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Infection Inspection: using 
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Antibiotic resistance is an urgent global health challenge, necessitating rapid diagnostic tools to 
combat its threat. This study uses citizen science and image feature analysis to profile the cellular 
features associated with antibiotic resistance in Escherichia coli. Between February and April 2023, we 
conducted the Infection Inspection project, in which 5273 volunteers made 1,045,199 classifications of 
single‑cell images from five E. coli strains, labelling them as antibiotic‑sensitive or antibiotic‑resistant 
based on their response to the antibiotic ciprofloxacin. User accuracy in image classification reached 
66.8 ± 0.1%, lower than our deep learning model’s performance at 75.3 ± 0.4%, but both users and 
the model were more accurate when classifying cells treated at a concentration greater than the 
strain’s own minimum inhibitory concentration. We used the users’ classifications to elucidate which 
visual features influence classification decisions, most importantly the degree of DNA compaction 
and heterogeneity. We paired our classification data with an image feature analysis which showed 
that most of the incorrect classifications happened when cellular features varied from the expected 
response. This understanding informs ongoing efforts to enhance the robustness of our diagnostic 
methodology. Infection Inspection is another demonstration of the potential for public participation in 
research, specifically increasing public awareness of antibiotic resistance.

Antibiotic resistance is an escalating global health concern, necessitating the development of new technologies 
such as rapid tests for antibiotic-resistant bacteria to mitigate its impact. Rapid identification of which bacte-
rial species is causing an infection and its resistance profile has been shown to both optimize antibiotic use and 
enhance patient  outcomes1,2. Currently, typical diagnostic tests rely on time-consuming bacterial culture growth, 
taking a minimum of 12–48 h to produce results. Alternative rapid tests focus on identifying resistance-associated 
genes, but these may not always directly correlate with phenotypic  resistance3–5. Antibiotic resistance poses a 
significant threat to individual and public health by potentially rendering common antibiotics ineffective in 
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treating bacterial infections, but public awareness of the use of antibiotics and the impact of antibiotic resistance 
remains  incomplete6.

Citizen science is a research method that integrates public outreach with data collection, typically with 
members of the public collecting or analysing data related to the natural world as part of a collaborative project 
with professional  scientists7,8. Citizen science collaborations between volunteers, often called citizen scientists, 
and research teams can play an important role in educating the public about scientific concepts and have been 
instrumental in recognizing complex patterns within biological data, starting with research in ecology and 
extending to various biological fields, including protein folding, DNA sequence alignment, electron microscopy, 
and  microbiology9–11. These projects enable individuals of diverse backgrounds and expertise levels to contribute 
to scientific data collection and analysis, empowering them to actively advance and acquire knowledge in vari-
ous disciplines. Public involvement broadens the spectrum of available data, perspectives, and ideas, leading to 
more comprehensive and innovative research outcomes. Successful examples, such as the Great Backyard Bird 
Count and the Merlin Bird ID  app12,13, demonstrate citizen science’s potential to enable large-scale data collec-
tion and analysis, raise awareness, inspire future scientists, and promote environmental and civic responsibility.

The public can be effectively engaged in citizen science projects using various strategies, including hosting 
events, utilizing social media platforms, partnering with educational institutions and community organizations, 
and offering training and educational resources, but most of these approaches engage only 10s–100s of indi-
viduals. Online platforms which simplify access for large-scale, global public engagement in targeted or diverse 
citizen science projects include  Zooniverse14,15,  SciStarter16, and  Foldit17 amongst  others18. For participants, 
Zooniverse offers a unique and engaging way to learn about science, participate in real research, and connect 
with like-minded  individuals19. Zooniverse is currently the largest and most popular citizen science platform, 
with more than 1 million  volunteers14.

A previous project hosted on Zooniverse, Bash the  Bug11, successfully engaged citizen scientists to look at 
images of bacterial growth and identify their resistance to antimicrobial drugs. This demonstrated how citizen 
science can be used for antimicrobial resistance research and the development of novel diagnostic tools. We 
were interested in what insights could be gained from a citizen science collaboration with volunteers providing 
human interpretations of our datasets, which consist of thousands of micrographs of antibiotic-sensitive and 
antibiotic-resistant Escherichia coli cells. We are developing a diagnostic method that relies on a microfluidic 
device for the direct capture and identification of  bacteria20 and associated antibiotic resistance from clinical 
samples using microscopy, with the goal of providing a result in less than an hour by conducting the test on cells 
from the clinical sample, eliminating lengthy culturing steps. We recently developed a deep-learning model which 
can classify individual E. coli cells as ciprofloxacin-sensitive or resistant with 80% accuracy (which results in 
high-confidence classifications of populations of bacteria) based on morphological changes to the sub-cellular 
 structure21. This approach could provide direct information about a strain’s antibiotic susceptibility and the 
heterogeneity of response within a population, which is lost in genotype-based assays.

