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Abstract

This paper describes the use of a low level, computationally inexpensive
closed form motion detector to define regions of interest within an image,
based upon statistical measures. The algorithm requires only the first
order properties of the image intensities and does not require known
camera motion. It has been tested on a variety of real imagery. A b-spline
snake is initialised on the occluding contours of this region of interest.

1 Introduction

Amongst the important tasks which rely on motion data is that of motion
segmentation. This paper addresses the problem of how to detect a set of
moving objects in the two dimensional projection of an otherwise rigid scene,
given that the camera is moving in an arbitrary and unpredetermined manner.
A closed form analytic solution is supplied for the detection of non-rigid motions
given the spatio-temporal gradients.

The problem of motion segmentation has received considerable attention
over the years. For example, Nelson [10] has described an algorithm designed to
solve the object segmentation problem for the case of known camera translation
and rotation. Burt and his co-workers [3] have developed a multi-scale pyrami-
dal motion segmentation algorithm designed for use in conjunction with control
of the sensor and the parameters of the algorithm. Frangois and Bouthemy [7]
have designed an algorithm that uses qualitative information about the camera
motion to aid motion segmentation, using a Markow Random Field (MRF) ap-
proach to segment the scene into regions with common affine flows. Adiv [1] and
Waxman and Duncan [15] make second order approximations to the flow field
over small regions. They then use various methods to test the compatibility
of these regions, in order to decide whether or not to merge them. Thompson,
Mutch and Berzins [13] and Schunck [12] present algorithms for motion bound-
ary detection based upon early edge detection algorithms using the Laplacian
of the Gaussian. :

In this paper we propose a global solution to the problem of motion seg-
mentation, in order to overcome the problems posed by regions contributing a
paucity of data (e.g. aperture problem), by considering the whole image. Many
methods assume dense and accurate velocity fields as input and impose a conti-
nuity constraint upon the projected motion field identifying motion boundaries
along lines where this continuity is violated. Without highly accurate estimates
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of the projected motion, small parts of the image are unlikely to contain suffi-
cient information to reconstruct full flow and its deformation parameters, thus
numerical differentiation of the projected vector field or the merging of small
areas will be very ill-conditioned. As in [4] we assume an affine background
flow, and successive quantitative estimates are made about the affine deforma-
tion parameters of the background motion over the image. Parts of the image
that do not accord with this estimate are identified as regions of interest. We
use the first order intensity properties of the image as input to our algorithm,
so that we do not throw any information away.

Our aim then is to partition the five dimensional space of discrete image
points (pixels) and the spatio-temporal intensity gradients calculated at those
pixels {(E;, Ey, Ey, z,y)} into disjoint sets corresponding to either the desig-
nated background or to foreground objects undergoing independent motions.
To achieve this we

1. Fit a hyper-plane through the points in a given region using least-squares,

assuming that the points undergo an affine transform (Sections 2.1 and
2.2);

2. Check for collinearity and appropriateness of the assumption (Section
2.3);

3. Identify the outliers to the fit (Section 2.1); and

4. Cluster the outliers to form regions of interest ( Section 3).

2 Least squares fit to intensity gradients

Within this section we shall outline how to discover outliers from the flow
predicted by the affine scene model. These outliers will usually arise from
either noise or occlusions. The interested reader is referred to [2, 6] for a more
thorough coverage of the theory and methods of diagnostic techniques.

2.1 Testing for Outliers within Least Squares

Given a set of equations
Yo = dab” a=1...n (1)

- e
where y, is a known variable, d, is a known p dimensional vector and b is an
unknown p dimensional vector, termed the vector of coefficients We shall term

Yo the dependent variable and d, the vector of independent variables. Let [D)
be a matrix whose rows are d, then from equation 1 we can see that:

y" = [DIB” (2)
we can then use the pseudo inverse to solve for b:
BT =[[D]"[D]~}[D] BT (3)

where 5 is our estimate of the coefficients b which is unknown.
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The general procedure for assessing the influence of a given point in a regres-
sion analysis is to determine the changes that occur when the point is omitted.
Several measures of influence exist in the literature. They differ in the partic-
ular regression result on which the effect of the deletion is measured, and the
standardization used to make them comparable over observations. All the influ-
ence measures discussed can be computed from the results of a single regression.
Below we discuss three influence measures, each of which takes account of the
deletion of the ith observation or equation (e.g. what would be the solution to
the set of equations 1 if we delete the equation y; = &;ET) on some regression
variable. Cook’s D measures the effect on ff our estimator of b. DFFITS-F
measures the effects on our prediction of the dependent variable jr': given ﬂ-.
COVRATIO-C which measures the effect on the variance-covariance matrix
of the parameter of estimates.

