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1 Introduction

Finding metrics satisfying the non-linear Einstein equations is a notoriously difficult problem.
Naively, this seems to pose a computational problem to computing observables holographically.
However, recent advances in defining extremal problems in gravity allows one to extract out
certain holographic observables. These geometric extremal problems have a corresponding field
theoretic dual, whether it be: a-maximization [1]; F-extremization, [2]; c-extremization [3, 4],
or I-extremization [5]. This program of studying geometric extremal problems began with
the geometric dual of a-maximization/F-extremization in [6, 7] and more recently has been
extended to I/c-extremization [8] see also [9–14].

Recently in [15, 16] equivariant localization was used to setup such extremal problems
in a variety of different setups [17–19].1 This allows one to compute physical observables
of the dual SCFT without knowing the full supergravity solution. This paper applies these
methods to (massive) type IIA on AdS4 ×M6. Such solutions have been classified in [23], see
also [24]. Concretely we use equivariant localization to perform flux quantization, compute
the holographic free energy, and conformal dimensions of certain BPS operators. We use the
formalism to derive certain gravitational block formulae conjectured in the literature [25],
reproduce known results and make predictions for new solutions.

At first sight, given that our internal manifold M6 shares many similarities with the
internal manifold of AdS5 solutions in M-theory [26] which were equivariantly localized

1See also [20, 21] for a complementary but distinct approach and [22] for an earlier incarnation of localization.
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in [16], this may seem a trivial extension of their work. We find that although there are
similarities there is also a rich structure of possible internal geometries which are not possible
in the AdS5 M-theory solutions. In particular one novel aspect of our work is the inclusion
of boundaries on the internal space on which we localize. These boundaries arise in our
construction from the presence of brane sources which cap off the space. One finds that
such singular geometries can also be localized and this opens up a wide avenue of solutions
where these techniques can be applied.

AdS4 solutions of (massive) type IIA supergravity preserving N = 2 supersymmetry
with an SU(2) structure were classified in [23]. The R-symmetry of the putative dual field
theories is (at least) U(1), ergo, via the usual AdS/CFT lore there is a U(1)-isometry of
the metric and an associated Killing vector field. We will use this U(1) isometry to localize
integrals in our setup. Given the geometric setup in [23], using brute force, we construct a set
of equivariantly closed polyforms. To contruct these polyforms we use a subset of the torsion
conditions. Since only a subset are imposed we are to some extent “off-shell” and one needs
to extremize over the free parameters to find the on-shell results. This provides a geometric
interpretation to F-maximization principles of the dual SCFTs [2, 27, 28]. A holographic
approach to F-maximization was already discussed in [29, 30] for Sasaki-Einstein geometries
and a class of massive type IIA solutions. In this work we extend this geometric extremal
problem to all N = 2 AdS4 solutions in (massive) type IIA with an SU(2) structure.

The plan of the paper is as follows. In section 2 we briefly review equivariant localization
and the Atiyah-Bott-Berline-Vergne localization theorem. In particular we discuss the
contributions from boundaries. In section 3 we review the solutions of [23], study the various
options for constructing a well-defined background using O8 sources and then construct various
equivariantly closed polyforms and present the general localized integrals for these polyforms.
In section 4 we use our results to study five distinct examples of possible geometries, each
with different behaviours. We conclude in section 5. Some technical material on cohomology
relations is relegated to appendix A.

2 Review of equivariant localization

Before we start to apply localization to our setup it is instructive to first review the formalism.
One additional point that we wish to emphasize is the modification of the usual localization
formulae in the presence of a boundary. This section closely follows [15, 16], which initiated the
idea of applying localization to supergravity, adding in a discussion on boundary contributions.
See also [31, 32] for an introduction to equivariant localization. The reader familiar with
these techniques can safely skip to section 3.

Consider a d-dimensional space M with a U(1) Killing vector ξ.2 The equivariant exterior
derivative is defined to be

dξ = d− ξ , (2.1)

and acts on polyforms. It has the property that d2ξ = −Lξ (the Lie derivative), such that
it defines an equivariant cohomology on the space of invariant polyforms Φ. A polyform is

2We will specialize to d = 6 in the following though the discussion below holds more generally. Further one
could replace the U(1) action with any compact Lie group action with minimal modifications.
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said to be equivariantly closed if dξΦ = 0. The integral over an invariant even dimensional
submanifold Γ ⊂M of an equivariantly closed polyform Φ can be evaluated using the BV-AB
theorem [33, 34], which states that such an integral localizes to the fixed point set of the
group action. Explicitly let us denote by Σ ⊂ Γ a fixed submanifold of ξ (i.e. ξ = 0 on
Σ) of codimension 2k and f : Σ ↪→ Γ the embedding of the fixed point locus, then the
BV-AB theorem gives ∫

Γ
Φ =

∑
Σ

1
d2k

∫
Σ

f∗Φ
eξ(N ) , (2.2)

where eξ(N ) is the Euler form of the normal bundle and d2k is the order of the orbifold
structure group of Σ, meaning that for NΣ = R2k/G locally, d2k ∈ N is the order of the
finite group G.

We may simplify the BV-AB formula under the assumption that the normal bundle NΣ
of Σ in Γ decomposes as a sum of line bundles NΣ = ⊕k

i=1Li.3 Then the BV-AB formula,
with this splitting assumption reduces to∫

Γ
Φ =

∑
Σ

1
d2k

(2π)k∏k
i=1 ϵi

∫
Σ

f∗Φ[
1 + 2π

ϵi
c1(Li)

] , (2.3)

where ϵi are the weights of ξ on NΣ, i.e. in local coordinates ξ =
∑k
i=1 ϵi∂φi with ∂φi rotating

Li, and c1(Li) are the first Chern classes. In practice the denominator is to be expanded
in a power series in the Chern class, as illustrated below, which truncates at order dim(Σ)
at most. In summary, the game to be played is to build equivariantly closed polyforms
whose top form is a physical quantity that we want to measure. The physical observable,
obtained by integrating the top form over some (sub-)manifold of our internal space, is then
evaluated using the BV-AB formula. This gives the observable as a sum of contributions
of the lower forms evaluated on fixed submanifolds.

To make the BV-AB formula a little more explicit let us see how the general fixed
point formula (2.3) reads for the cases of interest in this paper. The internal space is a 6
dimensional compact manifold M6, and we will compute integrals over 2 and 4 cycles as
well as the full space. The BV-AB formula then gives:∫

Γ2
Φ2 =

∑
Σ0

2π
d0

Φ0
ϵ1

∣∣∣∣
Σ0

, (2.4)

∫
Γ4

Φ4 =
∑
Σ0

(2π)2

d0

Φ0
ϵ1ϵ2

∣∣∣∣∣
Σ0

+
∑
Σ2

2π
d2

∫
Σ2

[Φ2
ϵ1

− 2πΦ0
ϵ21

c1(L)
]
,

∫
M6

Φ6 =
∑
Σ0

(2π)3

d0

Φ0
ϵ1ϵ2ϵ3

∣∣∣∣∣
Σ0

+
∑
Σ2

(2π)2

d2

1
ϵ1ϵ2

∫
Σ2

[
Φ2 − 2πΦ0

(
c1(L1)
ϵ1

+ c1(L2)
ϵ2

)]

+
∑
Σ4

2π
d4

∫
Σ4

[
Φ4
ϵ1

− 2πΦ2
ϵ21

∧ c1(L) +
(2π)2Φ0

ϵ31
c1(L) ∧ c1(L)

]
.

3This assumption is satisfied by almost all of the examples considered in this paper. It is used to write
the Euler class of NΣ in terms of first Chern class in the formula (2.3). This more general formula will be
important in section 4.5 where such a decomposition in terms of line bundles is not possible.
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2.1 Boundary contributions

As we will see shortly, in our setup the internal manifold can have boundaries and this
requires an extension of the BV-AB formula (2.3). We make the restriction that the boundary
of the manifold does not have any fixed points and let f : ∂M ↪→ M be the embedding
of the boundary into M . Then to the BV-AB formula in (2.3) we add in an additional
boundary contribution [35]:∫

Γ
Φ = BV–AB (2.3) −

∫
∂Γ
f∗
ξ ∧ Φ
dξξ

. (2.5)

We understand the inverse of the polyform dξξ via a formal geometric series,

1
dξξ

= − 1
|ξ|2(1− |ξ|−2dξ) = − 1

|ξ|2

[
1 +

∞∑
a=1

( dξ
|ξ|2

)a]
. (2.6)

It is obvious from the formula that the boundary must not have fixed points of the U(1)
given the factors of |ξ|2 appearing in the denominator. This was a choice that we made and
there exists a more general formula when this is not true, [35].

To better explain the contributions from the boundary let us study an example. Consider
a four-sphere and let us put in an arbitrary boundary which preserves a choice of U(1) action
that we will specify shortly. Let us take the following metric on the four-sphere4

ds2 = dα2 + sin2 α
(
dθ2 + sin2 θdϕ21 + cos2 θdϕ22

)
. (2.7)

For the round four-sphere the ranges of the coordinates are: α ∈ [0, π], θ ∈
[
0, π2

]
, and

ϕ1, ϕ2 ∈ [0, 2π]. We will localize using the Killing vector

ξ = b1∂ϕ1 + b2∂ϕ2 , (2.8)

with both b’s non-zero. The norm of this Killing vector field is

|ξ|2 = sin2 α(b21 sin2 θ + b22 cos2 θ) , (2.9)

which clearly vanishes at the poles of the S4 at α = 0, π. Rather than taking the round
four-sphere we will restrict α to α ∈ [0, α0] with 0 < α0 < π and call the space Xα0 . For
α0 = π

2 this is the usual four-dimensional hemi-sphere. It is simple to explicitly compute
the volume for this metric and we find

Vol(Xα0) =
4π2

3 + 2π2 cosα0(cosα2
0 − 3)

3 . (2.10)

We now want to reproduce this using our localization formulae. We have a fixed point at
the pole and a boundary term at α = α0. Using the results in [16] the equivariantly closed
polyform for the (weighted) volume form is given by Φ = Φ4 + Φ2 + Φ0 with

Φ4 =
1
b1b2

vol = 1
b1b2

sin3 α sin θ cos θdα ∧ dθ ∧ dϕ1 ∧ dϕ2 ,

Φ2 = −1
2 sin3 α

( 1
b1

sin2 θdϕ1 +
1
b2

cos2 θdϕ2
)
∧ dα ,

Φ0 =
1
6(3 cosα− cos3 α) .