The continued development of these single-cell, imaging-based classification methods requires learning about 
bacterial heterogeneity, and an understanding of why certain cells within a sample are misclassified is essential. 
We therefore developed a project on Zooniverse called Infection Inspection to leverage the power of citizen 
scientists towards optimising our novel method, and to engage the public in an antibiotic resistance-focused 
project. We first trained volunteers to recognize cellular phenotypes associated with ciprofloxacin-sensitive 
and ciprofloxacin-resistant E. coli, and then used their classifications to learn which features facilitate accurate 
classification, and which lead to ambiguity and misclassifications. Our aim was to use their classifications and 
misclassifications to see if humans were able to identify more nuanced features than our machine, to make our 
machine learning-based classifier more robust to atypical phenotypes, whilst simultaneously educating the citizen 
scientists about antibiotic resistance. We found that our machine learning model picks up a greater breadth of 
features, but by investigating the common features of images, we identified the key features necessary for E. coli 
to be classified as ciprofloxacin-sensitive or resistant.

Methods
Image dataset
The project dataset was made up of 49,074 individual images of ciprofloxacin-treated E. coli cells generated for 
previous  work21 (Table 1). All bacteria had been chemically fixed and stained using 4′,6-diamidino-2-phenylin-
dole (DAPI) as the nucleic acid stain and Nile Red as the membrane stain. The initial dataset was composed of 
11,074 256 × 256 Red–Green–Blue (RGB) images of E. coli cells from 5 clinical strains (EC1, EC2, EC3, EC5, 
and EC6, reported  previously21), with clinical strains defined as ciprofloxacin-resistant (minimum inhibitory 
concentration [MIC] > 0.5 mg/L) or ciprofloxacin sensitive (MIC ≤ 0.25 mg/L) using European Union Council 
on Antimicrobial Susceptibility Testing (EUCAST)  breakpoints22. The minimum inhibitory concentration is a 
standard metric of antimicrobial resistance and is the lowest concentration of antibiotic that inhibits growth of 
bacteria in an overnight  culture23. The MICs of the strains were calculated empirically by E-test strip (Liofilchem), 
or, where the MIC exceeded the maximum range of the strip, by a 1:1.5 broth dilution of the  antibiotic21. In the 
initial dataset, all strains were treated at 10 mg/L ciprofloxacin for 30 min; this concentration, well in excess 
of the EUCAST breakpoint, was chosen to induce an antibiotic response within the short, 30-min treatment 
period. EC4 was excluded because its MIC is equal to the treatment concentration, and we define the expected 
phenotype based on whether the treatment concentration was greater than or less than the MIC (see “Accuracy 
and participation analysis”). A second dataset of 38,000 images included two of the E. coli strains (EC1 and EC3) 
treated at 9 concentrations ranging above and below their MICs (from 16 to 0.001 mg/L ciprofloxacin) for 30 min.

All bacteria were imaged in an automated workflow as agarose-mounted samples in phosphate buffered 
saline (PBS) on a Nanoimager-S fluorescence microscope (Oxford Nanoimaging) using the multiple acquisition 
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capability of the microscope with autofocusing on each field of view. The image segmentation for background 
removal was done with an optimised model of Mask-RCNN adapted from a standard  implementation21,24,25.

Development of infection inspection with the Zooniverse project builder workflow
Infection Inspection was designed as a citizen science project on the Zooniverse  platform14 using the Project 
 Builder26, a free-to-use web browser application enabling research teams to build and contribute projects to the 
site. During the building process, we developed an initial workflow, tutorial, and project field guide. Datasets 
were added to the project as .png images using the Subject Set upload tool within the Zooniverse Project Builder.

Infection Inspection was submitted for internal review in August 2022 and went to beta reviewers in Septem-
ber 2022. We wanted volunteers to classify our images of E. coli as “Sensitive” or “Resistant.” We encouraged users 
to make their best classification, even if they were unsure (Supplemental Methods: Infection Inspection Tutorial). 
A label of “Image Processing Error” was added to account for a small number of images where a problem in the 
imaging pipeline made the image impossible to classify, such as a membrane with no DNA, DNA and membrane 
channel mismatch, or a segmentation error (Supplemental Methods: Infection Inspection Tutorial). In response 
to beta feedback, we improved our project terminology and added explanations to the field guide and instruc-
tions for how to classify ambiguous or unusual cells (Supplemental Methods: Infection Inspection Field Guide).

During the beta test, we noticed that user accuracy did not improve with the number of classifications done. 
To help users learn from their own misclassifications, we implemented user feedback for a set of 30 tutorial 
images. These images had a ground truth classification of “Sensitive,” “Resistant,” or “Image Processing Error” 
and users would receive feedback on their accuracy immediately after submitting a classification for one of these 
images. Tutorial images were shown to users with decreasing probability: 0.5 for the first 5–10 images, declining 
to 0.25 by 20 images, and 0.05 after 50 images. The retirement limit was set to 20, meaning that each image was 
considered complete once it was classified by 20 unique volunteers.