Potentially influential points are data points that are far from the centre of
the [D]-space. A measure of the distance of the ith data point from the centroid
of all the points in [D]-space d is provided by h;;, the ith diagonal element of

the hat matrix [H]. The hat matrix is derived as follows, from equation 3 we
can see that:

77 = D] (IDI"D)) " [D)757 (4)

- -1
where ¥’ is our prediction of ¥ given 3. [H] = [D] ([D]T [D]) [D]T is termed
the hat or the orthogonal projection matrix on the column space of [D]. h;; is
termed the leverage or potential of the ith case in that is gives an indication
of the effect of y; on g;, the closer h;; is to 1 the smaller the residual e;. The
estimate of the variance of the dependent variable is
2
2 _ D€
U e P . (5)
Where e; is the ith element of the residual vector €. Note that € = ([I] - [H])¥,
Var(e) = Var(([I] — [H])y). Thus the residuals do not have common variance.
The heterogeneous variances in the residuals are corrected by dividing each
residual by an estimate of its standard deviation given by the square root of

the diagonal elements of ([I]—[H])d,2. Standardized (or internally Studentized)
residuals s are given by [11]:

def €;

8 = __tf;\/l—_h,-,- (6)

Belsley, Kuh and Welsch [2] suggest standardizing the residuals with an esti-
mate of its standard deviation independent of the residual. This is accomplished
using oy;), the estimate of the standard deviation without the ith observation
which can be obtained by:

2
e
(n=p=1)afy = (n = p)o? - ©
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Let t; be the ith Studentized residual such that [2]

L

def €; n——p—l)2
ti = ——m—=5; | ——— 8
o(i)(1 — hig)3 ("—P—Sf =

t; will follow a t-distribution with n — p — 1 degrees of freedom if the errors in
yi are normally distributed. Cook’s D [5] test is designed to measure the shift

in § when a particular observation is omitted. Cook’s D; is defined as

det (Biiy — 8)T([D)”[D)) (ﬁ(a) = _2 ( hi ) )
po} p \1-h

Where ;) is the set of parameters fitted to the data without the ith observa-
tion included. D; has approximately an F-distribution thus D; & F(4pn—p)-
Cook [5] suggests that if & = .50 from omitting a single data point then this is
significant. The 50th percentile for F' is 1.0 when the numerator and denomi-
nator are large thus a value of D; near 1.0 is significant. This is extreme and
the literature suggest a more modest threshold of 2, where we recall n is the
number of observations., The DFFITS [2] statistic F' can be computed from
the Studentized residual. F; gives a measure in the change of ¥ when the ith
observation is not included in the estimation of ﬁ

det Y’ — Yy ( hi; )’i’
F; = = t; 10
0’(,)\/&: h.’.’ ( )

where yzi}l- = :,-,3’(,-) i.e. the estimated y} for the ith observation where the

ith observation was not used to estimate F. After tests it was found that
the significant areas identified by Cook’s D and F; are very nearly identical.
An approximation to the impact of the ith observation on the variance of the
estimated coefficients is measured by the ratio of the determinants of the two
variance-covariance matrices COVRATIO = C.

w1
S LN R

The determinant of the variance-covariance matrix is a generalised measure of
variance. Thus C reflects the impact of the ith observation on the precision
of the estimates of the regression coefficients. Values near 1 indicate that the
ith observation has little effect, greater than 1 indicates that the presence of
the ith observation increases the precision of the estimates, the converse is
true. A range of 1 + 3p/n is suggested to be considered the extremes for
identifying influential points. Thus in this section we have presented a set
of computationally simple methods for determining outliers to a set of linear
equations.
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2.2 Affine Flow

In this paper we assume that the spatial structure of the projected flow, with
the exception of independently moving foreground objects, is coherent and
may be approximated by a linear vector field. According to the proposed
method these foreground objects may be detected as inconsistent with the affine
background motion. The affine assumption is approximately correct when the
distance to background objects is large when compared to the variations in
these distances, this occurs in many outdoor scenes. It is also approximately
correct for rotations seen over a small field of view.

