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Ensemble of Ensembles for Fine Particulate Matter Pollution Prediction using Big Data Analytics and 
IoT Emission Sensors 

 
 
Abstract 
 
Purpose – The study seeks to develop a multilayer high effective ensemble of ensembles predictive 
model (stacking ensemble) using several hyperparameter optimized ensemble Machine Learning (ML) 
methods (bagging and boosting ensembles) trained with high volume data points retrieved from the 
Internet of Things (IoT) emission sensors, time-corresponding meteorology, and traffic data. 
 
Design/methodology/approach – For a start, the study experimented with big data hypothesis theory 
by developing sample ensemble predictive models on different data sample sizes and compared their 
results. Secondly, it developed a standalone model and several bagging and boosting ensemble models 
and compared their results. Finally, it used the best-performing bagging and boosting predictive models 
as input estimators to develop a novel multilayer high-effective stacking ensemble predictive model. 
 
Findings – Results proved data size to be one of the main determinants of ensemble ML predictive 
power. Secondly, it proved that, as compared to using a single algorithm, the cumulative result from 
ensemble ML algorithms is usually always better in terms of predicted accuracy. Finally, it proved the 
stacking ensemble to be a better model for predicting PM2.5 concentration levels than bagging and 
boosting ensemble models. 
 
Research limitations/implications – A limitation of this study is the trade-off between the performance 
of this novel model and the computational time required to train it. Whether this gap can be closed 
remains an open research question. As a result, future research should attempt to close this gap. Also, 
future studies can integrate this novel model into a personal air quality messaging system to inform the 
public of pollution levels and improve public access to air quality forecasts. 
 
Practical implications – The outcome of this study will assist the public in proactively identifying highly 
polluted areas, thus potentially reducing pollution associated with COVID-19 (and other lung diseases) 
deaths, complications, and transmission by encouraging avoidance behaviour and supporting informed 
decisions to lock down by government bodies when integrated into an air pollution monitoring system. 
 
Originality/value – This study fills a gap in the literature by justifying the selection of appropriate 
ensemble ML algorithms for PM2.5 concentration level predictive modelling. Secondly, it contributes to 
the big data hypothesis theory, which suggests that data size is one of the most important factors in ML 
predictive capability. Thirdly, it supports the premise that when using ensemble ML algorithms, the 
cumulative output is usually better in terms of predicted accuracy than when using a single algorithm. 
Finally, it provides a novel multilayer high-performance hyperparameter optimised ensemble of 
ensembles predictive model that can accurately predict PM2.5 concentration levels with improved model 
interpretability and enhanced generalizability, as well as the provision of a novel databank of historic 
pollution data from IoT emission sensors that can be purchased for research, consultancy, and policy 
making. 
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1 Introduction 
Air pollution, which includes ozone and outdoor and indoor particulate matter, is a major public 

health risk factor for many of the main causes of death, such as heart disease, stroke, lower respiratory 
infections, lung cancer, diabetes, and chronic obstructive pulmonary disease, accounting for five million 
global premature deaths per year (N. Zhou et al., 2022). Air pollution affects people at all stages of their 
lives; at the pregnancy stage where it causes low birth weight; at the child stage where it causes slower 
development of the lungs and more wheezing/cough; at the adult stage where it causes chronic 
obstructive pulmonary disease (as chronic bronchitis); and at the elderly stage where it causes 
dementia, diabetes, heart attack, heart failure, and strokes (Royal College of Physicians, 2016). Not 
only does air pollution affect public health, but it also has negative environmental impacts on the world. 
According to Lan Phuong Nguyen et al. (2021), air pollution has negative consequences for both soil 
and water because it creates acid rain, which harms trees and plantations as well as buildings, outdoor 
sculptures, structures, and statues. Also, it is the viewpoint of Manisalidis et al. (2020) that air pollution 
through gas emissions from industrial facilities, power plants, vehicles, and trucks, among other 
sources, causes haze, which lowers transparency in the atmosphere and causes significant obstacles 
in locomotion, transportation, and supply chain. Additionally, the stratospheric ozone layer, which 
shields us from the sun's harmful ultraviolet radiation, is gradually destroyed by air pollution caused by 
aerosols, chemicals, and pesticides. This results in significant impairment of the photosynthetic rhythm 
and metabolism in plants as well as malignant skin in humans. (Dong et al., 2009).  

In the United Kingdom (UK), nine out of ten individuals breathe air that exceeds World Health 
Organization (WHO) guidelines, resulting in between 28,000 and 36,000 fatalities per year from long-
term air pollution exposure (Balogun, Alaka and Egwim, 2021). Ambient air pollution in the UK 
comprises Particulate Matter(PM), Oxides of Nitrogen(NOx), and Ozone(O3), among others, as air 
pollutants, which are mostly undetectable until they cause brown haze, which is becoming more 
frequent in other parts of the world (Royal College of Physicians, 2016). Among these air pollutants, 
fine PM particles (PM2.5) are the most health-damaging pollutants, as they are significantly linked to 
excessive early death due to their tiny size (about 1/30th the width of a typical human hair) and ability 
to penetrate deep into lung passages (Cocârţă et al., 2021). Notwithstanding that they are largely 
invisible, their impacts could be far-reaching, as the damage could occur over a lifetime. Unfortunately, 
neither the WHO's concentration limits nor those set by the UK government have been able to establish 
the level of exposure that could lead to various diseases and health-damaging effects (Public Health 
England, 2018). Furthermore, the health problems and diseases associated with air pollution 
exacerbated by the COVID-19 pandemic have a significant cost to the UK economy – representing £5.3 
billion in the UK's National Health Service (NHS) per annum (Higham et al., 2020). Therefore, urgent 
action is needed to tackle air pollution within society. This is especially as the benefits of any investment 
made in this direction will outweigh the cost as it has the potential to prevent life-long pain, reduce 
demands on the NHS, and enable people to live an active and productive life. Predicting the 
concentration level of PM2.5 — the most health-damaging pollutant — is one of the important 
investments that would minimize air pollution in society, leading to informed avoidance of pollution 
hotspots for its inhabitants and a considerable reduction in air pollution-related fatalities. 

