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 Background: Cardiac arrest (CA) is a global public health challenge. This study explored the predictors of mortality and their 
interactions utilizing machine learning algorithms and their related mortality odds among patients following CA.

 Material/Methods: The study retrospectively investigated 161 medical records of CA patients admitted to the Intensive Care Unit 
(ICU). The random forest classifier algorithm was used to assess the parameters of mortality. The best classifi-
cation trees were chosen from a set of 100 trees proposed by the algorithm. Conditional mortality odds were 
investigated with the use of logistic regression models featuring interactions between variables.

 Results: In the logistic regression model, male sex was associated with 5.68-fold higher mortality odds. The mortality 
odds among the asystole/pulseless electrical activity (PEA) patients were modulated by body mass index (BMI) 
and among ventricular fibrillation/pulseless ventricular tachycardia (VF/pVT) patients were by serum albumin 
concentration (decrease by 2.85-fold with 1 g/dl increase). Procalcitonin (PCT) concentration, age, high-sensi-
tivity C-reactive protein (hsCRP), albumin, and potassium were the most influential parameters for mortality 
prediction with the use of the random forest classifier. Nutritional status-associated parameters (serum albu-
min concentration, BMI, and Nutritional Risk Score 2002 [NRS-2002]) may be useful in predicting mortality in 
patients with CA, especially in patients with PCT >0.17 ng/ml, as showed by the decision tree chosen from the 
random forest classifier based on goodness of fit (AUC score).

 Conclusions: Mortality in patients following CA is modulated by many co-existing factors. The conclusions refer to sets of 
conditions rather than universal truths. For individual factors, the 5 most important classifiers of mortality (in 
descending order of importance) were PCT, age, hsCRP, albumin, and potassium.
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 Abbreviations: AIC – Akaike Information Criterion; ALS – advanced life support; BLS – basic life support; BMI – body 

mass index; CA – cardiac arrest; hsCRP – high-sensitivity C-reactive protein; ICU – Intensive Care Unit; 
IHCA – in-hospital cardiac arrest; K – potassium; LYM – lymphocyte; ML – machine learning; NA – sodi-
um; NRS-2002 – Nutrition Risk Screening 2002; OHCA – out-of-hospital cardiac arrest; OR – odds risk; 
PCT – procalcitonin; PEA – pulseless electrical activity; pVT – pulseless ventricular tachycardia; 
ROSC – return of spontaneous circulation; TChol – total cholesterol; TG – triglycerides; TSH – thyroid-
stimulating hormone; VF – ventricular fibrillation
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Introduction

Cardiac arrest (CA), a critical public health issue, manifests dif-
ferently when occurring inside versus outside hospital settings. 
Out-of-hospital cardiac arrest (OHCA) presents significant chal-
lenges globally, with an incidence among adults ranging from 
40 to 52 per 100 000 person-years [1,2]. Despite emergency 
interventions, only about 22% of OHCA patients survive to be 
admitted to the hospital, and the survival rate to hospital dis-
charge is as low as 9% for this group [3]. 

In contrast, in-hospital cardiac arrest (IHCA) shows compara-
tively higher recovery rates. Approximately one-third to two-
thirds of IHCA patients achieve return of spontaneous cir-
culation (ROSC) after cardiopulmonary resuscitation [4,5]. 
Furthermore, survival rates to hospital discharge have been 
improving, currently standing around 25% in the United States 
and up to 35% in European countries [6,7]. Survival variations 
after CA are influenced by numerous factors, including the 
structure of the emergency medical system, the promptness 
of basic life support (BLS) initiation by witnesses, the quality 
of advanced life support (ALS), and post-resuscitation care in 
intensive care units (ICU) [8]. To manage these critical situa-
tions, mortality prediction tools are frequently utilized in clin-
ical practice for patients admitted to the ICU with life-threat-
ening conditions [9].

In recent years, there has been rising interest in use of ma-
chine learning (ML) for medical purposes to develop a more 
personalized treatment approach based on more precise as-
sessment of survival rates. The high applicability of ML algo-
rithms stems from the fact that, as opposed to classic sta-
tistical methods, they simulate the process of learning and 
adapting (in some cases even through forgetting information) 
to the variability in the analyzed data. This important feature 
of ML divulges into a more optimal fit of such models to the 
empiric data. Contemporary medicine utilizes ML algorithms 
to assess the relationship between in-hospital survival and 
the various factors associated with the features of cardiac ar-
rest and its comorbidities [10-15], treatment [16-19], demog-
raphy, or even time- and date-related parameters [20]. Such 
multivariate analyses are performed to enable assessment of 
the odds of death in each patient; therefore, allowing ICUs to 
focus on the most endangered individuals [21,22]. The poten-
tial of ML in improving ICU outcomes extends beyond mere 
prediction – it enhances the decision-making process, tailor-
ing interventions that are specific to the physiological profile 
of each patient. Recent studies illustrate how ML algorithms 
can optimize the treatment protocols by analyzing real-time 
data, thus potentially increasing survival rates in critical care 
settings. For instance, ML-based tools have shown promise in 
predicting severe complications and optimizing resource allo-
cation in ICUs, which are crucial for improving outcomes in 

cardiac arrest cases [23,24]. Furthermore, ongoing advance-
ments in ML are paving the way for more sophisticated mod-
els that integrate continuous data streams from ICU monitor-
ing devices, offering deeper insights into patient status and 
likely trajectories [25].

Taking into account the potential of machine learning to sig-
nificantly enhance outcomes in ICU settings, this study was 
designed to deepen our understanding of cardiac arrest mech-
anisms and their outcomes. Our research focused on investi-
gating the differences in clinical parameters across asystole/
pulseless electrical activity (PEA) and ventricular fibrillation/
pulseless ventricular tachycardia (VF/pVT). We aimed to delin-
eate how these parameters influence patient survival, define 
the critical conditions that contribute to mortality, and assess 
the odds of death, with a particular emphasis on identifying 
significant interactions between these conditions. Additionally, 
we explore the application of inherently explainable machine 
learning algorithms to predict survival status in patients af-
ter cardiac arrest, assessing the effectiveness of these tools 
in predicting outcomes based on the complex data available 
in ICU settings.

Material and Methods

Study Design and Setting

We performed a retrospective analysis of 161 medical re-
cords of patients admitted due to CA to the adult ICU at the 
University Hospital (Wrocław, Poland) between January 2017 
and February 2022 (ICD10: I46). The study followed the STROBE 
guidelines (Strengthening the Reporting of Observational 
Studies in Epidemiology).

Study Population and Data

We analyzed all the patients who met the inclusion criteria 
(admitted to the ICU after CA, age ³18 years old, and CA not 
caused by trauma or suicide attempt). The analysis included 
data such as age, sex, body mass index (BMI), Nutrition Risk 
Screening (NRS-2002), comorbidities, in-hospital mortality, 
and laboratory results including lymphocyte (LYM); procalci-
tonin (PCT); total cholesterol (TChol), triglycerides (TG), thy-
roid-stimulating hormone (TSH), high-sensitivity C-reactive 
protein (hsCRP), potassium (K), sodium (NA), and albumin. In-
hospital mortality was defined as death from any cause oc-
curring within the confines of the hospital, up until the time 
of discharge from the ICU.

We used as an auxiliary assessment of differences in the con-
tinuous variables. BMI was assessed as non-obese (BMI <30) 
and obese (BMI ³30). Blood for laboratory tests was drawn 
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by a nurse at the time of admission to the ICU. The physician 
admitting the patient to the ICU decided which tests the pa-
tient needed.

Statistical Analysis

The analysis was performed based on our previous study in the 
same population sample, in which the association between cat-
egorical parameters (such as comorbidities) was studied [26].

Data pre-processing and visualization was performed with 
the use of Python 3.9.13. Statistical analyses were performed 
with use of Python 3.9.13 or STATISTICA 13.3 (package on li-
cense of Wrocław Medical University). The following Python 
packages were utilized: numpy 1.23.0, pandas 1.4.3, scipy 
1.9.3, statsmodels 0.13.2, zepid 0.9.1, matplotlib 3.6.0, and 
dtreeviz 1.4.1. Logistic regression models were derived in the 
STATISTICA 13.3 package, while the machine learning model 
(Random Forest Classifier) was trained and tested with use of 
Python 3.9.13. (scikit-learn 1.1.3 package). Statistical inference 
was based on a=0.05.

Analysis of the distribution of values of variables, their scale 
of measurement, and the incidence of outliers or extreme val-
ues in the dataset was taken into account in the process of 
selecting the most suitable methods for statistical inference. 
Differences between values after grouping by different cate-
gories were checked with use of the Mann-Whitney U test.