(2.11)

4We use the same conventions as in [16] in order to use their polyforms.
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The weighted volume is then∫
Xα0

1
b1b2

vol(Xα0) =
(2π)2

b1b2
Φ0

∣∣∣∣∣
α=0

+
∫
∂Xα0

f∗
1
|ξ|2

[
ξ ∧ Φ2 +

Φ0
|ξ|2

ξ ∧ dξ
]

= 4π2

3b1b2
+
∫
∂Xα0

b1b2 cosα0(3− cos2 α0) cos θ sin θ
3(b21 sin2 θ + b22 cos2 θ)2

dθ ∧ dϕ1 ∧ dϕ2 .

(2.12)

Note that the contribution only arises from the second term involving Φ0 since f∗Φ2 = 0. We
now need to perform the integral over ∂Xα0 . Note that this is just an integral over a round
three sphere and one could in principle use equivariant localization again to perform this
integral. We will refrain from doing this but it is not difficult to see that the final result is:∫

Xα0

1
b1b2

vol(Xα0) =
2π2(2− 3 cosα0 + cos3 α0)

3b1b2
, (2.13)

and therefore we find that we recover the correct result in (2.10). It is important to note that
for generic α0 ̸= π

2 there is a contribution from the boundary. One expects that it is possible
to use equivariant localization to also evaluate the integrals for the boundary contributions
and this would be an interesting problem to study in the future.

Having given the generic formula with boundaries it turns out that the boundary
contributions from the observables we will consider vanish because f∗Φ = 0 for our integrals.
This is not a generic feature, indeed the example above had a boundary contribution, except if
we looked at the hemi-sphere. Rather, it is special to the various setups that we consider and
the types of boundary there. One expects that by looking at different admissible boundary
conditions or more refined observables, boundary contributions will no longer vanish. We
hope to study this in the future.

3 General AdS4 solutions of massive type IIA

N = 2 preserving AdS4 solutions of massive type IIA with an SU(2) structure were classified
in [23]. It was shown that there are two distinct classes, named class K (Kähler) and class HK
(hyper-Kähler). Both classes are topologically an S2 bundle over a four-dimensional space
M4 which is Kähler or hyper-Kähler respectively. In both cases the 10d metric takes the form

ds210 = e2A
[
ds2AdS4 + ds2M6

]
, (3.1)

with M6 dependent on the class. The class K solutions will be the main focus of this work
and we will ignore the class HK solutions since the solutions in the HK class are essentially
unique and therefore localization is not needed to compute observables in these theories.
We work in conventions where the length scale on AdS4 is set to 1. This may be reinstated
with a little dimensional analysis.

3.1 Setup

The internal metric for solutions of class K takes the form

ds2M6 = 1
e4A − y2

dy2 + 1
4(1− e−4Ay2)Dψ2 + y

F 2
0 e4Ay2 + l2

g
(4)
ij (y, x)dxidxj , (3.2)

– 5 –
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with g(4) a four-dimensional Kähler metric at fixed y coordinate, Dψ = dψ + ρ. The SU(2)
structure forms on M4 satisfy:5

∂ψj = 0 , ∂yj =
1
2(F

2
0 y

2 + l2y−2)d4ρ , d4j = 0 , (3.3)

∂ψω = 0 , ∂yω = −1
2(F

2
0 y

2 + l2y−2)Tω , d4ω = iP ∧ ω , (3.4)

where

P ≡ −ρ+ i 2e4A(F 2
0 y

4 + l2)
(e4A − y2)(F 2

0 e4Ay2 + l2)
d4A , (3.5)

T ≡ ∂y(e4Ay2)
(e4A − y2)(F 2

0 e4Ay2 + l2)
. (3.6)

There are two constant parameters, F0 the Romans mass and l. It is necessary that at least
one of these parameters is non-zero. A non-zero value of F0 signifies the presence of D8-branes
in the setup. On the other hand the presence of a non-zero l signifies the presence of D2- and
D6-branes as can be seen more clearly by considering the fluxes supporting the solution. Note
that if both are non-zero by a redefinition of the y coordinate and rescaling of the metric and
fluxes l may be set without loss of generality to a non-zero value, such as l = 1.

The flux quantization of the Romans mass F0 imposes

n0 = 2πℓsF0 ∈ Z . (3.7)

The magnetic parts of the RR-fluxes are:

F2 = l

( 1
2ydρ−

1
2d(e

−4AyDψ)+ 1
F 2
0 e4Ay2+ l2

j

)
,

F4 = −F0
2

[
e4Ay2

(F 2
0 e4Ay2+ l2)2

j ∧ j−
(
d(e−4AyDψ)− y−1dρ

)
∧
(

e4Ay2

F 2
0 e4Ay2+ l2

j+ y2

2 dy ∧Dψ
)]

,

F6 =
3l
4

y2

(F 2
0 e4Ay2+ l2)2

dy ∧Dψ ∧ j ∧ j.

(3.8)
For the NS-NS sector it is useful to give two different expressions for the NS-NS two-form
related by gauge transformations:

B1 = −F0
l

(
e4Ay2

F 2
0 e4Ay2 + l2

j + y2

2 dy ∧Dψ
)
,

B2 =
l

F0

( 1
F 2
0 e4Ay2 + l2

j + 1
2y2dy ∧Dψ

)
.

(3.9)

Note that the former is ill-defined in the l → 0 limit while the latter is ill-defined in the
F0 → 0 limit so one should choose the correct gauge when specialising to either case. Finally
the dilaton is given by:

e2ϕ = e6A

F 2
0 e4Ay2 + l2

, (3.10)

which makes manifest the necessity to have at least one of the parameters F0 or l non-zero.

5In the original paper [23] the j used here is denoted by ȷ̂ and is normalized differently from j there.
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The above fluxes are the (magnetic) ones which appear in the equations of motion. They,
however, are not the ones one would use to quantize the fluxes. These are the Page fluxes:
f = F ∧ e−B in polyform notation. Here F is the polyform of magnetic fluxes, B is either
of the representatives of B given in (3.9) and one extracts out the the part of form degree
p. Recall that Page fluxes are closed, hence define conserved charges, but are not gauge
invariant. The quantization condition reads

1
(2πℓs)p−1

∫
Σp

fp ∈ Z . (3.11)

In the general class (l ̸= 0) the Page fluxes read:

f2 =
l

2d
[
y−1

(
1− e−4Ay2

)
Dψ

]
− F0(B1 −B2) ,

f4 =
F0
2l2

[
e4Ay2

F 2
0 e4Ay2 + l2

j ∧ j + y2dy ∧Dψ ∧ j
]
,

f6 =
y2

4l3
F 2
0 e4Ay2 + 3l2

F 2
0 e4Ay2 + l2

dy ∧Dψ ∧ j ∧ j .

(3.12)

Observe that these fluxes do not admit a well-defined l = 0 limit, though one can safely
take the F0 = 0 limit. If l = 0 one notices that both F2 and F6 vanish identically and
that one may pick a gauge in which B = 0 too, i.e. pick B = B2. It follows that the only
non-trivial flux is F4 and its charge defines a conserved quantity. We must therefore specify
as initial data whether l = 0 or not and we will explicitly state this when relevant. In
section 3.3.1 we will construct equivariantly closed polyforms for l ̸= 0 and in section 3.3.2
the analogous polyforms for the l = 0 case.

3.2 Degenerations and global regularity

Before we set up the localization problem we need to first discuss the possible global
completions of the metric. It turns out that there is a very rich structure for the class K
solutions. In order to have well defined, globally complete (and compact)6 solutions we
need to fix the length of the line interval with coordinate y. The usual way, amenable to
localization, is for the localizing circle to shrink at some value of y. Depending on the
shrinking of the remaining part of the internal metric one obtains either fixed points or
fixed surfaces of co-dimension 2 or 4.

There is however another way in which to globally complete the metric: the presence
of brane singularities. Chosen correctly these cap off the space, giving a global completion,
despite the localizing circle remaining of non-zero size. From the localization viewpoint
these lead to boundaries in the internal space that we must localize over. In this section
we will study one singular brane solution that we can have which cap off the space in a
well-defined manner with a physical interpretation. Many of the results can be obtained
from [23], however we rephrase the conditions in terms of the behaviour of the circle at the
special values of y. There are many other options that one can consider involving (possibly

6One can easily release the compact condition by studying solutions corresponding to 3d conformal defects
in a higher dimensional parent theory, see for example [36–38] for solutions of this form in M-theory. We will
not pursue this here and thank Pieter Bomans for discussions on this topic.
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smeared) orientifolds, see for example [23], however we will content ourselves with this single
choice as it is quite universal.

We will be interested in capping off the spacetime with an O8-plane singularity with
divergent dilaton. The metric and dilaton behaviour of such an O8 singularity is

ds2 ∼ 1√
r
ds29 +

√
rdr2 ,

e2ϕ ∼ r−5/2 ,

(3.13)

where we have kept only the leading order pieces and the plane is located at r = 0. Note that
there are other choices of O8-plane which would not have the above divergence structure,
this choice is taken to match with the O8-plane in the Brandhuber-Oz solution [39] that
will be relevant later.

