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Event-driven adaptive optical neural network 
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We present an adaptive optical neural network based on a large-scale event-driven architecture. In addition to 
changing the synaptic weights (synaptic plasticity), the optical neural network’s structure can also be reconfig-
ured enabling various functionalities (structural plasticity). Key building blocks are wavelength-addressable ar-
tificial neurons with embedded phase-change materials that implement nonlinear activation functions and 
nonvolatile memory. Using multimode focusing, the activation function features both excitatory and inhibitory 
responses and shows a reversible switching contrast of 3.2 decibels. We train the neural network to distinguish 
between English and German text samples via an evolutionary algorithm. We investigate both the synaptic and 
structural plasticity during the training process. On the basis of this concept, we realize a large-scale network 
consisting of 736 subnetworks with 16 phase-change material neurons each. Overall, 8398 neurons are func-
tional, highlighting the scalability of the photonic architecture. 
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INTRODUCTION 
The rise of artificial intelligence and the end of Moore’s law require 
novel computation methods to fulfill the ever-growing demand for 
computational power (1). Brain-inspired or neuromorphic ap-
proaches have been one promising avenue because of gains in 
energy efficiency when implementing artificial neural networks 
(NNs). Neuromorphic devices mimic NNs on a hardware level 
instead of simulating them on conventional computers. From an 
operational viewpoint, this translates into highly parallel operation, 
event-driven in-memory computing, and stochasticity (2). From a 
hardware perspective, a neuromorphic system needs to be inherent-
ly scalable and requires “artificial neurons” that perform nonlinear 
operations and “artificial synapses” that store the linear connections 
between the neurons. Typically, the neurons in biological brains are 
relatively sparsely connected compared to the overall number of 
nodes in the network. This is favorable from a hardware perspective 
because interconnectivity in planar devices, as commonly used in 
optical and electrical approaches, is challenging. Furthermore, the 
neuromorphic device ideally needs to be trainable and thus adaptive 
in the sense that both the connection strength can be changed (syn-
aptic plasticity) and the connection itself can be rewired (structural 
plasticity). Commercial electronic devices such as the Google tensor 
processing unit that are inspired by the principles of neuromorphic 
computing show a gain of factor 10 in computation speed while 
consuming 100 times less energy than conventional hardware for 
computing NNs (3). Going one step further, large-scale event- 
driven neuromorphic research prototypes like BrainScaleS (4), 
Loihi (5), or TrueNorth (6) consist of integrated electrical spiking 
NNs, featuring up to 1 million neurons on-chip. These event-driven 
architectures promise even higher energy efficiency in comparison 

to conventional layered structures since inactive neurons do not 
contribute to the computation and thus do not require energy. 

Besides electronic approaches, photonic architectures are emerg-
ing to complement integrated circuit implementations. Photonic 
neuromorphic computing systems aim to outperform their elec-
tronic counterpart by exploiting the inherently low latency of 
optical data transfer, the large usable optical bandwidth of several 
terahertz, and additional degrees of freedom for parallelization 
based, for example, on wavelength division multiplexing (WDM) 
(7). WDM offers a direct way for parallel data processing and 
passive on-chip routing and is compatible with broadband optical 
approaches. In particular, WDM enables parallel processing with a 
single photonic computation unit (8), broadcast-and-weight net-
works (9), and temporal encoding in combination with dispersive 
waveguides (10). By integrating functional materials, photonic plat-
forms further offer the possibility to implement reconfigurable ele-
ments. Among the available options, phase-change materials 
(PCMs) are particularly attractive because they provide strong 
optical contrast and can be reversibly switched for many cycles. 
When embedded in a waveguide framework, optically coupled 
PCMs offer a compact way of integrating nonlinearities and 
memory into the photonic circuit (11). Thus, PCMs are deployed 
as reprogrammable synapses (12), activation functions (13), and 
in-memory computation units (14) among other applications 
(15). Apart from hardware accelerators for designated linear com-
putation tasks, exemplary optical NNs (ONNs) also including non-
linearities have been implemented. A basic nonlinear behavior can 
be realized by nonlinear optical effects (16, 17), hybrid optical-elec-
tronic schemes (18), and functional materials (13). Going one step 
further, optical spiking neurons based on vertical-cavity surface- 
emitting lasers have been demonstrated (19, 20). While small- 
scale feed-forward networks with a fixed structure have been real-
ized on-chip (13, 21, 22) and also larger recurrent networks off-chip 
(23), operative event-driven architectures featuring both synaptic 
and structural plasticity have been elusive. 

Here, we present an ONN that also exhibits structural plasticity 
in addition to synaptic plasticity. While many implementations of 
ONNs are limited to feed-forward connectivity and single-use of 
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neurons, our proposed event-driven architecture computes activa-
tions and neuron updates iteratively, allowing multiuse of neurons, 
nested connectivity, as well as sequential input and output data. Al-
though related to recurrent NNs (RNNs), our algorithm is, to the 
best of our knowledge, unique, not only in the optical domain 
but also in the NN literature in general. We realize in-memory com-
puting by using Ge2Sb2Te5 (GST) nanocells embedded in multi-
mode interference (MMI) devices. While the GST nanocells 
emulate artificial neurons, the artificial synapses are encoded in 
the wavelength and power of optical pulses driving the ONN. To 
implement WDM capability, we use a self-aligning combination 
of ring resonators and reflective Bragg mirrors for wavelength-selec-
tive addressing of individual neurons. The use of programmable 
PCMs and programmable optical pulses enables both synaptic 
and structural plasticity. To demonstrate the capability of the ap-
proach, we fabricate networks of interconnected wavelength-ad-
dressable GST neurons and characterize their individual 
performance. Exploiting on-chip plasticity, we train the neurons 
to distinguish between English and German text samples via an evo-
lutionary algorithm. During the training, we investigated the struc-
tural changes of the NN. Since our approach is inherently scalable, 
we fabricate a large-scale network consisting of 736 subnetworks 
with 11,776 neurons in total to showcase the flexibility and excellent 
future scalability potential of the architecture. 

