable because it performs feature selection rather than 

quantifying the importance of the selected features on the model’s performance. To assess how much 

each feature contributes to LassoNet’s performance overall and so to uncover the factors leading our 

forecasts precisely, we use post-LassoNet, the SAGE method of Covert et al. (2020), which is an 

additive global importance interpretability method relying on Shapley values. We input the features 

selected by LassoNet to SAGE to shed more light on the importance of each selected covariate on 

industry portfolio predictability. The advantage of SAGE lies in using a cooperative game theoretic 

framework to identify the predictors that contribute the most to reducing the out-of-sample (OOS) 

error or increasing the models’ predictability. SAGE achieves this by considering all possible 

interactions and individual components (e.g., specific lags) across the dataset of predictors in 

optimizing the model’s performance.  This granularity is crucial for model refinement and feature 

selection. For example, identifying which lags of a variable are most influential can streamline the 

models to focus on the most relevant features, potentially improving model efficiency and 

performance. SAGE features contrast with other commonly used interpretability methods, such as the 

partial derivatives or the regular SHAP method, which deal with the issue only by identifying the 

variables causing the most significant variation in the model output or how much each feature 

contributes to a single prediction.2 This is the first time LassoNet and SAGE methods have been applied 

to a financial study, either separately or jointly. The above two-step approach is employed in 

forecasting and trading 10 U.S. industry portfolio returns over the 2010 – 2019 period based on a large 

                                                           
1 We are also aware of other interpretable deep learning approaches, see for example the Temporal Fusion 
Transformer (TFT) of Lim et al. (2021). However, the properties of these methods do not suit our problem. TFT 
specifically, has limited predictability in short-term horizons, mainly accommodates static covariates, and is 
more computationally demanding than LassoNet. Our purpose is to perform one-month ahead forecasts based 
on a large set of time-variant covariates as an investor would have done in practice. 
2   Other methods, well suited for causal relationships in time series data include deep learning-based Granger 
causality applications. However, those can indicate only whether a variable helps forecast another. 
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universe of 88 predictors, including financial ratios and past returns for each industry, other-industry 

past returns and macroeconomic variables. In this way, we provide a detailed exercise of LassoNet 

and SAGE on financial time series forecasting. We compare our results with those obtained by linear 

(i.e., linear regression, Group Lasso, Elastic-Net) and several nonlinear ML models (i.e., XGBoost and 

two neural network specifications) as proposed by the previous literature. Finally, we assess the 

economic significance of LassoNet forecasts by forming long-short portfolios of corresponding 

industry ETFs based on the highest-lowest forecasted returns of industry portfolios. In this way, we 

also evaluate LassoNet’s ability to allocate capital to aggregate portfolios.  

   Our findings indicate that LassoNet outperforms in the OOS, all benchmark methodologies employed 

across the ten industries examined in predicting industry portfolios’ returns. For instance, LassoNet 

achieves the smallest forecasting error compared to other powerful ML models, such as the XGBoost 

and standard neural networks. Those findings are justified by pairwise statistical significance tests for 

predictability, such as those of Diebold Mariano (1995) and Giacomini and White (2006), as well as 

tests for statistical inference of multiple benchmark forecasts at the same time and while accounting 

for alpha-level inflation such as those of Hansen (2005) and Hansen et al. (2011). The SAGE method 

reveals the importance of valuation ratios, individual and cross-industry lagged industry returns to our 

predictions and so their high explanatory power on industry portfolios’ returns. Thus, we provide new 

evidence in the linear asset pricing literature, which reports that profitability (see Fama and French, 

2015 and Ball et al., 2016) and liquidity (see Pastor and Stambaugh, 2003) are some of the most 

significant factors of the expected returns of stocks and portfolios of stocks. Regarding the economic 

significance of the proposed model, the most profitable long-short portfolio of ETFs in terms of mean 

return is the one constructed on LassoNet’s industry predictions and it generates a post-transaction 

costs Sharpe ratio of 2.13 and statistically significant four and five-factor alphas of 21.1% and 20.9% 

per annum, respectively. The same portfolio outperforms portfolios constructed with the forecasts of 

the competing ML specifications and several benchmarks (e.g., the CRSP and S&P 500 indices, equally-

weighted portfolio of industry ETFs) across a battery of performance measures.  

The remainder of this paper is structured as follows. Section 2 provides a literature review. Section 

3 presents our methodology and modelling framework. Section 4 describes our dataset and 

experimental design. Section 5 covers the main empirical results. Section 6 reports a subperiod 

analysis as a robustness check. Finally, section 6 concludes. 

2. Literature Review 

Our work is linked to the emerging operations research literature of ML methods applications on 

forecasting equity returns, either as single stocks or industry portfolios of stocks (see among others, 
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Rapach et al., 2015; Krauss et al., 2017; Fischer and Krauss, 2018; Rapach et al., 2019; Gu et al., 2020; 

Bianchi and McAlinn, 2021). Krauss et al., (2017) use DNNs, gradient-boosted-trees, and random 

forests to predict the probability of each of the S&P 500 constituents’ daily returns to outperform the 

market cross-sectionally for 1992 – 2015. The authors construct long-short portfolios based on those 

predictions while they use different lagged returns of each stock as covariates. The method generating 

the highest return is an equally weighted ML approach ensemble. In a follow-up paper, Fischer and 

Krauss (2018) assess the predictive power of a state-of-the-art long short-term memory neural 

network (LSTM) on classifying the same universe of stocks based on the cross-sectional median. The 

LSTM method outperforms all benchmark models (i.e., random forest, neural network, and logistic 

regression) in statistical and economic terms. Gu et al. (2020) perform a large-scale comparative 

analysis of the most popular ML algorithms (e.g., penalized regressions, principal component analysis, 

regression trees, neural networks) in predicting 30 thousand U.S. stocks from March 1957 to 

December 2016. The study uses 94 stock-level characteristics as predictors in the forecasting 

experiment of stock returns in a panel data format. It concludes that these models offer an improved 

description of the expected return behaviour relative to traditional forecast methods. DNNs were the 

best specification in forecasting and trading tasks, generating the highest R-squared and Sharpe ratios, 

respectively. 

Concerning the industry portfolios’ return predictability via ML, Rapach et al. (2015) examine the 

predictability of the adaptive Lasso model of Zou (2006) for shrinkage and optimal variable selection 

on 30 industry portfolios while using as predictors monthly lagged returns of different industries for 

the period 1960 – 2014. Their findings report significant evidence of cross-industry returns 

predictability, with at least four lagged industry returns being significant predictors. These results are 

also verified by principal component and partial least squares methods by extracting the latent factors 

of industry returns. In a similar setting and for the same dataset, Rapach et al. (2019) use a Lasso 

model for dimensionality reduction of lagged industry returns predictors while applying an OLS post-

Lasso regression to estimate predictor coefficients and so better forecast industry returns accurately. 

They also employ a multiple-hypothesis testing framework to assess the statistical significance of the 

selected predictors. The findings align with those of Rapach et al. (2015) while being statistically 

significant. The authors also test the economic significance of the above predictability by constructing 

industry spread portfolios, which generate higher performance than naïve benchmarks. Recently, 

Bianchi and McAlinn (2021) propose an ensemble of linear predictive regressions for industry portfolio 

returns, considering the correlation structure of 75 covariates, especially when highly correlated. Even 

though their proposed method does not belong to the class of nonlinear methods, they compare its 
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performance with that of conventional ML techniques. They conclude that financial ratios provide 

valuable information for forecasting stock returns at the industry and aggregate market levels.  

In addition, we relate our study to the recent literature attempting to interpret the ML black box 

properties in financial applications. Seminal studies implementing different techniques that assign 

importance measures to the individual financial covariates include those of Gu et al. (2020) and Kim 

et al. (2020). Gu et al. (2020) mainly use two standard techniques for feature importance. The first 

one evaluates the reduction in the R-squared of the predictive regression by setting each covariate to 

zero while keeping the rest of the predictors unmodified. The second approach assesses the sensitivity 

of the forecasting model fit to changes in a covariate by measuring the sum squared partial derivatives 

of the model to each predictor. Such an approach is assumed conventional in ML literature (see also 

Dimopoulos et al., 1995). Recently, Kim et al. (2020) use a DNN to forecast the profitability of retail 

investors in spread trading while considering different feature groups related to investors (e.g., past 

performance, preferences in markets and channels, demographics, etc). They employ the information-

fusion-based sensitivity analysis (IFBSA) of Delen et al. (2007) as their primary feature importance 

method to obtain the most informative predictors. IFBSA tests the marginal impact of a predictor on 

the error of a model without a specific covariate concerning the model, which includes that covariate. 