We can now study the existence of such a degeneration for the metric in (3.1) and dilaton
in (3.10). It is not difficult to show that this is only possible for l = 0 and y = 0. The
argument is simple, one immediately sees that the warp factor must diverge as e2A ∼ r−1/2.
Requiring that the dilaton has the correct divergence fixes l = 0. Finally requiring that
the metric in (3.2) degenerates correctly fixes y = 0 to be the location of the branes, that
is it identifies y with r in (3.13).

In conclusion to have an O8-plane it follows that l = 0 and as y → 0 the warp factor
must diverge as

e2A ∼ y−1/2 . (3.14)

Around y = 0 the metric and dilaton have the following behaviour

ds2 ∼ 1
√
y

(
ds2AdS4 +

1
4Dψ

2 + 1
F 2
0
g
(4)
ij (0, x)dxidxj

)
+√

ydy2 ,

e2ϕ ∼ y−5/2 .

(3.15)

One needs to further refine the warp factor divergence to the next order. In general expanding
the warp factor around y = 0 we have

e2A ∼ a1√
y
+ a2

√
y . (3.16)

For a2 = 0 it follows that F4 as given in (3.24) vanishes at y = 0. For a2 ̸= 0 we find that
there is a term proportional to the volume form on M4. Comparing to the explicit solutions
in [23] a2 plays the role of the parameter σ in section 4.1.4 there. We see that the value of
a2 changes the homology relation we will impose later since the flux does not vanish on the
boundary of M6. We reiterate that this is not the only option of a brane singularity that we
may use to cap off the space however this is the most interesting choice in order to connect
to the compactification of 5d SCFTs on a two-dimensional surface.

3.3 Polyforms

In order to perform equivariant localization we need to first pick an action on which we
wish to localize. There is an obvious U(1)-action given by the R-symmetry Killing vector
ξ = ∂ψ.7 The Killing vector ξ = ∂ψ satisfies ξ Dψ = 1, and contractions into the SU(2)

7Observe that we have taken a different normalization for ξ to that in [23] for which ξthere = 4ξhere.

– 8 –



J
H
E
P
0
8
(
2
0
2
4
)
2
1
8

structure forms vanish: ξ j = ξ ω = 0. As reviewed in section 2, we want to construct
various equivariantly closed polyforms i.e. polyforms Φ which satisfy dξΦ ≡ (d− ξ )Φ = 0.
This allows us to localize integrals of the top-form using the BV-AB fixed point formula.
In this section we will construct these polyforms and give generic formulae for the BV-AB
theorem applied to these polyforms in section 3.4 before using them later in section 4 to
study various choices for M6. In constructing it is necessary to separate the two cases of
l ̸= 0 and l = 0, though one can safely set F0 = 0 in the former case.

There are a number of different equivariantly closed polyforms that we want to construct.
Firstly, we need to perform flux quantization and therefore we need to equivariantly complete
the Page fluxes, secondly, we want to compute the free-energy of the various solutions,
this is computed via:

F = 16π3

(2πℓs)8
∫
M6

e8A−2ϕvolM6 . (3.17)

We therefore need to find a polyform with top-component e8A−2ϕvolM6 . Finally, there are
various probe branes which we can consider. These wrap calibrated cycles in the internal
space and depending on the type of cycle wrapped give rise to observables in the three-
dimensional dual SCFT such as conformal dimensions of BPS particles. We will focus on
D2-branes wrapping calibrated two-cycles [40] though it would be interesting to consider
other probe branes in the geometry.

3.3.1 The l ̸= 0 case

After a slightly tedious, but straightforward computation, one can compute all the various
polyforms outlined above. We suppress the details of the computations, presenting just the
final polyforms. The polyform for the free energy is

ΦF = e8A−2ϕ ⋆1 −
1
12

(
y3

F 2
0 e4Ay2 + l2

j ∧ j + ydy ∧Dψ ∧ j
)

+ 1
24

(
y2j + 1

2(F
2
0 y

4 + l2)dy ∧Dψ
)
− y

48

(
F 2
0 y

4

5 + l2
)
.

(3.18)

For the Page fluxes we find:

Φf2 = f2 −
y

6l (F
2
0 y

2 − 3l2e−4A) ,

Φf4 = f4 −
F0
6l2

(
y3j + F 2

0 y
5 + l2y

2 dy ∧Dψ
)
+ F0y

2

72l2 (F
2
0 y

4 + 3l2) ,

Φf6 = f6 −
1

12l3

(
y3
F 2
0 e4Ay2 + 3l2

F 2
0 e4Ay2 + l2

j ∧ j + (F 2
0 y

5 + 3l2y)dy ∧Dψ ∧ j
)

+ 1
144l3

(
2y2(F 2

0 y
4 + 9l2)j + (F 2

0 y
4 + 9l2)(F 2

0 y
4 + l2)dy ∧Dψ

)
− y

1296l3 (F
2
0 y

4 + 9l2)2 .

(3.19)

These polyforms will allow us to perform flux quantization and to compute the free energy.
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There are additional polyforms that one can construct. For example we have that there
is the closed global two-form:

Y = j + F 2
0 y

2 + l2y−2

2 dy ∧Dψ , (3.20)

with equivariantly closed the polyform

ΦY = Y − 1
6y
(
F 2
0 y

4 − 3l2
)
. (3.21)

Note that Φf4
2 ∼ y3Y . There is an analogous closed global four-form that we can construct,

given by

Z = j ∧ j + (F 2
0 y

2 + l2y−2)dy ∧Dψ ∧ j , (3.22)

with associated polyform

ΦZ = Z − 1
6

(
F 2
0 y

3 − 3l2

y

)(
2j + (F 2

0 y
2 + l2y−2)dy ∧Dψ

)
+ (F 2

0 y
4 − 3l2)2

36y2 . (3.23)

These will turn out to be useful when the geometry contains homologically trivial two-cycles,
see section 4.5.

3.3.2 The l = 0 case

Not all the polyforms in section 3.3.1 are well-defined for l = 0, in particular the Page
flux polyforms. When l = 0 it is easy to see that the B-field vanishes (i.e. becomes pure
gauge) and therefore the Page fluxes and Maxwell fluxes become equivalent. Moreover, it
follows that both the magnetic F2 and F6 fluxes become trivial, leaving only F4 and the
Romans mass as the non-trivial fluxes. The non-trivial four-form flux (which is closed and
therefore defines a conserved charge) is

F4 = −F0
2

[
1

F 4
0 e4Ay2

j ∧ j −
(
d(e−4AyDψ)− y−1dρ

)
∧
(

1
F 2
0
j + y2

2 dy ∧Dψ
)]

. (3.24)

The polyform for this flux is

ΦF4 = F4 −
F0
2

[
y

F 2
0 e4A

j + y

2dy ∧Dψ
]
+ F0y

2

8 . (3.25)

The polyforms for the free energy, Y , and Z, are obtained by taking the smooth l = 0
limit of the expressions above.

3.4 Localization

Physical observables such as the free energy, flux quantization and conformal dimensions of
dual operators are computed by integrating the closed polyforms from the previous subsection.
Using the fixed point formulae (2.4), these integrals are particularly easy to perform. From
our earlier discussion 3.2 there are two choices of boundary conditions we will consider. Either
the R-symmetry circle shrinks at e4A = y2 ̸= 0 or the boundary condition for an O8-plane
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(l = 0 only) where e2A = y = 0. In each case, y is fixed, and we use this in the localization
formulae. Notice that in the l = 0 case all the lower dimensional parts of the polyforms vanish
upon substituting y = 0. Given the form of the contributions from the boundary in (2.5) it is
clear that for the O8-plane there are no contributions from the boundary! We emphasize
that this is not generic, other boundaries would contribute, the O8-plane is special.

Therefore when using the localization formulae we need only sum over the contributions
from the shrinking R-symmetry circle. In the l = 0 case we present, for exposition of the
formulae, the general BV-AB results. The on-shell action reads

F = 1
24π2ℓ8s

−
∑
Σ0

1
d0

F 2
0

20
y5

ϵ1ϵ2ϵ3

∣∣∣∣∣
Σ0

+
∑
Σ2

1
d2

1
ϵ1ϵ2

∫
Σ2

[
y2

4πj +
F 2
0 y

5

20

(
c1(L1)
ϵ1

+ c1(L2)
ϵ2

)]

−
∑
Σ4

1
d4

∫
Σ4

[
1
F 2
0

1
(2π)2ϵ1

1
y
j ∧ j + y2

4πϵ21
j ∧ c1(L) +

F 2
0 y

5

20ϵ31
c1(L) ∧ c1(L)

] ,
(3.26)

For l = 0 there are only the 4-form fluxes, which read

N I = 1
(2πℓs)3

∫
ΓI

4

F4 =
F0
4πℓ3s

∑
Σ0

1
d0

y2

4ϵ1ϵ2

∣∣∣∣∣
Σ0

−
∑
Σ2

1
d2

∫
Σ2

[
1

2πϵ1
1
F 2
0 y
j + y2

4ϵ21
c1(L)

] ,
(3.27)

where recall that Σ0,2 denote fixed submanifolds inside ΓI4. The four-cycles ΓI4 are four-cycles
in M6, which are not entirely fixed by the action of ξ. On the other hand when they are
entirely fixed one has

N = 1
(2πℓs)3

∫
Σ4
F4 = − 1

(2πℓs)3
∫
Σ4

1
2F 3

0 y
4 j ∧ j . (3.28)

There is another observable that we will compute, namely the conformal dimensions of
certain BPS operators in the dual conformal field theory. These are given by the action of
D2-branes wrapped on calibrated two-cycles Σ2 in M6 [40]

∆(Σ2) =
1

(2π)2ℓ3s

∫
Σ2
F0e2Ay volΣ2 = 1

(2π)2ℓ3s

∫
Σ2
Y ′ , (3.29)

where
Y ′ = F0

[
y

F 2
0 e4A

j + y

2dy ∧Dψ
]
= −2ΦF4

2 , (3.30)

with ΦF4
2 the two-form part of the polyform for F4 in equation (3.25). The BV-AB formula

then gives

∆(Σ2) = − F0
2πℓ3s

∑
Σ0

1
d0

y2

4ϵ1
, ∆(Σ2) =

1
(2π)2ℓ3s

∫
Σ2

1
F0y

j , (3.31)

where the first expression holds when Σ2 is not entirely fixed by ξ, and the second when
it is. The localization of the l ̸= 0 polyforms from 3.3.1 follows in a similar way. Since
the expressions are not particularly insightful, we do not write them out here but rather
use them directly in the examples.
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4 Examples

In the following we specify the general formulae form the previous section on explicit examples
for the topology of M6. We will consider the following examples:

4.1 5d SCFTs on a Riemann surface,

4.2 5d SCFTs on a spindle,

4.3 3d SCFTs from massive deformed 3d quivers,

4.4 3d Chern-Simons theories from M-theory on a Sasaki-Einstein manifold,

4.5 3d Chern-Simons theories from suspension of a Sasaki-Einstein manifold.