Over the last decade, a vast body of literature (Ma et al., 2020; Goyal and Routroy, 2021) 
through predictive modelling has shown that government policies aimed at reducing air pollution and 
moving toward net-zero carbon emissions have resulted in a drop in PM levels. There are countless 
variables, including meteorological conditions, the burning of fossil fuels, agricultural practices (such as 
the use of insecticides, pesticides, and fertilizers), exhaust from factories and industries, mining 
activities, and natural occurrences (such as volcanic eruptions, forest fires, and dust storms), among 
many others, have been identified by researchers (Reid et al., 2021; Osman et al., 2022) to be 
responsible for high concentration levels of PM2.5 particles in society. Hence, these researchers have 
considered one or more factors as features (independent variables) when experimenting with predictive 
modelling with Machine Learning (ML) algorithms. This poses great impediments with regards to the 
generalization of their results, especially across different regions as the level of impact of these factors 
depends on the type of pollutants and choice of ML algorithm used (Chen et al., 2021). Nonetheless, a 
thorough investigation of research (Balogun, Alaka and Egwim, 2021) showed that past studies have 
employed several standalone, hybrid, and ensemble ML algorithms for PM2.5 predictive modelling. 
However, despite abundant evidence from the literature (Egwim and Alaka, 2021; Egwim et al., 2021) 
that ensemble ML algorithms, which employ several algorithms whose combined results are nearly 
always more accurate predictors than the usage of a single ML technique, haven't been extensively 
utilized in PM2.5 predictive modelling since they combine judgments from many algorithms to optimize 
overall performance. Unfortunately, a lot of the current studies (De Mattos Neto et al., 2021; Sulaimon 
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et al., 2022) have randomly adopted or simply used one or two ensemble methods from earlier research 
without justification, which has led to subpar performance, poor selection of models that perform well, 
or unenhanced generalizability of models created using these methods across other geographies of the 
world. Therefore, choosing an appropriate ensemble ML algorithm is a challenging and important choice 
for its effective implementation given the conundrum about the performance of ML algorithms. These 
studies have thereby created a knowledge gap that needs to be filled. Thus, a comparative study that 
will compile and assess the use of several ensemble ML algorithms for PM2.5 concentration level 
predictive modelling is necessary. Consequently, with Big Data Analytics and the Internet of Things 
(IoT) emission sensors, this study seeks to develop a multilayer, high-performing ensemble of ensemble 
predictive models to predict PM2.5 concentration levels. To accomplish this aim, the following objectives 
will be used: 

1. To pre-process a relatively large data of PM2.5 from IoT emission sensors with time-
corresponding weather and traffic data to establish the most applicable factors causing high 
PM2.5 concentration level. 

2. To utilize established factors as independent variables for several ensemble ML algorithms 
(bagging and boosting ensembles) to develop hyperparameter optimized predictive models. 

3. To build a multilayer, highly effective ensemble of ensembles (stacking) predictive model by 
combining the best predictive models. 

 
This study makes significant theoretical, methodological, and practical contributions to the field 

of air pollution prediction. It addresses a gap in existing literature by justifying the selection of 
appropriate ensemble ML algorithms for PM2.5 concentration level prediction modelling. It contributes 
to big data hypothesis theory by affirming that data size plays a crucial role in the predictive capability 
of ML models. The study also validates the premise that ensemble ML algorithms usually yield more 
accurate results than a single algorithm. Furthermore, the study introduces a novel predictive model, a 
multilayer, hyperparameter-optimized ensemble of ensembles, to improve the accuracy of PM2.5 
concentration level predictions. Moreso, it also provides a novel databank of historical pollution data 
from IoT emission sensors, which can be used in research, consulting, and policymaking to accurately 
predict PM2.5 levels. Finally, the study is the first to use robust ensemble ML approaches to forecast 
PM2.5 concentration levels in the UK. The findings can aid in selecting the best ensemble ML algorithms 
for preliminary predictive analysis and, when integrated into an air monitoring system, can help identify 
highly polluted areas. This can potentially reduce pollution-related deaths, complications, and 
transmission associated with COVID-19 and other lung diseases by encouraging avoidance behavior 
and supporting informed lockdown decisions by government bodies. 

2 Literature Review 
 

This section presents a comprehensive examination of pertinent scholarly sources related to 
two main themes: Fine Particulate Matter and Big Data Analytics in conjunction with Internet of Things 
(IoT) for Emissions. Through this review, we aim to highlight significant studies, findings, and theoretical 
developments in these areas, laying the groundwork for the subsequent discussion and analysis. 

. 