At the same time, the procedure is repeated for all covariates. 

Our study extends the existing literature by applying an interpretable Lasso-based deep learning 

method in forecasting and trading industry portfolio returns. We demonstrate our approach's 

forecasting accuracy and economic significance compared to other commonly used ML methods and 

reveal the covariates that drive this performance. Compared to the existing literature, we create and 

use a large-scale set of 88 predictors, consisting of 10 distinct categories of financial ratios, past 

returns and macroeconomic variables, by bringing together and expanding predictors used from the 

past literature for industry return predictability (e.g., Rapach et al. 2019; Bianchi and McAlinn, 2021). 

Thus, we increase the universe of the covariates under study compared to the existing literature and 

offer new insights into their significance in the predictability and profitability of industry returns. 

Overall, our study can be of great interest to researchers and policymakers to efficiently predict 

financial market movements and make informed decisions about optimal trading execution and 

capital allocation. 

3. Methodology  

In this section, we discuss the proposed deep learning framework. In the first subsection, we start 

with a detailed description of the LassoNet model and its main advantages. In the following 

subsection, we discuss the model’s hyper-parameterization. The last subsection provides a discussion 
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of the game-theoretic framework of Shapley Additive Global importancE (SAGE) (Covert et al., 2020), 

which is used to assign importance scores to the selected covariates. To adequately assess LassoNet's 

predictive ability, we also compare its forecasting performance against several benchmark models, 

which are presented in the Online Appendix A. The benchmark model set includes linear regression, 

Group Lasso, Elastic-Net, two Neural Network models, a simple MLP and Lasso combined with an MLP 

(Lasso-MLP), and XGBoost. The hyperparameters for all models are tuned in-sample (IS). Following the 

common practice, we employ the early stopping and sensitivity analysis procedure for the neural 

networks (see Krauss et al., 2017; Fischer and Krauss, 2018; Gu et al., 2020) and cross-validation for 

all other machine learning models. Using this extensive benchmark model set enables us to compare 

the LassoNet with models that perform covariate selection (group lasso regression, elastic net 

regression, Lasso-MLP) as well as models that use the full covariate set for their forecasts (linear 

regression, MLP, XGBoost). The description of the benchmark models, as well as their optimization 

hyperparameters, are reported in Online Appendix A. 

3.1 LassoNet 

 We define an asset’s excess return as the sum of its conditional expected return and the prediction 

error component. The conditional expected return of an industry portfolio 𝑖  at time t+1 can be 

represented as a function of covariates that maximizes the OOS prediction of the realized return, 

𝑟𝑖,𝑡+1, in a nonlinear setting (see also Gu et al., 2020): 

𝑟𝑖,𝑡+1  = 𝔼 (𝑟𝑖,𝑡+1) + 𝑒𝑖,𝑡+1 = 𝑔(𝕏𝑖,𝑡) +  𝑒𝑖,𝑡+1 

where the conditional expected return 𝑔() term represents a nonlinear flexible function that a 

machine learning model parameterizes, 𝕏𝑖,𝑡 is a D-dimensional vector of covariates and 𝑒𝑖,𝑡+1 is the 

error term. In our case, we use a balanced panel dataset {(𝕏𝑖,𝑡 , 𝑟𝑖,𝑡+1)}
1≤𝑖≤𝑛

 spanning across the 

covariate set for the ten industries and the period examined in our study. We denote with 𝑟𝑖,𝑡+1 the 

industry returns, the target variable in our forecasting task. To construct the mapping 𝑔: 𝕏𝑖,𝑡  ↦

𝑟𝑖,𝑡+1 for each industry, the LassoNet method extends the traditional linear regularized regression 

models by simply adding a nonlinear component (see Lemhadri et al., 2021). In essence, the added 

term is the nonlinear transformation of the input variables as they propagate forward through the 

layers of a neural network with activation functions. Mathematically, the LassoNet for each industry 

is formulated as follows: 

𝑔 ≡ 𝑔𝜃,𝑊: 𝕏𝑖,𝑡 ↦ 𝜃𝑇𝕏𝑖,𝑡 + 𝐻𝑊(𝕏𝑖,𝑡) 
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where 𝑔 is a class of residual feed-forward neural networks of arbitrary width and depth.3  The 

network is parameterized by weights {(𝜃, 𝑊)}, where 𝜃 denotes the vector of weights in the residual 

layer (i.e., skip-connection), and 𝑊   denotes the vector of weights in the hidden layer of a fully 

connected feed-forward network 𝐻𝑤 . Hence, 𝜃𝑇𝕏𝑖,𝑡  corresponds to the linear component, and 

𝐻𝑊(𝕏𝑖,𝑡) corresponds to the nonlinear component of the neural network architecture. Following 

Lemhadri et al. (2021), the objective function for each industry’s prediction takes the form of: 

min
𝜃,𝑊

𝐿(𝜃, 𝑊) + 𝜆‖𝜃‖1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑊𝑝
(1)‖

∞
≤ M|𝜃𝑝|, 𝑝 = 1, 2, … , 𝐷  

where 𝐿(𝜃, 𝑊) is the loss function,  𝜆 denotes the feature sparsity penalty parameter, 𝑊𝑝
(1) indicates 

the weights for covariate 𝑝  in the first hidden layer, and M is a hierarchy coefficient.4 The key features 

of LassoNet are introducing a penalty term in the loss function, which enforces covariate selection, 

and the so-called hierarchy coefficient M, which controls the relative strength of linear and nonlinear 

components of the model. The residual and the first hidden layer are jointly optimized. 

The main innovation of the model lies in the constraint ‖𝑊𝑝
(1)‖

∞
≤ M|𝜃𝑝|, which indicates that a 

covariate 𝑝 is not involved in the feed-forward network (i.e. 𝑊𝑝
(1)=0) if the residual layer weight is 

zero (i.e., 𝜃𝑝 = 0). In other words, the constraint budgets the level of participation of a covariate 𝑝  in 

the nonlinear operations of the model (i.e., first and subsequent layers) based on its relative 

importance, which is achieved by tying every covariate to the single coefficient, 𝜃 , of the linear 

component (i.e., skip-connection). In this way, the linear component is used to guide feature sparsity 

in the nonlinear component (i.e., feed-forward neural network), and both components are fitted 

simultaneously to capture nonlinear patterns in the dataset via the neural network. Moreover, a closer 

inspection of the objective function reveals that the LassoNet nests the linear Lasso and the standard 

feed-forward neural network in cases where the hierarchy coefficient, M, takes the extreme values of 

zero and infinity, respectively.    

The estimation of Lassonet includes a standard backpropagation process, which is initially applied 

to all model parameters, and a proximal operator is applied on the input layer’s set of weights (i.e., 

{𝜃, 𝑊(1)} ). Specifically, we use gradient descent with Adam optimizer to update the LassoNet set of 

                                                           
3 The exact LassoNet architecture is different for each industry after hyperparameter optimization since we train 
the model separately for each industry. 
4 Penalization of the weights is only required for the neurons' first hidden layer because of the feed-forward 
architecture of the network, while the λ penalty term in the objective function operates in the same way as in 
the standard linear Lasso model. 
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weights as a first step. A hierarchical proximal operator is applied exclusively to the skip-connection 

weights, 𝜃, and the neural network weights connecting the covariates to the first hidden layer, 𝑊(1), 

as a second step.5 To fit our dataset optimally, we examine deep neural network architectures with 

multiple hidden layers to ensure that Lassonet can better capture all possible nonlinearities in our 

financial dataset. We also implemented the hyperbolic tangent ( tanh () ) as the activation function 

and the Mean Squared Error (MSE) as the loss function for our LassoNet implementation.6 The exact 

hyperparameter tuning is described in the following section. 