4.1 D4-branes wrapped on a Riemann surface

As a first application of our proposal we study the near-horizon of the 5d SCFTs arising
from N D4-branes probing a type IIA background with an O8-plane and Nf D8-branes
compactified on a Riemann surface. The AdS4 supergravity solutions were studied in [40].
Recall that the 5d SCFTs are dual to the Brandhuber-Oz AdS6 solutions [39] which have
internal space a topological four-dimensional hemi-sphere HS4.

Consider M6 to be a four-dimensional hemi-sphere bundle over a Riemann surface with
projection map π : M6 → Σg. We view the hemi-sphere bundle as being embedded in the
R5
+ bundle L1 ⊕ L2 ⊕ R+, with the Li two complex line bundles. We can take coordinates

{z1, z2, x} on R5
+ with x ≥ 0 and the hemi-sphere is embedded as |z1|2 + |z2|2 + x2 = 1. The

north pole is then located at the point {z1 = z2 = 0, x = 1} and the boundary, which is
a three-sphere, is located at x = 0.

We take the total space to be a Calabi-Yau threefold with bundle:8

O(−p1)⊕O(−p2) → Σg , (4.1)

where we identify Li = O(−pi). In order for this to be Calabi-Yau the degrees of the line
bundles must satisfy p1+p2 = χ(Σg) = 2(1−g). We may then write the R-symmetry vector as

ξ =
2∑
i=1

bi∂φi , (4.2)

with each ∂φi rotating the line bundle Li defined above. The bi are then directly the weights
ϵi in the localization formulae (by definition). The first Chern classes of the line bundles
Li in terms of pi are ∫

Σg

c1(Li) = −pi . (4.3)

We now need to consider the fixed point set of ξ. This is simply a copy of Σg at the
pole of HS4, and we denote this as Σpg. There is also a boundary (from the perspective of

8Observe that in comparing with [40] we take p1 = −pthere and p2 = −qthere.
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the 6d internal metric) at y = 0 which is the boundary of the hemi-sphere and where all
contributions to the localization formulae vanish.

There are three four-cycles that we must quantize the flux over. The first one is the full
four-dimensional hemi-sphere HS4 itself. Performing the integration we have

N = 1
(2πℓs)3

∫
HS4

F4 =
1

2πℓ3s
1
b1b2

F0y
2
p

8 , (4.4)

from which we deduce9

yp = 4

√
πl3s
F0

b1b2N . (4.5)

The other four-cycles, which we denote by Ci4, are two-dimensional hemi-sphere bundles
over the Riemann surface. The two-dimensional hemispheres are given by the embedding
HS2,i ⊂ Li ⊕ R+ and the four-cycles are constructed by fibering these over the Riemann
surface. One finds

Ni =
1

(2πℓs)3
∫
Ci

4

F4 =
1

(2πℓs)3

(∫
Σp

g

−2π
bi

1
2F0yp

j +
(2π
bi

)2 F0y
2
p

8 pi

)
, (4.6)

where the second term has been integrated using (4.3). Moreover we find that N1 = −p2N
and N2 = −p1N . This is a result of cohomological considerations, see appendix A. Then we
may use this to find an expression for the integral of j over the fixed Riemann surface as∫

Σp
g

j = 32
√
π5ℓ9sF0b1b2N3(b1p2 + b2p1) . (4.7)

Finally the free energy is given by

F = − 16π3

(2πℓs)8
(2π)2

b1b2

(
y2p
24

∫
Σp

g

j − 2π
b1b2

F 2
0 y

5
p

240

(
p1
b1

+ p2
b2

))
(4.8)

= −16
√
2π

5n1/20

√
b1b2(b1p2 + b2p1)N5/2 .

Given that the Killing spinors have weight 1
2 under ξ (in our conventions) the coefficients bi

satisfy the constraint b1 + b2 = 1, see [16] for the analogous statement for S4 bundles. We
may therefore write them in terms of a single parameter ε

b1 =
1
2(1 + ε) , b2 =

1
2(1− ε) . (4.9)

Similarly, since p1 + p2 = 2(1 − g) we may parameterize them in terms of a new variable
z (valid for g ̸= 1)

p1 = (1− g)(1 + κ−1z) , p2 = (1− g)(1− κ−1z) , (4.10)

9Since we are solving for a quadratic there is of course the negative root too. The two choices give the same
final results, up to a choice of orientation. It is not hard to see that they are identical after the redefinition
y → −y which just interchanges the choice of pole of the hemi-sphere we are working with.
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with κ the extrinsic curvature κ = 1 for g = 1, κ = 0 for g = 1 and κ = −1 for g > 1. In
terms of these variables the free energy reads:

F = − 8
√
2π

5κn1/20

√
(1− ε2)(g − 1)(εz − κ)N5/2 . (4.11)

This is an off-shell result and should be extremized for the parameter ε, finding

ε± = κ±
√
κ2 + 8z2
4z . (4.12)

We need to keep the ε+ solution only since the ε− gives a negative free energy.10 After
extremization one finds the beautiful on-shell free energy

F = 2π(1− g)N5/2

5κn1/20

(√
κ2 + 8z2 − 3κ

)√√√√
1−

κ
(√

κ2 + 8z2 + κ
)

4z2 . (4.13)

This matches with the field theory result obtained in [40, 41] after a little rewriting and
gives a derivation of the off-shell gravitational block formula of [41] for the Riemann surface
directly in massive type IIA.

We can also use our localization formulae to compute the conformal dimensions of certain
BPS operators which correspond to D2-branes wrapping two-cycles. For the three obvious
two-cycles in the geometry we find:

∆(HS2,1) = − F0
2πℓ3s

y2p
4b1

= 2b2N = (1− ε)N ,

∆(HS2,2) = − F0
2πℓ3s

y2p
4b2

= 2b1N = (1 + ε)N , (4.14)

∆(Σpg) = − 1
(2π)2ℓ3s

∫
Σp

g

1
F0y

j = −2(b1p2 + b2p1)N = 2(1− g)
κ

(zε− κ)N .

These are the general off-shell results plugging in the on-shell value of ε = ε+ gives

∆(HS2,i) =
(
1∓

√
κ2 + 8z2 + κ

4z

)
N ,

∆(Σpg) =
(1− g)
2κ

(√
κ2 + 8z2 − 3κ

)
N ,

(4.15)

with the ∓ signs corresponding to i = 1, 2 respectively. The on-shell expressions match [40].
Note that requiring these to be positive fixes |z| > 1 for κ = 1 and |z| > 0 for κ = −1. The
torus case can be obtained by setting κ = 0 and g = 1 in both expressions with 1−g

κ → 1. This
is indeed the correct field theory constraints and it is satisfying that it pops out from gravity.

10One can raise the point of whether there is a metric for both of these choices of ϵ. The logical claim would
be that there is an obstruction to finding a metric with the ϵ− solution. A putative way of discerning this is
by studying the conformal dimensions of BPS particles obtained by wrapping D2 branes on two-cycles. From
the results below (see (4.14)) we find that the ϵ− solution gives two positive conformal dimensions and one
negative. The latter is then signalling an obstruction to finding explicit metrics.
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Before we wrap up this section it is useful to write the analogous results of the conformal
dimensions if we took the ε = ε− solution to the extremal problem. We would have found:

∆(HS2,i) =
(
1∓ κ−

√
κ2 + 8z2
4z

)
N ,

∆(Σpg) =

(g − 1)
(
3κ+

√
κ2 + 8z2

)
2κ

N .

(4.16)

One can see that the sign of ∆(Σpg) and ∆(HS2, i) are different despite all being required to
be of the same (positive) sign. This then gives an obstruction to the existence of metrics
with ε = ε−. Recall that a similar obstruction has been observed in the geometric dual
of I/c-extremization [8, 42], it would be interesting to further refine these statements on
obstructions to the existence of metrics.

4.2 D4-branes wrapped on a spindle

Having considered D4-branes wrapping a constant curvature Riemann surface we now turn
our attention to D4-branes wrapping a spindle.11 A spindle is the two-dimensional weighted
projective space Σ = WCP1

[n+,n−]. It is topologically a two-sphere but with conical deficit
angles 2π(1− n±) at the poles and first appeared in supergravity theories in [44, 45] with
many other solutions in various theories appearing since. The explicit supergravity solution
corresponding to D4-branes wrapped on a spindle was constructed in [41]. As shown in [46]
there are different types of spindle solutions distinguished by the mechanism to preserve
supersymmetry: known as the twist and anti-twist. In the twist case setting the two orbifold
parameters to be trivial, n+ = n− = 1, we recover a two-sphere and indeed this reduces
to the results of the previous section. In [41] a gravitational block formula for the free
energy of the dual SCFT was conjectured which we will derive from our results. Recently
this was recovered in [19] by using equivariant localization in 6d U(1)2 gauged supergravity
with an AdS4 × Σ ansatz.