The first algorithm used in survival status-related classification 
was logistic regression with effect coding. The initial set of vari-
ables was chosen based on the amount of missing data to min-
imalize loss of information. Information on this set of variables 
and the derivation of the base model (on which this study is 
based) is shown in Supplementary Materials (Supplementary 
Table 1) of our previous study on the same population sam-
ple [26]. The univariate analysis and interaction assessment 
formed the basis for implementing multivariate models. For 
the purpose of easier interpretability of the models, featured 
continuous variables, taking part in interactions within a mod-
el, were centered (value – mean value). The assumption of lin-
earity between the predictors and the logit was checked us-
ing the Box-Tidwell test. Goodness of fit was assessed with: 
Hosmer-Lemeshow test, Akaike Information Criterion (AIC), 
Bayesian Information Criterion, and Nagelkerke’s pseudo-R2. 
Hypothesis that b=0 was tested with the Lagrange multiplier 
(score) test. Prediction power was analyzed based on the as-
sessment of testing: AUC computed with 10-fold cross-valida-
tion. The best model was then described by metrics: including 
precision, recall, specificity, and accuracy, with use of the op-
timal cut-off value based on Youden’s J index.

Random Forest Classifier was the second algorithm used in the 
aforementioned classification. The method is based on creat-
ing a random set of decision trees (forming a forest). While 
originally the classifier is used to predict patient states (such 
as mortality) based on the whole ensemble of these decision 
trees, this study utilized the algorithm to choose a decision 
tree of the best fit from all the random trees in the ensemble. 
The algorithm was fit to the same dataset, and the same set 
of initial variables was used to assess which variables were 
featured the most (eg, ‘feature importance’) in all of the trees 
in the forest. Before fitting the algorithm to the data, the da-
taset was randomly shuffled and divided into training (65%) 
and testing (35%) subsets. Bootstrap samples were used 
when building trees. The classification was performed with 
use of 100 estimators (trees), among which the 2 best were 
selected for visualization (based on testing: accuracy or AUC, 
Supplementary Table 2). These 2 models were subsequently 
validated with use of 10-fold cross-validation performed on 
the whole dataset. The maximum tree depth was 5. The square 
root of the total number of used features was set as the max-
imum number of features to perform splits. Splits were per-
formed if n ³2. Leaves of the trees consisted of at least 1 re-
cord. The quality of splits was assessed with Gini impurity:

in which n is the count of predicted class categories and pi 

is the proportion of the ith class category. Feature importance 
was assessed based on the accumulation of impurity decrease 
within the trees.

Results

Characteristics of analyzed population sample

The patients were aged 26-88 years old (mean value 64.07, SD 
14.74, median value 67, 1st to 3rd interquartile range 56-74). 
The count of male patients was approximately 2.04-fold high-
er than the count of female patients.

Differences in Values of Selected Parameters Between The 2 
Cardiac Arrest Mechanisms

The 2 mechanisms of cardiac arrest differed significantly in 
age (p≈0.005) and concentrations of albumin (p≈0.042), PCT 
(p≈0.021), and hsCRP (p<0.001). Patients with the asystole/PEA 
mechanism were older and exhibited an 4.91% lower median 
value of albumin compared to the VF/pVT patients. The values 
of PCT and hsCRP in the asystole/PEA group were markedly 
higher (3.30-fold or 3.98-fold higher, respectively). The descrip-
tive statistics of qualitative parameters are shown in Table 1.
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Variable
Asystole/PEA VF/pVT

p
n [1st Q, Me, 3rd Q] n [1st Q, Me, 3rd Q]

Age [years] 90 [59.50, 69.00, 77.00] 70 [52.00, 62.00, 73.00] 0.005

Albumin [g/dl] 78 [2.42, 2.90, 3.30] 58 [2.62, 3.05, 3.70] 0.042

BMI [kg/m2] 71 [22.67, 25.95, 30.00] 58 [24.34, 26.30, 30.50] 0.197

K [mmol/l] 90 [3.79, 4.30, 5.08] 68 [3.77, 4.50, 5.02] 0.815

LYM [%] 45 [5.10, 9.20, 16.10] 28 [5.98, 10.60, 16.75] 0.687

Na [mmol/l] 90 [134.00, 138.50, 142.00] 68 [136.00, 138.00, 140.25] 0.894

NRS2002 90 [3.00; 3.00; 4.00] 71 [3.00; 3.00; 4.00] 0.371

PCT [ng/ml] 89 [0.13, 0.99, 4.63] 68 [0.13, 0.30, 1.53] 0.021

TChol [mg/dl] 58 [106.25, 129.50, 168.75] 47 [126.00, 154.00, 174.00] 0.102

TG [mg/dl] 52 [82.75, 122.00, 188.25] 47 [101.50, 155.00, 210.00] 0.160

TSH [uIU/ml] 57 [0.66, 1.66, 3.39] 42 [1.16, 1.82, 2.98] 0.871

hsCRP [mg/l] 89 [5.12, 26.06, 88.97] 68 [1.70, 6.54, 24.44] <0.001

Table 1. Values of selected quantitative parameters in context of different cardiac arrest mechanisms.

Values are given as [1st quartile; median value; 3rd quartile]. Statistically-significant (p<0.05) differences are marked in bold. 
BMI – body mass index; LYM – lymphocyte count; NRS2002 – Nutrition Risk Screening 2002; PCT – procalcitonin; TChol – total 
cholesterol concentration; TG – triglycerides; TSH – thyroid-stimulating hormone; hsCRP – high sensitivity C-reactive protein 
concentration; PEA – pulseless electrical activity; Pvt – pulseless ventricular tachycardia; VF – ventricular fibrillation.

Variable Category Asystole/PEA VF/pVT c2 p

Sex
Female  39 [0.74]  14 [0.26]

10.023 0.002
Male  51 [0.47]  57 [0.53]

Obesity Obese  20 [0.54]  17 [0.46] 0.066 0.797

Cardiac arrest location
OHCA  32 [0.43]  43 [0.57] 9.975 0.002

IHCA  58 [0.67]  28 [0.33] 9.975 0.002

ACS Yes  15 [0.56]  12 [0.44] 0.002 0.968

CS Yes  8 [0.57]  6 [0.43] 0.010 0.922

CKD Yes  8 [0.5]  8 [0.5] 0.251 0.616

HF Yes  11 [0.52]  10 [0.48] 0.121 0.728

DM Yes  21 [0.54]  18 [0.46] 0.088 0.767

HT Yes  30 [0.51]  29 [0.49] 0.965 0.326

Table 2. Values of selected qualitative parameters in context of different cardiac arrest mechanisms.

Values are given as: count [frequency in categories (rows)]. The ‘All’ margins indicate sums of counts. Expected counts are given in 
columns labeled with the ‘expected n’ term. Statistically-significant (p<0.05) differences are marked in bold. ACS – acute coronary 
syndrome; CS – cerebral stroke; CKD – chronic kidney disease; HF – heart failure; DM – diabetes mellitus; HT – hypertension; 
PEA – pulseless electrical activity; Pvt – pulseless ventricular tachycardia; VF – ventricular fibrillation.
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Male patients were more likely to suffer from the VF/pVT mech-
anism (p≈0.002, Table 2), showing over 3-fold higher odds 
compared to their female counterparts. Over 2/3 of the to-
tal inter-hospital cases of cardiac arrest were of asystole/PEA 
mechanism, which is significantly more frequent compared to 
the OHCA individuals (p≈0.002, Table 2). Interestingly, these 
findings are not associated with each other since the male-to-
female ratio did not differ in context of cardiac arrest location 
(p≈0.570, Figure 1). Moreover, the 2 mechanisms were associ-
ated with comparable comorbidity status (Table 2).

Differences in Values of Selected Quantitative Parameters in 
Context of Survival and Cardiac Arrest Mechanism

Among the non-survivors (Figure 2A), asystole/PEA patients 
showed higher PCT concentration (p≈0.022) but lower TG 
concentration compared to the VF/pVT patients (p≈0.028). 
Interestingly, among the survivors (Figure 2B), VF/pVT pa-
tients showed higher BMI (p≈0.012) and albumin concentration 

OHCA
46.58% (75)

32.30%
(52)

18.63%
(30)

34.78%
(56)

14.29%
(23)

IHCA
53.42% (86)

OHCA, Female
OHCA, Male
IHCA, Female
IHCA, Male

Figure 1.  Sex-related frequencies among the 2 cardiac arrest 
locations.

Non-survivors Survivors

Asystole/PEA VF/pVT

A

C

B

D

Figure 2.  Key differences in values of quantitative parameters in context of CA mechanism and survival status.
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(p≈0.003) but significantly lower hsCRP concentration (p≈0.003) 
compared to the asystole/PEA patients.