Event-driven optical computation architecture 
Our architecture is based on the concept illustrated in Fig. 1, which 
consists of artificial photonic neurons on-chip and artificial synaps-
es which are encoded in optical pulses via wavelength and ampli-
tude. A large number of individually wavelength-selectable 
artificial neurons is provided on a fabricated chip. The desired 
network configuration is implemented by connecting PCM-based 
neurons with suitable optical pulse links as sketched in Fig. 1A. 
This approach enables storing the internal state of the network in 
the neurons, while the network structure is solely defined through 
routing suitable pulse sequences to a desired subset of the NN. As 
the routing is wavelength-based, we directly achieve structural plas-
ticity by adapting the pulse sequence, in particular the wavelength of 
the pulses driving the ONN. The photonic circuit itself does not 
need to be modified during operation, greatly simplifying the 
overall system. 

The main building blocks of the adaptive ONN are wavelength- 
addressable PCM neurons, connected via a single bus waveguide. 
Each PCM neuron consists of a wavelength-selective optical 
element and a waveguide-coupled PCM cell. The PCM cell imple-
ments multilevel nonvolatile memory and thus enables storing of 
the internal state of the neuron. By wavelength multiplexing, we 
can address multiple neurons at the same time by sending several 
optical pulses of different wavelengths through the bus waveguide. 
To realize the on-chip neurons, we use the nonvolatile PCM GST 
which is highly absorptive in its crystalline state and just barely 
absorbs propagating light in the amorphous state. We reversibly 
switch between the structural phase states of the GST cell with 
high-power optical pulses sent through the waveguide (12, 13, 24, 
25). Low-power optical pulses heat the GST cell so moderately 
that its phase state is not altered by them. In contrast, the phase 
state and hence the transmission through the GST cell change if 
the optical pulse power is sufficient for crystallization or amorphiza-
tion. The change in transmission through the GST cell is highly 

nonlinear with respect to the applied pulse power (13). Therefore, 
the GST serves as a controllable nonlinear activation function and 
simultaneously as a memory for low-power optical read pulses (26). 

Our optical system consisting of multiple PCM neurons 
(Fig. 1A) is driven by a queue of events as shown in Fig. 1B. The 
system operates asynchronously as the event is immediately pro-
cessed and the nonvolatility of the GST cells does not impose 
further time restrictions. Each event consists of multiple optical 
pulses defining the weighted connections between the neurons via 
the pulse wavelengths (synaptic connections) and intensities (syn-
aptic strengths). Therefore, we can use the same photonic structure 
to compute different NNs by changing the event queue as sketched 
in Fig. 1A. Apart from the flexible utilization of the computation 
architecture, it directly enables structural plasticity during the train-
ing by changing the pulse wavelengths. Besides enabling adaptive 
ONNs, this approach greatly improves durability and tolerance, 
since single faulty neurons can be replaced with unused ones, 
which only reduces the number of available neurons but does not 
affect the overall computation. 

Figure 1B explains the working principle of the architecture in 
depth. Desired synaptic weights are encoded in the intensity of 
optical pulses. These pulses serve as inputs to desired neurons 
which are selected by wavelength using the multiplexing approach 
described in further detail below. In general, the state of the “post-
synaptic” neuron is computed by multiplying the activations of the 
“presynaptic” neurons (saved in the GST cells) with the synaptic 
weight of the respective connection between pre- and postsynaptic 
neuron (encoded the intensity of an optical pulse), accumulating 
those weighted activations (by letting the attenuated pulses of dif-
ferent wavelengths superimpose on a photodetector), and applying 
the activation function of the postsynaptic neuron for the given 
weighted sum. A single event, which consists of simultaneous 
pulses with chosen wavelengths and intensities, directly implements 
all those steps. Each event updates the internal state (GST phase) of 
one neuron, the postsynaptic neuron. After choosing this neuron, 
several low-power optical pulses are sent to the system simultane-
ously, each pulse representing one synaptic connection from a pre-
synaptic neuron. For each pulse, the wavelength corresponds to the 
wavelength address of the presynaptic neuron and the pulse power 
corresponds to the synaptic strength. Next, the pulses are propagat-
ed through the photonic circuit via waveguides and are attenuated 
by the respective PCM neuron where the exact attenuation is deter-
mined by the PCM’s state. Afterward, the thus-processed optical 
pulses are collected at the output of the circuit and are summed 
by a photodetector. To finish the event, a high-power optical 
pulse is sent to the ONN with a pulse power proportional to the 
measured photodetector voltage and a wavelength corresponding 
to the desired postsynaptic neuron’s wavelength address. In this 
way, the postsynaptic neuron’s state is set, determining the activa-
tion response of this neuron for the next event according to the 
switching properties of the GST cell. We limit the switching pulse 
power to a maximum value to avoid damaging the PCM of the post-
synaptic neuron. Afterward, we repeat this sequence for the next 
event in the event queue. If required, for example, for the final clas-
sification, we read out the state of a neuron with a low-power read 
pulse with a wavelength corresponding to the neuron’s address. 
Figure 1C shows the equivalent steps carried out during the physical 
operation in the ONN compared to the framework of artificial NNs 
(NN). The steps in the NN are indicated in orange in the top row,  
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while the corresponding steps in the ONN are shown in green in the 
row below. 