Similarly to the previous section, we consider a four-dimensional hemi-sphere orbibundle
over a two-dimensional space, in this instance a spindle. As before we view the hemi-
sphere via the embedding HS4 ⊂ L1 ⊕ L2 ⊕ R+ ⊂ R5. In the twist class the fibration
of the two line orbibundles over the spindle O(−p1) ⊕ O(−p2) → Σ is Calabi-Yau, which
enforces the condition p1 + p2 = n+ + n−. To impose the anti-twist one should instead
take p1 + p2 = n+ − n−. This may be unified by introducing the sign σ = ±1 such that
p1 + p2 = n+ + σn− with the twist given by σ = 1 and the anti-twist given by σ = −1.

The main difference in the localization in comparison with the Riemann surface analysis
resides in the fact that the R-symmetry vector can now also rotate the spindle, and therefore
the R-symmetry vector takes the form

ξ =
2∑
i=1

bi∂φi + ε∂φ0 , (4.17)

11One can also replace the spindle with a topological disc [43] which are different global completions of
the same local solution. We will not concern ourselves with discs in this work though the extension is
straight-forward once one accepts introducing an additional boundary contribution.
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where ∂φi rotate the Li and ∂φ0 the spindle. Therefore the weights at the fixed points are
identified with ϵi = bi, and ϵ3 = ∓ε/n±. The fixed point set is qualitatively very different
from before as we now have isolated fixed points (located at the poles of the spindle and
hemi-sphere) rather than a fixed two-dimensional surface. Consequently, even though the
setups seem closely related, the localization analysis is fairly different as we shall see now.

Let us first quantize the flux. We get a copy of HS4/Zn± at each pole of the spindle
through which we can compute the fluxes12

N± = 1
(2πℓs)3

∫
HS4/Zn±

F4 =
1

2πℓ3s
1
n±

1
b±1 b

±
2

F0y
2
±

8 . (4.18)

Moreover the homologies of these cycles are related, see appendix A and [47]. We have

n+N+ = n−N− ≡ N , (4.19)

such that13

y+ = 4

√
πl3s
F0

b+1 b
+
2 N , y− = 4σ

√
πl3s
F0

b−1 b
−
2 N . (4.20)

The flux quantization through other cycles is not needed to obtain the free energy (this is
to be contrasted with the Riemann surface computation), and so we postpone performing
this for the moment.

We can directly plug the expressions for y± back into the free energy. This equation is
quite different from the section before since we are now localizing on isolated fixed points
rather than fixed surfaces,

F = − 1
24π2ℓ8s

F 2
0

20

(
1
n+

y5+
b+1 b

+
2 (−ε/n+)

+ 1
n−

y5−
b−1 b

−
2 (ε/n−)

)
(4.21)

= 32
√
2π

15n1/20

(b+1 b
+
2 )3/2 − σ(b−1 b

−
2 )3/2

ε
N5/2 .

This derives the conjectured gravitational block formula in [41] directly in massive type IIA.
The ambiguity in which gluing to pick is then related to the sign of the fixed points y±, this is
similar to what happens in the explicit solutions in the 5d and 4d cases [46, 48]. It would be
interesting to understand any obstructions to finding explicit metrics for these different choices.

To proceed with the extremization it is useful to identify14

b±i = bi +
ε

2

(
± pi
n+n−

+ n+ − σn−
2n+n−

)
, b1 + b2 = 1 , (4.22)

12This is the same flux equation as (4.4) but doubled and with an orbifold factor d = n±. Note that the
subscript p there denoted the pole of the hemi-sphere, while now the ± denote the poles of the spindle. These
fixed points are still at the pole of the hemisphere. To be fully precise we should use the subscript p,±, but
we drop the p for ease of notation.

13We see that there is a sign ambiguity with the roots of y±. Without loss of generality we can take y+ to
be positive and then we introduce a relative sign between the two roots. With hindsight comparing with the
literature [41] we identify this sign with σ, however we emphasize that this is not dictated by the above.

14Notice that we have 2b±
i = ∆±

i when comparing with the notation of [41].

– 16 –



J
H
E
P
0
8
(
2
0
2
4
)
2
1
8

which can be read off from the results in [47] or [41]. More concretely one can realize this
by noting that this solves the conditions:

b±1 + b±2 = 1± ε

n±
, b+i − b−i = pi

n+n−
ε . (4.23)

The former conditions set the overall charge of the holomorphic volume form to be 1 as
required and the latter are equivalent to (3.24) of [47] which define the gluing of the different
patches used to build M6.

One should now extremize this off-shell free energy over ε and bi subject to the con-
straint (4.22). Since this has been done already in [41] (see also [19]) we will not give the
extremization explicitly and refer the interested reader to those works. Upon extremization
this gives the free energy for the compactifcation of the 5d N = 1 USp(2N) gauge theory
with Nf = 8 − n0 massless hypermultiplets in the fundamental representation and one
hypermultiplet in the antisymmetric representation of USp(2N) on a spindle.

Having recovered the off-shell gravitational block formula for the free energy we return
to the quantization of the fluxes. There are other four cycles through which we can quantize
the flux, and while they were not needed for the free energy computation, they are interesting
quantities in their own right. The cycles we want to consider are the total space of the
HS2,i ⊂ Li ⊕ R+ bundle over the spindle and denoted by Ci4. The localization formula gives

Ni =
1

(2πℓs)3
∫
Ci

4

F4 =
1

2πℓ3s
F0
8

(
1
n+

y2+
b+i (−ε/n+)

+ 1
n−

y2−
b−i (ε/n−)

)
, (4.24)

and after simplifying we find

N1 =
b−2 − b+2

ε
N = p2

n+n−
N , N2 =

b−1 − b+1
ε

N = p1
n+n−

N . (4.25)

This is the same result as in the M5-brane case [16] and can be explained using cohomological
arguments similar to those in appendix A.

Before finishing the section we can study certain BPS operators in the dual field theory
which correspond to D2-branes wrapping calibrated cycles. There are two types of calibrated
cycle, one is the two cycle consisting of the spindle at the pole of the hemi-sphere and the
second type are the two-dimensional hemispheres HS2,i discussed above at a pole of the
spindle. This is similar to the M5-brane case as explained in [49]. For the D2-branes wrapping
a copy of the spindle at the pole of the HS4, the off-shell conformal dimension is

∆(Σp) = − F0
2πℓ3s

(
1
n+

y2+
4(−ε/n+)

+ 1
n−

y2−
4(ε/n−)

)
= −2b

−
1 b

−
2 − b+1 b

+
2

ε
N . (4.26)

For the second type of BPS operator we have

∆(HS2,i
± ) = F0

2πℓ3s
y2±
4b±i

= 2b
±
1 b

±
2

b±i
N . (4.27)

An obvious obstruction to finding explicit metrics is to require these conformal dimensions to
be positive, however it is clear that since the y± always appear squared this will not fix the
sign ambiguity noted in footnote 13. We leave understanding these points to future work.
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4.3 HS2 bundle over B4

We now turn our attention to hemi-sphere bundles over a four-dimensional base with the
requirement that M6 is complex, see section 4 of [23]. We will impose that there is an
O8-plane which implies that we consider M6 as the total space of an HS2 bundle over a
4-dimensional base B4, with HS2 the two-dimensional hemi-sphere15

HS2 ↪→M6 → B4 . (4.28)

Recall from section 3.2 that this implies that we necessarily need to take l = 0. While B4
could in principle be any compact manifold, for M6 to be a complex manifold B4 is either
Kähler-Einstein or the product of two Riemann surfaces which can be seen by using the
arguments of [26, 50]. Explicit solutions of this type have been constructed in [23] and further
studied in [21]. This section recovers and generalizes their results.

We assume that the vector field ξ rotates just the HS2 fibre and leaves B4 fixed. The
known solutions are constructed by fibring the hemi-sphere bundle using the anti-canonical
line bundle L over B4. Note that since we are considering the hemi-sphere in our localization
computations, we have a spacetime with a boundary. As explained earlier, the general
formulae as written in section 3.4 do not contain such boundary contributions, however
since the boundary is for an O8 plane located at y = 0 and the U(1) action acts freely on
the boundary, the boundary terms do not contribute and we may use those results. Recall
that this requires the warp factor e2A to degenerate in a certain way, and is what fixes the
boundary conditions. Our localization locus consists of a single fixed point at the pole of
the hemi-sphere, denoted yp and the vanishing boundary contribution at y = 0. The fixed
point at the pole is actually a fixed copy of B4 with normal bundle L.

Following [16] we define

cα =
∫
Γα

j , nα =
∫
Γα

c1(L) , (4.29)

where Γα form a basis for the 2-cycles of the copy of B4 at the pole, and L is its the normal
line bundle. Moreover the weight at the pole is ϵ = 1 the sign fixed by our choice of c1(L).
Using this we can quantize the flux. The first possibility is to consider four-cycles Cα4 which
are the total space of the HS2 bundle over Γα, giving Nα

Nα = 1
(2πℓs)3

∫
Cα

4

F4 =
F0
4πℓ3s

[
1
2π

1
F 2
0 yp

cα −
y2p
4 nα

]
, (4.30)

from which we can deduce an expression for cα in terms of Nα and nα

cα = πF0yp
2 (F0y

2
pnα − 16πℓ3sNα) . (4.31)

Then we can also quantize the flux through the full fixed B4 giving Np

Np =
1

(2πℓs)3
∫
B4

p

F4 = − 1
(2πℓs)3

1
2F 3

0 y
4
p

⟨c, c⟩

= 1
2⟨N,n⟩ −

F0y
2
p

64πℓ3s
⟨n, n⟩ − 4πℓ3s

F0y2p
⟨N,N⟩ ,

(4.32)

15We refer interchangeably to the hemi-sphere as a disc (compact with boundary) since they are topologically
identical. The hemi-sphere notation makes explicit the choice of boundary condition.
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where we used (4.31) in the second line. To keep the equations succinct it is useful to
define the bracket ⟨c, c⟩ ≡ Iαβcαcβ and similarly for other quantities in the following. Here
(Iαβ) is the inverse of the intersection form for B4, see appendix A. Finally as shown in
appendix A, the cycles are not independent such that we get some topological relation
between the various fluxes which reads16