Although there were no survival status-associated differenc-
es in PCT concentration among the VF/pVT patients (p≈0.566), 
the asystole/PEA mechanism was associated with marked-
ly higher PCT concentration observed in non-survivors when 
compared to the survivors (p≈0.018, Figure 2C). Among the 
VF/pVT patients, survivors showed higher albumin concen-
tration (p<0.001, Figure 2D). This difference did not occur 
among the asystole/PEA patients (p≈0.524). Descriptive sta-
tistics are shown in Table 3 (total sample size in each group: 
Asystole/PEA: 29 survivors, 61 non-survivors; VF/pVT: 40 sur-
vivors, 31 non-survivors).

Prediction of Mortality Status

Logistic Regression Analysis Exploring the odds of Death 
Among Different Cardiac Arrest Mechanism Types

The base model utilized 2 significant effects selected by an 
iterative procedure: cardiac arrest mechanism (p≈0.038) and 
hsCRP (p≈0.038) (Supplementary Table 3: model 1). The iter-
ative derivation of this model could be seen in our previous 
study, although the cut-off for leaving the variables in the model 
in that study was higher. As the prediction value of the model 
was questionable (testing AUC 0.645±0.0650), this model was 
expanded with additional effects and interactions. Adding the 
information on BMI and serum albumin concentration values, 
sex, and several interactions to the base model increased the 
prediction accuracy. The final model was created based on 2 
intermedial models (Supplementary Table 1 (models 2 and 3) 
and Supplementary Table 3).

The best model (Table 4) utilized sex, cardiac arrest mechanism, 
BMI, albumin and hsCRP concentrations, and the 2nd-degree in-
teractions of cardiac arrest mechanism with BMI, albumin, and 
hsCRP. This model proved to correctly classify approximately 
76.2% of patients (testing AUC 0.762±0.0466). Its metrics at 
the optimal cut-off point (Supplementary Table 4) were 0.830 
precision, 0.650 recall, 0.843 specificity, and 0.739 accuracy.

Men who suffered from asystole/PEA cardiac arrest showed 
approximately 5.68-fold higher (p≈0.007) odds of death com-
pared to women with the same cardiac arrest mechanism. 
Interestingly, no sex-related differences in these odds were 
observed among patients with asystole/PEA cardiac arrest 
mechanism (p≈0.356).

The odds of death among men of 27.42 BMI and 2.97 g/dl se-
rum albumin concentration (mean values from the population 
sample) were 8-fold lower (p≈0.001) among the VF/pVT stra-
tum when compared to asystole/PEA. The differences in odds 

of death in the context of the cardiac arrest mechanism were 
insignificant among women (p≈0.620).

The association between serum albumin concentration and 
BMI values and the odds of death differed depending on car-
diac arrest mechanism. Upon a 1-unit increase of BMI, the 
VF/pVT-to-asystole/PEA ratio of odds of death decreased ap-
proximately 1.26-fold (p≈0.016). This observation was associ-
ated with 1.18-fold increase (p≈0.032) in these odds with ev-
ery 1-unit increase in BMI among patients with asystole/PEA 
mechanism. Interestingly, upon increase in serum albumin con-
centration by 1 g/dl, the odds of death decreased by 2.85-fold 
(p≈0.038) among patients suffering from the VF/pVT cardiac 
arrest type. Odds ratios, depending on the strata, are shown 
in Supplementary Table 1 and Figure 3.

Random Forest Classifier – Which Features Are the Most 
Important in Survival Status Classification Performed in 
Patients with Cardiac Arrest?

As previously shown, none of the categorical variables on their 
own could perfectly distinguish non-survivors from the whole 
population sample. Continuous variables also did not allow 
such classification (Figure 4). The ensemble of 100 random 
trees failed to achieve an AUC score comparable to the score 
of the aforementioned logistic regression model (AUC: 0.674 
for random forest vs 0.762 for logistic regression). The ensem-
ble suffered from poor precision in detecting the non-survivors 
(0.52), while the recall was relatively good (0.75). The confusion 
matrix of the ensemble is given in Supplementary Figure 1. 
Upon testing the classifier with 10-fold cross-validation, the 
ensemble yielded the following metrics: 0.656±0.210 precision, 
0.700±0.222 recall, 0.606±0.156 specificity, 0.651±0.127 accu-
racy, and 0.715±0.132 AUC. The 3 features (variables) of most 
importance were PCT (0.183), age (0.133), and hsCRP (0.128). 
Interestingly, albumin was ranked 4th with feature importance 
of 0.108. BMI, sex, and cardiac arrest mechanism proved to be 
of less importance (Figure 5).

Precision, recall, accuracy, and AUC scores of each estimator 
(tree) are shown in Supplementary Table 2. Despite the fact 
that the whole ensemble of trees failed to classify survival sta-
tus satisfyingly, 2 individual trees achieved good accuracy (tree 
ID 28, testing subset accuracy: 0.7179) or AUC score compara-
ble to the value estimated for the featured logistic regression 
model (tree ID 25, testing subset AUC: 0.7582).

The tree with the best accuracy (tree ID 28, Figure 6) achieved 
an exceptional precision score (0.8333) at the cost of rather 
mediocre recall (0.6521). Based on this, hsCRP and age were 
the most useful features for performing splits. Underweight pa-
tients with a BMI £17.51 and a hsCRP >151.07 mg/l, would be 
considered as survivors. The error in classification performed 
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Variable

A: 
Asystole/PEA, 
Non-survivors

B: 
Asystole/PEA, 

Survivors

C: 
VF/pVT, 

Non-survivors

D: 
VF/pVT, 

Survivors

N
[1st Q, Me, 

3rd Q]
N

[1st Q, Me, 
3rd Q]

N
[1st Q, Me, 

3rd Q]
N

[1st Q, Me, 
3rd Q]

Albumin [g/dl] 51
[2.55, 2.90, 

3.35]
27

[2.30, 3.00, 
3.30]

22
[2.17, 2.60, 

3.18]
36

[3.00, 3.40, 
3.82]

BMI [kg/m2] 48
[23.15, 27.68, 

30.21]
23

[20.06, 23.88, 
29.38]

24
[23.14, 26.12, 

29.69]
34

[24.84, 26.30, 
31.02]

hsCRP [mg/l] 60
[4.66, 26.60, 

99.22]
29

[6.62, 26.06, 
83.97]

28
[2.71, 7.64, 

63.81]
40

[1.48, 6.04, 
19.17]

K [mmol/l] 61
[3.79, 4.34, 

5.04]
29

[3.80, 4.20, 
6.03]

28
[4.16, 4.80, 

5.88]
40

[3.76, 4.22, 
4.81]

LYM [%] 24
[5.07, 8.55, 

16.62]
21

[5.40, 10.40, 
14.50]

6
[3.18, 4.70, 

10.12]
22

[6.90, 13.00, 
16.85]

Na [mmol/] 61
[134.00, 139.00, 

143.00]
29

[134.00, 138.00, 
141.00]

28
[136.00, 138.50, 

142.00]
40

[136.00, 138.00, 
140.00]

NRS2002 61
[3.00, 3.00, 

4.00]
29

[3.00, 3.00, 
4.00]

31
[3.00, 3.00, 

4.00]
40

[3.00, 3.00, 
4.00]

PCT [ng/ml] 60
[0.25, 1.77, 

6.33]
29

[0.09, 0.37, 
2.24]

28
[0.16, 0.36, 

2.13]
40

[0.13, 0.24, 
1.12]

TChol [mg/dl] 35
[100.50, 125.00, 

158.00]
23

[115.00, 139.00, 
173.50]

12
[91.75, 127.00, 

186.75]
35

[130.00, 156.00, 
169.50]

TG [mg/dl] 30
[81.00, 101.50, 

160.00]
22

[107.25, 139.50, 
197.00]

11
[139.00, 215.00, 

288.00]
36

[100.75, 137.00, 
181.75]

TSH [uIU/ml] 36
[1.08, 2.00, 

3.37]
21

[0.62, 1.19, 
3.39]

9
[1.67, 2.12, 

3.35]
33

[1.12, 1.65, 
2.73]

Table 3. Values of selected quantitative parameters in context of cardiac arrest mechanism and survival status.

Values are given as [1st quartile; median value; 3rd quartile]. Statistically-significant (p<0.05) differences are marked in bold. 
BMI – body mass index; LYM – lymphocyte count; NRS2002 – Nutrition Risk Screening 2002; PCT – procalcitonin; TChol – total 
cholesterol concentration; TG – triglycerides; TSH – thyroid-stimulating hormone; hsCRP – high sensitivity C-reactive protein 
concentration; PEA ,– pulseless electrical activity; pVT – pulseless ventricular tachycardia; VF – ventricular fibrillation.