3.2 LassoNet’s Hyperparameters 

In this section, we present the LassoNet’s hyperparameters optimization process. We optimize 

LassoNet by using early stopping and sensitivity analysis in the I.S. To conduct early stopping, we use 

a validation dataset, which is constructed by splitting the I.S. into training and validation sub-samples. 

We use the first 18 years (i.e., 1985 – 2002) as the training dataset and the last seven years (i.e., 2003 

– 2009) as the validation dataset (see also Granger, 1993; Dunis et al., 2011; Gu et al., 2020). Sensitivity 

analysis in conjunction with early stopping results in the optimal combination of hyperparameters, 

achieving the lowest mean squared error in the validation sub-sample. We keep this network as the 

optimal LassoNet architecture for generating the OOS forecasts. More specifically, we optimize the 

number of hidden layers, hidden neurons, and hyperparameters M and 𝜆 

 with early stopping and sensitivity analysis. 

Regarding LassoNet's nonlinear component specification, we follow Gu et al. (2020) and decide on 

the optimal LassoNet specification from a fixed candidate model set. We avoid shallow neural network 

architectures with a single hidden layer in the candidate model set because of possible nonlinearities 

in our dataset (i.e., a vast set of covariates). It has also been shown that deeper architectures with 

multiple hidden layers outperform shallower ones with a single hidden layer due to the higher-order 

nonlinear interactions between the covariates (see Mhaskar et al., 2016). However, given that industry 

portfolios’ monthly data frequency limits the number of samples available for the model’s estimation, 

we do not explore architectures with more than three hidden layers to avoid model overfitting. Similar 

to other studies, we explore architectures with a higher number of neurons in the first layer(s) 

followed by a layer(s) with a smaller number of neurons (see Gu et al., 2020). Based on the above 

reasoning, we explore two LassoNet architectures with two hidden layers (i.e., (16 4), (16, 8)) and two 

architectures with three hidden Layers (i.e., (16, 8, 4), (16, 16, 4)). To determine the number of 

                                                           
5 The detailed optimization steps can also be found in Lemhadri et al. (2021). 
6 This is 𝐿(𝜃𝑖 , 𝑊𝑖) =  

1

𝑛
∑ (𝑟𝑖𝜏 − 𝑟̂𝑖𝜏)2𝑡+𝑛

𝜏=𝑡+1  
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neurons for the first hidden layer, we follow again the relevant literature (see Gu et al., 2020; Filippou 

et al., 2022) and a common rule of thumb (i.e., the number of neurons equals the square root of the 

number of covariates).  

For the hierarchy coefficient M, we investigate four values (i.e., 0.005, 0.05, 0.5, 5) and choose the 

optimal one via e early stopping and sensitivity analysis procedures. To obtain the optimal value of 

𝑡ℎ𝑒 𝜆 hyperparameter, we follow Lemhadri et al. (2021) and adopt a heuristic mechanism based on a 

sequence of 𝜆   values. The initial value of 𝜆  equals the generated MSE of a conventional MLP 

estimated with the selected covariates on the validation data. The exact MLP architecture is defined 

above (e.g., 16 4). The initial value of 𝜆 is used to run the LassoNet algorithm as described in Section 

3.1. Then, the estimation of the following λ hyperparameters is given based on a regularization path 

multiplier of 1.05. For instance, the algorithm is re-estimated every time the 𝜆  is increased based on 

that multiplier. The procedure continues until the 𝜆  reaches a value that imposes a regularization 

powerful enough that the LassoNet selects no covariate. Table 1 presents the different 

hyperparameter configurations of the LassoNet model. We examine all possible combinations of 4 

different hidden layer architectures and four different M values for 16 candidate configurations.  

Table 1. Hyperparameter search space for the LassoNet model 

This table reports the hyperparameter search space for the LassoNet model. We use the validation dataset to 
choose the set that generates the lowest mean squared error metric. 

Architectures 
[(16, 4), (16, 8), (16, 8, 4), (16, 16, 4)] 

M parameter 
[0.005, 0.05,0.5, 5] 

Regularization Path multiplier 
[1.05] 

 

For LassoNet’s iterative estimation algorithm, we keep the number of training iterations, known as 

epochs, at 200. We also use a batch size of 72 observations. To retain the temporal ordering of the 

data, we enforce that batch construction follows the time sequence of the observations and that the 

data are not shuffled before feeding them to LassoNet’s training algorithm. Finally, we use 50 model 

training iterations for the early stopping mechanism to avoid model overfitting. The final optimized 

LassoNet provides transparency regarding which covariates drive its forecasts. Moreover, it provides 

an input variable selection mechanism to handle high-dimensional asset pricing datasets and 

regularize a large pool of covariates. However, even for the case of the LassoNet, there still needs to 

be one solved issue of determining the importance of each covariate.  
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3.3 Estimating Covariates' Importance  

For many years, the financial literature criticised standard ML approaches for their black-box 

properties, or in other words, not providing the importance of financial and economic factors on target 

forecasts as economic and asset pricing theory would expect. We apply an extra step on top of 

LassoNet's feature selection property to identify the covariates that drive our model's forecasts. As 

described above, the optimized LassoNet selects specific covariates through its penalized regression 

component in nonlinear environments. However, it does not perform feature importance in ranking 

covariates based on the extent to which the model depends on each of them overall. For that reason, 

we employ a cooperative game-theoretic method based on Shapley values to measure the importance 

of each selected covariate. The SAGE method of Covert et al. (2020) provides the Shapley values, which 

quantify the ranking in the importance of each covariate or group of covariates. We notate the Shapley 

values estimated by the SAGE as SAGE values. The significant contribution of SAGE, contrary to the 

commonly used SHapley Additive exPlanations (SHAP) method of Lundberg and Lee (2017), is that it 

represents a global interpretability method which provides feature importance by considering the 

behaviour of the model across the whole dataset and not how much each feature contributes to an 

individual prediction (i.e., every month).7 It also fundamentally differs from other interpretability 

methods (e.g., partial derivatives and the deep-learning-based Granger approaches), which only 

measure importance in a way that finds which covariates cause the most considerable variation in the 

model output. SAGE helps to understand not just whether a variable is important but also how 

different aspects, including individual lags in the time series of that variable, contribute to the 

performance (i.e., which features or sequences of features most influenced a model's performance).  

Overall, affecting only the model output does not necessarily indicate a covariate as informative, so it 

is more insightful to identify which covariates drive the forecasts and, at the same time, consider 

whether these covariates enhance the model's predictive accuracy.  

The SAGE method assigns credit to the covariates based on their contribution to lowering the 

LassoNet’s loss OOS (i.e.,  𝐿( 𝔼[𝑔(𝕏𝑖,𝑡)] , 𝑟𝑖,𝑡+1 )). This contrasts with the SHAP method, which only 

assigns each feature a value representing whether it pushes the prediction higher or lower. 

Additionally, we acknowledge that covariates contribute different information when inputted into a 

model together with other covariates versus being in isolation (see Covert et al., 2020). To properly 

account for variable interaction effects and synergies, we consider all possible subsets of our selected 

covariate set and then measure the degree of increase of the model's error without a specific 

                                                           
7 We use the SAGE Python library to estimate SAGE values based on the papers Covert et al. (2020) and Covert 
and Lee (2021). 

                  



13 
 

covariate. This process is repeated by focusing on a different covariate each time. Implementing this 

method involves constructing a cooperative game 𝑣𝑓 that represents the model’s overall performance 

and is defined as follows: 

𝑣𝑓(𝑆) =  −𝔼 [ 𝐿 ( 𝔼 [ 𝑔(𝕏𝑖,𝑡)| 𝕏𝑖,𝑡
𝑆 ] , 𝑟𝑖,𝑡+1 )] 

where 𝑔 represents the optimized LassoNet, 𝑆 indexes a subset of the total number of covariates 

(i.e., 𝑆 ≤ 𝐷) , 𝑣𝑓  quantitatively represents the model’s performance given the subset 𝕏𝑖,𝑡
S  of 

covariates. The minus sign in front of the loss indicates that a lower loss increases the value of 𝑣𝑓(𝑆). 

