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ABSTRACT
Somaesthetic experiential qualities can provide a window into pro-
cess of meaning-making, both human and machinic. We draw such
qualities from viola performance into the design-in-progress of a
novel interactive performance system. In doing so, we introduce
the concept of a Machine Somaesthete that senses and makes sense
of these qualities from a second-person perspective. Our system
comprises electromyographic (EMG) muscle sensing and a Varia-
tional Autoencoder. With a novel dataset, we aim to encode latent
representations of performance movement that are meaningful
from a somaesthetic perspective. We present our model and our
design process, then analyse latent trajectories to interrogate how
our system can be considered a Machine Somaesthete, and the
nature of its sensitivity to bodily experiences of viola playing. At
the intersection of artificial intelligence, music performance and
intra-action design, we take a sympoietic (together-making) view
of knowledge creation. We and our practices are transformed as
we design - and design with - machine learning systems.

CCS CONCEPTS
• Applied computing → Performing arts; • Human-centered
computing→Human computer interaction (HCI); • Comput-
ing methodologies →Machine learning.
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1 INTRODUCTION
In both the Sciences [43] [26] [76] [60] [39] and the Humanities
[31] [66] [5], the lines between agents as separate entities are in-
creasingly fuzzy. Concepts like ’holobiont’ [76] and ’symborg’ have
become useful to refer to entities that are simultaneously one and
multiple1.

In this light, the separate body | interface | world categories of
traditional phenomenology [47], embodied cognition [69] and em-
bodied interaction design [15] have become slippery concepts. We
find use in the notion of ’intra-action’, where agency and creation
are collective phenomena:

"We do not obtain knowledge by standing outside of the
world; we know because ’we’ are of the world. We are
part of the world in its differential becoming." [5]

In an inter- or intra-active performance system (IPS) context, we
are part of the system in its differential becoming. Whereas embod-
ied cognition brought forth notions of autopoietic (self-creating)
systems [69], our intra-action design approach is more aligned with
notions of sympoiesis (together-creation).2 Through this lens, we
acknowledge that we both create and create with our design. We
and our practices emerge through design, just as our designs are
shaped and created [14] [8].

This work echoes similar lines of inquiry regarding co-creativity
in soundmusic and computing [70] andHCI [23].We seek to answer
how intra-action design can be a sympoietic process whereby the
designer, the user and the design create and emerge together. To
this model, we introduce a concept: The Machine Somaesthete that
senses and makes sense of aesthetic bodily experiences within an
intra-active system. Through this paper, we demonstrate how the
use of the Machine Somaesthete ideal can deepen knowledge and
understanding through sympoietic design of and with machine
learning (ML) systems.

We use a soma-design [32] [34] approach within the Research
through Design (RtD) framework [77]. Through first-person meth-
ods, our design process is informed by the aesthetic bodily experi-
ence of the designer. We share our process in the hope that it can
be extensible to other designers.

In tackling these questions and concepts, we zoom into the sense-
making processes of acoustic instrument performers. We invite a
1In terms of biological organisms, lichen are a fantastic example of holobionts as
coupled organisms comprising fungi and algae.
2Enactivists [45] first proposed enactivism as an embodied cognition that is compatable
with computing. However, recent embodied cognition discourse acknowledges that
the individual-centred approach to 4E cognition no longer aligns with sympoiesis
and symbiosis in biology and ecology research. There are efforts find compatibility
between these two views [56] [51] [22] [13] [6], yet there is still work to be done.
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MLmodel into the first-person somaesthetic experiences of a violist,
with the aim that the model itself becomes a ’somaesthete’ with a
second-person perspective of the performer’s sensory information.
This Machine Somaesthete comprises a data-capture system and a
Variational Autoencoder (VAE) ML architecture. We captured our
own training dataset of electromyographic (EMG) data, recording
the bioelectric signals of muscle tension. We capture these signals
from the body of the first author, a musician with advanced training
in viola performance. This human-machine sympoiesis lays the
foundation for future work on an IPS.

This paper also documents our attempts to answer questions
including: RQ.1) Can we create a VAE architecture with latent space
organisation that is meaningful in terms of somaesthetics? RQ.2) Is
our trained model’s machinic sense-making any more meaningful
than an untrained network? RQ.3) How will we know if the latent
space meets this ideal? RQ.4) What bodily aspects of viola playing
is our Machine Somaesthete sensitive to?