Variable
A vs B 

p
C vs D 

p
A vs C 

p
B vs D 

p

Albumin [g/dl] 0.524 <0.001 0.200 0.003

BMI [kg/m2] 0.082 0.438 0.910 0.012

hsCRP [mg/l] 0.885 0.328 0.127 0.003

K [mmol/l] 0.969 0.080 0.182 0.720

LYM [%] 0.927 0.078 0.195 0.258

Na [mmol/] 0.447 0.420 0.993 0.966

NRS2002 0.949 0.641 0.319 0.750

PCT [ng/ml] 0.018 0.566 0.022 0.927

TChol [mg/dl] 0.162 0.218 0.961 0.479

TG [mg/dl] 0.124 0.111 0.028 0.569

TSH [uIU/ml] 0.462 0.500 0.787 0.445
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on the learning subset occurred solely among patients of with 
K £7.44 mmol/l and hsCRP £55.25 mg/l. Of patients aged 
£62.50, the VF/pVT cardiac arrest mechanism occurred most-
ly among the survivors.

The tree with the best AUC score (tree ID 25) was more com-
plex (Figure 7). Its precision and recall scores were 0.8235 and 
0.6086, respectively. It utilized PCT instead of hsCRP and, in-
terestingly, used nutrition-associated parameters (albumin, 
NRS2002, and BMI) for performing splits. Patients with PCT 
>0.17 ng/ml, albumin £2.85 g/dl, NRS £3.50, and IHCA cardi-
ac arrest location were classified as non-survivors.

The classification capability of both trees was then assessed 
with 10-fold cross-validation. The tree which utilized nutritional 
status-associated parameters (Figure 7) proved to be marked-
ly superior, scoring 0.745±0.178 precision, 0.754±0.091 recall, 
0.708±0.148 specificity, 0.739±0.101 accuracy, and 0.754±0.137 
AUC. The other tree (Figure 6) scored: 0.689±0.196 precision, 
0.690±0.149 recall, 0.648±0.204 specificity, 0.677±0.129 ac-
curacy, and 0.674±0.129 AUC.

Discussion

Our study shows how ML can be used to predict the odds of 
in-hospital mortality in patients admitted to the ICU after CA. 
The most important single factors for predicting mortality are 
PCT age and hsCRP. However, predictive models taking into ac-
count multiple variables, including those related to nutrition-
al status (BMI, NRS-2002, and albumin), had higher accuracy.

In the context of cardiac arrest (CA), understanding the inter-
play between nutritional status and systemic inflammation is 
crucial for predicting patient outcomes. Nutritional status-re-
lated parameters, such as serum albumin concentration, BMI, 
and Nutritional Risk Score 2002 (NRS 2002), are closely linked 
to patient survival due to their ability to reflect both the nu-
tritional intake and systemic response [27,28]. Albumin and 
C-reactive protein (CRP) serve as pivotal biomarkers in these 
scenarios, where their levels not only reflect nutritional and in-
flammatory status but also the severity of systemic response, 
influencing outcomes and recovery processes [29]. Poor nutri-
tional status can lead to weakened immunity, impaired muscle 

MODEL4

Hosmer-Lemeshow p b=0 hypothesis p AIC BIC Pseudo-R2 AUC 
(learning)

AUC 
(testing)

0.055 <0.001 132.08 156.47 0.3964
0.835± 
0.0403

0.762± 
0.0466

Effect/interaction
Analyzed 

cat.
bi

bi 
SE

Wald 
c2

c2 

-95% CI
c2 

95% CI
p OR

OR 
-95% CI

OR 
95% CI

b0 intercept – 0.004 0.451 0.00 -0.88 0.89 0.993 1.00 0.42 2.43

Sex Male 1.737 0.645 7.26 0.47 3.00 0.007 5.68 1.61 20.09

Cardiac arrest 
mechanism

VF/pVT 0.430 0.867 0.25 -1.27 2.13 0.620 1.54 0.28 8.40

BMI – 0.164 0.076 4.62 0.01 0.31 0.032 1.18 1.01 1.37

Albumin [g/dl] – 0.042 0.477 0.01 -0.89 0.98 0.929 1.04 0.41 2.66

hsCRP [mg/l] – 0.008 0.004 3.84 0.00 0.02 0.050 1.01 1.00 1.02

Cardiac arrest 
mechanism*Albumin

– -1.081 0.679 2.53 -2.41 0.25 0.112 0.34 0.09 1.28

Cardiac arrest 
mechanism*BMI

– -0.233 0.096 5.84 -0.42 -0.04 0.016 0.79 0.66 0.96

Cardiac arrest 
mechanism*Sex

– -2.510 1.048 5.74 -4.56 -0.46 0.017 0.08 0.01 0.63

Table 4. The association between selected parameters and the odds of death – multivariate logistic regression.

The ‘Analyzed cat.’ column refers to categories which are compared to reference categories in terms of odds of death. AIC – Akaike 
Information Criterion; BIC – Bayesian Information Criterion; bi – regression coefficient; SE – standard error; OR – odds ratio; 
CI – confidence interval; BMI – body mass index; PEA – pulseless electrical activity; pVT – pulseless ventricular tachycardia; 
VF – Ventricular fibrillation; hsCRP – high sensitivity C-reactive protein concentration. The ‘AUC (learning)’ and ‘AUC (testing)’ columns 
show AUC values from 10-fold cross validation. Information on other models is shown in Supplementary Table 3.
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function, and overall reduced physiological resilience, which are 
detrimental in the acute recovery phase [30,31]. Malnutrition 
may therefore increase the risk of adverse outcomes by exac-
erbating the severity of existing conditions and hindering re-
covery processes[32-34]. Elevated PCT levels are notably im-
portant in the post-cardiac arrest setting, where they not only 
indicate systemic inflammation associated with post-resuscita-
tion syndrome but also correlate with nutritional deficiencies 
[35]. Studies have shown that procalcitonin is elevated in pa-
tients who undergo resuscitation, reflecting its role as a criti-
cal marker in assessing the severity of underlying conditions 
and potential outcomes [35]. This association underscores the 
inclusion of these parameters in our predictive models, aim-
ing to provide a comprehensive assessment of factors that in-
fluence survival odds after CA.

Many studies have tried to predict the odds of mortality in 
critically ill patients after IHCAs and OHCAs using ML [36]. It 
should be noted that this study, unlike many studies found in 
the literature, utilized interactions in logistic regression mod-
els. This strategy allowed us to better adjust the model for its 
applicability in real-life situations since the presented odds are 
conditional (the impact of some factors depends on the sta-
tus/values of others). Interestingly, the introduction of inter-
actions rendered logistic regression better than random forest 
classifier in terms predicting death status among the patients 
(AUC: 0.762 vs 0.674). In interpreting our results, we acknowl-
edge the potential for confounding bias, particularly regarding 
the correlation between specific laboratory values and cardi-
ac arrest outcomes. While laboratory markers provide critical 

insights, the underlying etiologies of cardiac arrest may be 
equally important predictors of patient prognosis. Recent ad-
vances in machine learning (ML) offer a promising avenue for 
refining mortality predictions beyond traditional scoring sys-
tems such as SOFA and APACHE II, which have historically guid-
ed prognostic assessments in the ICU. Studies have highlight-
ed the ability of ML algorithms to integrate complex datasets 
and reveal subtle patterns that may escape conventional anal-
ysis. For example, ML approaches have demonstrated superior 
performance in predicting mortality by effectively synthesiz-
ing disparate predictors, including those related to nutrition-
al and metabolic disturbances that often accompany cardiac 
arrest scenarios [37-39].

Based on the logistic regression model, it could be seen that 
sex, BMI, albumin concentration, and cardiac arrest mechanism 
type, together, modulate the odds of death. Previous studies 
show that each of these factors individually can be an inde-
pendent predictor of odds of in-hospital mortality in patients 
with life-threatening emergencies [2,26,40,41]. In this study, 
these nutritional status parameters were modulating the ef-
fect of variable cardiac arrest mechanism on the odds of death. 
The said modulation was investigated based on the analysis of 
2nd-degree interactions between each one of these variables 
and cardiac arrest mechanism. This approach revealed that, 
although the nutritional status modulated the mortality rate 
in both CA mechanisms (asystole/PEA, VF/pVT), this modula-
tion was manifested with the effect of BMI.