 According to the above framework, a specific Shapley value, 𝜑𝑝(𝑣𝑓), is attributed to each covariate 

𝑝 to quantify the contribution to lowering the model’s prediction error. Only the covariates with 

positive values 𝜑𝑝(𝑣𝑓) > 0 are essential for the forecast and instrumental in increasing the model's 

statistical accuracy and improving its forecasting performance. The estimated Shapley values 

represent importance scores for the corresponding covariates when they are estimated for 

cooperative games in the form of 𝑣𝑓(𝑆). Finally, we identify covariate importance on an aggregated 

category level. To arrive at this estimation, we sum the SAGE values for all covariates that were 

selected by the LassoNet and belong to the same category of variables. 

 

4. Data and Experimental Design 

We forecast 10 U.S. industry portfolio returns as given by Kenneth French’s website for the period 

1985 to 2019 in a rolling-window format, using January 2010 to December 2019 as the OOS. The 

forecasting horizon is one month ahead. The ten industry sectors we examine in this study are: 

Consumer Durables (DURBL), Energy (ENRGY), High-Technology (HITEC), Health (HLTH), 

Manufacturing (MANUF), Consumer Nondurables (NODUR), Shops (SHOPS), Telecommunications 

(TELCM), Utilities (UTILS), and the other remaining industry sectors merged (OTHER)8. Accordingly, the 

industry returns correspond to the value-weighted average of their constituent stocks. 

For our prediction task, we construct a set consisting of 88 covariates. To construct our dataset, 

we use the Compustat database from the Wharton Research Data Services (WRDS) platform and 

precisely 63 industry financial ratios, which belong to capitalization, efficiency, financial soundness, 

solvency, liquidity, profitability, and valuation categories. Capitalization ratios measure the debt 

component of a firm's total capital structure; efficiency ratios capture the effectiveness of the firm's 

                                                           
8The industry definitions are available on Kenneth French's website: 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_10_ind_port.html.  
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usage of assets and liability; financial soundness and solvency ratios capture the firm's ability to meet 

long-term obligations; liquidity ratios measure a firm's ability to meet its short-term obligations; 

profitability ratios measure the ability of a firm to generate profit; valuation ratios estimate the 

attractiveness of a firm's stock. To aggregate financial ratios at the industry level, we take the median 

value from the companies belonging to the specific industry. The covariates set is on a monthly 

frequency. In the case of only quarterly or annual data for some ratios, the most recently available 

observation item is carried forward to fill each month. All observations are lagged by two months to 

avoid look-ahead bias issues and ensure that the information was publicly announced at a given 

timestamp in our dataset. Following the findings of Rapach et al. (2015), which provide evidence of 

industry interdependencies and cross-industry return predictability, we also decided to include other 

industries’ lagged returns to extend our dataset of covariates further. Thus, for each U.S. industry 

portfolio, we also include up to 12-month excess lagged returns and the 1-month value-weighted 

lagged returns of all other nine industries as extra covariates. 9  Our dataset also includes four 

macroeconomic variables downloaded from the FRED database, namely the Chicago Fed National 

Financial Conditions Index (NFCI), Chicago Fed National Activity Index (CFNAI), Chicago Fed National 

Activity Index: Production and Income (PANDI), and the Consumer Price Index (CPI). The NFCI index 

captures U.S. financial conditions in money, debt, and equity markets and the traditional and shadow 

banking systems. The PANDI index provides information regarding the national economy’s expansion 

with respect to its historical trend rate of growth. The CFNAI index captures overall economic activity 

and the related inflationary pressure, while the CPI is used as an inflation index. In the trading 

application, we use ETFs prices from the CRSP Stocks and Mutual Funds datasets. We select all traded 

index-funds identified by share code 73, with style stated as Equity, Domestic and Sectorial. Then, we 

keep the ETFs which include in their name the industry classification closest to the Fama-French 

industries and with the longest time series. 10 

Regarding the experimental design, our full sample ranges from January 1985 until December 2019. 

We use 2010 – 2019 as the OOS period and the previous 25 years of monthly data (i.e., 300 months/ 

data points) as I.S. in a rolling-window structure. Our partition corresponds to the 70%-30% split 

                                                           
9 We use the 3-Month Treasury Bill to calculate excess returns. The data were downloaded from the FRED 
database: https://fred.stlouisfed.org/ 
10 We present all the employed covariates for our predictive task, their corresponding categories, and the ETF 
details used for our trading simulation in Online Appendix B. We have also trained LassoNet with a broader set 
of 98 covariates, including more macroeconomic and volatility predictors than those followed by the relevant 
literature. More specifically, we added in the covariates set the 3-Month Treasury Bill, the Implied Volatility 
Index (VIX), the dividend yield of the S&P Global index, the momentum factor, three commodities (silver, gold, 
crude oil), and three exchange rates (EUR/USD, GPB/USD, YEN/USD). We find that the LassoNet's performance 
remains the same by including additional covariates, so they did not comprise additional information beyond 
the initial set of 88 covariates. The relevant results are available upon request. 
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commonly employed in the related literature (see also Harvey and Liu, 2015). As both LassoNet and 

the ML benchmarks are computationally demanding, we refit all models yearly and use IS data to 

produce forecasts for the following year (i.e., 12 months) (in line also with the related literature i.e. 

Gu et al., 2020; Chen et al., 2023; DeMiguel et al., 2023). Also, aligned with the fact that some of the 

covariates have available only quarterly or annual data, as described above, is rational to refit ML 

models on a common basis for all signals of our covariates. Figure 1 presents the separation of the full 

sample in IS and OOS periods.  

 

Figure 1. In-sample and out-of-sample partition of monthly observations 

 

We also generate forecasts and evaluate LassoNet’s predictive ability and covariates importance 

on four OOS subperiods (i.e., 2000-2006, 2007-2009, 2010-2014, 2015-2019) for robustness purposes. 

This way, we examine how the model’s performance varies across time and business cycles. The 

relevant results of the subperiod analysis are available in the Online Appendix C and confirm the 

superiority of LassoNet in predicting industry portfolios across the four different subperiods.  

5. Empirical Results 

5.1 Forecasting Accuracy 

We conduct a forecasting evaluation of the LassoNet and benchmark models’ forecasts by 

computing the root mean squared error (RMSE) and the mean absolute error (MAE) metrics. Table 2 

presents the OOS error metrics across the ten industries from 2010 to 2019. The results indicate that 

the LassoNet consistently outperforms all the other benchmark models across most industries by 

generating the lowest prediction error metrics under the RSME and MAE criteria. Consequently, the 

optimization process in LassoNet is superior to simply optimizing a standard regularization linear 

model or feed-forward neural networks. The outperformance stems from LassoNet's algorithm, which 

jointly optimizes linear and nonlinear components, enabling LassoNet to retain the advantages of both 

components without retaining any limitations.  We show that covariate selection enhances a model’s 

forecasting ability OOS, which can provide additional reasoning on why LassoNet outperforms a 

standard neural network trained on the complete set of covariates.  
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Table 2. OOS statistical performance for the LassoNet and the employed benchmark models. 

The table reports the OOS statistical performance over the 2010 – 2019 period. For each industry, we compare the performance of the LassoNet model against the employed benchmarks (i.e., 

OLS-Regression, Group-Lasso, Elastic-Net, MLP-NN, Lasso-ANN-MLP, and XGBOOST). We report the root mean squared error (RMSE) and the mean absolute Error (MAE) as error metrics. In 

Panel B, we also present the range for the RMSE and MAE metrics, which are calculated by the difference between each error metric's highest and lowest values. The lowest values are reported 

in bold.  