The Zooniverse platform allows anyone to volunteer for projects and does not require any specialized train-
ing or qualifications beyond the project’s tutorial and Field Guide (Supplemental Methods). The tutorial and 
field guides were written in line with guidance on communicating with the public on antibiotic resistance from 
the Wellcome  Trust27. We solicited and implemented feedback from non-experts, public engagement experts, 
and a secondary school biology teacher on the language used in the project before submitting for beta testing.

Accuracy and participation analysis
On completion of the project on 10th May 2023, the project data file which included all classifications was 
downloaded in .csv format from the Zooniverse site. Only classifications performed from go-live (7th Feb 2023 
17:40 UTC) to full dataset completion (10th May 2023 21:40 UTC) were included in the analysis. Image identi-
fiers were matched back to the original strain and metadata including known MIC, treatment concentration, 
clinical antibiotic susceptibility phenotype, and predicted classifications were assigned to each data point. The 
predicted classification was defined as the expected response of the strain to the antibiotic. If the MIC was less 
than the treatment concentration, the expected phenotype was sensitive. If the MIC was greater than the treat-
ment concentration, the expected phenotype was resistant. For instance, if the MIC for a particular strain was 
0.03 mg/L and the treatment concentration was 10 mg/L, that strain was categorized as sensitive. Conversely, 
if the MIC was 72 mg/L and the treatment concentration was 10 mg/L, the strain was labelled as resistant. All 
usernames were anonymised to ‘User_1, _2, etc.’. For the accuracy determination, any classifications of images 
that were part of the training/feedback dataset or classifications of “Image processing error” were removed. Sum-
mary statistics were performed in R (version 4.2.3) using the R package  vegan28 (version 2.6-4) and plotted with 
 ggplot229 (version 3.4.4). Accuracy was graded as whether the user’s classification matched the image’s predicted 
classification as defined above. We report accuracies with the 95% confidence interval of the mean, by the Wald 
method with continuity correction.

We used the Gini coefficient to characterise the extent of inequality in the distribution of classifications by 
volunteers. The Gini coefficient derives from a metric for income  inequality30 and has been applied to measure 
inequality in volunteer contributions  previously19. We calculated the Gini coefficient with the following formula:

Table 1.  Escherichia coli clinical isolates used for the Infection Inspection project. Strains are listed, along 
with their year of collection; ciprofloxacin susceptible, resistant, or intermediate (Cip S/R/I); ciprofloxacin 
MIC (mg/L); number of images; correct classifications and total classifications; Zooniverse user accuracy (95% 
confidence interval); and model accuracy (95% confidence interval). All strains are Escherichia coli isolated 
from bloodstream infections in the United Kingdom. EC1 and EC3 have many more images than the other 
strains because we included images from samples treated at multiple antibiotic titrations (see Fig. 2b).

Strain Year Cip S/R/I Cip MIC (mg/L) Number of images Correct/total classifications ZN accuracy Model accuracy

EC1 2016 S 0.008 15,900 187,729/280,469 66.9 ± 0.2% 84.9 ± 0.6%

EC2 2015 S 0.03 3883 41,013/53,251 77.0 ± 0.4% 81.6 ± 1.2%

EC3 2018 I 0.5 21,529 238,057/377,612 63.0 ± 0.2% 71.0 ± 0.6%

EC5 2017 R 8 2882 41,732/45,599 91.5 ± 0.3% 86.2 ± 1.3%

EC6 2014 R 72 4877 42,650/68,575 62.2 ± 0.4% 76.3 ± 1.2%
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Image feature analysis
CellProfiler31,32 (version 4.2.6) was used to extract image features from the dataset. The RGB .tif images were split 
into grayscale single-color images using the ColorToGray module. Then, the IdentifyPrimaryObjects module 
was used with default settings to identify the Membrane object from the red channel. For the Nucleoid object, 
two-class Otsu thresholding was used with default settings because it segmented diffuse nucleoid regions more 
accurately. Intensity measurements for each object were measured using the MeasureObjectIntensity module. 
Size and shape measurements were extracted using the MeasureObjectSizeShape module. All measurement data 
were exported using CellProfiler to an SQLite  database33 and selected measurements were converted to .csv files 
with DB Browser for  SQLite34 (version 3.12.2).

Further image feature analysis was completed in Python and R scripts, available at https:// github. com/ Kapan 
idisL ab/ infec tion_ inspe ction. Images were excluded from analysis if more than half of their classifications were 
“Image Processing Error.” An accuracy threshold of 0.5 was chosen to compare images that were most frequently 
classified correctly or incorrectly. For example, if a cell’s predicted classification was Sensitive, based on its MIC 
and the treatment concentration, and it was classified as Sensitive by more than 50% of users, it would be labelled 
as Correct Sensitive. A cell from the same strain and treatment condition that was classified as Resistant by more 
than 50% of users would be labelled as Incorrect Sensitive. This yielded four sets of images whose features could 
be compared: Correct Sensitive, Correct Resistant, Incorrect Sensitive, and Incorrect Resistant. Images were 
called Most Correct if they were classified correctly with a ratio greater than 0.94, corresponding to roughly 
19 correct classifications of 20. By categorising images based on the consensus of the users’ classifications, we 
minimised the impact of misclassifications by individual users.