Multivariate ORs − model of the best accuracy (model 4)

Adjusted conditional ORs

0
Favors survival Favors death

1 6

OR 95% CI
Asystole/PEA, Male vs Female

VF/pVT, Male vs Female

Asystole/PEA, BMI+1 vs BMI

VF/pVT, BMI+1 vs BMI

Asystole/PEA, Albumin+1 vs Albumin

VF/pVT, Albumin+1 vs Albumin

Female, BMI=27.42, albumin=2.97; VF/pVT vs Asystole/PEA

Male, BMI=27.42, albumin=2.97; VF/pVT vs Asystole/PEA

5.68

0.46

1.18

0.93

1.04

0.35

1.54

0.12

(1.16, 20.09)

(0.09, 2.38)

(1.01, 1.37)

(0.83, 1.05)

(0.41, 2.66)

(0.13, 0.95)

(0.28, 8.40)

(0.04, 0.43)

Figure 3.  Forest plot of multivariate conditional odds ratios (ORs) associated with the selected model.
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Figure 4.  Kernel density (KDE) plots showing the observed distributions of the continuous variables used in survival status prediction.
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To unveil these more complex models, specific clinical scenar-
ios have to be assumed. In the case of comparing a male and 
female patient of the same initial rhythm cardiac arrest type, 
being a male would be a more relevant in patients with non-
shockable initial rhythm (OR 5.68, men vs women) compared 
to those with shockable initial rhythm (no significant differ-
ence between men and women).

When comparing patients with both initial rhythm CA across 
the 2 sexes separately, men would be the only stratum which 
would show any difference in mortality (OR 0.12 VF/pVT vs 
asystole/PEA). Numerous studies show that a shockable initial 
rhythm is a predictor of survival [42-44]. In addition, Akahane 
et al also showed that patients with a shockable initial rhythm 
had similar overall survival rates independent of sex [45].

As mentioned before, the odds of death among patients with 
asystole/PEA and VF/pVT were also modulated by different 
nutritional status-associated parameters. BMI increased the 
odds of death in cases of asystole/PEA and albumin decreased 
these odds in VF/pVT patients. These associations may show 
that malnutrition increases the odds of death, although the 
tools of its assessment ought to be different among different 
CA mechanism types if one wanted to predict mortality sta-
tus. However, it should be emphasized that the introduction 
of both albumin and BMI to the mortality prediction in real-
life settings would require more complex models to be creat-
ed due to the non-specificity in the association between both 

albumin and BMI and the nutritional status. As an example, 
utilizing information about albumin concentration could prove 
to be troublesome in mortality prediction in case of patients 
with liver and/or kidney diseases, while the use of BMI would 
be limited to patients of normal musculature. The results of 
this study show the possible auxiliary role of nutritional sta-
tus assessment of the post-CA patients. A number of studies 
confirm that malnutrition diagnosed on hospital admission 
can be a predictor of mortality in patients with life-threaten-
ing conditions [33,34,46-48].

The aforementioned hypothesis is consistent with the results 
from decision tree analysis. To avoid unnecessary human-asso-
ciated bias, the 2 trees shown in the study were chosen from 
a set of 100 random decision trees (random forest classifier). 
The tree which utilized nutritional status-associated parame-
ters (BMI, albumin concentration, NRS2002) performed mark-
edly better (accuracy: 0.739±0.101 vs 0.677±0.129) in 10-fold 
cross-validation compared to the other tree, which did not fea-
ture such parameters. Interestingly, these 3 parameters were 
especially useful in mortality prediction among patients whose 
PCT levels were above the reference range, indicating inflam-
matory status (PCT >0.17; ref. range in adults <0.15 ng/ml). 
The fact that, according to the decision tree (Figure 7), the 
patients who had >0.17 ng/ml PCT, £2.85 g/dl albumin, and 
NRS2002 >3.5 further elucidates the linkage between malnu-
trition and CA-associated death. Moreover, it is important to 
note that, according to the random forest classifier algorithm, 

PCT (ng/ml)

Age (years)

hsCRP (mg/l)

Albumin (g/dl)

L (mmol/l)

BMI (kg/m2)

Na (mmol/)

Cadiac arrest mechanism

NRS2002

Sex

HF

Obesity

DM

CS

Cardiac arrest location

HT

CKD

0.183
0.133

0.128

0.108

0.101

0.093

0.072

0.057
0.024

0.017

0.017

0.011
0.011

0.011

0.010

0.009

0.008

0.007

Feature importance

Figure 5.  Feature (variable) importance according to the implemented Random Forest Classifier.
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Figure 6.  Decision tree of the best accuracy in predicting survival status in the testing subset.
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Figure 7.  Decision tree of the best AUC score in predicting survival status in the testing subset.
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albumin, BMI, and NRS2002 were among the 9 most important 
variables used in classification, ranking 4th, 6th, and 9th, respec-
tively among variables such as concentration of electrolytes 
(Na/K), inflammatory parameters (eg, PCT and hsCRP), and age.

Interestingly, the best decision tree performed comparably to 
the before-mentioned logistic regression. This fact may dem-
onstrate that regardless of the employed classification (pre-
diction) strategy, the use of nutritional status as a source of 
information could provide a benefit in mortality assessment 
among patients after ROSC. However, the choice of the vari-
ables taken into consideration would vary between these 2 
methods. While it was not examined, it may be possible to 
combined both of these models to further increase the accu-
racy of prediction. This study aimed to provide a preliminary 
body of work for future mortality assessment among CA pa-
tients, which is why highly-interpretable models were utilized. 
Further studies are needed to validate and expand these mod-
els with new variables, and also focus on model performance, 
employing less interpretable algorithms (eg, k-Nearest Neighbor 
Classification, Support Vector Classification, and Long Short-
Term Memory network).

Study Limitations

The study had some limitations. Firstly, in some cases the pa-
tient data were incomplete, as it was not always possible to 
obtain an outcome due to the critical situation and severe 
condition of the patients. This limitation could have affected 
the accuracy of our predictive models, as missing data points 
might lead to less reliable or biased predictions. Secondly, the 
number of patients was small, although it should be noted that 
the study included patients who were admitted to the ICU af-
ter OHCA/IHCA and only a small number of patients achieved 
ROSC. This small sample size might limit the generalizability 
of our results and affect the statistical power of our analyses, 
possibly obscuring smaller yet clinically significant effects. A 
larger sample size would have allowed us to analyze more 
complex (higher-degree) interactions between variables, as 
well as to investigate whether the interactions shown in this 
study are biased due to being modulated by other variables. 
Moreover, as the model studied only the categorical mortali-
ty status (survival or its lack), its use (after validation and fur-
ther model development) would be limited in case the hospital 
would want to strategize the treatment based on the admis-
sion-to-death time. Although the mentioned time was investi-
gated in our previous study, interactions were not included in 
that (multivariate) model [26]. The data in this study were an-
alyzed retrospectively. Due to the anonymized data, informa-
tion on long-term survival could not be obtained. Furthermore, 
specific details such as the exact cause and duration of the 
cardiac arrests were often not recorded, particularly for pa-
tients transferred from other institutions, which might have 

affected interpretation of associated risk factors and outcomes 
described in our findings. Also, variations in clinical practice 
over time and between different providers at the same insti-
tution could introduce additional variability into our findings.

Moreover, it should be emphasized that machine learning is 
only a tool which should be maintained by professionals, in ac-
cordance with the a priori clinical aims. In this study, random 
forest classifier, due to its subpar classification performance, 
was used to extract the optimal decision trees, based on ac-
curacy and the AUC score. Both these metrics presume that 
sensitivity (% of true classifications among the non-survivors) 
and specificity (% of true classifications among the survivors) 
are equally important to the medical professionals who would 
be using these algorithms. In extreme cases in which sensitiv-
ity or specificity would have to be set close to 100% threshold 
(100% sensitivity if the algorithm would be used as a screening 
test, or 100% specificity if the algorithm was used as an aux-
iliary, after employing more sensitive assessment tools), the 
classification trees would not only be affected by different cut-
off values, but would also probably utilize different variables. 
Therefore, assumptions need to be discussed among profes-
sionals who would want to further validate these, or similar, 
machine learning algorithms in real-life situations.

Practical Implications

The preliminary findings from our study indicate significant 
potential for the use of machine learning algorithms in im-
proving treatment outcomes for cardiac arrest cases. Despite 
the promising results, it is crucial to conduct further, expand-
ed research on larger and more diverse patient groups. Such 
studies will allow for a more detailed analysis and validation 
of predictive models and their efficacy in real clinical settings. 
The development and refinement of these technologies, in 
close collaboration with medical professionals and data sci-
entists, should focus on integration with existing healthcare 
systems and adaptation to specific needs and treatment pro-
tocols. This could significantly enhance the quality of health-
care and patient outcomes.