Panel A: 
Loss 
Criteria 

LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP LASSO-
MLP 

XGBOOST   LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP LASSO -
MLP 

XGBOOST 

  DURBL   ENRGY 

RMSE 0.0618 0.0821 0.0630 0.0640 0.2369 0.0658 0.0674   0.0534 0.1060 0.0808 0.0879 0.2300 0.1581 0.0589 

MAE 0.0467 0.0630 0.0508 0.0527 0.1610 0.0489 0.0500   0.0421 0.0816 0.0643 0.0692 0.1692 0.1252 0.0474 

                              

  HLTH   NODUR 

RMSE 0.0356 0.1240 0.0415 0.0409 0.1692 0.0780 0.0439   0.0328 0.0640 0.0424 0.0406 0.1327 0.1115 0.0361 

MAE 0.0281 0.0869 0.0348 0.0341 0.1257 0.0576 0.0330   0.0259 0.0482 0.0330 0.0316 0.1100 0.0884 0.0287 

                        

  TELCM   UTILS 

RMSE 0.0353 0.1280 0.0420 0.0390 0.1392 0.1502 0.0410   0.0364 0.0841 0.0512 0.0587 0.1996 0.1643 0.0331 

MAE 0.0287 0.0778 0.0320 0.0312 0.1159 0.1102 0.0337   0.0287 0.0681 0.0404 0.0463 0.1308 0.1360 0.0263 

                              

  MANUF   HITEC 

RMSE 0.0348 0.0700 0.0410 0.0438 0.1538 0.1291 0.0502   0.0341 0.1785 0.0762 0.0786 0.1782 0.1051 0.0467 

MAE 0.0269 0.0557 0.0325 0.0336 0.1223 0.1030 0.0379   0.0269 0.1421 0.0618 0.0631 0.1465 0.1376 0.0370 

                              

  SHOPS   OTHER 

RMSE 0.0334 0.0935 0.0566 0.0529 0.2673 0.2569 0.0400  0.0384 0.0849 0.0480 0.0511 0.1819 0.1726 0.0464 

MAE 0.0269 0.0713 0.0422 0.0401 0.1756 0.1637 0.0312  0.0277 0.0609 0.0381 0.0400 0.1270 0.1303 0.0359 
      

 
        

 

Panel B: Error 
Metric Range 

LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP LASSO - 
MLP 

XGBOOST 

RMSE Range 0.0290 0.1710 0.0398 0.0489 0.1346 0.1911 0.0343 

MAE Range 0.0208 0.0938 0.0323 0.0380 0.0656 0.1148 0.0237 
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The XGBoost, Group Lasso and Elastic Net are the second, third and fourth-best models, with the 

remaining models (OLS, MLP and Lasso-MLP) showing far worse performance. For instance, XGBoost 

generates better forecasting performance than LassoNet for utilities industry portfolios.  

Table 2 also presents the spread between the minimum and maximum values of the error metrics 

across all industries. A wider spread denotes that a specific model performs well for certain industries 

and poorly for others, while less variation for the error metrics represents consistent performance 

across industries, which is desirable. We report such an error metric range in panel B of the same table 

for that purpose. The range is calculated by the difference between the highest and the lowest values 

of each model’s generated error (i.e., RMSE, MAE) across all industries. Again, LassoNet presents the 

lowest dispersion across error metrics' minimum and maximum values. Therefore, we can infer that 

the LassoNet has the most consistent performance across the ten industries, with its forecasting ability 

not being industry or data-dependent.  

To examine the statistical significance of the performance of the LassoNet, we first perform the 

Diebold and Mariano (1995) (D.M.)  test and the Giacomini and White (2006) (G.W.) test based on the 

forecasts'  squared error loss functions.11 We use these tests to compare the OOS performance of the 

LassoNet against each one-off implemented benchmark. The D.M. tests the null that two forecasts 

have equal predictive ability based on the difference of the loss functions of two forecasts against the 

alternative that the loss differential is different from zero. A negative and significant t-statistic rejects 

the null hypothesis, and it reports the superiority of LassoNet against the benchmark (i.e., lower loss). 

Table 3 reports the generated t-statistics from the D.M. test and their corresponding p-values in 

parenthesis for all industries under study. D.M. test results show that the LassoNet has superior 

predictive ability against most benchmarks and across industries (i.e., corresponding p-values are 

below the significance thresholds, and t-statistics are negative).  

Table 3. Diebold Mariano test results for the LassoNet against benchmark models. 

The table displays the t-statistics and p-values of the D.M. (1995) test for LassoNet against each benchmark 
pairwise across industries for the 2010-2019 OOS period. The null hypothesis tests that LassoNet and the 
benchmark forecast have equal predictive ability. Bold p-values and t-statistics indicate that we reject the null 
hypothesis of the two forecasts' equivalence and show the superiority of LassoNet against the benchmark.  

  D.M. test: t-statistic (p-value)  
DUR
BL 

ENRG
Y 

HITE
C 

HLTH MAN
UF 

NODU
R 

OTHE
R 

SHOP
S 

TELCM UTIL
S 

                                                           
11 We also implement Giacomini and Rossi's (2010) (GR) fluctuation test, which measures the relative local 
forecasting performance of the LassoNet model compared to one benchmark over time given changing 
conditions. The relevant results show the outperformance of LassoNet against the benchmarks and are 
presented in Online Appendix D 
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OLS -2.84 
(0.003

) 

-5.06 
(0.000

) 

-7.17 
(0.00

0) 

-4.09 
(0.00

0) 

-6.03 
(0.000) 

-5.00 
(0.000) 

-4.56 
(0.000

) 

-5.92 
(0.00

0) 

-3.90 
(0.000) 

-6.40 
(0.00

0) 

GROUP 
LASSO 

-0.38 
(0.752

) 

-4.00 
(0.000

) 

-6.25 
(0.00

0) 

-2.89 
(0.00

2) 

-1.76 
(0.089) 

-3.00 
(0.002) 

-2.16 
(0.024

) 

-3.71 
(0.00

0) 

-2.49 
(0.012) 

-3.54 
(0.00

0) 

ELASTIC 
NET 

-0.64 
(0.583

) 

-4.41 
(0.000

) 

-6.32 
(0.00

0) 

-2.59 
(0.00

9) 

-2.49 
(0.011) 

-2.57 
(0.012) 

-2.57 
(0.010

) 

-3.54 
(0.00

0) 

-2.44 
(0.014) 

-4.46 
(0.00

0) 

MLP -5.03 
(0.000

) 

-6.02 
(0.000

) 

-8.27 
(0.00

0) 

-5.40 
(0.00

0) 

-6.78 
(0.000) 

-8.92 
(0.000) 

-4.75 
(0.000

) 

-4.92 
(0.00

0) 

-8.42 
(0.000) 

-4.28 
(0.00

0) 

LASSO-MLP -2.13 
(0.037

) 

-6.74 
(0.000

) 

-7.04 
(0.00

0) 

-5.00 
(0.00

0) 

-8.00 
(0.000) 

-7.04 
(0.000) 

-6.68 
(0.000

) 

-3.82 
(0.00

0) 

-5.66 
(0.000) 

-8.70 
(0.00

0) 

XGBOOST  -1.37 
(0.157

) 

-2.20 
(0.026

) 

-3.91 
(0.00

0) 

-3.03 
(0.00

0) 

-3.51 
(0.000) 

-2.28 
(0.022) 

-1.92 
(0.081

) 

-2.37 
(0.01

9) 

-2.81 
(0.004) 

1.46 
(0.14

7) 

 

There are only two industries, namely durables and utilities, in which LassoNet shows equivalent 

performance with the XGBoost, Group Lasso and Elastic Net and XGBoost models, respectively. For 

the remaining industries, LassoNet generates significantly better performance. 

The G.W. conditional predictive ability test assesses the null of equal predictive ability between 

two models (i.e., pairwise comparison) when the forecasting model (i.e., LassoNet) may be miss-

specified. G.W. test complements D.M. in terms of reflecting the effect of estimation uncertainty and 

permitting a unified treatment of nested and non-nested models. The latter feature is essential for 

our experiment as LassoNet includes both Lasso and neural network components. Also, the G.W. test 

uses available information to predict which forecast will be more accurate for a specific future date 

(i.e., one month ahead in our case), conditional on given information. This property improves D.M. 

test which evaluates which forecast was more accurate, on average, in the past. The alternative 

hypothesis of G.W. suggests which forecast performs better by producing a lower average loss than 

the competing model. 

Table 4 presents the p-values generated by the G.W. test by performing a pairwise comparison of 

LassoNet against each benchmark for all industries examined.12 A p-value rejecting the null indicates 

that LassoNet performs better than the benchmark. Again, our findings show that LassoNet is a better 

forecaster than all benchmarks for most industry portfolios. Only in the case of DURBL industry, we 

observe that LassoNet does not generate more accurate predictions. 