Rather than first computing the flow, then fitting, we fit directly to the
spatiotemporal image surface. Let the image intensity at inhomogeneous pixel
coordinate X = (z,y, —f) be E(z,y). The motion constraint equation [9] is:

8Edz O8FEdy OF
Pzt Togdt T ot (12)
Verri and Poggio [14] have shown that equation 12 does not hold in general,
but increases in accuracy as the spatial gradient increases. Thus in general
points are only used if |VE| exceeds a certain threshold. Let @ = (u, v) be the
projected velocity at X then VE -u + E; = 0 given the flow varies linearly:

u du
StAz By Ay

u
y

We can rewrite equation 13 separating the observables and unobservables into
two vectors of the form given by equation 1 where

d=( E. E, AzE, AyE, AzE, AyE, )T
g du u v Bv
B=(u v & & & 2)7
¥=(E, E, ... E,)7T (14)

We may solve the set of equations presented in 14 by a least squares method,
given N image points for which we know the spatio-temporal derivatives. Out-
liers to this system of equations are then be deemed to be independently moving
objects.

2.3 Collinearity

If there are near-singularities among the columns of [D] then we have insufficient
data within this region to reconstruct the fit. This could have arisen from a
highly structured image e.g. a series of vertical bars. Alternatively sparse or
unbalanced data could give rise to collinearity. When the data is collinear then
we must rely on past estimates for information. Waxman [16] referred to this as
the aperture problem in the large in which insufficient contour structure leaves
the set of deformation parameters undetermined, even over large regions of the
image. For instance, if the data had arisen from a single conic section then
there would be at least one affine dependency in [D] and the Taylor coefficients
$ would be undetermined.
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Geometrically, this means there is poor dispersion in one of the dimensions
of [D]-space. The presence of collinearity can be detected by an eigen analysis
of [D]7[D). The six eigenvalues A? provide measures of the amount of disper-
sion for each of the principal component axes in [D]-space [11]. The condition
number is defined as the ratio of the largest to the smallest singular value ;.
This gives a measure of sensitivity of 8 to small changes in [D]. The condition
number concept is extended to the condition index for each (principal compo-
nent) dimension of the [D]-space. The condition index K; for the ith principal
component dimension in [D]-space is the ratio of the maximum singular value
to the ith singular value. We shall take values of the condition index around
10 to indicate moderate dependencies, values from 30 — 100 to indicate strong
dependencies and values in excess of 100 to indicate severe collinearity prob-
lems [11]. The number of condition numbers in the critical range indicating the
number of near-dependencies. Given a large number of dependencies warning
must be given that the result of the regression is suspect.

The size of the eigenvalues depends on the scale of the columns of [D], thus
we shall scale [D] so that the length of each column vector is one (i.e the sum of
squares of the elements is unity) to prevent the eigen-analysis being dominated
by one or two independent variables e.g the term z E, will be always be larger
than the E; column but we do not wish to give it any greater weight when
testing for collinearity.

Thus we have presented a statistically well founded technique for determin-
ing whether the image is indeed sufficiently structured enough to allow us to
recover [.

3 Clustering

Once we have identified a set of outliers we then need to form a hypothesis
about whether they are consistent with one or more rigid three dimensional
objects moving independently of the background. We utilise a method of spatial
clustering by merging nearby outliers into groups and defining the region of
interest as the convex hull of the group, following an algorithm presented in
(8].

A problem with this is that a lone outlier (a result of noise for instance)
might seriously distort the convex hull. Thus we utilise further robust statistical
methods to differentiate between outliers caused by noise and outliers caused
by objects moving differently to the background. The image is tessellated into
equal sized overlapping regions. Given an estimate of the noise (by observation
of some static scenes) we calculate a 99% confidence interval that the number
of outliers within the region must exceed to determine that the outliers within
that region are not due to noise. From the set of points delineating the convex
hull we initialise a b-spline snake onto the occluding contour of the object.

4 Results

We have implemented a movement detector based on the above principals us-
ing the COVRATIO test—-C and Cook’s D measures for outliers on a linear fit.
Empirically it was found that the results of DFFITS was indistinguishable from
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Figure 1: Showing a sequence of images of a white object translating 4 pizels to
the right as the background iranslates 0 — 2 pizels down and 0 — 1 pizels right
depending on the depth.