For feature comparisons between groups of cells displaying ciprofloxacin-resistant or sensitive phenotypes, we 
performed two-sided t-tests with Bonferroni corrections for multiple comparisons using the  ggpubr35 (version 
0.6.0) and  Rstatix36 (version 0.7.2) packages. We compared the distributions of the values associated with cellular 
phenotypic features to a normally distributed Random Noise feature generated by numpy.random.normal37. A 
principal component analysis with 2 principal components was performed using the 7 measured image features 
and the Scikit-learn PCA  function38. Before analysis, all feature measurements were normalised with Standard 
Scaler from Scikit-learn38. For the dataset with multiple ciprofloxacin concentrations, the principal component 
analysis with 2 principal components was performed in R with the  prcomp39 function from the stats library 
(version 4.1.3) and plotted with  ggplot229 (version 3.4.3).

Independently, we extracted the feature importance values from a Random Forest classifier with 100 trees 
and a minimum of 3 samples per leaf that had been trained using Scikit-learn38 on images that were randomly 
allocated to a 75–25 train-test split and then scaled with Standard Scaler. The Random Forest classifier was evalu-
ated by cross-validation by the Mean Absolute Error and was then applied to the test dataset to make predictions.

For each image, we calculated SHAP (SHapley Additive exPlanation) values for each feature using Kernel 
SHAP, a model agnostic implementation for  Python40. This method, which derives from game theory approaches, 
measures an importance value for each feature for each image classification, and has been shown to correspond 
well to intuitive human feature impact estimates.

Ethics approval
This work was reviewed by the University of Oxford’s Research Governance, Ethics and Assurance team (Oxford, 
UK). The bacterial cells imaged and shared for classification were obtained as part of a separate study with ethical 
approval (London—Queens Square Research Ethics Committee, REC ref: 17/LO/1420), analysed anonymously 
as part of this project and thereby not subject to the Department of Health’s UK Policy Framework for Health and 
Social Care Research (2017), and not requiring further sponsorship, research ethics review, nor Health Research 
Authority (HRA) approval. Citizen scientists who contributed classifications to the Infection Inspection project 
were deemed contributors and not research participants.

Results
The Infection Inspection project engaged a large cohort of users
Infection Inspection was launched on the Zooniverse platform on the 7th of February 2023 (Fig. 1a) and was 
promoted via multiple platforms, including webpages, print magazines, in-person outreach events, and emails 
for Zooniverse users. An initial dataset comprising 30 training and 5000 test images was available to users and 
was completed within just 18 h. A second dataset of 6074 images was subsequently uploaded and was completed 
in 72 h; then a final dataset of 38,000 images was uploaded and was completed in 35 days (840 h). A total of 5273 
unique users performed at least one image classification and overall, 1,045,199 classifications were made between 
the project launch date and May 10th, 2023. After removing classifications of the training dataset, a total of 4927 
users remained, covering 1,003,588 classifications (Fig. 1b). The median number of classifications performed 
by users was 38, however the variation in number of classifications per user was large, with 56 users performing 
> 2000 individual classifications. The maximum classifications undertaken by any given user was 46,289.

Engagement with the project correlated with the upload of new data, with spikes in classifications occurring 
within 1–2 days after upload (Fig. 1c). Among the 20 most engaged users, return to the project was common, 
with these users returning to the project on several occasions throughout (Fig. 1d). The Gini coefficient for our 
user participation was 0.81, which means that the most prolific volunteers contributed a large proportion of our 
project’s classifications, or our project attracted many casual users, or both. The Gini coefficient for Infection 
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Figure 1.  Engagement of users with Infection Inspection. (a) Task page for users of Infection Inspection. Users 
were presented with an image of a bacterial cell and were asked to select from one of three options to classify 
the image. Accessing the field guide provided examples of each cell type as exampled in the subset panel. (b) 
Distribution of the number of classifications by user (n = 5273 users, n = 1,045,199 classifications). Each dot 
represents an individual user that performed a classification on at least 1 non-training set image. The box 
represents the middle 50% (IQR) of the users and the mid-line indicates the median number of classifications. 
(c) The distribution of classifications performed on each day of the project. Red arrows indicate the time of each 
data batch upload. (d) Density mapping of activity for each of the top 20 users (by number of classifications) 
over the course of the project highlighting the differences in patterns of contribution. Day 1 on the x-axis 
represents the first day that the user engaged with the project.
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Inspection is close to the mean Gini coefficients of the most popular ecology (0.80), astronomy (0.82), and 
transcription (0.81) projects on Zooniverse and higher than the average Biomed project score of 0.67 based on 
a previous  analysis19.