RESULTS 
To implement the conceptual architecture outlined above, we fab-
ricate the system in the silicon nitride platform. Several artificial 
neurons are linked to one bus waveguide which is used as input 
and output by operating the neurons in reflection mode. This col-
lection of neurons is then repeated many times on the overall chip to 
arrive at a large number of usable neurons for implementing desired 

ONNs. Wavelength selectivity is implemented using microring res-
onators with varying radii. 

Figure 2A shows an optical microscope image of the photonic 
circuit consisting of the bus waveguide and 16 wavelength-address-
able PCM neurons in a false-color overlay, which illustrates the dif-
ferent resonance wavelengths. The varying resonance wavelength is 
indicated by the different colors, corresponding to rings with differ-
ent radii. By operating the rings in reflection mode with a Bragg re-
flector provided in the drop waveguide, we achieve perfectly 
matched demultiplexing and multiplexing. This way, we use the 
ring add-drop filters as wavelength-selective devices with pulses 
propagating in both directions. As a result, also the output signals 

Fig. 1. Computing neural networks on the event-driven architecture. (A) The system consists of waveguide-coupled PCM cells that emulate the functionality of 
artificial neurons. We address every PCM neuron on-chip with a distinct wavelength. To plastically connect the ONN, we encode the synapses in the event queue 
which is driving the system. This way, we can adapt and change the structure of the whole NN without having to modify the photonic circuit itself. (B) We operate 
the system sequentially, executing one event after the other. For each event, we send a set of input pulses (the synaptic configuration information) to the PCM 
neurons simultaneously. The wavelengths of the pulses correspond to the wavelength addresses of the presynaptic neurons and the pulse powers to the synaptic 
weights. The pulse powers are multiplied with the respective presynaptic PCM neuron activation and are afterward summed by a photodetector (PD). To conclude 
the event, a high-power write pulse is sent to the ONN, with a wavelength corresponding to the address of the postsynaptic neuron and a pulse power proportional 
to the output voltage of the PD. In this way, the state of the postsynaptic neuron is set. (C) Correspondence between neural nets and their optical implementation. Each 
physical operation performed by the ONN (green, lower row) can be directly mapped to the computation steps in an artificial NN (orange, upper row).  
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are propagating in the same bus waveguide as the input signals, but 
in the opposite direction. Figure 2B shows a single PCM neuron 
unit in detail. The ring resonator is coupled to the bus waveguide 
and implements the wavelength filter. Because of the ultralow loss 
of the silicon nitride platform, we achieve critical coupling from the 
bus waveguide to the ring for equal gaps between the ring and bus 
waveguide as well as the ring and neuron waveguide (see fig. S2). 
The symmetric design ensures that a small deviation from the de-
signed coupling strength only changes the resonance width but not 
the peak transmission. The radius of the ring resonator affects the 
resonance wavelength and is different for each ring to ensure spec-
trally distinguishable PCM neurons. The actual neuron is placed in 
the drop waveguide within a carefully designed MMI structure 
(Fig. 2B, insets). To implement the neuron, we use a 12-nm-thick 
GST cell covered by 5-nm ZnS-SiO2 placed in the evanescent near 
field of the MMI. The focusing MMI structure improves the cou-
pling to the GST cell by smoothening the absorption profile and 
thus distributes the optical power over the complete area of the 
GST cell (see fig. S4). At the output of the MMI, we use a 
compact apodized Bragg mirror (see fig. S3) to reflect the signal 
back into the ring. Figure 2C shows the transmission profile of a 
full device. As designed, there are 16 distinguishable transmission 
peaks with an average spacing of 336 ± 47 pm, each corresponding 
to one of the PCM neurons. Each single peak arises from the trans-
fer function of a single add-drop ring which couples the light from 
the bus waveguide and back (see fig. S2B) and includes the reflection 
spectrum of the Bragg mirror (see fig. S2C) and the PCM cell itself. 
Overall, the cross-talk between the PCM neurons is below −23.9 ± 
3.5 dB. The symmetric multiplexing and demultiplexing design 
ensures a low variation in the peak transmission below 0.39 dB 

even if the resonances are closely spaced in wavelength. Therefore, 
each neuron receives similar optical power during addressing. 
Figure 2D shows the resulting activation function of such a PCM 
neuron unit depending on the input power of a pulse train of 18 
pulses with 200-ns length, starting from a partial amorphous state 
set by a single pulse of 2-mW power. For pulse powers below ap-
proximately 1 mW, the activation does not change since the GST 
is not heated above its crystallization temperature. For higher 
pulse powers, the PCM starts to crystallize further and thus the 
transmission decreases. For even higher pulse powers, the GST is 
partially amorphized and the transmission increases again. 
Overall, the contrast between the high and low activation states is 
3.2 dB. To determine the repeatability of the process, the PCM 
neuron is randomly switched between the states 1000 times. The 
mean transmission SD for each state is 1.4%. From Fig. 2D, note 
that the activation function has an inhibitory area where an in-
creased input signal decreases the activation and an excitatory 
area where an increasing input power increases the activation, 
similar to the biological counterpart (27). As the architecture only 
supports positive weights, excitatory-only activation functions 
could only propagate excitatory signals between the neurons but 
could not attenuate a neuron’s activation. By deploying an activa-
tion function exhibiting both an inhibitory and excitatory area, this 
functionality is provided even in the presence of the restriction to 
only positive synaptic weights and activations in the NN. 