                                                           
12 For the lack of space, we present only the p-values of the pairwise comparison of LassoNet with each one of 
the benchmarks. The corresponding p-values of benchmarks’ pairwise comparisons are available upon request.  

                  



19 
 

The LassoNet’s predictive performance is further assessed using the unconditional Superior 

Predictive Ability (SPA) procedure of Hansen (2005)  and the Model Confidence Set (MCS) procedure 

of Hansen et al. (2011) with a 10% test size. Those tests simultaneously perform an OOS statistical 

inference of many forecasts while controlling for data snooping (i.e., alpha-level inflation problem). 

 

Table 4. Giacomini and White (2006) test results for the LassoNet against benchmark models  

The table reports the Giacomini and White (2006) test p-values for the LassoNet against each benchmark across all 
industries over the 2010 – 2019 OOS period. The null hypothesis is the equal predictive ability between two models 
when the forecasting model (i.e., LassoNet) may be misspecified. Significant p-values indicate the superiority of 
LassoNet against the benchmark.  *, **, *** denote significance at the 10%, 5% and 1% level, respectively. 

  G.W. test: p-value  
DURB

L 
ENRG

Y 
HITEC HLTH MAN

UF 
NODU

R 
OTHE

R 
SHOP

S 
TELC

M 
UTILS 

OLS 0.024*
* 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

GROUP 
LASSO 

0.756 0.000*
** 

0.000*
** 

0.012*
* 

0.056* 0.014*
* 

0.056* 0.016*
* 

0.045*
* 

0.002*
** 

ELASTIC 
NET 

0.829 0.000*
** 

0.000*
** 

0.041*
* 

0.016*
* 

0.041*
* 

0.032*
* 

0.003*
** 

0.056* 0.000*
** 

MLP 0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

LASSO-
MLP 

0.106 0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

0.000*
** 

XGBOOST  0.161 0.023*
* 

0.002*
** 

0.009*
** 

0.004*
** 

0.081* 0.065* 0.033*
* 

0.029*
* 

0.086* 

 

The SPA test assesses the relative forecasting performance of LassoNet, as the point of the reference 

model, against the complete set of benchmark forecasts. The null hypothesis of the SPA test is that 

the LassoNet forecast is not inferior to the best alternative model’s forecast based on a given loss 

function. Table 5 reports that the SPA test generated p-values under the RMSE and MAE criteria. The 

SPA test results show that the corresponding p-values of LassoNet against the benchmarks are high 

enough (i.e., fail to reject the null hypothesis) to conclude that LassoNet is not inferior to the 

benchmarks under both the RMSE and MAE criteria and across all industry portfolios.  

Table 5. SPA test results for the LassoNet and the employed benchmark models. 

The table displays the p-values for the SPA test of Hansen (2005) over the 2010 – 2019 OOS period. The test 
provides insights regarding the relative performance of LassoNet against the employed benchmarks (OLS-
Regression, Group Lasso, Elastic-Net, MLP, Lasso-MLP, and XGBOOST). Bold p-values indicate a failure to reject 
the null hypothesis that LassoNet is not inferior to the benchmarks. 

    2010-2019 

    DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

P
-

V
A

LU E 
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MSE 0.405 0.871 0.950 0.894 0.824 0.999 0.774 0.859 0.882 0.348 

           

MAE 0.427 0.815 0.990 0.998 0.838 0.990 0.716 0.991 0.895 0.361 

 

Implementing and making robust conclusions about predictive ability with the SPA test is 

challenging when there is no natural model as a reference point or when more than one model is 

considered. The MCS procedure of Hansen et al. (2011) addresses such an issue by bypassing point-

of-reference models. The MCS aims to find a superior set of models indistinguishable from the best, 

including the best model. It consists of a sequence of tests which permits the construction of a set of 

superior models, where the null hypothesis of equal predictive ability is not rejected at a certain 

confidence level. The test requires two procedures: an equivalence test, determining whether models 

are equal according to their loss and an elimination rule, which dictates which model to eliminate if 

the equivalence test reveals that two models are not equivalent (i.e., there is one with a larger loss). 

The output of the MCS is a model set containing the true set of best models with a probability weakly 

larger than 1 − 𝑎, where 𝑎 is the significance level. Also, if only one best model exists, the test will 

find it asymptotically. As a rule of thumb, a low (high) p-value is associated with a model that is unlikely 

(likely) to belong to the set of the best models. Therefore, p-values that exceed the nominal 

significance levels advocate that the tested model belongs to the confidence set of best models 

(Psaradellis and Sermpinis, 2016; Grønborg et al., 2021). However, The MCS p-value is not a statement 

about the probability that a model is the best. 

 Table 6 presents the relevant results based on a 10% significance level. In particular, the table 

reports the MCS p-values for each model. We present the p-values of the models belonging to the 

confidence set in bold. We observe that LassoNet always belongs to the confidence set of best models, 

while for most of the cases, it is the model with the lowest loss (i.e., p-value = 1), except for the case 

of the utilities industry. Interestingly, LassoNet is the only model in the true set for half of the 

industries examined (i.e., ENERGY, HITECH, HLTH, SHOPS and TELCM). We can conclude that no 

models are indistinguishable from the best (LassoNet).  

Table 6. MCS test results for the LassoNet and the employed benchmark models. 

The table reports p-values for Hansen et al.'s (2011) MCS procedure over the 2010 -2019 OOS period and each industry at a 
10% confidence level. A sequence of significance tests is performed to find model forecasts that are not inferior to others. P-
values that exceed the nominal significance levels (i.e., 1%, 5%, and 10%) show that the model belongs to the MCS. The models 
belonging to the confidence set at the 10% significance level are reported in bold.  

  MCS test: p-value  
DURB

L 
ENRG

Y 
HITE

C 
HLT

H 
MANU

F 
NODU

R 
OTHE

R 
SHOP

S 
TELC

M 
UTIL

S 
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OLS 0.019 0.000 0.000 0.01
6 

0.008 0.029 0.142 0.020 0.003 0.008 

GROUP 
LASSO 

0.814 0.079 0.000 0.02
5 

0.108 0.193 0.142 0.060 0.056 0.127 

ELASTICNET 0.814 0.079 0.000 0.01
6 

0.098 0.193 0.142 0.060 0.056 0.014 

MLP 0.019 0.000 0.000 0.01
4 

0.000 0.000 0.093 0.020 0.000 0.008 

LASSO-MLP 0.487 0.000 0.000 0.01
6 

0.000 0.000 0.004 0.020 0.003 0.000 

XGBOOST  0.487 0.079 0.000 0.01

6 

0.098 0.193 0.142 0.060 0.056 
1.000 

LASSONET 1.000 1.000 1.000 1.00

0 

1.000 1.000 1.000 1.000 

1.000 
0.485 

 

5.2 Covariates’ Importance  

5.1.1 SAGE Value Estimation 

After establishing that the LassoNet outperforms all other benchmark models, it is crucial to 

investigate the covariates driving its forecasts. Figure 2 presents the three covariates with the highest 

SAGE values OOS for every industry separately, along with 95% confidence intervals around the mean 

SAGE value of each covariate across the rolling windows.13  

Figure 2. SAGE values bar plots. 

The figure displays the three covariates with the highest SAGE values for every industry across the 2010 – 2019 OOS 
period. We restrict our results to the three covariates with the highest SAGE values to investigate the most significant 
variables (and the categories they belong to). The bar graphs also include 95% confidence intervals around the mean 
SAGE value of each covariate. 