2.1 Fine Particulate Matter 
 

Fine particulate matter, classified as PM2.5, is a salient constituent of air pollutants, 
encompassing particles of 2.5 micrometres in diameter or smaller. The diminutive scale of these 
particulates facilitates their intrusion into the respiratory system, and, in certain circumstances, allows 
entry into the bloodstream. Numerous pieces of evidence from an extensive wealth of scientific research 
have validated that this ability to penetrate deep into the human body's systems engenders a host of 
potential health complications. As an illustration, contemporary evidence provided by Manisalidis et al. 
(2020) suggest that exposure to PM2.5 has been incontrovertibly linked to an array of health risks that 
are cause for significant concern. These include the premature death of individuals afflicted with heart 
or lung diseases, the occurrence of nonfatal heart attacks, the development of irregular heart rhythms, 
the exacerbation of asthma, a decrease in lung functionality, and an increase in respiratory symptoms. 
A broadly similar point has also recently been made by Jbaily et al., (2022) who noted that certain 
demographics exhibit a greater susceptibility to these health effects. These groups include individuals 
with pre-existing heart or lung diseases, children, and older adults, placing them in a position of 
increased vulnerability. In addition to the substantial health risks posed by PM2.5, there are also 
significant environmental repercussions to consider. It is the viewpoint of Hassan, Islam and Bhuiyan, 
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(2022) that these particulates can be transported over expansive distances by wind, eventually settling 
on terrestrial surfaces or aquatic bodies. The aftereffects of such deposition are contingent on the 
specific chemical composition of the particulates and can precipitate a multitude of environmental 
problems. Examples of these issues are the acidification of lakes and streams, an alteration in the 
nutrient equilibrium in coastal waters and large river basins, a depletion of nutrients in soil, damage to 
forests and crops that are sensitive to such pollutants, a disturbance to the diversity of ecosystems, and 
a contribution to the harmful effects of acid rain (Lan Phuong Nguyen et al., 2021). Moreover, the impact 
of PM2.5 extends to the realm of cultural heritage. According to Spezzano, (2021) these particulates 
have been observed to stain and damage materials such as stone, which are often used in culturally 
significant structures, including statues and monuments. This capacity for destruction adds an 
additional layer of concern to the existing health and environmental issues associated with PM2.5  (Chen, 
Lin and Chiueh, 2023). The comprehensive examination of the numerous impacts of PM2.5 underscores 
the urgency of addressing this pervasive component of air pollution and reaffirms the necessity of 
ongoing research and intervention strategies in mitigating these wide-ranging effects. 
 

2.2 Big Data Analytics and IoT for Emissions 
 

In recent years, the dawn of the Big Data and Internet of Things (IoT) era has been heralded, 
ushering in innovative tools of considerable potency in navigating the intricate dilemma of emissions 
and climate change. The advent of these transformative technologies has revolutionized the 
systematization, processing, and evaluation of diverse data sources, a feat previously unachievable 
with conventional disciplinary analysis tools (Balogun, Alaka and Egwim, 2021). This paradigm shift, 
underpinned by the proliferation of Big Data and IoT, has thrust climate science into an era 
characterized by enhanced comprehension and the formulation of innovative mitigation strategies. 
According to the prevailing scholarly discourse (Sarker, 2022; Yang et al., 2022), the value of these 
tools in the realm of climate science is immeasurable. They have expedited explorations into the 
nuances of climate change, simultaneously fostering the development and implementation of 
efficacious mitigation strategies. However, along the same lines, Beckage, Moore and Lacasse, (2022) 
argued that it is worth noting that the complexity of climate change as a global phenomenon 
necessitates the integration of socio-environmental factors into predictive models. In this regard, Big 
Data tools have proven to be an indispensable asset. Expanding upon the contributions from numerous 
scholars, the concept put forth by Marí-Dell’Olmo et al., (2022) suggests that they facilitate the 
integration of heterogeneous data and models, enabling a comprehensive examination of the intricate 
interplay between environmental and social factors. Moreover, the application of these technologies 
extends beyond the confines of climate science, making noteworthy contributions to other sectors such 
as sustainability and social sciences (Visvizi, Troisi and Grimaldi, 2023). These areas are integral to 
the successful development and implementation of mitigation strategies, further emphasizing the 
universal applicability and importance of Big Data and IoT. Drawing on the work of a wide range of 
philosophers (Goyal and Routroy, 2021), the potency of Big Data tools and IoT becomes particularly 
salient in the context of predictive modelling of fine particulate matter (PM2.5) concentration levels. This 
view is well supported by Cocârţă et al., (2021), who argued that the deleterious health and 
environmental impacts of PM2.5 are well-documented, underscoring the imperative to accurately predict 
PM2.5 concentration levels for effective mitigation. On the basis of this findings, Li et al., (2023) proposes 
that their unique capacity to integrate and analyze diverse data sources ushers in a new era of predictive 
modelling possibilities, such as predicting PM2.5 concentration levels. A broadly similar point has also 
recently been made by researchers (Wong et al., 2023) emphasizing the complexity of PM2.5 
concentration predictive modelling, necessitating the use of multiple ensemble ML algorithms. This 
approach harnesses the strengths of various algorithms to yield a more accurate and robust model. 
Ultimately, the convergence of Big Data analytics, IoT, and ML algorithms promises a future where 
prediction, and thus, mitigation of emissions and climate change impacts, is more precise and effective, 
fostering a healthier and more sustainable planet. 