Volunteers classified E. coli cellular phenotypes with accuracy comparable to deep learning
We assessed the accuracy of user classifications in distinguishing bacteria as either ciprofloxacin-resistant or 
sensitive, based on the ciprofloxacin treatment concentration relative to the Minimum Inhibitory Concentration 
(MIC) for each strain. When we aggregated the data from all three dataset uploads, users achieved an accuracy of 
66.4 ± 0.2% in classifying sensitive cells (Fig. 2a). The accuracy for classifying resistant cells was similar, standing 
at 67.3 ± 0.2% (Fig. 2a). We also employed the same images to test a deep-learning  model21. Compared to the 
volunteers, the model was less accurate in classifying resistant cells (62.5 ± 0.9%; Fig. 2a), but more accurate in 
classifying sensitive cells (88.2 ± 0.4%).

Given that the number of classifications performed by users varied, we examined whether there was a cor-
relation between accuracy and the total number of images classified. Despite having ten users who classified 
> 10,000 images, we observed no significant relationship between accuracy and the total number of images 
classified (Fig. S1a). Additionally, the duration of user activity on the project did not influence classification 
accuracy (Fig. S1b).

Classification accuracy depended on the antibiotic concentration used for treatment
In the third dataset uploaded, we introduced cells from an experiment in which two strains (EC1 and EC3) were 
treated with varying concentrations of ciprofloxacin to see how the proportion of cells classified as resistant is 
related to the MIC of the strain. Some of the concentrations used were below the MIC, and thus we expected 
to see no significant phenotypic changes; on the other hand, some of the concentrations were above the MIC, 
and should produce phenotypic changes. These treatments allowed us to investigate whether both users and 
our deep learning model could detect changes in cell structure based on a graduated treatment concentration. 
For one of the strains (EC1), users correctly classified the cellular changes close to 75% of the time for all treat-
ment concentrations except the one closest to the known MIC of the strain (Fig. 2b). At this specific treatment 
concentration (0.01 mg/L), accuracy in identifying the response dropped to nearly 25%. A similar trend was 
observed in the model’s predictions. While accuracy was highest at treatment concentrations of 0.1 mg/L and 
above, the greatest confusion was encountered when the treatment concentration approached the MIC of the 
strain (Fig. 2b). This pattern of increased confusion was also observed for the second strain (EC3), which had 
a different MIC (0.5 mg/L).

Differences in DNA morphology led to the most confusion in correctly classifying images
Some images were more frequently misclassified than others. In the first uploaded dataset of ciprofloxacin-
sensitive and ciprofloxacin-resistant cells treated at 10 mg/L, the classification accuracy histograms are skewed, 
with many images almost always classified correctly, and others almost never (Fig. 3). This suggested that, while 
many cells displayed the expected cellular phenotype when exposed to ciprofloxacin, there were sub-populations 
with atypical features.

For this specific analysis, images were assigned to the “Incorrect” class if they were classified with less than 
50% accuracy (1755 images), and otherwise to the “Correct” class (7074 images). Cells were excluded from the 
image feature analysis if they were labelled as an “Image Processing Error” by more than half of the users who 
classified the image; this removed 230 images.

To explore why some cells were more frequently misclassified than others, human-interpretable image fea-
tures were measured with  CellProfiler31,32. Seven features were chosen for their potential biological relevance 
to the ciprofloxacin response (Fig. S2). To characterize the compaction, heterogeneity, and quantity of DNA, 
we measured the number of DNA regions per cell, the mean and standard deviation of the integrated intensity 
of the DNA regions, the mean standard deviation of the DNA intensity, and the area fraction occupied by the 
nucleoid regions. The cell shape was described by the form factor of the membrane and the major axis length 
was used to measure the cell size.

The image features of sensitive and resistant cells that were most often classified correctly were all significantly 
different (Corrected t-test p < 0.001) (Fig. S2). The image features of Correct Sensitive and Incorrect Resistant 
(truly sensitive) and of Correct Resistant and Incorrect Sensitive (truly resistant) were also significantly different 
from each other (p < 0.001) (Fig. S2). However, when comparing the features of cells that were most frequently 
classified incorrectly, there was no significant difference in the mean integrated intensity of the DNA regions 
(p = 1), the mean standard deviation of intensity of the DNA regions (p = 0.34), and Nucleoid Area Fraction 
(p = 1) between sensitive and resistant bacteria (Fig. 4), consistent with the images of these cells having features 
that are too similar to distinguish.

Images classified correctly and incorrectly clustered separately with distinct feature properties
To understand the cellular phenotypes represented by our image features, a principal component analysis was 
performed. The principal component analysis allowed us to visualise the phenotypic variance in our image data-
set by projecting the feature measurements of each cell into a 2-dimensional space such that images with more 
similar features would cluster together. In addition, the loading vectors of each feature revealed the magnitude 
of its contribution to the ciprofloxacin-sensitive and ciprofloxacin-resistant phenotypes.