Conclusions

•  Procalcitonin concentration, age, hsCRP, albumin, and potas-
sium were the most utilized (important) variables according 
to the Random Forest Classifier (100 random decision trees). 
Less important classifiers were BMI, sex, and CA initiating 
rhythm. The remaining factors were of minor importance.

•  According to the classification tree of the best fit generat-
ed with Random Forest Classifier (100 trees), gathering the 
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information on BMI and NRS2002 was especially helpful in 
mortality classification in cases when the PCT >0.17 ng/ml.

•  With each 1-unit increase of BMI, the odds of death ratio 
increased by 1.18-fold exclusively among the patients with 
asystole/PEA CA mechanism. Conversely, patients with the 
VF/pVT CA mechanism showed a 2.85-fold decrease of the 
odds of death with every 1 g/dl increase in serum albumin 
concentration. Male patients with BMI equal to 27.4, serum 
albumin concentration equal to 2.97 g/dl showed marked-
ly lower (OR 0.12) odds of death in case they suffered from 
the VF/pVT CA mechanism, compared to their male coun-
terparts with the asystole/PEA CA mechanism. This differ-
ence in odds was not significant in women. Moreover, sex 
appeared to affect the odds of death exclusively among the 
asystole/PEA patients (OR=5.68, male vs female).

•  Development of the use of machine learning algorithms may 
help classify patients with CA to ensure proper medical care 

and treatment strategies based on the predicted odds of 
death.
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Bioethics Committee of Wrocław Medical University.
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Model Conditions Analyzed var. Analyzed cat. Reference cat. p OR
OR 

-95% CI
OR 

95% CI

2 Asystole/PEA Sex Male Female 0.005 5.23 1.64 16.61

2 VF/pVT Sex Male Female 0.297 0.45 0.10 2.01

2 Female, BMI=27.42
Cardiac arrest 
mechanism

VF/pVT Asystole/PEA 0.625 1.48 0.31 7.12

2 Male, BMI=27.42
Cardiac arrest 
mechanism

VF/pVT Asystole/PEA <0.001 0.13 0.04 0.37

3 Asystole/PEA BMI – – 0.028 1.17 1.02 1.34

3 VF/pVT BMI – – 0.266 0.94 0.84 1.05

3 Asystole/PEA Albumin – – 0.058 1.01 1.00 1.02

3 VF/pVT Albumin – – 0.028 0.33 0.12 0.89

4 Asystole/PEA Sex Male Female 0.007 5.68 1.61 20.09

4 VF/pVT Sex Male Female 0.356 0.46 0.09 2.38

4 Asystole/PEA BMI – – 0.032 1.18 1.01 1.37

4 VF/pVT BMI – – 0.241 0.93 0.83 1.05

4 Asystole/PEA Albumin – – 0.929 1.04 0.41 2.66

4 VF/pVT Albumin – – 0.038 0.35 0.13 0.95

4
Female, BMI=27.42, 
albumin=2.97

Cardiac arrest 
mechanism

VF/pVT Asystole/PEA 0.620 1.54 0.28 8.40

4
Male, BMI=27.42, 
albumin=2.97

Cardiac arrest 
mechanism

VF/pVT Asystole/PEA 0.001 0.12 0.04 0.43

Supplementary Table 1. Conditional odds ratios associated with all analyzed multivariate logistic regression models.

This table features conditional odds ratios (ORs) of death between the ‘Analyzed cat.’ and ‘Reference cat.’ categories on condition 
of assumptions shown in the ‘Conditions’ column. These ORs are associated with multivariate logistic regression models shown in 
Supplementary Table 3.

Supplementary Materials
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tree ID Precision Recall Accuracy AUC

0 0.6111 0.4783 0.5128 0.6155

1 0.6000 0.5217 0.5128 0.5367

2 0.7222 0.5652 0.6154 0.6196

3 0.5714 0.3478 0.4615 0.4959

4 0.7368 0.6087 0.6410 0.6413

5 0.6667 0.2609 0.4872 0.5584

6 0.6316 0.5217 0.5385 0.5883

7 0.7143 0.4348 0.5641 0.6073

8 0.6667 0.6957 0.6154 0.6658

9 0.6471 0.4783 0.5385 0.5503

10 0.7143 0.6522 0.6410 0.6413

11 0.7391 0.7391 0.6923 0.7188

12 0.7059 0.5217 0.5897 0.6046

13 0.7000 0.3043 0.5128 0.5000

14 0.7778 0.3043 0.5385 0.5774

15 0.5000 0.3043 0.4103 0.4375

16 0.7692 0.4348 0.5897 0.6168

17 0.7778 0.3043 0.5385 0.5829

18 0.6538 0.7391 0.6154 0.5870

19 0.7059 0.5217 0.5897 0.5734

20 0.6154 0.6957 0.5641 0.5571

21 0.6842 0.5652 0.5897 0.6848

22 0.9167 0.4783 0.6667 0.7527

23 0.6500 0.5652 0.5641 0.5788

24 0.5556 0.2174 0.4359 0.5489

25 0.8235 0.6087 0.6923 0.7582

26 0.5556 0.4348 0.4615 0.4511

27 0.6111 0.4783 0.5128 0.4715

28 0.8333 0.6522 0.7179 0.6916

29 0.6250 0.4348 0.5128 0.5842

30 0.8000 0.5217 0.6410 0.6549

31 0.5882 0.4348 0.4872 0.4470

32 0.6500 0.5652 0.5641 0.5774

33 0.8235 0.6087 0.6923 0.7296

34 0.8571 0.5217 0.6667 0.6766

35 0.7368 0.6087 0.6410 0.6277

36 0.5263 0.4348 0.4359 0.4606

37 0.6875 0.4783 0.5641 0.5774

38 0.7059 0.5217 0.5897 0.6005

Supplementary Table 2.  Selected performance metrics (precision, recall, accuracy, AUC score) of the Random Forest Classifier 
estimators (trees) implemented on the testing subset (n=39).

tree ID Precision Recall Accuracy AUC

39 0.4444 0.1739 0.3846 0.3587

40 0.5500 0.4783 0.4615 0.4266

41 0.5714 0.5217 0.4872 0.4837

42 0.6875 0.4783 0.5641 0.6005

43 0.7037 0.8261 0.6923 0.6630

44 0.2941 0.2174 0.2308 0.2459

45 0.8182 0.3913 0.5897 0.5761

46 0.6667 0.3478 0.5128 0.5978

47 0.7273 0.3478 0.5385 0.6128

48 0.6316 0.5217 0.5385 0.5190

49 0.6667 0.2609 0.4872 0.6848

50 0.4615 0.2609 0.3846 0.5231

51 0.7619 0.6957 0.6923 0.7283

52 0.6429 0.3913 0.5128 0.4783

53 0.6923 0.3913 0.5385 0.5082

54 0.6667 0.4348 0.5385 0.6889

55 0.5385 0.3043 0.4359 0.4348

56 0.6087 0.6087 0.5385 0.5394

57 0.8000 0.5217 0.6410 0.7554

58 0.6087 0.6087 0.5385 0.5299

59 0.8235 0.6087 0.6923 0.6821

60 0.5217 0.5217 0.4359 0.4022

61 0.6400 0.6957 0.5897 0.5856

62 0.7500 0.2609 0.5128 0.7391

63 0.6333 0.8261 0.6154 0.5897

64 0.6087 0.6087 0.5385 0.5285

65 0.6800 0.7391 0.6410 0.6793

66 0.5000 0.5652 0.4103 0.3478

67 0.7143 0.4348 0.5641 0.5707

68 0.5714 0.6957 0.5128 0.4565

69 0.6471 0.4783 0.5385 0.5435

70 0.6190 0.5652 0.5385 0.5258

71 0.7059 0.5217 0.5897 0.6264

72 0.6400 0.6957 0.5897 0.5666

73 0.6000 0.3913 0.4872 0.5231

74 0.5833 0.6087 0.5128 0.4375

75 0.5714 0.3478 0.4615 0.5679

76 0.5882 0.4348 0.4872 0.5054

77 0.5556 0.2174 0.4359 0.4837
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Supplementary Table 2 continued.  Selected performance metrics (precision, recall, accuracy, AUC score) of the Random Forest 
Classifier estimators (trees) implemented on the testing subset (n=39).

tree ID Precision Recall Accuracy AUC

78 0.6154 0.3478 0.4872 0.4837

79 0.6667 0.4348 0.5385 0.5707

80 0.6500 0.5652 0.5641 0.5313

81 0.6667 0.6087 0.5897 0.6590

82 0.8182 0.3913 0.5897 0.5992

83 0.8000 0.3478 0.5641 0.6087

84 0.5455 0.2609 0.4359 0.4579

85 0.8889 0.3478 0.5897 0.6413

86 0.7368 0.6087 0.6410 0.7228

87 0.6111 0.4783 0.5128 0.5666

88 0.7692 0.4348 0.5897 0.6766

Rows describing the two trees of best accuracy or AUC score are white.