To study the performance of the system, we implement an exem-
plary NN which is trained on-chip to distinguish between English 
and German text samples based on the distribution of the vowels. 
We use six of the PCM neurons in the photonic circuit shown in 
Fig. 2A and, for each sample, we encode the distribution of 

Fig. 2. Photonic circuit implementing a subset of 16 artificial neurons. (A) Input pulses are sent to the PCM neurons via a common bus waveguide. Microring res-
onators select a pulse of a certain wavelength from the bus waveguide, let the pulse interact with the PCM cell and couple it back to the bus waveguide in reverse 
direction. (B) The scanning electron microscope shows a single optical neuron. It consists of a critically coupled ring resonator for wavelength addressing, a PCM cell 
on top of an MMI focusing structure and a compact Bragg mirror to reflect the light back to the bus waveguide. The insets show a zoom of the Bragg mirror and the PCM 
cell. (C) The transmission spectrum of the photonic circuit in (A) shows 16 clearly distinguishable resonance peaks, each one corresponding to a different optical PCM 
neuron. (D) We obtain both excitatory and inhibitory behavior of the neuron by defining a partially amorphous state as the ground state in our neural network and switch 
the cell depending on the input pulse power. The bar length shows the SD of the transmission for each PCM state when randomly switching between the states.  
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vowels in five of those by setting their starting state with a corre-
sponding high-power pulse. Subsequently, we send the event 
queue to the network. Then, we perform the classification of the 
text based on reading out the activation of the sixth neuron, 
where a high transmission corresponds to an English text and a 
low transmission to a German one. Because the structure of the 
event queue is, in general, not differentiable, we choose an evolu-
tionary algorithm (28) for training, instead of using backpropaga-
tion. We fix the event queue to three events and send two input 
pulses corresponding to two synapses per event. In addition, we in-
troduce a sanity check for the event queues to make sure that only 
input neurons or neurons that have been activated before can serve 
as presynaptic neurons. This check can be adapted if the internal 
state of the network must be remembered for the next event 
queue, for example, when processing temporal input data. 

Figure 3A illustrates how the evolutionary algorithm finds an 
event queue that is suitable for the classification task. The algorithm 
starts by randomly generating two event queues, each event consist-
ing of the synaptic connections (wavelength address), the synaptic 
strength (pulse power), and the selection of the postsynaptic neuron 
(wavelength address). The event queues consist of three events with 
two presynaptic neurons in each event. Then, the actual evolution 
process consisting of three individual steps is performed. First, we 
generate a “child” event queue from two “parent” event queues. 
Here, we randomly recombine the events from both queues, for 
example, taking the first two from “parent 1” and the last one 
from “parent 2.” Next, we mutate the parent event queues by 
varying each event individually. Mutation is achieved by adding 
Gaussian noise to the optical pulse power which sets the synaptic 
weight. During the mutation, we also potentially rewire the 
synapse by changing the wavelength of the pulse. Moreover, we 
add a new random event queue to the population, to minimize 

the risk of converging into a local minimum. In the third step, we 
check all queues for sanity and test them on random text samples. If 
the stopping criterion, sufficient performance, or maximum 
number of evolutions is reached, then the best-performing queue 
is selected, and the algorithm stops. Otherwise, the population is 
reduced to the two best-performing queues which then serve as 
the parent queues for the next evolution step. A detailed experimen-
tal description of the training process is provided in the Supplemen-
tary Materials. 

We generate German and English training data by using 
ChatGPT to compose short paragraphs of 1000 words in both lan-
guages. During the training of the ONN, we start at a random point 
in the chat and determine the distribution of the vowels in the next 
200 words. In each evolution, we test each NN with three English 
text samples and three German text samples. During training, we 
minimize the ratio between the average output activations 
Aout,German and Aout,English. Figure 3 (B and C) shows how the net-
work’s structure and performance change over the number of evo-
lutions. In the first evolution, the network cannot clearly 
differentiate between the text samples. Already in the next evolu-
tion, the network finds a working event queue that clearly distin-
guishes between both languages. Also, the structure of the NN 
changes in this step. For the other evolutions, only the synaptic 
weights are adapted. For the last four evolutions, the best-perform-
ing event queue remains the same, successfully classifying 24 text 
samples. For evaluating the network performance, we use a different 
set of text samples in each evolution, which results in a slightly dif-
ferent output for an “English” or “German” label for the same 
network. Apart from extracting a suitable network for the classifi-
cation task during the training process, we can also learn from the 
structure of the network. Once the network can successfully differ-
entiate between languages, only the number of “a” and “o” in the 

Fig. 3. Evolutionary learning with an adaptive ONN. (A) We use an evolutionary algorithm to learn an event queue for distinguishing between German and English text 
samples. First, we randomly initialize a set of neural networks. Next, we perform a crossover between the neural networks, combining synapses from one neural network 
with those of another one. Then, the parent event queues are randomly mutated, and a random queue is added to the population. Last, we choose a subset of all event 
queues based on their performance. If the performance is sufficient, then we stop the learning algorithm; otherwise, we repeat the mating process on the selected 
queues. (B) We use an evolutionary algorithm to train the ONN on-chip. Apart from changes in the synaptic weights, the structure of the network is also modified. 
(C) Already after the second evolution, the network can clearly distinguish between the text samples.  
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distribution of vowels is necessary to distinguish between the text 
samples. Consequently, the other vowels do not need to be consid-
ered, further improving the efficiency of the network. 