3 Research Methodology 
In this section, we introduced study design, data collection and cleaning and the fundamental 

theories used for experimentation in this study, including bootstrap aggregating (bagging), hypothesis 
boosting (boosting), and stacked generalization (stacking). This methodology is underpinned by the 
theoretical foundations of ensemble learning methods which are powerful machine learning strategies 
known for their superior predictive performance and generalization capabilities. 
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3.1 Bagging Ensemble 
 

Bagging is an ensemble machine learning method that uses many models of the same 
algorithm with randomly chosen portions of data (Opitz and Maclin, 1999). Forests of randomized trees 
(random forest, extremely randomized trees, etc.) and bagging techniques are examples of bagging 
ensembles (bagging classifier or regressor meta-estimator). The underlying theory of bagging lies in 
generating multiple bootstrap samples from original data and training a separate model on each sample. 
The ensemble's final prediction, which is typically the average of the predictions from each model, will 
have lower variance than a single model trained on the original dataset. The following formula 
represents bagging mathematically: 

𝑓!"# =	𝑓$(𝑥) +	𝑓%(𝑥)+	. . . +	𝑓!(𝑥)																																													(1) 
 
Where 𝒇𝒃𝒂𝒈 represents the final prediction of the bagging ensemble, 𝒇𝟏(𝒙) +	𝒇𝟐(𝒙)+	. . . +	𝒇𝒃(𝒙) 
represent the individual base learners in the ensemble. Each 𝒇𝟏(𝒙) is a function (i.e., a model) that 
takes an input 𝒙 and produces a prediction. The subscript i is an index that ranges from 1 to b, 
indicating each base learner in the ensemble, 𝒙 represents the input to the model, b and represents 
the number of base learners in the ensemble. The intricacy involved in the training process of this 
model is denoted as a function f (n, m), where n signifies the quantity of samples and m represents 
the number of features. In terms of computational complexity, it is expressed as O (B * f (n, m)). 
Here, B stands for the number of bootstrap samples. 

3.2 Boosting Ensemble 
Boosting is a repeating strategy that adjusts the observation's weight based on the most recent 

grade. The weight of an observation would be increased if it had been incorrectly classified, and vice 
versa (Dietterich, 2000). The theoretical underpinning of boosting is based on the principle of adaptive 
reweighting of instances. After each iteration, the weights of the instances are adjusted based on the 
prediction performance of the previous model. In the process of implementing the boosting ensemble 
approach, three critical stages are undertaken. Initially, a base model, denoted as 𝒇𝟎, is employed to 
generate predictions, with the residuals calculated as the difference between the actual target variable 
y and the predicted values from 𝒇𝟎. Subsequently, a new model 𝒉𝟏 is trained on these residuals. The 
improved version of 𝒇𝟎, termed 𝒇𝟏, is then constructed by integrating the predictions from 𝒇𝟎 and 𝒉𝟏, as 
represented by the equation 2. 
 

𝑓$(𝑥) < 	−𝑓,(𝑥) +	ℎ$(𝑥)																																																																	(2) 
 
To enhance the performance of 𝒇𝟏, the procedure is reiterated for 'k' iterations, each time 
generating a new model 𝒇𝒌 based on the residuals of the previous model 𝒇𝒌.𝟏. This iterative 
process is encapsulated in the equation 3: 

𝑓/(𝑥) < 	−𝑓/.$(𝑥) +	ℎ/(𝑥)																																																								(3) 
 
In each iteration, 𝒉𝒌 is the model trained on the residuals of 𝒇𝒌.𝟏, and 𝒇𝒌  is the updated model that 
incorporates the predictions of 𝒇𝒌.𝟏,  and 𝒉𝒌. The computational complexity associated with the 
boosting process is denoted as O (T * f (n, m)). Here, T corresponds to the total number of models or 
iterations involved in the process. The parameters n and m represent the number of samples and 
features respectively, while f (n, m) signifies the complexity inherent in training the base model. 

3.3 Stacking Ensemble 
In contrast to bagging and boosting, stacking, further known as stacked generalization, takes 

into account heterogeneous week learners by merging the fundamental algorithms utilizing a meta 
model instead of various averaging procedures (Seni and Elder, 2010). The theoretical underpinning of 
stacking lies in its unique approach to model combination, which uses a meta-learner (or meta-model) 
to make the final prediction based on the predictions of individual base learners. Mathematically, 
stacking is represented as: 

𝑚𝑖𝑛
0
5𝑙(𝑓(𝑥1), 𝑦1) + 	𝜆𝑟(𝑓)
2

13$

																																																									(4) 

Where the empirical risk, which is the first term in the equation above, is determined by a loss function 
S that evaluates how well the function	𝑓	performs. The second item, known as the regularisation term, 
measures the function's complexity and is often a norm of the function or one of its derivatives. For 
stacking, the computational complexity is represented as O (k * f (n, m) + g (k, n)). Here, k denotes the 
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quantity of base models, while n and m correspond to the number of samples and features, respectively. 
The function f (n, m) encapsulates the complexity associated with training the base model. Additionally, 
g (k, n) signifies the complexity involved in training the meta-model.  
 

3.4 Performance Evaluation Metrics 
Typical performance metrics for evaluating regression-based problems like the one for this 

study (since the target PM2.5 contains continuous data) are, Root Mean Square Error (RMSE), and 
Coefficient of Determination (R-Squared). A particular technique to predictive modelling called 
regression-based analysis looks at the relationship between a target and a feature(s) (Kuhn and 
Johnson, 2013). This is especially helpful since it may convey the level of effect that one or more 
attributes have during ML predictions on a target. 
 
RMSE (see Equation 5) stands for the standard deviation of the deviations between the outcomes as 
predicted by the model and the actual values (training data). The better the model, the closer the RSME 
value is to zero. 