Np = −⟨N,n⟩+M . (4.33)

Combining the two previous relations for Np, we can solve for yp, giving the solutions

yp = 4

√
πℓ3s
F0

3⟨N,n⟩ − 2M ±
√
(3⟨N,n⟩ − 2M)2 − ⟨N,N⟩⟨n, n⟩

⟨n, n⟩
. (4.34)

Inserting these results for the yp into the free-energy localized form we obtain two positive
solutions

F = − 1
24π2ℓ8s

[
1

(2πF0)2yp
⟨c, c⟩ −

y2p
4π ⟨c, n⟩+

F 2
0 y

5
p

20 ⟨n, n⟩
]

= 2yp
3ℓ2s

⟨N,N⟩ −
F 2
0 y

5
p

1920π2ℓ8s
⟨n, n⟩ (4.35)

= 16
√
2π

15n1/20

1
⟨n, n⟩3/2

√
3⟨N,n⟩ − 2M ±

√
(3⟨N,n⟩ − 2M)2 − ⟨N,N⟩⟨n, n⟩

×
(
3⟨N,N⟩⟨n, n⟩+ (3⟨N,n⟩ − 2M)

(
3⟨N,n⟩ ±

√
(3⟨N,n⟩ − 2M)2 − ⟨N,N⟩⟨n, n⟩

))
,

where the first line is just the localization (3.26), then we replaced cα in the second line, and
yp in the last line, giving our final result. In summary this is the result for a general topology
on B4. Picking a topology amounts to specifying the N,n-brackets and we will consider
different examples shortly in the following and compare with known solutions. Note that
the parameter M generalizes the results in [21]. We also note that there are two different
choices, both giving a well defined free energy for suitable constraints on the bracket. The
comments about obstructions may, once again be repeated virtually verbatim.

Finally we can also compute the conformal dimensions using (3.31). We can either
consider a D2 brane wrapping the fibre HS2 itself giving

∆(HS2) = F0
2πℓ3s

y2p
4 = 2

⟨n, n⟩

(
3⟨N,n⟩ − 2M ±

√
(3⟨N,n⟩ − 2M)2 − ⟨N,N⟩⟨n, n⟩

)
,

(4.36)

or alternatively wrapping Γα which results in

∆(Γα) =
1

(2π)2ℓ3s
cα
F0yp

(4.37)

= 2
⟨n, n⟩

(
(3⟨N,n⟩ − 2M)nα +

(
⟨n, n⟩ ±

√
(3⟨N,n⟩ − 2M)2 − ⟨N,N⟩⟨n, n⟩

)
Nα

)
.

16When comparing with [21, 23] the parameter M is related to having a non-zero value of σ in the notation
of [23].
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4.3.1 Kähler-Einstein base

For our first example we consider B4 = KE+
4 to be a positively curved Kähler-Einstein

four-manifold. Since we have taken a Kähler-Einstein base the fluxes are proportional to
the Chern numbers Nα = knα. Then we have

⟨n, n⟩ = M̄ , ⟨N,n⟩ = kM̄ , ⟨N,N⟩ = k2M̄ , (4.38)

where M̄ is a topological invariant (the integral of the Ricci form squared), and we fur-
ther define

k = N

h
. (4.39)

Plugging these in the general expression for the free energy and setting the flux number
M = 0 straightforwardly gives

F = 32
√
2π

5n1/20

(
3± 2

√
2
)
M̄

(
N

h

)5/2
. (4.40)

This matches exactly the results obtained in [21]. Additionally the conformal dimensions read

∆(HS2) =
2
(
3± 2

√
2
)

h
N , ∆(Γα) =

4
(
1±

√
2
)

h
Nnα , (4.41)

which have not appeared in the literature previously. Note that for the − sign that ∆(Γα) < 0,
one suspects that this then indicates an obstruction to finding a metric in this case, whilst
the other case seems pathology free.

4.3.2 Product base

The second option is to take B4 to be the product of two Riemann surfaces: B4 = Σg1 × Σg2 .
Then the brackets are

⟨n, n⟩ = 2χ1χ2 , ⟨N,n⟩ = χ1N2 + χ2N1 , ⟨N,N⟩ = 2N1N2 . (4.42)

It is then straightforward to insert these in the general formula (4.35) to obtain the free
energy. We secretly assumed that our base had a positive overall curvature which implies
that at least one of the Riemann surfaces should be a sphere for B4 to be positively curved
and our computations to apply.

In particular considering the product of two spheres, χ1 = χ2 = 2 and setting M = 0,
we can parametrize the fluxes in terms of a single variable N1 = (1 + z)N , N2 = (1− z)N ,
with |z| < 1 and obtain

F = 32π
5n1/20

√
3±

√
8 + z2

(√
8 + z2 ± (2 + z2)

)
N5/2 . (4.43)

Again this result matches with the one of [21]. We also have

∆(HS2) =
(
3±

√
8 + z2

)
N ,

∆(S2
1) = 2

(
2− z ±

√
8 + z2

)
N , ∆(S2

2) = 2
(
2 + z ±

√
8 + z2

)
N ,

(4.44)

where the copies of the S2 from the base are taken at the pole of the HS2 fibre. Similarly to
the Kähler-Einstein case, with the minus sign, the ∆(S2

i ) become negative and one would
suspect that this indicates an obstruction to finding explicit metrics for this solution.
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4.4 S2 bundle over B4

Next let us consider an S2 bundle over a four-dimensional base B4. In this case we will
no longer force the presence of an O8-plane which accounts for considering an S2 rather
than HS2 and allows us to consider the l ̸= 0 class. Moreover we are no longer able to
gauge away l, as one can do when both F0 and l are non-zero, and we will see that we
in fact need to extremize over it.

To make things more tractable we will restrict to the massless case and make some
comments about the massive case at the end of this section. Recall that solutions of
this form can be constructed by reducing certain Sasaki-Einstein manifolds from M-theory.
Additionally one can consider the massive deformation of these theories by turning on a
non-trivial Romans mass, see [24, 51–53].

Since we are considering an S2 bundle over a four-dimensional base the fixed point locus
corresponds to the base B4 at the two poles of the sphere. We use the anti-canonical line
bundle L of B4 to fibre the S2 over B4. We assume that the R-symmetry vector ξ acts only
on the S2 such that the fixed point set is precisely copies of B4 at the north and south pole
of the sphere, which we call BN,S

4 . The normal bundles are then

LN = L−1 , LS = L . (4.45)

As explained in the previous section, albeit for the hemi-sphere, there are two types of
two-cycles to consider. One is the S2 fibre and the other is a two-cycle in B4 at either of the
poles. We denote by b2 the 2nd Betti number on B4 and define ΓN,Sα to be the two-cycles on
B4 at the north and south pole of the sphere respectively. These cycles are not independent,
following [16] (see also appendix A), we have

[ΓSα]− [ΓNα ] = nα[S2
fibre] ∈ H2(M6,Z) (4.46)

where
nα ≡

∫
Γα

c1(L) ∈ Z . (4.47)

The four-cycles have a similar structure, they are the copies of B4 at the two poles, BN,S
4

and four-cycles constructed by taking the sphere bundle over one of the cycles Γα which we
denote by Cα. Again these cycles are not independent and we have the relation

[BS
4 ]− [BN

4 ] =
b2∑
α=1

nα[Cα] . (4.48)

Analogously to the definition of cα in (4.29), we define

cN,Sα ≡
∫
ΓN,S

α

j . (4.49)

Using the homological relation (4.46) with the equivariantly closed form ΦY , (3.21) we find
the constraint

cSα − cNα = l2π

ϵ

( 1
yN

− 1
yS

)
nα , (4.50)
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where ±ϵ is the weight of ξ at the north and south pole respectively, and the charge of the
Killing spinor fixes ϵ = 1. This is analogous to the constraint (4.29) in the previous section,
though different due to the bundle structure. One could also integrate the equivariantly
closed four-form ΦZ over the four-cycles and use the homology relation (4.48) and would
reassuringly find that this is satisfied given (4.50).

Next let us consider the quantization of the fluxes. In the massless case it is not difficult
to see that the four-form flux vanishes and we can choose the gauge in which the B field
vanishes too. We therefore have two types of fluxes to quantize, the two-form f2 and the six
form f6.17 Let us first quantize the two-form flux. To avoid a proliferation of flux integers
called n we denote these quantized fluxes associated to the two-form f2, by k. In the field
theory there is a relation between these and the Chern-Simons levels of the dual field theory,
see for example [53, 54]. We have

k2 = 1
2πℓs

∫
S2

fibre

f2 =
l

2ϵℓs

[ 1
yN

− 1
yS

]
,

kN,Sα = 1
2πℓs

∫
ΓN,S

α

f2 =
cN,Sα

2lℓsπ
.

(4.51)

We see that we may rewrite the constraint (4.50) as

cSα − cNα = 2lℓsπk2nα ⇔ kSα − kNα = k2nα . (4.52)

The quantization conditions fixes the cN,Sα in terms of the flux parameters kN,Sα (associated
to D6-branes wrapping four-cycles or KK-monopoles in the M-theory setup). Note that using
the constraint (4.52) one sees that for integer nα, k2, and kNα necessarily kSα ∈ Z as required.
We use the definition of k2 to fix one of the roots, without loss of generality we solve for yN :

yN = lyS
l + 2ℓsk2ySϵ

. (4.53)

Next let us compute the quantization of f6. We have

N = − 1
(2πℓs)5

∫
M6

f6

= l4k22π
2(yS − yN ) + l2k2ϵπ(cNy2N − cSy

2
S) + ϵ2(c2Sy3S − c2Ny

3
N )

64l3ϵ3π4ℓ5s
.