Last, we characterize the large-scale system shown in Fig. 4A 
consisting of 738 subnetworks with 11,776 PCM neurons integrated 
on an area of approximately 235 mm2. By connecting each subnet-
work with a neighboring one, an indirect long-range interaction 
between the neurons can be created. Figure 4B shows the distribu-
tion of the neurons’ transmissions in the as-sputtered amorphous 
state and crystalline state. For the amorphous state, the neurons 
follow a Gaussian distribution with a mean transmission of 
−18.25 dB and an SD of only 0.95 dB, highlighting the robustness 
of the photonic design. Around −14 dB of the total insertion loss 
(−18.25 dB) is attributed to the grating couplers (−8 dB total as-
suming −4 dB per coupler) which are used to couple the light to 
the chip, and to the 50:50 directional coupler (−6 dB total, −3 dB 
per pass in forward and backward direction) separating the back re-
flected light from the input light. In addition, there is absorption in 
the amorphous state of the PCM cell, coupling loss to and from the 
ring resonator, reflection losses at the Bragg mirror, and a wave-
guide propagation loss (waveguide length of up to 2 cm). Overall, 
9854 neurons of the chip show reasonable transmission above 
−21 dB in the amorphous state. Also, for the crystalline state, the 
transmission follows a Gaussian distribution with a mean of 
−33.99 dB and an SD of 2.54 dB. The increase in the SD is 
mainly caused by slightly varying sizes of PCM patches during fab-
rication and causes a large deviation of the transmission in the crys-
talline state due to the higher absorptance. Since the GST cell is 
comparatively small with a tapered width from 825 to 422 nm 
over a length of 2.4 μm, and placed on a focusing MMI structure, 
deviations in the patch size have a large impact on the transmission. 
In total, 9002 neurons show a transmission between −40 and −27 
dB in the crystalline state. Figure 4C shows a heatmap of functional 
neurons which show at least a contrast of −10 dB between the 

amorphous and crystalline state. Typically, either most neurons in 
a subnetwork are functional or the whole subnetwork is broken 
because of a fabrication error like a broken grating coupler. In 
total, 8398 neurons are functioning here, resulting in a fabrication 
yield of 71.3%. 

DISCUSSION 
ONNs (13, 21, 29, 30) aim to emulate the structure and thus effi-
ciency of biological NNs. Photonic implementations especially 
excel at calculating the linear connections (synapses) between the 
neurons, whereas electronic devices such as photodiodes and mod-
ulators or special material properties like those of PCMs are better 
suited to compute the needed nonlinearities. All optical solutions 
based on nonlinear effects strongly increase the complexity of the 
photonic circuit and require higher energies to trigger correspond-
ing effects (31). Current integrated ONN prototypes have in 
common that they emulate the full layered structure of feed- 
forward networks. Consequently, the photonic circuits needed to 
realize complex networks become quite large which limits the 
network size and decreases the fabrication error tolerance. In con-
trast, the event-driven ONN architecture described here is easily 
scalable due to the separation of neurons and their activations 
from the synapses. This is possible because the structural informa-
tion is stored in the wavelength of the optical pulses instead of being 
hard-wired into the circuit. The main advantage of the concept is 
that the structure and type of the network are not predetermined 
by the photonic circuit anymore but solely depend on the events 
driving the network. Consequently, instead of rendering the func-
tionality of the whole photonic circuit useless, faulty neurons can 
simply be replaced by changing the structure of the network. Fur-
thermore, the event-driven approach allows one to compute only 
the synapses that are active during a given event and thus does 
not require one to update irrelevant neurons in each step. 

Fig. 4. Scalability of the adaptive ONN. (A) We characterize the performance of an ONN consisting of 11,776 different PCM neurons arranged in a 32 × 23 array of 
separate devices. Each device contains 16 neurons. (B) For each PCM neuron, we measure the overall transmission in the as-sputtered amorphous and fully crystalline 
state. We obtain a switching contrast of 16 dB between the amorphous (−18.25 ± 0.95 dB) and crystalline state (−33.99 ± 2.54 dB). Some GST cells are not deposited at all, 
resulting in the blue peak of around 500 nominally “crystallized” neurons at −20 dB due to a saturated detector. (C) Typically, the neurons in a subnetwork are either 
mostly functional and show a contrast between the amorphous and crystalline state of at least 10 dB, or completely broken due to a fabrication error in the coupling or 
routing. In total, 8398 neurons are functional.  
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Using PCMs to implement artificial neurons comes with the 
benefit of a strong nonlinear effect while also providing a nonvola-
tile memory. In particular, the nonvolatility strongly decreases the 
timing requirements of subsequent pulses reading the neuron acti-
vation and enables the event-based structure in the first place. Fur-
thermore, the inhibitory and excitatory parts of the activation 
function compensate for only positive weights in our network. Op-
tically switching GST cells up to 100 million cycles has been already 
demonstrated (32) and reversible electrical switching for more than 
2 billion cycles (33). Changing to monoatomic PCMs such as anti-
mony is a promising route to further improve the performance (34). 