RMSE =	@
1
𝑛5(𝑦1 −	𝑦4A)%

2

13$

																															(5) 

R-Squared (see Equation 6) is expressed as the amount of the target's (dependent variable) variation 
that can be explained by the model's independent variables. Its values are in the range of 0 to 1, with 1 
denoting the best model and 0 the worst. 
 

R − Squared = 1 −		
∑ (𝑦1 −	𝑦4A)%2
13$
∑ (𝑦1 −	𝑦J)%2
13$

																																											(6) 

3.5 Study Design 
 
In this study fourteen low-cost IoT emission sensors were designed and strategically deployed across 
the urban landscape of Wolverhampton, a city located in the UK. The purpose of this deployment was 
to facilitate comprehensive monitoring of a diverse range of air quality parameters. The monitoring 
period extended from December 2019 through to April 2020. The mechanical design of these sensors 
(see Figure 1) is characterized by compactness and robustness, featuring an extruded aluminum body 
complemented by end moldings made of acrylonitrile styrene acrylate and polycarbonate, types of 
durable plastics. They operate within a temperature range of -20°C to +45°C ambient and a relative 
humidity range of 15 - 85% continuously, ensuring reliable performance under various environmental 
conditions. The sensor's electrical specifications include a power input range of 12-32V direct current, 
making it adaptable to different power sources. Also, they feature an internal Li-Ion battery with a 
capacity of approximately 55 Watt-hour, providing substantial operational time. Furthermore, these IoT 
sensors employs a high sensitivity global navigation satellite system and global positioning system 
module for location sensing and a 16-gigabyte security digital card for internal storage, capable of 
storing up to 32 million measurement sets. This allows for extensive data collection and precise location 
tracking. One of the key features of the sensors is their cartridge-based system that uses active 
sampling. These cartridges, available in various configurations, can measure a wide range of 
parameters, including gases, particulate matter, pressure, temperature, and relative humidity. This 
versatility allows for comprehensive air quality monitoring. The sensor's data handling capabilities are 
advanced, with its data infrastructure hosted in the Amazon web service cloud supporting various 
communication technologies for data transmission and provides data access via restful Application 
Programming Interface (API). This facilitates easy integration into existing traffic management, and 
meteorological systems in the UK, demonstrating their adaptability and integration capabilities. 
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Figure 1: Pictorial representation of the research methods for development of high performant 

ensemble of ensembles predictive model. (Source: Authors own work) 
 

3.6 Data Collection and Cleaning 
 

Most cities today use monitoring devices to measure traffic intensity, meteorological features, 
and environmental air quality to monitor and limit exposure to air pollution. Depending on the users' 
preferences, data is gathered at specific intervals (seconds, minutes, hours, days, and so on). To 
analyse its quantitative data, this study consolidated data from three different data sources: IoT 
emission sensors, traffic statistics, and meteorological features into a running instance of Amazon 
Relational Database Service (RDS). Specifically, there are 14 IoT emission sensors in all for PM2.5 and 
other pollution concentrations installed around Wolverhampton City in the UK for this study (part of a 
deliverable for a funded project by Innovate UK), indicated by red pointers (see Figure 2). For five 
months, these sensors recorded PM2.5 concentrations and other hazardous pollutants every 10 seconds 
(i.e., December 2019 and April 2020). Consequently, for this period, almost ten billion (i.e., 10 x 6 x 60 
x 60 x 24 x 30 x 5 x 14) high volume data points were retrieved via restful JAVA 8 and Spring Boot 
Application Programming Interface (API) deployed using Amazon Elastic Beanstalk and accessible via 
Amazon API Gateway hosted on Elastic Compute Cloud (EC2) in the European (London) data centre 
to perform the big data analyses.  
 
Figure 2: A map of the 14 IoT-installed PM2.5 emission sensors in Wolverhampton City, UK. 
 

More specifically, the vehicle counts broken down into several vehicle types made up the 
majority of the traffic statistic data, which came from the UK's Department for Traffic (DfT) (see Table 
1). The sensor data and the traffic data are covered at the same time. Additionally, the UK Met Office 
provided the weather data for a comparable time. It contained a variety of meteorological factors, such 
as ambient temperature and pressure, among others (see Table 1). Hourly traffic and meteorological 
data are supplied, each with about 50,000 high-volume data points. Finally, the hourly average of 
pollutant concentration from the IoT emission sensors was utilised to match the associated hourly traffic 
and meteorological data, resulting in (24 hours x 30 days x 5 months x 14 IoT) data points. 
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(Source: Authors own work) 

 

3.7 Data Analysis 
 

The data is a two-dimensional array of 46282 rows and 35 columns, according to a statistical 
exploratory data analysis of the matching data implemented using  Pandas - an open-source data 
manipulation and analysis library in Python  (from sensors, hourly traffic, and weather data), where 
features/independent variables are the 1st to 30th columns (meteorology, traffic, and other pollutants, 
e.g., nitrogen dioxide, ozone data), while the target/dependent variable is the 31st column. Pandas was 
chosen due to its ability to handle diverse data types, missing data and provides robust functionality for 
data filtering and sub setting, further aiding in the process of data exploration and hypothesis generation 
(Sulaimon et al., 2022). In the examined data (see Figure 3), some outliers were discovered, notably 
between December 2019 and January 2020.  

One may argue that these outliers towards the end of the year are brought on by holiday parties, 
shopping, and Christmas. Also, interestingly, lots of missing data found mostly around March 2020 is 
debatable owing to the influence of the first nationwide lockdown enacted during the COVID19 outbreak 
in UK cities, thus well justifying the validity of classes of data obtained from the 14 IoT emission sensors 
installed. Consequently, these outliers and missing data were found and eliminated, leaving a final 
dataset of 34,370 rows and 31 columns.  
 