The variation in the first principal component was primarily driven by the number of DNA regions, the 
standard deviation of the integrated intensity of the DNA regions, and the cell major axis length; the second 
principal component was driven by the nucleoid area fraction and the mean integrated intensity of the nucleoid 
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(Fig. 5a). Images of sensitive or resistant bacteria that were in the correct class clustered separately, with some 
overlap (Fig. 5a), while images in the incorrect class clustered in the centre, with greater variation in the second 
principal component (Fig. 5b). This suggested that images that are frequently classified incorrectly have interme-
diate phenotypes, with DNA regions and cell lengths that were not clearly demonstrating signs of ciprofloxacin-
resistance or sensitivity.

For images where there was greater than 94% accuracy in classification (“Most Correct”; 2438 images), there 
was a distinct clustering observed with less overlap to the remaining correct images (Fig. 5c). This highlighted 
that images are more likely to be consistently classified correctly when they exhibit features that distinguish them 
well from the opposite class.

Figure 2.  Classifications of images by Infection Inspection users. (a) An aggregated plot of how accurate 
Zooniverse users or the model were at categorising an image into either the resistant or sensitive category based 
on the expected phenotype for the given sample. Error bars indicate the 95% confidence interval. DL model 
denotes the classifications of the deep learning model. (b) The line plots visualise the percentage of images that 
were correctly categorised as either resistant or sensitive as expected based on the treatment concentration, 
by the users or the model. Error bars indicate the 95% confidence interval. Each subplot shows the data for a 
different E. coli strain with the treatment concentration on the x-axis. The known, predetermined MIC for each 
strain is indicated on the plot using arrows.
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To compare the classifications of users to our deep learning model, we highlighted images where the user 
consensus differed from the model’s classification (Fig. 5d). These images are found almost exclusively in the 
centre of the plot, in between the Most Correct images, and have more variation in the second principal com-
ponent. This indicates that the model is using more nuanced features from the second principal component to 
classify images that the users are more likely to misclassify.

Ciprofloxacin sensitive and resistant cells portrayed different features of importance with 
respect to correct classification
We investigated which features might be most influential for ciprofloxacin phenotype classification (either by 
volunteers or a machine learning model) by computing SHAP contributions (SHapley Additive exPlanations)40. 
For the SHAP analysis, a Random Forest classifier was trained to classify images from our dataset as sensitive or 
resistant using our image feature measurements. An additional feature of normally distributed random num-
bers was added to determine which features held significance greater than random noise. This model achieved 
a Mean Absolute Error of 0.15 ± 0.01 on a holdout dataset. The trained Random Forest model was then used to 
compute SHAP feature contribution scores for each image in the test holdout dataset. The average importance 
of a feature can be measured by the mean absolute value of the SHAP contribution for all images in the dataset.

Using this approach, and when looking at the entire dataset of sensitive and resistant images, the most impor-
tant features were the DNA mean standard deviation of intensity (median SHAP = 0.109, t-test with Bonferroni 
correction for multiple comparisons p < 0.0001), number of DNA regions (median SHAP = 0.085, p < 0.0001), 
and nucleoid area fraction (median SHAP = 0.081, p < 0.0001) (Fig. 6). All of the measured features contributed 
more to the classification task than the normally distributed random noise (p < 0.0001).

Different phenotypes developed in resistant E. coli treated with high concentrations of 
ciprofloxacin
In addition to the stark phenotypic differences between ciprofloxacin-treated sensitive and resistant bacteria 
treated at the same antibiotic concentration, our titration dataset revealed that an E. coli strain (EC3) with inter-
mediate resistance (MIC 0.5 mg/L) showed different features when treated at 8-, 16-, and 32-times the MIC (4, 
8, and 16 mg/L, respectively) for 30 min compared to 2- and 4-times MIC (1 and 2 mg/L, respectively) (Fig. S3). 
This matched the trend in classification accuracy for EC3 at these concentrations (Fig. 2b).