(4.54)

We need to solve this for yS however we should be smart about this. We redefine the
parameter l as

l = −LySk2ℓs , (4.55)

17There is a subtlety here that we are sweeping under the carpet slightly. Since we may fix a gauge where
B = 0 one can use the Maxwell fluxes to quantize the fluxes. Rather than computing a whole new set of
polyforms we will set F0 = 0 in our Page flux polyforms and since the polyforms use the gauge in which B = 0
if we set F0 = 0 these will be equivalent. This still leaves possible the option of turning on a closed term in
B and computing the Page flux with this choice. Notice that this choice is made in [54] for example. This
ambiguity leaves a gauge freedom which we will encounter later and is related to the parameter l not being
fixed by anything.

– 22 –



J
H
E
P
0
8
(
2
0
2
4
)
2
1
8

with L the new free parameter. We find

N = y2S(⟨kN , kN ⟩L2 + ⟨kS , kS⟩(L− 2)2 + ⟨kN , kS⟩L(L− 2))
8L(L− 2)3ℓ4sk2π2

, (4.56)

where for ease of presentation we have written N in terms of kSα rather than nα using (4.52)
and set ϵ = 1 as required by supersymmetry. We may finally compute the free energy, to
save presenting the messy intermediate results we just give the result

F = 4π
3

√
2k32L3(L− 2)3

⟨kN , kN ⟩L2 + ⟨kS , kS⟩(L− 2)2 + ⟨kN , kS⟩L(L− 2)N
3/2 . (4.57)

We now need to extremize over the remaining free parameter L. It is not hard to see that
the condition to solve is the cubic18

⟨kN , kN ⟩L2(2L− 1) + ⟨kS , kS⟩(L− L)2(2L− 3) + 2⟨kN , kS⟩L(2− 3L+ L2) = 0 . (4.58)

One can solve this simply using Mathematica, obtaining a result in terms of cubic roots of
the parameters k2, kNα , and nα. It is not very instructive to present the roots, though one
can show that a single root exists since the discriminant of (4.58) is negative.

Having computed the general on-shell free energy we can compare to the reduction
of Y p,k(KE4) to massless type IIA. We will follow the conventions of [55] for Y p,k(KE4).
The free energy is

F =
√

2π6
27Vol(Y p,k(KE4))

N3/2 . (4.59)

We can extract out the volume from [55],

Vol
(
Y p,k(KE4)

)
= Vol(KE4)

2π2

3 · 44
x2 − x1

p(x2 − 1)(1− x1)
(x32 − x31) , (4.60)

where the x’s are solutions of

0 = 3p3x31 + 2p2(6b− 5p)x21 + p(18b2 − 28bp+ 11p2)x1 + 4(3b3 + 4bp2 − 6b2p− p2) ,
0 = 3p3x32 + 2p2(p− 6b)x22 + p(18b2 − 8bp+ p2)x2 + 4b(3bp− 3b2 − p2) .

(4.61)

The dictionary between our results and those in [55] are,19

k2 ≡ p, kSα = k

h
nα ≡ bnα , kNα = (b− p)nα , Vol(KE4) =

π2

2 ⟨n, n⟩ , (4.62)

where h = gcd(nα). We find a perfect match.
Observe that we have found an extremal problem for a class of Sasaki-Einstein manifolds

using equivariant localization. This is of the same spirit as the use of equivariant localization
for odd dimensional manifolds in [56]. One uses a second U(1) to reduce along, then localizes

18Another extremal value is L = 0 or L = 2 however these will lead to a vanishing free energy and so we can
discount them.

19Note that the north pole here is the south pole in [55] and vice versa.
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with the remaining U(1). It would be interesting to consider more general reductions, for
example one could write a seven-dimensional Sasaki-Einstein manifold as a fibration of La,b,c

over a round two-sphere and then reduce along one of the non R-symmetry directions. One
would then not obtain a Kähler-Einstein base as we have assumed above. One can also consider
turning on a non-trivial Romans mass. Our localized integrals can be used to study this case
however one finds the need to solve difficult algebraic equations which we were unable to solve
without resorting to numerics. This is certainly an interesting class of solutions and it would
be interesting to see if there is a change of parameters which makes the problem tractable.

4.5 Suspension of a Sasaki-Einstein manifold

An interesting class of 3d N = 2 SCFTs can be constructed by considering D2-branes probing
the suspension of a Sasaki-Einstein manifold in the presence of D8-branes. The dual field
theories are 3d Chern-Simons theories with the level specified by the Romans mass, see for
example [30, 53]. We will first consider the case where the Sasaki-Einstein manifold is the
round five-sphere S5 before considering a more general Sasaki-Einstein manifold. Note that
this class keeps both l and F0 non-zero.

4.5.1 Round five-sphere

Consider first the suspension of the round five-sphere, S(S5). There are two fixed points
at the poles of the suspension, which we call the North and South pole respectively. We
may write the R-symmetry vector as

ξ =
3∑
i=1

bi∂φi , (4.63)

where the ∂φi generate the U(1)3 toric action of the S5. Consider the three linearly embedded
four-spheres S4

i ⊂ S which are invariant under the action of ξ. These are all trivial in
homology such that we necessarily have

0 =
∫
S4

i

ΦZ = (2π)2ϵi
ϵ1ϵ2ϵ3

[
(F 2

0 y
4
N − 3l2)2

36y2N
+ (F 2

0 y
4
S − 3l2)2

36y2S

]
. (4.64)

Since the two terms are positive definite each must vanish individually and therefore

|yN | = |yS | =
(
3l2

F 2
0

)1/4

. (4.65)

Note that we can consider three linearly embedded two spheres also: S2
i ⊂ S(S5) which

are invariant under ξ and are again trivial in homology. Integrating the closed two-form
Y over these cycles gives

0 =
∫
S2

i

ΦY = − π

3bi

[ 1
yN

(F 2
0 y

4
N − 3l2)− 1

yS
(F 2

0 y
S
N − 3l2)

]
, (4.66)

which is true after application of (4.65).
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Next consider the quantization of the fluxes. We only have a six-cycle on which we
may integrate our fluxes and therefore we introduce the quantum number N counting the
number of D2-branes as

N = 1
(2πℓs)5

∫
M6

f6 =
(2π)3

1296l3(2πℓs)5ϵ1ϵ2ϵ3

[
yN (F 2

0 y
4
N + 9l2)2 − yS(F 2

0 y
4
S + 9l2)2

]
. (4.67)

Restricting to a positive N we fix yN = −yS > 0. The quantization of N and the Romans
mass imposes

ℓ−1
s = 21/937/18n1/90 N2/9π1/3(ϵ1ϵ2ϵ3)2/9

l1/3
, F0 =

n0
2πℓs

. (4.68)

It is now trivial to use our results to compute the free energy, finding

F = (2π)3

240ϵ1ϵ2ϵ3
16π3

(2πℓs)8
[
yN (F 2

0 y
4
N + 5l2)− yS(F 2

0 yS + 5l2)
]

= 9
52

1/331/6n1/30 N5/3π(ϵ1ϵ2ϵ3)2/3 .
(4.69)

We can now extremize the above functional over the ϵi subject to the constraint
∑3
i=1 ϵi = 1,

one finds the symmetric solution

ϵi =
1
3 . (4.70)

Inserting this into the off-shell free energy we obtain:

F = 21/331/6n1/30 π3

5Vol(S5)2/3
N5/3 , (4.71)

where Vol(S5) = π3. This is indeed the correct result for the free energy of D2-branes probing
the suspension of the round five-sphere.

Notice that the extremization that we are performing is nothing other than extremizing
the volume of the five-sphere. In order to rewrite this in a more amenable form we note that
the normalization of the Reeb vector field of the S5 in comparison to our localizing Killing
vector is such that the spinor has charge 3 under the Reeb and 1 under ξ. Therefore in order
to compare with the canonically normalized Reeb vector we should identify

bi = 3ϵi , (4.72)

where bi are the mixing parameters of the Reeb vector field. With these conventions the
off-shell volume of the S5 is

Vol(S5)[bi] =
π3

b1b2b3
, (4.73)

subject to the constraint
∑3
i=1 bi = 3. It therefore follows, in the S5 case, that we have

recovered that a-maximization = F-maximization [30] since the off-shell free energy can
be written as

F = 21/331/6n1/30 π3

5(Vol(S5)[bi])2/3
N5/3 , (4.74)

and extremizing over b is equivalent to maximizing the ‘a’-central charge of the 4d par-
ent theory.
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4.5.2 Quasi-regular Sasaki-Einstein

Having recovered the S(S5) case we turn our attention to studying the more general S(SE5)
case. We restrict to the quasi-regular Sasaki-Einstein case in the following. The Reeb vector
field is once again aligned with the U(1)R vector field ξ which we use to localize, with the
factor of proportionality once again 3. Recall a basic fact of Sasaki-Einstein geometry that
the Reeb vector field has constant square norm. This implies that the action generated by
the Reeb vector field is locally free on the suspension away from the poles. Hence, the fixed
point contribution is entirely from the singular points at the two poles of the suspension.
Since, for a generic base, the poles of the suspension are badly singular one cannot use
the previous localization formulae with the line bundle decomposition and one needs to
use the more general result (2.2).

Consider now two-cycles on the base, in S(SE5) these are trivial in homology and
therefore we find, analogously to the S5 case that

|yN | = |yS | =
(
3l2

F 2
0

)1/4

. (4.75)

As in the previous case there are no two-cycles nor four-cycles over which we need to integrate
the fluxes and we are left with a single flux integral to perform. We have

N = 1
(2πℓs)2

∫
S(SE5)

f6

= 1
1296(2πℓs)5

[
yN (F 2

0 y
4
N + 9l2)2

e(NN )
+ yS(F 2

0 y
4
S + 9l2)2

e(NS)

]

= 1
9(2πℓs)5

[
yN

e(NN )
+ yS
e(NS)

]
.