Figure 3 shows the 14 IoT emission sensors' hourly mean PM2.5 concentration. 
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4 Experimental Results and Analysis 
In this section, the feature engineering and big data analytics output will be presented first, 

followed by a comprehensive experimental comparison to demonstrate the performance of our 
established high-performing ensemble of ensembles predictive model. All the experimental work on 
predictive modelling utilized Scikit-learn, a Python programming language package that includes a wide 
range of cutting-edge methods for supervised and unsupervised medium-scale issues (Pedregosa et 
al., 2011). 
 
4.1 Feature Engineering 

To achieve this criterion, this study employed the standardized feature scaling technique, which 
assumes that the normal distribution of each given dataset has a mean of zero and a variance of one 
(Yao et al., 2022). A multivariate filter-based feature selection technique called Spearman's rank 
correlation coefficient was used to evaluate the entire feature space, eliminate redundant, noisy, and 
out-of-date features, as well as to increase model accuracy, make the model easier to understand, 
make the computations simpler, and make the model more generalizable. This Spearman's correlation 
coefficient is a non-parametric test that shows if a relationship between two or more qualities is 
strengthening or weakening by examining the degree of correlation between them. The estimated 
strength between the characteristics using Spearman's correlation coefficient fluctuates between +1 
and 1 when one feature is a perfect monotone function of the other. As a result, to create the ensemble 
of the ensemble prediction model, 24 significant characteristics (see figure 4) with coloured bars were 
employed. 
 

 
Figure 4: Feature selection ranking according to Spearman. (Source: Authors own work) 

 
4.2 Big Data Hypothesis Testing  

Given the availability of the relatively large and high volume of data generated, this study briefly 
conducted hypothesis testing to examine the validity of the theory that "more data means more 
predictive ability"  (Egwim, C.N., Alaka, H., Egunjobi, O. O., Gomes, A., 2022; X. Zhou et al., 2022). 
With the resulting clean, pre-processed, and feature engineered dataset (34370 data points) split 
randomly into three in a ratio of 20%, 30%, and 50%, we developed, for each data ratio, 6 sample 
predictive models using Random Forest (RF), Bagging, Extremely Randomized Trees (Extra-Trees), 
Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting 
(XGBoost) ensemble ML algorithms respectively. To be more specific, each predictive sample model 
was built using these ensemble ML algorithms for each data ratio (20% of 34370, 30% of 34370, and 
50% of 34370), with further random training and testing dataset split at 60:40 respectively. Table 2 
details the outcome of this hypothesis based on RMSE, and R-Squared performance evaluation metrics 
after the predictive modelling experimentation. To determine whether a higher volume of data results in 
more predictive power, we displayed the area curves for each data ratio's test dataset as shown in 
figures 5-7. Interestingly, these area curves showed an increase in performance for all sample 
predictive models developed.  Specifically, the sequence of experiments in which increasing quantities 
of data were sampled (at random) from the original dataset to mimic varying data sizes yielded a 13% 
increase in R-Squared with a successive 14% decrease in RMSE, thus an overall improvement for each 
of the sampled predictive models.  Hence, the underlying hypothesis is well justified in this study. 
Therefore, final predictive models for this study will be built using the whole dataset (34370 data points) 
randomly divided in proportions of 70% to 30% for training and testing, respectively. 
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(Source: Authors own work) 

 
Figure 5: Sample Models’ Prediction on 20% of Total Dataset (Source: Authors own work) 

 
Figure 6: Sample Models’ Prediction on 20% of Total Dataset (Source: Authors own work) 

 
Figure 7: Sample Models’ Prediction on 50% of Total Dataset (Source: Authors own work) 
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4.3 Model Development Process and Performance Measures 

When experimenting with regression analysis, a range of ensemble ML techniques may be 
employed to create prediction models. The number of features, the curvature of the regression line, and 
the type of target all influence which one to choose. Without regard to the above-mentioned 
requirements, we conducted tests using all the ensemble ML algorithms available in scikit-learn version 
0.23.1 at the time of this study. 

In concrete, six ensemble ML algorithms: three Bootstrap Aggregating (Bagging) and three 
Hypothesis Boosting (Boosting) ensemble ML algorithms were used with their default settings to create 
the individual ensemble models using the training dataset (70 per cent of the total dataset). Also, the 
Decision Tree (a typical unstable standalone algorithm) was used for benchmark and fair comparisons. 
This resulted in a total of seven developed models (six ensemble models and one standalone model). 
After that, the models' performance was evaluated using the unseen test dataset (30% of the entire 
dataset). To avoid individual model overfitting on the dataset, stratified k-fold, a version of k-fold that 
yields stratified folds having roughly the same proportion of target class as the initial dataset, was used 
for cross-validation, where k=10. The general processes involved in developing these ensemble 
predictive models are shown in figure 1. Finally, as indicated in Table 3, RMSE and R-Squared 
performance evaluation metrics were used to assess the performance of these prediction models, with 
figures 8 to 4 displaying their predicted values vs their actual values on the training and test data, 
respectively. 
 