Figure 3.  User accuracy varied by image for both resistant and sensitive cells. Histograms of the user accuracy 
on images of E. coli treated at 10 mg/L for resistant and sensitive cells. Representative images of resistant and 
sensitive cells with low classification accuracy (0.20), intermediate classification accuracy (0.65) and high 
accuracy (≥ 0.95) are shown. Both resistant and sensitive cells show a skew, with many cells being classified 
correctly nearly always and some almost never. However, both populations also have many ambiguous images 
that were classified correctly by around half of the users.
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Discussion
The Infection Inspection project showed that misclassifications of 5 tested ciprofloxacin-sensitive and ciproflox-
acin-resistant E. coli are associated with diversity in the appearance of the bacterial DNA after treatment with 
ciprofloxacin. Ciprofloxacin is a fluoroquinolone antibiotic that inhibits the enzymes involved in bacterial DNA 
replication and  repair41. In sensitive bacteria this can result in the compaction of the DNA and the inability to 
separate to dividing cells. Whilst our previously reported computer model could achieve a classification accuracy 
as high as 80%21 there remains a degree of classification confusion with respect to certain images, especially near 
the minimum inhibitory concentration of the strain (Fig. 2b). Infection Inspection volunteers and the computer 
model had drops in classification accuracy, or increased classification confusion, near the MIC of the strain. 
This pattern likely reflects intermediate or partial responses to the antibiotic over the 30-min treatment period, 
which might continue to develop into complete responses or cell death over a longer treatment time. If the 
classification confusion seen near the MIC in EC1 and EC3 holds for other strains, the concentration at which 
classification accuracy drops could be used in a rapid AST as an indicator of the MIC of the strain. Interestingly 
while the model is much more accurate on sensitive cells, users had similar accuracies on sensitive and resistant 
cells (Fig. 2a). By image feature analysis, we found that images most likely to be classified incorrectly did not 
show the phenotypic features of correctly classified ciprofloxacin-sensitive or resistant cells, indicating that these 
bacteria develop ambiguous or intermediate phenotypes.

We used a feature analysis and computed SHAP contribution scores to determine that DNA mean standard 
deviation of intensity, the nucleoid area fraction, and the number of DNA regions were the most important fea-
tures when deciding how to classify an image. This means that the degree of DNA compaction and heterogeneity, 
and the space it occupies within the cell, are the key features that can be used to determine whether an E. coli 
bacterium is responding to ciprofloxacin treatment.

The successful participation of the public with Infection Inspection and the speed at which users classified the 
images highlights the interest in and value of the public in tackling the problem of antimicrobial resistance. It is 
clear that citizen science platforms like the Zooniverse provide a valuable resource for recruiting large groups 
of the public to engage with  research9,10.

Figure 4.  Cells that were classified incorrectly have more similar features. For three image features related to 
DNA heterogeneity and compaction, illustrations and definitions of which are shown on the left, the Incorrect 
Resistant and Incorrect Sensitive feature distributions are not significantly different, as shown in the box plots. A 
cell is called “Incorrect” if more than 50% of user classifications disagreed with the cell’s predicted classification, 
based on its MIC and the antibiotic treatment concentration. Notches are drawn showing the median value for 
each feature, and outliers are shown as spheres. The Bonferroni-corrected p-values were calculated for each 
pairwise comparison, and the features that were not significantly different are shown with brackets; all the other 
pairwise comparisons were significantly different with p < 0.0001.
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Our project demonstrates the utility of citizen science volunteers in interpreting large biomedical datasets. 
Biomedical projects are a minority on the Zooniverse platform. A 2019 study showed only 3 biomedical projects 
of 63 projects surveyed (5%)19 were included on the platform; as of November 13, 2023, this fraction remained 

Figure 5.  Incorrectly classified images have intermediate phenotypes. (a) In a 2-dimensional Principal 
Component Analysis (PC1, PC2), images of Resistant and Sensitive cells that were classified correctly more 
than 50% of the time (Correct Sensitive, blue dots and Correct Resistant, red dots) cluster with other members 
of their class, with some overlap. The feature loadings are shown as black lines. The most influential features 
for the first Principal Component (PC1) are the Number of DNA Regions and the DNA Standard Deviation 
(Std.) of Integrated (Int.) Intensity, a measure of the variation in nucleoid region brightness within the cell. 
(b) Images that were classified incorrectly more than 50% of the time cluster near the centre of the principal 
component plot, or near images of the opposite class, with greater variance in the second principal component 
than correctly classified images. (c) Images that were classified with more than 94% accuracy were called “Most 
Correct.” The Sensitive Most Correct cells and Resistant Most Correct cells form distinct clusters, indicating that 
there are certain populations of cells that exhibit characteristic features and are therefore likely to be classified 
accurately. (d) Images where the model and the consensus of users disagree are highlighted in blue. The users 
are more likely to disagree with the model on images with intermediate features, in the centre, or on images with 
more atypical features, with greater variance in PC2.
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low, with only 5/100 (5%) of active projects in a biomedical discipline. The Gini coefficient is a measure of 
inequality that has been used to assess the degree to which many casual volunteers and some super-users con-
tribute to the shared work of Zooniverse projects. On average, biomedical projects were found to have a notably 
lower average Gini coefficient than astronomy projects, which could be the result of fewer return volunteers, or 
because biomedical projects more successfully attract many casual  contributors19. Infection Inspection attracted 
3137 volunteers while it was active, with a Gini coefficient of 0.81, higher than the average biomedical project 
studied. We speculate that our single-step, fast workflow encouraged some users to contribute more classifica-
tions than the average biomedical research project.