Cook’s D. The first is of a moving object taken from a camera in motion in
an indoor scene. The second is of several moving objects as the camera trans-
lates. No heuristics or “magic numbers” were used to derive the thresholds.
Instead they were derived from the statistical theory underpinning the work.
Furthermore, these thresholds are self scaling to the type of image concerned.

The first sequence of images shown in figure 1 is of a white object translating
4 pixels to the right as the background translates 2 pixels down and 0 — 1
pixels right depending on the depth. The image is 256 x 128. To reduce the
amount of redundant information in the least squares points with low gradient
were excluded, this reduced the number of points under consideration from
32768 to 29039. The reason for the exclusion of these points is that they are
clustered about the origin in observation space through which any fit must pass
and thus provide redundant information, their exclusion reduces the amount of
calculation. The thresholds for points to be considered outlying were C = 1— 22
and D = 2 taken from [11], e.g. C < 0.997864, D > 0.000285. Figure 2 shiows
the result of the variance test superimposed on 'the motion shown in in figurel,
areas in black are outliers, white areas are background and the grey areas where
points excluded from the fit and are shown in their original intensities. Note
that some of the edge of the lower triangle has been indicated as outlying. Care
must be taken when handling the output of the outlier tests. As we are making
a linear flow assumption depth and velocity discontinuities are both shown. It
is hoped that the inclusion of a matching strategy over time might reduce the
number of false outliers. The second pair of images, in figure 3, depicts several
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Figure 2: Showing the resull of the C-test for outliers superimposed on the im-
ages shown in figure 1, while areas are the background and black areas are out-
liers. Grey areas are the inlensities of the original regions with low (E., Ey, E})
that are ezcluded from the regression.

Figure 3: Showing several lab objects moving in different directions as the back-
ground moves 0 — 3 pirels lefl. In the bottom cenire of the image a black boz
moves quickly 10 pizels to the left and 3 pizels up, on the top left a piece of
paper contracts as it slips down the back of the monitor 3 — 5 pizels and moves
3 pizels to the left (i.e 0 left pizels relative to the background). In the centre a
large white box moves to the right by 6 pizels and down by 1 pizel

lab objects moving in different directions as the background moves 0 — 3 pixels
left. In the bottom centre of the image a black box moves quickly 10 pixels to
the left and 3 pixels up, on the top left a piece of paper contracts as it slips
down the back of the monitor 3—5 pixels and moves 3 pixels to the left (i.e 0 left
pixels relative to the background). In the centre a large white box moves to the
right by 6 pixels and down by 1 pixel. The image is 256 x 256, points with low
gradient were excluded, this reduced the number of points under consideration
from 65536 to 21216. The thresholds for points to be considered outlying were
C < 0.998586, D > 0.000189

Overall given accurate estimates of the first order properties of the image
the algorithm successfully localises the independently moving objects, providing
that there motion is sufficiently different to the background motion.
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5 Conclusions

In this paper we have presented a method for detection of non-rigid motion
given information derived from time varying imagery. The method is founded
upon the examination of the differences between the observed temporal dif-
ference and a predicted form given an affine transformation. Thus we make
a global estimate of the background motion using a scene constraint, as a
heuristic. The algorithm does not attempt to establish point correspondences,
estimate the optic flow, or make a three dimensional reconstruction. It does not
require knowledge of camera motion or calibration. Instead successive quan-
titative estimates are made about the deformation parameters of background
motion and parts of the image that do not accord with this estimate are iden-
tified as regions of interest. This identification is done using recent statistical
work on the analysis of regressions. The thresholds are determined in a princi-
pled manner and are self scaling to the variances of the image intensities.

6 Future Work

There are two avenues of current research. The first is to improve the method
of grouping the outliers into cohesive groups. The second is generalisation to
a more realistic set of motions. An inherent problem with an affine approxi-
mation is that it is only valid in a limited number of situations. Current work
addresses the problem of how to detect a set of moving objects in the two
dimensional projection of an otherwise rigid scene, given that the camera is
moving in an arbitrary and unpredetermined manner. We utilise the fact that
point correspondences having arisen from a projective 3D transformation can
be described by a 3 x 3 Essential Malriz [E] linking the coordinates of the
points before and after the transformation. The Essential Matrix is derived by
an analytic O(N3) least squares method, assuming at least half of the image is
undergoing a coherent projective transformation. Thus points with non-rigid
motion (modulo a projectivity) are deemed to be those statically inconsistent
from the calculated value of [E].
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