 

 
 

Figure 8: DT Prediction Plot (Source: Authors own work) 
 

Figure 9: RF Prediction Plot (Source: Authors own work) 
 

Figure 10: Bagging Prediction Plot (Source: Authors own work) 
 

Figure 11: Extra Tree Prediction Plot (Source: Authors own work) 
 

Figure 12: AdaBoost Prediction Plot (Source: Authors own work) 
 

Figure 13: GMB Prediction Plot (Source: Authors own work) 
 

Figure 14: XGBoost Prediction Plot (Source: Authors own work) 
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To develop the multilayer high performant ensemble of ensembles (stacking) predictive model, 
we combined the best (based on performance evaluation metrics) predictive models from bagging and 
boosting ensemble ML algorithms. To begin, we compared the performance of each ensemble learning 
algorithm using a decision tree (a typically unreliable standalone algorithm) as their base estimator. 
Next, we carried out an experiment using three bagging ensemble algorithms, optimized RF (a natural 
ensemble of DT), Bagging, and Extremely Randomized Trees, to tune the hyperparameters and 
stabilize the base estimator. Alpha and lambda, with values of 100 and 10, are the principal variables 
utilized in hyperparameter optimization. The chosen parameters serve as regularization terms in the 
model, effectively managing the bias-variance trade-off to achieve low bias and low variance. The 
selection of these specific parameter values was not arbitrary but was determined through a systematic 
grid search. This process involved conducting a series of experiments with varying parameter values 
and subsequently selecting the values that yielded optimal model performance. This empirical approach 
ensures that the learning process is controlled and that the model is appropriately regularized. 
Interestingly, they all outperformed the basic estimator in terms of evaluation metrics (RMSE and R-
Squared); the problem, though, was figuring out which bagging ensemble approach was optimal. We 
used scikit- learn's VotingRegressor to cast a vote with the bagging ensembles using the hard and soft 
voting criteria to reduce bias and improve generalizability. Amazingly, a successful model called 
Ensemble 1 evolved that was more accurate and had lower variation (see Figure 15).   The experiment 
was repeated using the same base estimator and hyperparameters this time, but instead of using the 
bagging ensembles, three boosting ensemble algorithms — Adaptive Boosting, Gradient Boosting 
Machine, and Extreme Gradient Boosting — were used. Not surprisingly, they all outperformed the 
base estimator (see Table 4). We again polled them, and the results produced yet another effective 
model (see Figure 16), which we will refer to as Ensemble 2 in this study. 

 
 

Figure 15: Bagging Decision Boundaries (Source: Authors own work) 
 

Figure 16: Boosting Decision Boundaries (Source: Authors own work) 
 

 
(Source: Authors own work) 

 
In conclusion, we used these combined Ensemble 1 and 2 predictions to train and test a new model, 
called Ensemble of Ensembles in this work, using the stacked generalization (stacking) approach 
through Scikit-learn's StackingRegressor. To be more exact, each estimator's predictions from 
Ensemble 1, and Ensemble 2 are piled and fed into a final estimator, which computes the prediction to 
reduce their biases. Throughout the Ensemble of Ensembles' training, these estimators were fitted to 
the entire training dataset. Therefore, to generalize and avoid over-fitting, the final estimator was 
internally trained on out-samples through cross-validation as shown in figure 17. Ultimately, this yielded 
a highly performant hyperparameter optimized Ensemble of Ensembles predictive model that was better 
than Ensemble 1 and Ensemble 2 based on their respective performance evaluation metrics as shown 
in Table 4. 
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Figure 17: A multilayer high-performance ensemble of ensembles predictive model's learning curve 
for hyperparameter optimization (Source: Authors own work) 

 