Despite its successes, the Infection Inspection project had limitations. It relied on voluntary contributions 
from citizen scientists, which introduced variability in data quality and quantity. We had no information on the 
users participating in the study, and no quantitative feedback on the impact of our tutorials on informing the 
public about AMR. The study focused on a single antibiotic and cells obtained from a small number of bacterial 
strains, limiting the generalizability of findings to other antibiotics and pathogens. Because we utilised images 
collected for another study, we only had titration data for two of the strains (EC1 and EC3). However, there is 
potential to use this project design to characterise other bacterial strains, antibiotics, and experimental treat-
ment conditions, such as the dynamic responses of bacterial cells to antibiotics in a time course. Changes in cell 
size, shape, and DNA morphology have been observed for a range of antibiotics in a number of Gram-positive 
and Gram-negative species in addition to E. coli, such as Klebsiella pneumoniae42, Salmonella enterica serovar 
 Typhimurium42, Staphylococcus aureus42, Acinetobacter baumanii43, and Bacillus subtilis44. The antibiotic response 
phenotypes of the most common bacterial pathogens and antibiotics will need to be characterised before a diag-
nostic test like ours could be brought to the clinic.

Our antimicrobial susceptibility platform is still in early stages of development, but the rich data features 
captured in this study highlight the potential of a single-cell, imaging-based test for identifying resistant bacterial 
strains. Although genotype-based assays are rapid at identifying resistance genes with high accuracy (AMRFinder, 
98.4%)45, the absence of known resistance genes does not always equate to antibiotic  sensitivity4,5. The accuracy 
of our approach is currently greater than 88% for sensitive cells, and as more antibiotic response phenotypes are 
characterized, this should improve. Our method requires a fluorescence microscope and microfluidic chips, but 
could be implemented as a point-of-care test in a variety of healthcare  settings46.

Looking ahead, citizen scientists can continue to play a pivotal role in our research and in addressing global 
health challenges related to antibiotic resistance. Future engagements could involve exploring other bacterial 
species and antibiotics; improving training materials and guidelines; raising public awareness; and integrating an 
assessment of the impact of these tools on user education about the scientific topics being studied. Compared to 
the single classification workflow utilised in this project for user efficiency, other workflow designs could capture 
more data on the volunteer’s decision-making process. On the project discussion board, some volunteers started 
discussions about images that appeared to be cells in the process of cell division or images that looked unusual. 
While the project was not designed to classify images in such detail, it is encouraging to realise that users could 

Figure 6.  Feature significance for all images measured by SHAP values. The absolute value of the SHAP 
contribution for each feature is shown on a box plot. In order of their median SHAP contribution, the features 
are DNA Mean Standard Deviation of Intensity (0.109), Number of DNA Regions (0.085), Nucleoid Area 
Fraction (0.081), Membrane Form Factor (0.037), Membrane Major Axis Length (0.035), DNA Mean Integrated 
Intensity (0.028), DNA Standard Deviation of Integrated Intensity (0.013), and Random Noise (0.008). All 
the features are significantly different from Random Noise (p < 0.0001), and all features are significantly 
different from each other (p < 0.0001), except Membrane Major Axis Length and Membrane Form Factor (no 
significance).



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19543  | https://doi.org/10.1038/s41598-024-69341-3

www.nature.com/scientificreports/

be asked to consider stages of cell growth in a future task. Our project, and other researchers working with citizen 
scientists, can take advantage of this scientific intuition in understanding their datasets.

Comments from volunteers who participated in the Infection Inspection project demonstrate how citizen 
science methods can be mutually beneficial for research teams and for participants. Several volunteers mentioned 
that they were motivated to contribute to a project about antibiotic resistance because people close to them had 
been affected by bacterial infections. One volunteer stated that participating in citizen science projects “gives 
a sense of pride and usefulness.” Another citizen scientist said that they love this kind of volunteering and that 
it was “interesting to learn…how bacteria can be acting under the influence of antibiotics.” These comments 
and others on the project discussion board (https:// www. zooni verse. org/ proje cts/ conor- feehi ly/ infec tion- inspe 
ction/ talk), as well as the enthusiasm with which 5273 volunteers made 1,045,199 classifications, show the 
interest in biomedical citizen science projects and how such projects can be both educational and meaningful 
for participants.

In conclusion, the Infection Inspection project exemplifies the potential of citizen science platforms to engage 
the public in scientific research, enhance the analysis of large datasets, and contribute to our understanding of 
complex issues like antibiotic resistance. The collaboration between citizen scientists and researchers not only 
advances scientific methodologies but also fosters a sense of shared responsibility in addressing global health 
challenges. Despite its limitations, this project has opened doors to further exploration and collaboration, high-
lighting the promising role of citizen science in the future of biomedical research and public health.

Data availability
The raw data images used to build this project are available from the Oxford University Research Archive: https:// 
ora. ox. ac. uk/ objec ts/ uuid: 12153 432- e8b3- 4398- a395- abfb9 80bd8 4e. The individual segmented single cell images 
and classification metadata are available at: https:// doi. org/ 10. 5281/ zenodo. 10301 352.
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