tree ID Precision Recall Accuracy AUC

89 0.7000 0.6087 0.6154 0.6073

90 0.6923 0.3913 0.5385 0.5774

91 0.5714 0.1739 0.4359 0.5285

92 0.6923 0.7826 0.6667 0.6196

93 0.7143 0.2174 0.4872 0.6603

94 0.6522 0.6522 0.5897 0.5448

95 1.0000 0.1304 0.4872 0.6685

96 0.8125 0.5652 0.6667 0.7120

97 0.5789 0.4783 0.4872 0.4891

98 0.6250 0.4348 0.5128 0.5231

99 0.5000 0.3043 0.4103 0.3981

MODEL1 (stepwise propagation, p threshold=0.05)

Hosmer-Lemeshow p b=0 hypothesis p AIC BIC Pseudo-R2 AUC 
(learning)

AUC 
(testing)

0.450 0.003 101.67 108.78 0.1936
0.712± 
0.0601

0.645± 
0.0650

Effect/interaction Analysed cat. bi bi SE
Wald 

c2

c2 

-95% CI
c2 

95% CI
p OR

OR 
-95% CI

OR 
95% CI

b0 intercept – -0.220 0.390 0.32 -0.98 0.54 0.572 0.80 0.37 1.72

hsCRP [mg/l] – 0.010 0.005 4.32 0.00 0.02 0.038 1.01 1.00 1.02

Cardiac arrest mechanism VF/pVT -1.048 0.505 4.31 -2.04 -0.06 0.038 0.35 0.13 0.94

MODEL2

Hosmer-Lemeshow p b=0 hypothesis p AIC BIC Pseudo-R2 AUC 
(learning)

AUC 
(testing)

0.414 <0.001 158.02 177.93 0.2873
0.768± 
0.0433

0.682± 
0.0491

Effect/interaction Analyzed cat. bi bi SE
Wald 

c2

c2 

-95% CI
c2 

95% CI
p OR

OR 
-95% CI

OR 
95% CI

b0 intercept – 0.025 0.410 0.00 -0.78 0.83 0.951 1.03 0.46 2.29

Sex M 1.654 0.590 7.86 0.50 2.81 0.005 5.23 1.64 16.61

Cardiac arrest mechanism VF/pVT 0.392 0.801 0.24 -1.18 1.96 0.625 1.48 0.31 7.12

BMI – 0.126 0.060 4.47 0.01 0.24 0.035 1.13 1.01 1.27

hsCRP [mg/l] – 0.008 0.004 5.05 0.00 0.02 0.025 1.01 1.00 1.02

Cardiac arrest 
mechanism*BMI

– -0.163 0.077 4.43 -0.31 -0.01 0.035 0.85 0.73 0.99

Cardiac arrest 
mechanism*Sex

– -2.445 0.953 6.58 -4.31 -0.58 0.010 0.09 0.01 0.56

Supplementary Table 3.  The association between selected parameters and the odds of death (multivariate logistic regression – all 
analyzed models).

e944408-16
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Lewandowski Ł. et al: 
Machine learning in post-arrest mortality prediction

© Med Sci Monit, 2024; 30: e944408

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



Supplementary Table 3 continued.  The association between selected parameters and the odds of death (multivariate logistic 
regression – all analyzed models).

MODEL3

Hosmer-Lemeshow p b=0 hypothesis p AIC BIC Pseudo-R2 AUC 
(learning)

AUC 
(testing)

0.775 <0.001 137.08 156.04 0.3171
0.788± 
0.0434

0.712± 
0.0492

Effect/interaction Analyzed cat. bi bi SE
Wald 

c2

c2 

-95% CI
c2 

95% CI
p OR

OR 
-95% CI

OR 
95% CI

b0 intercept – 0.871 0.333 6.84 0.22 1.52 0.009 2.39 1.24 4.59

Cardiac arrest mechanism VF/pVT -1.056 0.470 5.04 -1.98 -0.13 0.025 0.35 0.14 0.87

BMI – 0.153 0.070 4.80 0.02 0.29 0.028 1.17 1.02 1.34

Albumin [g/dl] – 0.034 0.436 0.01 -0.82 0.89 0.939 1.03 0.44 2.43

hsCRP [mg/l] – 0.007 0.004 3.60 0.00 0.01 0.058 1.01 1.00 1.02

Cardiac arrest 
mechanism*Albumin

– -1.142 0.652 3.07 -2.42 0.14 0.080 0.32 0.09 1.14

Cardiac arrest 
mechanism*BMI

– -0.218 0.091 5.72 -0.40 -0.04 0.017 0.80 0.67 0.96

MODEL4

Hosmer-Lemeshow p b=0 hypothesis p AIC BIC Pseudo-R2
AUC 

(learning)
AUC 

(testing)

0.055 <0.001 132.08 156.47 0.3964
0.835± 
0.0403

0.762± 
0.0466

Effect/interaction Analyzed cat. bi bi SE
Wald 

c2

c2 

-95% CI
c2 

95% CI
p OR

OR 
-95% CI

OR 
95% CI

b0 intercept – 0.004 0.451 0.00 -0.88 0.89 0.993 1.00 0.42 2.43

Sex M 1.737 0.645 7.26 0.47 3.00 0.007 5.68 1.61 20.09

Cardiac arrest mechanism VF/pVT 0.430 0.867 0.25 -1.27 2.13 0.620 1.54 0.28 8.40

BMI – 0.164 0.076 4.62 0.01 0.31 0.032 1.18 1.01 1.37

Albumin [g/dl] – 0.042 0.477 0.01 -0.89 0.98 0.929 1.04 0.41 2.66

hsCRP [mg/l] – 0.008 0.004 3.84 0.00 0.02 0.050 1.01 1.00 1.02

Cardiac arrest 
mechanism*Albumin

– -1.081 0.679 2.53 -2.41 0.25 0.112 0.34 0.09 1.28

Cardiac arrest 
mechanism*BMI

– -0.233 0.096 5.84 -0.42 -0.04 0.016 0.79 0.66 0.96

Cardiac arrest mechanism 
*Sex

– -2.510 1.048 5.74 -4.56 -0.46 0.017 0.08 0.01 0.63

The ‘Analyzed cat.’ column refers to categories which are compared to reference categories in terms of odds of death. AIC – 
Akaike Information Criterion; BIC – Bayesian Information Criterion; bi – regression coefficient; SE – standard error; OR – odds ratio; 
CI – confidence interval. The ‘AUC (learning)’ and ‘AUC (testing)’ columns show AUC values from 10-fold cross validation.
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Cut-off 
point