In tackling these questions, we explore the model’s inferencing
capacities with time-series analysis in latent space. We discuss our
results through a somaesthetic lens, grounded in viola performance
practice.

2 BACKGROUND
Our termMachine Somaesthete is a nod to seminal interactive music
system designswith two components: amachine listener that makes
sense of incomingmusic data, and amachine performer that outputs
MIDI or audio signals based on the computational sense-making
(information retrieval) process [40][54][55][10]. While movement
can be considered in music information retrieval [30], our perfor-
mance system (in progress) is not sensitive to audio or semantic
representations of music. We term our system’s information re-
trieval component a Machine Somaesthete. We present this term
with the view that it can be used as a design ideal, not as a measure
by which to evaluate designs. Likewise, we make no claims that
our model can actually experience or perceive; it is only a model.
We call our system a Machine Somaesthete because we intend for
it to be sensitive to and make sense of somaesthetic experiences
within a sympoietic system that comprises human performer, viola
and machine.

Presented in this paper, our Machine Somaesthete is the infor-
mation retrieval component of our IPS. The insights gained here
will inform the next design stage of our IPS ’performer’ compo-
nent, which will eventually output sound. This foundational work
deepens our understanding of our model’s particular machinic in-
terpretation of a particular somaesthetic experience (introduced in
2.1).

2.1 Somaesthetics of Viola Performance
A core notion behind the soma-design approach (designing with the
body) is that "meaning-making processes start in movement and
bodily realities" [32] with reference to [59]. This movement-centred
view of meaning-making is central to how we draw embodied
knowledge from performance practice into our design process.

Movement information from bowed string playing can be cap-
tured using accelerometers, gyroscopes [62][16][58] and even strain
sensors [74] on the instrument (or bow). With these sensors, we

can retrieve information about the mechanics of sound production
on the instrument. There have also been efforts to retrieve mechan-
ical information from audio signals [50][49]. We can also retrieval
biomechanical information of string players’ bodies with camera
sensors [62][68] and mocap systems [16][36][72][27].

Our aim to capture data representations of somaesthetic qual-
ities is distinct from the capture of mechanical and biomechani-
cal information in movement computing. Experiential qualities of
movement are not movement itself. To engage with viola practice
in this way, we turn inward. Our design centers on a particular
space of experiential qualities within the somaesthetic possibilities
of viola playing.

In bowed-string instrument performance, players have continu-
ous fine-grain connections with sound production. Even when play-
ing through seemingly sharp and angular actions on the instrument
(such as a change of bow direction), we (violists)3 experience and
intend these actions as rounded movement trajectories in the body.
This helps us to use the inertia of our past movement in the present
moment, without expending unnecessary effort. The clear lines
between semantic music theoretical elements like notes and chords
are fuzzy experiences in the body. Likewise, rounded, springy bod-
ily movements and sensations help us to connect phrases of musical
tension and release across notes and sub-phrases. To move in this
way requires a great deal of mental imagery and somaesthetic
awareness. It is as much a movement practice as a somaesthetic
sensation. The Machine Somaesthete senses and makes sense of
this somaesthetic quality within the sympoietic system.

Informed by this movement practice of viola performance, we
(the researchers) conceptualise performance movement as a con-
tinuous space of possibilities. This framing of movement echoes
sensorimotor enactivist ideas [48], the approach to movement by
other string players in movement computing [65], and is further
applicable to co-creative music composition practices [28]. This
line of thinking speaks to our previous research, where we con-
sider how we can inscribe IPS with embodied knowledge of music
[61]. Now, our computational model zooms in on the performer’s
embodied experience of their own continuous space of movement
possibilities.

2.2 Sensing Muscles
Bioelectricity is essential to bodily sense-making processes in music
performing, duringwhich performers interpret sensory information
towards meaningful understanding of their bodily movement. This
information travels through their nervous system in the form of
bioelectric signals. We focus on sensory information relating to
muscular tension, inviting our Machine Somaesthete to sense from
the performer’s bioelectric network using surface EMG sensors.