 

                                                           
13 We obtain the OOS SAGE values per covariate by aggregating their values for each rolling window estimation 
while we calculated the 95% confidence intervals around the mean of SAGE values across all rolling windows. 
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We arrive at three significant conclusions. First, the valuation ratios, followed by the individual 

industry's lagged returns and the cross-industry one-month lagged returns, are the most pivotal 

categories for the model's predictive performance. Second, this result is generally consistent across 

the different industries. Third, we witness greater variability and less consistency regarding the 

participation of other covariate categories in the three highest SAGE value positions. The above results 

are consistent with a body of literature that examines the predictive relationship between valuation 

ratios and asset returns. Notable examples include the work of Keim and Stambaugh (1986), Fama and 

French (1988), and Campbell and Shiller (1988). More recent studies outlining that valuation ratios 

can effectively predict stock returns include the work of Campbell and Yogo (2006) and Campbell and 

Thompson (2008). Additionally, our framework reveals significant interdependencies and gradual 

information diffusion across the industries, given that individual and cross-industry lagged returns are 

the second and third most crucial covariate categories, respectively. In this direction, Rapach et al. 

(2015) note that links between industries can be established not just with customer-supplier 

relationships but even more broadly via technology spillovers and production chain interactions. 

We also calculate the selection rate of each variable's category based on the highest SAGE values 

generated across the ten industries examined and rolling windows. To define a category's selection 

rate, we consider the appearance of its corresponding covariates within the top three highest SAGE 

values OOS across the ten industries and window estimations. Then, for each category, we calculate 

the fraction of the covariates with the highest SAGE values across all industries. Figure 3 presents the 

estimated selection rates for the different covariates’ categories.  

Figure 3. Selection rates for the covariates’ categories. 

The figure displays the selection rate that each category's covariates appear within the three highest 
positions regarding their corresponding SAGE values across the 2010 – 2019 OOS period and ten 
industries. 
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Consistent with the findings of Figure 2, we evidence that the valuation ratios have the highest 

aggregate presence, as indicated by a selection rate of up to 70%. In second and third place come each 

industry’s lagged returns and other-industry lagged returns with selection rates of around 20% and 

10%, respectively. While these rates are lower than the valuation ratios, they still report the 

importance of each industry’s lagged and cross-industry lagged returns.  

5.2.1 Statistical Significance of SAGE Values  

     According to the SAGE value of a specific variable, we can measure its positive contribution to the 

overall LassoNet performance. By summing all variables belonging to a specific category across 

industries and forecast windows, we can obtain an aggregate measure of a category's overall positive 

contribution to the model's performance. We employ pairwise hypothesis tests between the 

covariates' categories to evaluate any differences in positive contribution OOS statistically. We 

effectively create a set of 10 category aggregate SAGE values. Finally, we employ pairwise two-tailed 

t-tests between the aggregate SAGE of covariate categories. In Table 7, we report the t-statistics and 

their corresponding p-values of the cross-category hypothesis tests and the corresponding p-values 

controlling for p-value correction under the Hommel (1988) criterion, which are reported in brackets. 

The pairwise tests compare the mean of the column covariate against the mean of every other 

covariate category presented in each row. Hence, a positive t-statistic with a low p-value indicates 

that the column category has a statistically significant higher positive contribution than the row 

category.  

The findings presented in Table 7 quantitatively validate the results of the categories’ selection 

rates, as presented in Figure 2. For example, they report that the mean of the valuation ratios against 

the mean of every other covariate category is positive and statistically significant at the 1% level for 
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almost all cases. In addition, the t-statistics and their p-values also reveal a favourable and statistically 

significant outcome for the mean positive contribution of the lagged returns category compared to 

most of the covariate categories at 1%, except to those of other-industry lagged returns and valuation 

ratios. The results for the other-industry lagged returns are similar to the lagged returns category and 

are at a statistical significance level of 1%. Also, macroeconomic variables categories and financial 

soundness show positive significance against specific covariates such as solvency, capitalization, 

liquidity and efficiency ratios.  

Controlling for p-value correction under the Hommel (1988) criterion, the corresponding p-values 

in brackets reveal a similar picture mainly for valuation ratios, lagged and other-industry lagged returns 

and financial soundness ratios, which retain their positive and statistical significance against the rest 

of the categories. The above findings can help quantitative fund managers experiment beyond 

conventional statistical models and effectively guide decisions concerning asset allocations while 

attaining model transparency via the SAGE. Policymakers can also benefit from such an interpretable 

learning framework when designing economic policies by forecasting the movements of industry 

sectors and identifying the most critical covariates governing the underlying price dynamics. 
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Table 7. SAGE values pairwise hypothesis tests between the covariates' categories 

We sum the SAGE values of all covariates belonging to the same category for each of the ten industries over the 2010 – 2019 OOS period and the forecasting windows examined. For all 
covariate categories, we create a set of aggregate SAGE values. We then employ pairwise t-tests between the covariates' categories to evaluate differences in the positive contribution 
statistically. We present the t-statistics and the corresponding p-values for the hypothesis tests in parenthesis. We additionally report the corresponding p-values under the Hommel (1988) 
criterion for p-value correction in brackets. The t-statistics and p-values of the column category with a statistically significant higher positive contribution than row one are presented in bold. 
*, **, *** denote significance at the 10%, 5% and 1% level, respectively. 

 
Valuation 

Ratios 
Lagged 
Returns 

Other-industry 
Lagged Returns 

Macroeconomic 
Variables 

Financi
al 

Sound
ness 

Ratios 

Solve
ncy 

Ratio
s 

Profitability 
Ratios 

Capitalization 
Ratios 

Liquidity 
Ratios 

Efficie
ncy 

Ratios 

 
 
 
 
 

Valuation Ratios - - - - - - - - - - 

Lagged Returns 
1.833 

(0.086*) 
[0.086*] 

- - - - - - - - - 

Other-industry 
Lagged Returns 

3.118 
(0.009***) 
[0.019**] 

1.549 
(0.143) 
[0.143] 

- - - - - - - - 

Macroeconomic 
Variables 

4.679 
(0.001***) 
[0.003***] 

3.873 
(0.003***) 
[0.006***] 

3.454 
(0.005***) 
[0.005***] 

- - - - - - - 

Financial Soundness 
Ratios 

4.718 
(0.001***) 
[0.003***] 

3.944 
(0.003***) 
[0.006***] 

3.611 
(0.005***) 
[0.005***] 

0.096 
(0.925) 
[0.925] 

- - - - - - 

Solvency Rations 

5.092 
(0.001***) 
[0.002***] 

4.534 
(0.001***) 
[0.004***] 

4.642 
(0.001***) 
[0.005***] 

2.718 
(0.023**) 
[0.090*] 

3.906 
(0.003**

*) 
[0.009**

*] 

- - - - - 

Profitability Ratios 

4.859 
(0.001***) 
[0.003***] 

4.162 
(0.002***) 
[0.005***] 

3.974 
(0.003***) 
[0.005***] 

0.973 
(0.346) 
[0.691] 

1.130 
(0.273) 
[0.273] 

-2.326 
(0.042

**) 
[0.167] 

- - - - 

Capitalization Ratios 

5.082 
(0.001***) 
[0.002***] 

4.517 
(0.001***) 
[0.004***] 

4.613 
(0.001***) 
[0.005***] 

2.631 
(0.026**) 

[0.102] 

3.749 
(0.003**

*) 
[0.010**

] 

-0.269 
(0.791) 
[0.791] 

2.192 
(0.051*) 
[0.109] 

- - - 

Liquidity Ratios 
5.066 

(0.001***) 
4.491 

(0.001***) 
4.564 

(0.001***) 
2.483 

(0.032**) 
3.460 -0.544 

(0.594) 
1.963 

(0.073*) 
-0.308 
(0.762) 

- - 
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[0.002***] [0.004***] [0.005***] [0.102] (0.005**
*) 

[0.014**
] 

[0.791] [0.143] [0.762] 

Efficiency Ratios 

5.027 
(0.001***) 
[0.002***] 

4.431 
(0.002***) 
[0.005***] 

4.463 
(0.002***) 
[0.005***] 

2.211 
(0.051*) 
[0.152] 

3.076 
(0.009**

*) 
[0.019**

] 

-1.483 
(0.158) 
[0.475] 

1.571 
(0.143) 
[0.143] 

-1.184 
(0.253) 
[0.505] 

-0.752 
(0.462) 
[0.462] 

- 
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5.3 Trading application 

To adequately assess the economic significance of the LassoNet's predictive ability, we apply a 

trading simulation to use the OOS industry returns’ forecasts to form spread portfolios on their 

corresponding industry ETFs. We construct monthly spread portfolios of industry ETFs based on the 

best and worst-performing industries according to their one-month ahead forecasts. For example, we 

sort the industries each month based on the corresponding LassoNet's return predictions. Then, we 

form long positions on ETFs for the industries with the highest forecasted returns and short positions 

for those with the lowest returns. We consider three variations of long-short portfolios. First, the 

Max1-Min1 which considers the spread of only the top and bottom forecasted industry returns. 