By placing the GST on an MMI-like structure and using it in a 
double-pass configuration, we are able to achieve a high switching 
contrast of more than 3 dB, which removes any need to amplify the 
effect of GST by, for example, integrating it into a separate ring res-
onator (13). Consequently, the neuron’s wavelength address is 
always the wavelength of the highest transmission and thus can be 
easily used for a feedback loop compensating for drifts in the lasers 
or photonic circuit induced by temperature. As a future step, wave-
guide-coupled plasmonic antennas could be used to provide broad-
band field enhancement in the GST region, potentially increasing 
the switching contrast and thus the capability of the ONN while si-
multaneously reducing switching energies and switching times (35). 
By using a single add-drop ring in both directions for multiplexing 
instead of two different rings (14), we create a self-aligning demul-
tiplexer-multiplexer structure that strongly improves the fabrication 
tolerance of the system. 

In contrast to backpropagation-based training (31), evolutionary 
algorithms excel at training complex physical systems (36) and sim-
plify the training process. The structural plasticity of our ONN is 
not differentiable and thus not directly compatible with backpropa-
gation. Since all GST neurons behave slightly differently (see fig. 
S5), backpropagation would also require all neurons to be charac-
terized individually before the training process. Also, the setup itself 
might have noise sources and offsets that had to be modeled. There-
fore, directly training on-chip with an evolutionary algorithm is a 
straightforward option to train the event-driven ONN. 

Overall, the ONN architecture described above is readily scalable 
and rather compact for a photonic circuit due to the small size of the 
PCM neurons. The largest part of the footprint results from the 30- 
μm-radius ring resonators. By fabricating the neurons in a photonic 
platform with higher refractive index contrast such as silicon on an 
insulator, the bending radius can potentially be reduced by a factor 
of 10, leading to a 100 times higher integration density and up to 1 
million neurons on a single 20 mm–by–20 mm chip. Making use of 
vertical integration of the silicon and silicon nitride waveguides (37) 
the mostly straight large-scale optical routing can still be done in 
silicon nitride, ensuring an overall low propagation loss. The self- 
aligning multiplexer-demultiplexing structure ensures a reasonable 
fabrication tolerance for the photonic circuit. 

To develop the approach further, an integrated driver module 
would ideally be needed to generate the events driving the ONN 
on-chip. During our experiments, we were limited by the off-chip 
laser sources. By deploying integrated lasers with electro-optic 
phase shifters for frequency tuning, subnanosecond wavelength 
switching times can be achieved (38) and the overall system 
integrated. 

MATERIALS AND METHODS 
We fabricate the ONN on a Rogue Valley Microdevices wafer with a 
layer stack consisting of 330-nm Si3N4 on 3300-nm SiO2 on 500- 
μm Si. We anneal the chip at 1100° for 4 hours before the fabrication 
of the photonic circuit to improve the silicon nitride film quality. 
Overall, we fabricate four different masks with a 100-kV electron 
beam lithography system (Raith, EBPG5150). First, we spin-coat, 
expose, and develop the positive tone resist polymethyl methacry-
late (PMMA; Allresist, AR-P 672.045) and evaporate gold alignment 
markers afterward. Next, we spin-coat the negative tone resist AR-N 
7520.12 (Allresist) and write the mask for the photonic circuit. We 
fully etch the mask into the silicon nitride via reactive ion etching 
with CHF3/O2 plasma and strip the remaining AR-N afterward. 
The etching process results in nearly rectangular waveguides with 
a width of about 1.18 μm. The deviation from the designed width 
of 1.2 μm is attributed to the shrinkage of the mask before the 
etching. We again use PMMA to fabricate the mask for the phase 
change material and its capping layer. Then, we deploy a magnetron 
sputtering system (PVD, AJA International Inc.) to radio frequency 
sputter 12-nm GST and 5-nm ZnS-SiO2. The ZnS-SiO2 protective 
cover prevents oxidation of the GST. Last, we spin-coat and expose 
an 800-nm cladding layer of HSQ 16% (Dow Corning) overall 
structures. 

For characterizing the photonic circuit and training the NN, we 
deploy three tunable lasers (two Santec TSL-710 and one New Focus 
6427). We generate desired optical pulses from the continuous wave 
laser with an Optilab electro-optic modulator (IML-1550-40-PM- 
V) driven by a pulse generator (Hewlett Packard, 8131A) and 
amplify them with a PriTel LNHPFA-30. For the transmission mea-
surements, we use Thorlabs RXM10AF and New Focus Model 2011 
detectors. The whole setup is sketched in detail in the fig. S1. 

Supplementary Materials 
This PDF file includes: 
Supplementary Text 
Figs. S1 to S6 
References 

REFERENCES AND NOTES  
1. T. N. Theis, H.-S. P. Wong,  The end of Moore’s law: A new beginning for information 

technology. Comput. Sci. Eng.  19,  41–50 (2017).  

2. C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, B. Kay,  Opportunities for 
neuromorphic computing algorithms and applications. Nat. Comput. Sci.  2,  10–19 (2022).  

3. N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, 
N. Boden, A. Borchers, R. Boyle, P. L. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, 
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. Richard Ho, 
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, 
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, 
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, 
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, 
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, 
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, 
D. H. Yoon,  In-datacenter performance analysis of a tensor processing unit. Proc. - Int. 
Symp. Comput. Archit.  45,  1–12 (2017).  