5 Discussion 
The high volume of data points received by the installed IoT emission sensors across the UK 

cities for this study, matched with the associated hourly traffic and meteorological data, gave the 
rationale to conduct a hypothesis to examine the validity of the theory that "more data means more 
predictive ability". We can therefore find that, based on the results of this study, large amounts of data 
can result in lower estimation variance and, as a result, greater predictive power (see Table 2). This 
fact is in line with the vast body of knowledge. For instance, it is the viewpoint of Liang and Liu, (2018) 
and Barba-González et al., (2019) that more data means there's a better chance it'll include relevant 
information, which is beneficial as there is a natural desire to use these data assets by businesses to 
improve decision-making since the gathering and processing of "bigdata" have become more common 
owing to ubiquitous computing and tons of millions of petabytes of data storage in the cloud. One should 
note, however that although the predictive power of each sample predictive model used to test this 
hypothesis increasingly improved as the size of training dataset increased, looking through figures 5 – 
7, the overall performance of some models (e.g., RF, GMB, etc.) when compared with other models 
was inconsistent. Also, recall as discussed briefly above that we treated missing values and outliers, 
and selected some features from the feature space before testing this hypothesis. All these and in line 
with researches (Zhang, Yang and Zhang, 2021; Zhao et al., 2022) thus suggesting that simply having 
more data isn't a size-fits-all paradigm. More precisely, it's not only large data that helps us develop 
high-performing predictive ML models; it's also high-quality data. Therefore, it is a strong 
recommendation to perform exploratory data analysis to identify missing values and outliers, feature 
engineering, feature transformation, feature selection, and use multiple algorithms on the big data 
before it can be valuable in predicting the concentration level of PM2.5 — the most health-damaging 
pollutant.  
 Furthermore, a close attention to the amount of data streams retrieved from the 14 installed IoT 
emission sensors every 10 seconds for a period of 5 months (i.e., 10 x 6 x 60 x 60 x 24 x 30 x 5 x 14)  
with the corresponding hourly traffic counts and metrological variables (24 hours x 30 days x 5months 
x 14 IoTs) to the actual number of data (34370) finally used for predictive modelling in this study and 
as argued by Icek (Ajzen, 1991) suggests that there is a high tendency for noise rate to increase as 
data size increase when data is collected from human actions (traffic congestion, burning of fuel, etc.) 
because of the restrictions imposed by behavioral inclinations. Hence, this implies that what is really 
very important is a collection of data points that describe the range of changes for each class that you 
want to train the ML models with, thus well justifying the need to consider the data velocity and variety 
when measuring bigdata (volume) for PM2.5 concentration level predictive modelling. By comparing the 
performance of the six ensemble predictive models with the most used tree based standalone model 
named DT, it can be found from this study and in line with the findings of Egwim et al., (2021) that the 
performance of ensemble predictive models with or without being hyperparameter optimized is always 
greater in terms of predictive accuracy relative to the use of a standalone model. Also, this assertion 
about ensemble predictive models not only holds true for standalone models, but it is also true for hybrid 
predictive models. This can be justified by comparing the results from this study with the results obtained 
from the research (Balogun, Alaka and Egwim, 2021) who developed a hybrid model using similar 
dataset. Consequently, researchers are strongly encouraged to employ ensemble methods when 
predicting the concentration level of PM2.5. 
 However, considering the existence of several ensemble predictive models vis-a-vis their 
individual performances, a difficult and important choice is making an ensemble machine learning 
algorithm that is appropriate for predictive modelling. To mitigate this dilemma, using hard and soft 
voting rule, we developed Ensemble 1 (an emergent predictive model from the aggregated list of 
bagging ensemble models) and Ensemble 2 (an emergent predictive model from the aggregated list of 
boosting ensemble models) to serve as input estimators for a novel multilayer high performant 
hyperparameter optimized stacking ensemble model called Ensemble of Ensembles. Looking through 
table 4 we can see an outstanding performance made by this novel Ensemble of Ensembles predictive 
model over all ensemble predictive models that have been proven to be better than hybrid predictive 
models and standalone predictive model based on performance evaluation metrics. Looking through 
the learning curve of the multilayer high effective hyperparameter optimized ensemble of ensembles 
predictive model in figure 17, we can observe a note of caution as regards its evaluation time. More 
specifically, although this novel Ensemble of Ensembles predictive model have been found to have 
more predictive power over hybrid and standalone models for PM2.5 concentration level predictive 
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modelling, there is a trade-off for its time complexity. Therefore, as was the case in this study, 
researchers are strongly encouraged to leverage the power of on-demand cloud computing platforms 
with a variety of sophisticated clustered computers distributed across several datacenters in the world 
to computational complexity when implementing this novel model to reduce its time complexity. 
 

6 Conclusion and Recommendation 
Due to the increased PM2.5 concentration level – the most health-damaging pollutant in recent 

years, more air pollutant predictive models have been developed by past studies. Unfortunately, many 
past studies have utilized or simply adapted one or two ensemble ML methods from earlier research 
without rationale, resulting in poor performance, bad model selection, and poor model selection or 
unenhanced generalizability of models developed using these ensemble ML algorithms across other 
regions. In this study therefore, a multilayer high performant ensemble of ensembles predictive model 
developed with several hyperparameter optimized ensemble ML algorithms for PM2.5 concentration 
level predictive modelling with bigdata analytics and IoT emission sensors was proposed. To 
demonstrate the advantage of this novel model firstly, we tested the bigdata hypothesis by developing 
sample predictive models on different data sample sizes and compared their results. Secondly, we 
developed a standalone model, and several bagging and boosting ensemble models and compared 
their results. Finally, we used the best performing bagging and boosting predictive models as input 
estimators to develop this specialize type of stacking predictive model. This novel model takes into 
account the properties of traffic statistics, and meteorological features and pollution concentrations from 
IoT emission sensors including ambient temperature, absolute world coordinates, ambient humidity, 
fine particles, traffic counts from cars, taxis and heavy goods vehicles among many others.  

The findings of this study will aid in the initial selection of appropriate ensemble ML algorithms 
for future predictive analysis. Also, this novel model can be used to make decisions on forthcoming 
events such as pollution exposure evasive conduct, accurate policy making and can be used by air 
pollution consultants as well as academics thus reducing associated illness and their cost to economy. 
Furthermore, when this novel model is integrated into an air monitoring system can help the public to 
proactively identify high polluted areas thus potentially reduce pollution associated/ triggered Covid-19 
(and other lung diseases) deaths/ complications/ transmission by encouraging avoidance behavior and 
support informed decision to lock down by government bodies. This is in accordance with the UK 
government's clean air plan, which calls for a personal air quality message system to alert the people 
to levels of pollution. Reduced pollution exposure inculcated by this system can decrease pollution 
related illness, reducing illness related productivity losses which can cost billions of pounds. This is 
especially useful as the benefits of any investment made in such direction will outweigh the cost as it 
has the potential of preventing life-long pain, reducing demands on the NHS, and enabling people to 
live an active and productive life.  

This study suggests that first exploratory data analysis is necessary in order to identify missing 
values and outliers, feature engineering, feature transformation, feature selection, use multiple 
algorithms on bigdata and leverage the power of on-demand cloud computing platforms with a variety 
of sophisticated clustered computers distributed across several datacenters in the world for other 
pollutant concentration level predictive modelling. A limitation of this study is the tradeoff between 
performance of this novel model and the computational time required to train it. Whether this gap can 
be closed remains an open research question. As a result, future research should attempt to close this 
gap. Additionally, future research might incorporate this innovative approach into a personal message 
system for air quality to better notify the general population about pollution levels and provide access 
to air quality forecasts. Additionally, they can investigate using this cutting-edge algorithm to predict 
additional pollutants. 
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