(4.76)

We have kept the normal bundles at the two poles arbitrary for the moment. The quantization
conditions become

ℓ−1
s = 2 · 37/18πn1/90 N2/9

E
, F0 =

n0
2πℓs

, (4.77)

where
E = 1

e(NN )
− 1
e(NS)

. (4.78)

We may similarly compute the free energy which gives

F = π3

15(2πℓs)8

[
yN (F 2

0 y
4
N + 5l2)

e(NN )
+ yS(F 2

0 y
4
S + 5l2)

e(NS)

]

= 8π3yN
15(2πℓs)8

[ 1
e(NN )

− 1
e(NS)

]
,

(4.79)

and inputting the quantization conditions we have

F = 72× 31/6n1/30 π3

5E2/3 N5/3 . (4.80)
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We now want to understand what E is computing. Let us take NN = −NS for simplicity.
Then for a Calabi-Yau cone we have that20

E = 2433Vol(SE5) , (4.81)

and we obtain the final result

F = 21/331/6π3

5Vol(SE5)2/3
n
1/3
0 N5/3 . (4.82)

Strictly this is an off-shell result and one needs to vary the volume Vol(SE5) with respect to
the Reeb vector field. We have therefore recovered in the general quasi-Regular case that
a-maximization = F-maximization [30].

We note that there seems to be an interesting option to have a suspension where the
poles of the cone have different singularities. One can view this as having a flop between
the two poles. It is not clear that such a metric exists but it would be interesting to study
whether this is obstructed.

5 Conclusions and future directions

Using equivariant localization we have constructed the geometric dual of F-maximization
in massive type IIA. There is a rich structure of topologies for the internal manifolds M6,
beyond those for the closely related AdS5 solutions in M-theory [26] recently studied using
localization in [15, 16], that we have discussed. One of the key differences of our work with
theirs is the presence of boundary terms in the internal space. For a subset of examples we
have introduced boundary conditions associated to the presence of an O8-plane. Rather than
the localizing circle shrinking at this locus it remains of finite size (in the internal manifold)
and therefore leads to a boundary contribution. For the O8-plane we saw that there is no
contribution to the free energy, flux quantization and conformal dimensions of a class of
BPS operators, however this is not generic and other choices of defect branes, which are
used to cap off the space, would give contributions.

Motivated by this observation, by using equivariant localization, we may be able to study
more complicated brane intersections which are used to find a compact internal space. The
general AdS4 solutions studied here can also be capped off with an O4-plane or O6-plane,
[23], it would be interesting to extend our analysis to these examples too. Moreover, this
could open up avenues for studying more general irregular punctures, those of type 3, in the
holographic duals of Argyres-Dougles theories recently studied in [58–62]. Finding explicit
supergravity solutions seems exceedingly difficult, yet if one can understand concretely the
degeneration structure at such a singularity one can utilize a similar logic to this paper.

As we have emphasized repeatedly throughout, though the equivariant localization may
allow for a particular choice of topology it is not immediate that explicit metrics can be
found realizing these topologies. It is therefore interesting to consider obstructions to such

20One can make this more precise by using the results of [6, 56, 57]. One can understand the factors of 3
due to the same normalization of the Reeb vector field in the previous S5 example, 3 of the 2’s due to the
formula for the volume and one factor of the 2’s since E double counts the volume when NN = NS .
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metrics in an analogous way to how the Futaki invariant gives an obstruction to the existence
of Sasaki-Einstein metrics, [63]. It is natural to conjecture that requiring that the conformal
dimensions of wrapped D2-branes are all positive gives rise to such an obstruction, however
it is unclear whether this is sufficient or necessary. One could therefore consider studying
more refined observables for example the eigenvalue density of the matrix model associated
to the dual field theory, see for example [64, 65], and flavour central charges associated to
the defect branes [40, 66, 67].

Observe that as a by-product of our construction we have constructed the consistent
truncation of the general AdS4 solutions to four-dimensional Einstein-Maxwell supergravity.21

To see this clearly one should gauge the R-symmetry vector Dψ with the 4d graviphoton, and
in the polyforms for the fluxes wedge with the graviphoton field strength so that the form
degree of the total polyform is simply the form degree of the top component. One could then
imagine using the polyforms constructed here and the polyforms for 4d Einstein-Maxwell [15]
to construct polyforms for the full 10d solution. In this way one could study black holes in these
massive type IIA backgrounds directly and make contact with the field theory results in [68].

Note that though our supergravity solutions preserve supersymmetry there is no re-
quirement to actually have any supersymmetry to use equivariant localization, rather one
just needs some symmetry. There are often non-supersymmetric sister AdS solutions of
certain classes of supersymmetric AdS solutions. For AdS7 in massive type IIA there are the
non-supersymmetric sister solutions of [69] for example, and for the AdS4 Sasaki-Einstein
solutions in M-theory there are various different non-susy families, for example the Englert
solutions [70] and the Pope-Warner solutions [71, 72]. There are in fact non-supersymmetric
solutions which are sister solutions of the supersymmetric solutions studied here [73]. Given
that the solutions have a very similar structure, in particular a U(1) symmetry, one could
apply equivariant localization techniques to these non-supersymmetric cases too.

So far all the supergravity equivariantly localized solutions have used an even-dimensional
localizing space. Notice that in section 4.4 we have actually localized over an odd-dimensional
space. The construction uses an additional circle to first reduce on and produce an even-
dimensional space over which one can now localize. There are various tools, beyond this
reduction, that one may use to localize over odd-dimensional spaces [56, 57]. It would be
interesting to extend these techniques to these odd-dimensional examples. Moreover one
could further extend to including higher derivative corrections and therefore go beyond the
large N limit from supergravity. We hope to return to some of these future directions soon.
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A Some cohomology and homology

In the main text we have considered a number of different fiber bundles with 2d hemi-sphere
and 4d hemi-sphere fibers. In this section we will describe some of the various homology
relations that we have used. Many of the results can be extracted from [74] and slight
modifications, but for clarity we discuss these results and their applications to our setup.
For a clear exposition of S2 and S4 bundles see appendix C of [16].

Consider a six-manifold M6 which is the total space of a disc bundle over a four-manifold
B4 with projective map π : M6 → B4. We consider the disc bundle inside the R3

+ bundle
L ⊕ R+ → B4 where L is a complex line bundle. We may introduce coordinates (z, x) on
R3
+, with x > 0 and the disc defined by |z|2 + x2 = 1.

We may define the Thom class for the bundle. Let ρ(r) be a radial function which is
1 at the centre of the disc and 0 on the boundary. This then makes dρ = ρ′(r)dr a bump
form on R with total integral 1. Further, define the global angular form on the disc to be
η. Then the Thom class may be written as22

ΦThom = 1
2πd (ρ(r)η) . (A.1)

This is compactly supported in the vertical direction, is closed and integrates to 1 when
restricted to the fiber. Let s : B4 → M6 be the zero section, then we have

s∗ΦThom = −e , (A.2)

with e the Euler class of the bundle [74]. It then follows that the Poincaré dual of B4 is

Ψp ≡ PD[B4] = ΦThom . (A.3)

Let Γα be a basis for the free part of H2(B4,Z) and let {Ψα} be the Poincaré duals of this basis:
Ψα = PD[Γα] ∈ H2(B4). Further let the dimension of H2(B4,R) be b2 ≡ dim(H2(B4,R)).
Given any closed two-form, τ on B4 we may expand it in terms of this basis via

τ =
b2∑
α=1

ĈαΨα . (A.4)

Alternatively we may expand by defining the constants Cα where

Cα ≡
∫
Γα

τ . (A.5)

22We thank Topology Boy for clarifying this and other points in this appendix with us.
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Using the definition of the Poincaré dual we may rewrite this as

Cα =
∫
B4
τ ∧Ψα =

b2∑
β=1

QαβĈ , (A.6)

where Q is the intersection form

Qαβ ≡
∫
B4

Ψα ∧Ψβ = [Γα] ∩ [Γβ ] . (A.7)

Recall that this is an integer-valued unimodular symmetric matrix. It follows that we may write

∫
B4
τ ∧ τ =

b2∑
α,β=1

QαβĈαĈβ =
b2∑

α,β=1
IαβCαCβ , (A.8)

where I = Q−1. This allows us to expand the first Chern class of a line bundle over B4 as

c1(L) =
b2∑
α=1

n̂αΨα , (A.9)

with n̂α ∈ Z which is used in section 4.3. It is also useful to define the pairing ⟨·, ·⟩ for
two-forms. Let τ and ω be two two-forms with expansions:

τ =
b2∑
α=1

ĈαΨα , ω =
b2∑
α=1

N̂αΨα , (A.10)

then ∫
B4
τ ∧ ω =

b2∑
α,β=1

QαβĈαN̂β =
b2∑

α,β=1
IαβCαNβ ≡ ⟨C,N⟩ . (A.11)

The pairing is used in section 4.3 to simplify expressions.
Consider now a closed form-form on M6. Using the Thom class we can expand the

four-form F4 as

F4 = ΦThom ∧
b2∑
α=1

N̂αΨα +M ṽol(B4) , (A.12)

where ṽol(B4) is normalized to integrate to 1 over B4. Note that whereas the contribution
from the Thom class vanishes on the boundary of the disc, the second term does not and
signifies that additional branes are present along the boundary. We therefore find that

(2πℓs)3N =
∫
B4
F4

=M + N̂α

∫
B4
s∗(ΦThom) ∧Ψα

=M − N̂α

∫
B4
e ∧Ψα

=M − ⟨N,n⟩ .

(A.13)
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Next consider two-cycles in M6 defined by taking Γα ⊂ B4 evaluated at the centre of
the disc. By the Thom isomorphism these have Poincaré duals

PD[Γα] = π∗Ψα ∧ ΦThom ∈ H4(M6) . (A.14)

Integrating this over B4 at the pole we have∫
B4
π∗Ψα ∧ ΦThom = nα , (A.15)

and therefore we find the homology relation

[Γα] = nα[HS2
fibre] . (A.16)

Note that this holds on closed forms which vanish on the boundary of the disc.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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