Second, the Max2-Min2 is the return of being long (short) on the two top (bottom) industry portfolios 

with the highest (lowest) predicted returns and likewise, Max3-Min3 is the spread of the top and 

bottom three portfolios, respectively. We consider the effective half spreads of the ETFs as transaction 

costs.14 15 

Table 8 presents a battery of performance metrics for each portfolio and several benchmarks. We 

report the annualized mean return, volatility, annualized Sharpe ratio, maximum drawdown and the 

annualized alphas of 4-factor (Carhart, 1997) and 5-factor (Fama & French, 2015) models. We also 

regress the portfolios’ returns against the four-factor (Carhart, 1997) and five-factor models (Fama & 

French, 2015), and explore the presence of positive and statistically significant alphas. We choose to 

compare the performance of ETF portfolios based on LassoNet forecasts against the corresponding 

portfolios constructed based on Group Lasso, Elastic Net and XGBoost, which are the following best 

performers after LassoNet in terms of statistical accuracy. We also use a buy-and-hold strategy on the 

value-weighted returns of the CRSP index and the S&P 500 index, equally weighted portfolios of the 

industry portfolio returns, equally weighted portfolios of the selected industry ETFs, and a strategy 

that shorts the ETFs’ returns in the current month to trade their spread on the following as our 

benchmarks. The choice of the CRSP index as the most representative benchmark aligns with earlier 

literature, given the diversification properties of the market return, which is free from anomalies 

specific to individual industries (see Moskowitz and Grinblatt, 1999; Dong et al., 2022). 

                                                           
14 We present the corresponding results with the realized spreads as transaction costs in Online Appendix E, and 
we find that the overall picture remains the same. We also present the performance of a trading strategy 
investing directly in industry portfolios. 
15 We also perform a similar trading exercise on the forecasts of the maximum number of industry portfolios 
(i.e., 49) available on Kenneth French’s website.  Since not enough ETFs are available to track the expanded 
number of industry portfolios (i.e., 49 industries) we implement our strategy directly on industry portfolios. The 
findings show that LassoNet yields the highest performance and are available in Online Appendix F. 
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Table 8. Performance of industry ETF portfolios based on OOS forecasts. 

The table demonstrates performance metrics for trading strategies of industry ETFs based on LassoNet’s, Group Lasso, Elastic Net and XGBoost forecasts and those of benchmark strategies 
over the 2010 – 2019 OOS period. The Max1-Min1, Max2-Min2, and Max3-Min3 industry ETFs spread portfolios are constructed based on the highest and lowest-performing industries 
according to their corresponding forecasts while considering the effective half spread of each ETF as transaction cost. We report the annualized mean return and Sharpe ratio, maximum 
drawdown and annualized alphas. The reported alphas are obtained using the 4-factor (Carhart, 1997) and 5-factor (Fama & French, 2015) models. *, **, *** denote significance at the 10%, 
5% and 1% level, respectively. 

 
Portfolios   Benchmark Strategies 

Panel A : Max1-Min1  LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 20.93 19.13 20.09 5.39 12.32 11.46 9.24 11.22 --7.94 

Volatility (%) 14.80 15.12 14.70 12.54 12.72 12.46 12.15 12.15 16.55 

Ann. Sharpe ratio  1.38 1.23 1.33 0.39 0.93 0.88 0.71 0.88 -0.51 

Max Drawdown (%) 20.58 19.71 16.49 33.77 18.52 17.04 17.69 17.94 109.91 

Ann. 4-factor alpha (%)  20.62*** 18.08*** 19.72*** 2.61 - - 8.31*** 9.78** -10.40* 

Ann. 5-factor alpha (%) 19.19*** 15.96*** 16.98*** 1.43 - - 8.39*** 9.20** -11.17** 

          

Panel B: Max2-Min2 LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 22.23 17.70 17.06 3.31 12.32 11.46 9.24 11.22 -2.25 

Volatility (%) 10.22 10.41 10.31 9.99 12.72 12.46 12.15 12.15 12.82 

Ann. Sharpe ratio  2.13 1.65 1.61 0.28 0.93 0.88 0.71 0.88 -0.22 

Max Drawdown (%) 6.88 8.08 8.99 18.21 18.52 17.04 17.69 17.94 54.31 

Ann. 4-factor alpha (%)  21.11*** 16.27*** 17.51*** 1.91 - - 8.31*** 9.78** -3.79 

Ann. 5-factor alpha (%) 20.90*** 14.80*** 15.68*** 1.31 - - 8.39*** 9.20** -4.63 

          

Panel C: Max3-Min3 LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 14.03 13.46 12.44 1.42 12.32 11.46 9.24 11.22 -3.97 

Volatility (%) 6.19  8.38 8.07 6.52 12.72 12.46 12.15 12.15 10.37 

Ann. Sharpe ratio  2.18 1.56 1.47 0.14 0.93 0.88 0.71 0.88 -0.43 

Max Drawdown (%) 4.56 6.59 10.28 24.61 18.52 17.04 17.69 17.94 65.28 

Ann. 4-factor alpha (%)  13.55*** 12.79*** 12.01*** -0.68 - - 8.31*** 9.78** -4.78 

Ann. 5-factor alpha (%) 13.01*** 11.64*** 10.86*** -1.01 - - 8.39*** 9.20** -5.47* 
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The ETF portfolios based on LassoNet forecasts generate the highest returns, Sharpe ratios, and 

positive and statistically significant alphas compared to the rest of the ML models and benchmarks. In 

particular, the Max2-Min2 portfolio achieves the highest performance, generating a Sharpe ratio of 

2.13, followed by the Max1-Min1 portfolio. The same portfolio yields a statistically significant 

annualized alpha of 22.23%. Similarly, the maximum drawdown of the LassoNet constructed portfolios 

is the lowest most of the time. These findings demonstrate that LassoNet's forecasts can effectively 

generate positive ETF returns not captured by seminal factor models while minimizing the downside 

risk. 

6. Conclusion 

We apply an interpretable ML framework, the LassoNet, to forecast U.S. industry portfolio returns 

over the 2010 – 2019 period based on a data-rich environment of 88 predictors. We compare the 

performance of LassoNet with that of a battery of linear (i.e., linear regression, Group Lasso, Elastic-

Net) and nonlinear (i.e., XGBoost, neural networks) methods. We quantify the critical determinants of 

our forecasts by applying the SAGE on features selected by LassoNet. Finally, we evaluate the 

economic significance of industry portfolio returns forecasts in a capital allocation strategy.  

We find that LassoNet can capture nonlinear patterns and interactions among our predictors to 

forecast better industry portfolio returns than linear and nonlinear ML approaches. LassoNet reports 

significantly smaller forecasting errors across most industries examined than other ML models, such 

as the XGBoost and neural networks, as shown by a batter of statistical tests such as the D.M., GR, 

SPA and MCS tests. Such a performance lies in the specific characteristic of LassoNet, which is to 

perform feature selection and deep learning for forecasting purposes simultaneously.  Additionally, 

we demonstrate the economic significance of LassoNet forecasts by constructing profitable spread 

portfolios. All LassoNet-constructed portfolios generate high Sharpe ratios and positive and 

statistically significant multifactor alphas. Hence, we expand previous studies reporting the ability of 

Lasso methods to accurately predict industry portfolios' returns by successfully applying a Lasso-based 

deep learning method for nonlinear environments. We also note that valuation ratios and individual 

and cross-industry lagged industry returns are critical determinants for industry portfolio forecasts by 

generating the highest SAGE values. Such evidence complements the relevant findings of studies using 

linear asset pricing for return predictability, which mainly reveal profitability and liquidity ratios as 

essential factors of stock returns. Our study goes forward on the application of interpretable deep-

learning machine learning approaches, and their merits in investment problems.  
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