4. C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber, Y. Stradmann, J. Weis, A. Leibfried, 
E. Müller, J. Schemmel,  The BrainScaleS-2 accelerated neuromorphic system with hybrid 
plasticity. Front. Neurosci.  16,  1–21 (2022).  

5. M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, 
S. Jain, Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, 
G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang, H. Wang,  Loihi: A neuromorphic many-
core processor with on-chip learning. IEEE Micro.  38,  82–99 (2018).  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Brückerhoff-Plückelmann et al., Sci. Adv. 9, eadi9127 (2023) 20 October 2023                                                                                                                           7 of 8 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 21, 2024



6. M. V. Debole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P. Risk, J. Kusnitz, C. O. Otero, 
T. K. Nayak, R. Appuswamy, P. J. Carlson, A. S. Cassidy, P. Datta, S. K. Esser, G. J. Garreau, 
K. L. Holland, S. Lekuch, M. Mastro, J. Mckinstry, C. Di Nolfo, J. Sawada, B. Paulovicks, 
K. Schleupen, B. G. Shaw, J. L. Klamo, M. D. Flickner, J. V. Arthur, D. S. Modha,  TrueNorth: 
Accelerating from zero to 64 million neurons in 10 years. Computer (Long. Beach. Calif ).  52, 
20–29 (2019).  

7. F. Brückerhoff-Plückelmann, J. Feldmann, H. Gehring, W. Zhou, C. D. Wright, H. Bhaskaran, 
W. Pernice,  Broadband photonic tensor core with integrated ultra-low crosstalk wave-
length multiplexers. Nanophotonics  11,  4063–4072 (2022).  

8. J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, 
A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, 
H. Bhaskaran,  Parallel convolutional processing using an integrated photonic tensor core. 
Nature  589,  52–58 (2021).  

9. A. N. Tait, M. A. Nahmias, B. J. Shastri, P. R. Prucnal,  Broadcast and weight: An integrated 
network for scalable photonic spike processing. J. Light. Technol.  32,  4029–4041 (2014). 

10. X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, 
R. Morandotti, A. Mitchell, D. J. Moss,  11 TOPS photonic convolutional accelerator for 
optical neural networks. Nature  589,  44–51 (2021). 

11. F. Brückerhoff-Plückelmann, J. Feldmann, C. D. Wright, H. Bhaskaran, W. H. P. Pernice, 
Chalcogenide phase-change devices for neuromorphic photonic computing. J. Appl. Phys. 
129,  151103 (2021). 

12. Z. Cheng, C. Ríos, W. H. P. Pernice, C. David Wright, H. Bhaskaran,  On-chip photonic 
synapse. Sci. Adv.  3,  1–7 (2017). 

13. J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice,  All-optical spiking 
neurosynaptic networks with self-learning capabilities. Nature  569,  208–214 (2019). 

14. S. G. Sarwat, F. Brückerhoff-Plückelmann, S. G. C. Carrillo, E. Gemo, J. Feldmann, 
H. Bhaskaran, C. D. Wright, W. H. P. Pernice, A. Sebastian,  An integrated photonics engine 
for unsupervised correlation detection. Sci. Adv.  8,  1–10 (2022). 

15. M. Wuttig, H. Bhaskaran, T. Taubner,  Phase-change materials for non-volatile photonic 
applications. Nat. Photonics.  11,  465–476 (2017). 

16. S. Bhattacharya, S. N. Patra, S. Mukhopadhyaya,  An all optical prototype neuron based on 
optical Kerr material. Optik (Stuttg).  126,  13–18 (2015). 

17. J. R. Basani, S. Krastanov, M. Heuck, D. R. Englund, All-photonic artificial neural network 
processor via nonlinear optics, in 2022 Conference on Lasers and Electro-Optics, San Jose CA, 
15 to 20 May 2022 (Optica Publishing Group, 2022), pp. 1–16. 

18. A. N. Tait, T. Ferreira De Lima, M. A. Nahmias, H. B. Miller, H. T. Peng, B. J. Shastri, P. R. Prucnal, 
Silicon photonic modulator neuron. Phys. Rev. Appl.  11,  1 (2019). 

19. M. A. Nahmias, B. J. Shastri, A. N. Tait, P. R. Prucnal,  A leaky integrate-and-fire laser neuron 
for ultrafast cognitive computing. IEEE J. Sel. Top. Quantum Electron.  19,  1–12 (2013). 

20. J. Robertson, T. Deng, J. Javaloyes, A. Hurtado,  Controlled inhibition of spiking dynamics in 
VCSELs for neuromorphic photonics: Theory and experiments. Opt. Lett.  42, 
1560–1563 (2017). 

21. S. Bandyopadhyay, A. Sludds, S. Krastanov, R. Hamerly, N. Harris, D. Bunandar, 
M. Streshinsky, M. Hochberg, D. Englund, Single chip photonic deep neural network with 
accelerated training. arXiv.2208.01623 (2022). https://doi.org/10.48550/arXiv.2208.01623. 

22. F. Ashtiani, A. J. Geers, F. Aflatouni,  An on-chip photonic deep neural network for image 
classification. Nature  606,  501–506 (2022). 

23. J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, D. Brunner,  Reinforcement 
learning in a large-scale photonic recurrent neural network. Optica.  5,  756 (2018). 