Recall Specificity Accuracy Precision NPV FPR FNR
Youden’s J 
statistic

0.998 0.033 1.000 0.477 1.000 0.468 0.000 0.967 0.033

0.995 0.050 1.000 0.486 1.000 0.472 0.000 0.950 0.050

0.993 0.067 1.000 0.495 1.000 0.477 0.000 0.933 0.067

0.984 0.083 0.980 0.495 0.833 0.476 0.020 0.917 0.064

0.976 0.100 0.980 0.505 0.857 0.481 0.020 0.900 0.080

0.975 0.117 0.980 0.514 0.875 0.485 0.020 0.883 0.097

0.972 0.133 0.980 0.523 0.889 0.490 0.020 0.867 0.114

0.953 0.133 0.961 0.514 0.800 0.485 0.039 0.867 0.094

0.937 0.150 0.961 0.523 0.818 0.490 0.039 0.850 0.111

0.922 0.183 0.961 0.541 0.846 0.500 0.039 0.817 0.144

0.913 0.200 0.961 0.550 0.857 0.505 0.039 0.800 0.161

0.903 0.217 0.961 0.559 0.867 0.510 0.039 0.783 0.177

0.901 0.233 0.961 0.568 0.875 0.516 0.039 0.767 0.194

0.871 0.250 0.961 0.577 0.882 0.521 0.039 0.750 0.211

0.864 0.267 0.961 0.586 0.889 0.527 0.039 0.733 0.227

0.861 0.283 0.961 0.595 0.895 0.533 0.039 0.717 0.244

0.852 0.300 0.961 0.604 0.900 0.538 0.039 0.700 0.261

0.837 0.317 0.961 0.613 0.905 0.544 0.039 0.683 0.277

0.833 0.333 0.961 0.622 0.909 0.551 0.039 0.667 0.294

0.827 0.350 0.961 0.631 0.913 0.557 0.039 0.650 0.311

0.819 0.367 0.961 0.640 0.917 0.563 0.039 0.633 0.327

0.817 0.400 0.961 0.658 0.923 0.576 0.039 0.600 0.361

0.801 0.417 0.961 0.667 0.926 0.583 0.039 0.583 0.377

0.792 0.417 0.941 0.658 0.893 0.578 0.059 0.583 0.358

0.79 0.417 0.922 0.649 0.862 0.573 0.078 0.583 0.338

0.778 0.433 0.922 0.658 0.867 0.580 0.078 0.567 0.355

0.768 0.450 0.922 0.667 0.871 0.588 0.078 0.550 0.372

0.759 0.467 0.922 0.676 0.875 0.595 0.078 0.533 0.388

0.742 0.483 0.922 0.685 0.879 0.603 0.078 0.517 0.405

0.734 0.500 0.902 0.685 0.857 0.605 0.098 0.500 0.402

0.718 0.517 0.902 0.694 0.861 0.613 0.098 0.483 0.419

0.714 0.533 0.902 0.703 0.865 0.622 0.098 0.467 0.435

0.710 0.550 0.902 0.712 0.868 0.630 0.098 0.450 0.452

0.707 0.567 0.902 0.721 0.872 0.639 0.098 0.433 0.469

Supplementary Table 4. Selected metrics of the best logistic regression model (Supplementary Table 3: model 4).

e944408-18
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Lewandowski Ł. et al: 
Machine learning in post-arrest mortality prediction

© Med Sci Monit, 2024; 30: e944408

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



Supplementary Table 4 continued. Selected metrics of the best logistic regression model (Supplementary Table 3: model 4).

Cut-off 
point

Recall Specificity Accuracy Precision NPV FPR FNR
Youden’s J 
statistic

0.702 0.583 0.902 0.730 0.875 0.648 0.098 0.417 0.485

0.669 0.583 0.882 0.721 0.854 0.643 0.118 0.417 0.466

0.662 0.583 0.863 0.712 0.833 0.638 0.137 0.417 0.446

0.65 0.583 0.843 0.703 0.814 0.632 0.157 0.417 0.426

0.645 0.600 0.843 0.712 0.818 0.642 0.157 0.400 0.443

0.636 0.617 0.843 0.721 0.822 0.652 0.157 0.383 0.460

0.634 0.633 0.843 0.730 0.826 0.662 0.157 0.367 0.476

0.632 0.650 0.843 0.739 0.830 0.672 0.157 0.350 0.493

0.629 0.650 0.824 0.730 0.813 0.667 0.176 0.350 0.474

0.624 0.650 0.804 0.721 0.796 0.661 0.196 0.350 0.454

0.604 0.650 0.784 0.712 0.780 0.656 0.216 0.350 0.434

0.593 0.650 0.765 0.703 0.765 0.650 0.235 0.350 0.415

0.585 0.650 0.745 0.694 0.750 0.644 0.255 0.350 0.395

0.564 0.667 0.745 0.703 0.755 0.655 0.255 0.333 0.412

0.551 0.683 0.745 0.712 0.759 0.667 0.255 0.317 0.428

0.538 0.700 0.745 0.721 0.764 0.679 0.255 0.300 0.445

0.531 0.700 0.725 0.712 0.750 0.673 0.275 0.300 0.425

0.521 0.700 0.706 0.703 0.737 0.667 0.294 0.300 0.406

0.513 0.717 0.706 0.712 0.741 0.679 0.294 0.283 0.423

0.512 0.717 0.667 0.694 0.717 0.667 0.333 0.283 0.383

0.508 0.733 0.667 0.703 0.721 0.680 0.333 0.267 0.400

0.501 0.733 0.647 0.694 0.710 0.673 0.353 0.267 0.380

0.498 0.750 0.647 0.703 0.714 0.688 0.353 0.250 0.397

0.487 0.767 0.647 0.712 0.719 0.702 0.353 0.233 0.414

0.480 0.767 0.627 0.703 0.708 0.696 0.373 0.233 0.394

0.477 0.767 0.608 0.694 0.697 0.689 0.392 0.233 0.375

0.466 0.767 0.588 0.685 0.687 0.682 0.412 0.233 0.355

0.45 0.783 0.588 0.694 0.691 0.698 0.412 0.217 0.372

0.426 0.783 0.569 0.685 0.681 0.690 0.431 0.217 0.352

0.418 0.800 0.569 0.694 0.686 0.707 0.431 0.200 0.369

0.417 0.800 0.549 0.685 0.676 0.700 0.451 0.200 0.349

0.405 0.817 0.549 0.694 0.681 0.718 0.451 0.183 0.366

0.402 0.833 0.549 0.703 0.685 0.737 0.451 0.167 0.382

0.394 0.833 0.529 0.694 0.676 0.730 0.471 0.167 0.363
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Cut-off 
point

Recall Specificity Accuracy Precision NPV FPR FNR
Youden’s J 
statistic

0.363 0.833 0.510 0.685 0.667 0.722 0.490 0.167 0.343

0.361 0.833 0.490 0.676 0.658 0.714 0.510 0.167 0.324

0.347 0.833 0.471 0.667 0.649 0.706 0.529 0.167 0.304

0.342 0.850 0.471 0.676 0.654 0.727 0.529 0.150 0.321

0.34 0.850 0.451 0.667 0.646 0.719 0.549 0.150 0.301

0.332 0.867 0.451 0.676 0.650 0.742 0.549 0.133 0.318

0.320 0.867 0.431 0.667 0.642 0.733 0.569 0.133 0.298

0.311 0.883 0.431 0.676 0.646 0.759 0.569 0.117 0.315

0.309 0.883 0.412 0.667 0.639 0.750 0.588 0.117 0.295

0.296 0.883 0.392 0.658 0.631 0.741 0.608 0.117 0.275

0.286 0.883 0.373 0.649 0.624 0.731 0.627 0.117 0.256

0.281 0.883 0.353 0.640 0.616 0.720 0.647 0.117 0.236

0.279 0.883 0.333 0.631 0.609 0.708 0.667 0.117 0.217

0.276 0.883 0.314 0.622 0.602 0.696 0.686 0.117 0.197

0.272 0.883 0.294 0.613 0.596 0.682 0.706 0.117 0.177

0.262 0.883 0.275 0.604 0.589 0.667 0.725 0.117 0.158

0.244 0.883 0.255 0.595 0.582 0.650 0.745 0.117 0.138

0.237 0.883 0.235 0.586 0.576 0.632 0.765 0.117 0.119

0.229 0.883 0.216 0.577 0.570 0.611 0.784 0.117 0.099

0.228 0.883 0.196 0.568 0.564 0.588 0.804 0.117 0.079

0.22 0.900 0.196 0.577 0.568 0.625 0.804 0.100 0.096

0.216 0.917 0.196 0.586 0.573 0.667 0.804 0.083 0.113

0.213 0.917 0.176 0.577 0.567 0.643 0.824 0.083 0.093

0.206 0.917 0.157 0.568 0.561 0.615 0.843 0.083 0.074

0.199 0.917 0.137 0.559 0.556 0.583 0.863 0.083 0.054

0.181 0.933 0.137 0.568 0.560 0.636 0.863 0.067 0.071

0.18 0.933 0.118 0.559 0.554 0.600 0.882 0.067 0.051

0.173 0.950 0.118 0.568 0.559 0.667 0.882 0.050 0.068

0.157 0.950 0.098 0.559 0.553 0.625 0.902 0.050 0.048

0.154 0.967 0.098 0.568 0.558 0.714 0.902 0.033 0.065

0.112 0.967 0.078 0.559 0.552 0.667 0.922 0.033 0.045

0.110 0.967 0.059 0.550 0.547 0.600 0.941 0.033 0.025

0.076 0.967 0.039 0.541 0.542 0.500 0.961 0.033 0.006

0.07 0.967 0.020 0.532 0.537 0.333 0.980 0.033 -0.014

Supplementary Table 4 continued. Selected metrics of the best logistic regression model (Supplementary Table 3: model 4).
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Supplementary Table 4 continued. Selected metrics of the best logistic regression model (Supplementary Table 3: model 4).

The best cut-off value and its associated metrics are colored. NPV – negative predictive value; FPR – false positive ratio, FNR – false 
negative ratio.

Cut-off 
point

Recall Specificity Accuracy Precision NPV FPR FNR
Youden’s J 
statistic

0.065 0.967 0.000 0.523 0.532 0.000 1.000 0.033 -0.033

0.043 0.983 0.000 0.532 0.536 0.000 1.000 0.017 -0.017

0.016 1.000 0.000 0.541 0.541 1.000 0.000 0.000
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