24. C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, 
H. Bhaskaran,  In-memory computing on a photonic platform. Sci. Adv.  5,  1–10 (2019). 

25. X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, H. Bhaskaran,  Fast and 
reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica.  6,  1 (2019). 

26. C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, 
W. H. P. Pernice,  Integrated all-photonic non-volatile multi-level memory. Nat. Photonics.  9, 
725–732 (2015). 

27. O. K. Swanson, A. Maffei,  From hiring to firing: Activation of inhibitory neurons and their 
recruitment in behavior. Front. Mol. Neurosci.  12,  1–9 (2019). 

28. A. Slowik, H. Kwasnicka,  Evolutionary algorithms and their applications to engineering 
problems. Neural Comput. Appl.  32,  12363–12379 (2020). 

29. Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, S. Du,  All-optical neural 
network with nonlinear activation functions. Optica.  6,  1132 (2019). 

30. B. Shi, N. Calabretta, R. Stabile,  Deep neural network through an InP SOA-based photonic 
integrated cross-connect. IEEE J. Sel. Top. Quantum Electron.  26,  1–11 (2020). 

31. L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter, Z. Hu, P. L. McMahon,  Deep 
physical neural networks trained with backpropagation. Nature  601,  549–555 (2022). 

32. W. Zhou, X. Li, N. Farmakidis, J. Tan, J. Feldmann, F. Brückerhoff-Plückelmann, C. D. Wright, 
W. H. P. Pernice, H. Bhaskaran,  Demonstration of over 10^8 cycling endurance in the 
nonvolatile photonic memory cells. Eur. Phase-Change Ovonic Symp.  1,  8–9 (2021). 

33. W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, 
A. Ray, Y. Zhu, H. L. Lung, K. Suu, C. Lam, paper presented at Technical Digest - International 
Electron Devices Meeting (3 to 7 December 2016, San Francisco, CA), pp. 2–4. 

34. M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, 
I. Giannopoulos, O. Cojocaru-mirédin, R. Mazzarello, A. Sebastian,  Monatomic phase 
change memory. Nat. Mater.  17,  681–685 (2018). 

35. E. Gemo, S. G.-C. Carrillo, C. R. De Galarreta, A. Baldycheva, H. Hayat, N. Youngblood, 
H. Bhaskaran, W. H. Pernice, C. D. Wright,  Plasmonically-enhanced all-optical integrated 
phase-change memory. Opt. Express  27,  24724–24737 (2019). 

36. H. Zhang, J. Thompson, M. Gu, X. D. Jiang, H. Cai, P. Y. Liu, Y. Shi, Y. Zhang, M. F. Karim, 
G. Q. Lo, X. Luo, B. Dong, L. C. Kwek, A. Q. Liu,  Efficient on-chip training of optical neural 
networks using genetic algorithm. ACS Photonics.  8,  1662–1672 (2021). 

37. M. L. Davenport, J. E. Bowers, Efficient and broad band coupling between silicon and ultra- 
low-loss silicon nitride waveguides, in 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, 2 
to 6 October 2016 (IEEE, 2017), pp. 631–632. 

38. Y. Ueda, Y. Saito, T. Shindo, S. Kanazawa, M. Ishikawa,  High-speed tunable laser based on 
electro-optic effect for wavelength switching. NTT Tech. Rev.  20,  65–73 (2022). 

39. W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, 
P. Dumon, P. Bienstman, D. van Thourhout, R. Baets,  Silicon microring resonators. Laser 
Photonics Rev.  6,  47–73 (2012). 

40. C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, H. Bhaskaran, 
Controlled switching of phase-change materials by evanescent-field coupling in inte-
grated photonics [invited]. Opt. Mater. Express.  8,  2455–2470 (2018). 

Acknowledgments: We thank J. Schütte for assistance with the picture in Fig. 4. Funding: This 
work was supported by Deutsche Forschungsgemeinschaft grant CRC 1459 and EXC 2181/1 – 
390900948 [the Heidelberg STRUCTURES Excellence Cluster (to I.B., M.B., N.V., and W.H.P.)]; EU 
H2020 grants 780848, Fun-COMP and 101017237, PHOENICS (to H.B., C.D.W., and W.H.P.); and 
UKRI grant numbers EP/T023899/1, EP/R001677/1, and EP/W022931/1 (N.F. and H.B.). Author 
contributions: Conceptualization: F.B.-P., H.B., and W.H.P. Methodology: F.B.-P., I.B., M.B., N.V., 
N.F., and E.L. Investigation: F.B.-P., I.B., M.B., N.V., N.F., E.L., and F.L. Visualization: F.B.-P., I.B., M.B., 
N.V., and N.F. Supervision: W.H.P., H.B., C.D.W., M.S., and B.R. Writing—original draft: F.B.-P., I.B., 
and M.B. Writing—review and editing: All authors. Competing interests: The authors declare 
that they have no competing interests. Data and materials availability: All data needed to 
evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials.  

Submitted 25 May 2023 
Accepted 19 September 2023 
Published 20 October 2023 
10.1126/sciadv.adi9127  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Brückerhoff-Plückelmann et al., Sci. Adv. 9, eadi9127 (2023) 20 October 2023                                                                                                                           8 of 8 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 21, 2024

https://doi.org/10.48550/arXiv.2208.01623
https://doi.org/10.48550/arXiv.2208.01623

	INTRODUCTION
	Event-driven optical computation architecture

	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