We consider our computational model to have a second-person
perspective of the violist’s somaesthetic experience. The machinic
sense-making process acts in parallel to the performer’s own bodily
process, towards sympoiesis. Our choice of EMG to explore bodily
awareness in music builds on related human computer interaction
(HCI) work of others. The use of EMG in HCI studies exploring
the second-person perspective is of interest [24]. Furthermore, the

3The first author is an insider to the viola performance practice community, so it is
appropriate to use ’we’ when writing about violists as a group.
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second-person perspectives can be particularly well-suited in col-
laborative design, connecting shared knowledge and experience
[33][21]. The joining of first-person and second-person perspectives
is an applicable conceptual and practical apparatus for sympoietic
system design.

There are many usages of EMG in sound and movement com-
puting. Our work builds from similar usages of EMG with sound-
producing movement of acoustic and electric4 music instrument
performance practices. Most closely related usages of EMG in terms
of bowed string instrument performance practice are IPS. EMG has
been used in IPS with string instruments to track EMG signals
of the left forearm [64]. Such data can provide information about
finger movements of the left hand and wrist. Unlike our Machine
Somaesthete, this IPS [64] does not utilize ML.

EMG has also been used in an IPS to track signals on the right
side of a cellist’s body [41], with a similar aim to ground the design
process in embodied knowledge from instrument performance [41].
Also related are systems where instrument playing, EMG sensing
and ML intersect. Although not involving bowed string playing,
there are examples with guitar that use these three elements to
predict sound from action [19][17][18].

EMG sensing and bowed string playing most notably intersect
in studies of musicians’ health [3] [42], or in pedagogical research
[53]. Although our IPS application is rather different, this literature
has informed our design choices regarding electrode placement, as
we describe in 3.1.

2.3 Organisation in Machinic Poiesis
With a sympoietic view of system design, we aim to model poietic
processes computationally with various shades of autonomy, to-
wards distribution of information and control between human and
machinic intra-actors.

Sympoietic systems have been defined in contrast to autopoietic
systems [12]. In our research, we do not follow these ideas and dis-
tinctions as a rigid framework; our purpose with sympoiesis is not
taxonomical. Rather, we apply these definitions and distinctions
somewhat metaphorically, using sympoiesis as a lens to enrich
practice and research involving humans and ML in art and design.
However, we do take particular inspiration from one characteris-
tic distinction: whereas autopoietic systems are organisationally-
closed [45], sympoietic systems are organisationally-ajar [12]. This
means that a system’s internal organisation is determined by both
internal and external sources.

In computing, idea of autonomous organisation is inscribed into
the architecture design of unsupervised ML model architectures
like autoencoders. These models organise compact representations
of training data into a latent space of reduced dimensions using
feature extraction, rather than training labels. This enables us to
use statistically-driven, as opposed to hand-derived features in
training. As computational models, autoencoders do not actually
fit the criteria of autopoietic systems; they are created and main-
tained by developers and trained on external data. Considering that
their structural coupling is both internal and external in this sense,
sympoiesis is a more fitting conceptual apparatus.

4Electric guitars and violins are not acoustic instruments, but also not digital musical
instruments.

Already with a standard autoencoder, we can model elements
of ajar organisation into our Machine Somaesthete. Yet classic au-
toencoders are limited in their generative capacity because training
samples are mapped to single points in latent space. The spaces
between mapped points in latent space do not always make sense
whenwe sample and decode them in generative tasks. This is at odds
with our conceptualisation of a continuous space of possibilities
of movement in viola performance 2.1. Variational Autoencoders
(VAEs) solve this problem by encoding training data as a probabilis-
tic distribution. Rather than than encoding points in latent space,
we encode vectors [38]. This probabilistic latent space can be con-
tinuous5. Just as semantic music theoretical elements like notes
and chords are fuzzy experiences in the soma of a violist, latent
encodings are vectors in latent space.

2.4 Variational Autoencoders
Given the interdisciplinary of this paper, we provide a description
of VAE training. VAEs are trained in two parts: a forward training
pass and a backward validation pass. In the forward pass, we pass
training data through the encoder to attain latent embeddings that
describe a probable location in latent space. We combine these
embeddings with a noise source (often Gaussian) to sample a single
point in latent space. We feed this sample through the decoder to
generate a reconstruction of the original input data. In the backward
training pass, we use a loss function to measure the error between
the original input and the reconstructions, as well as the similarity
between the latent space shape and a Gaussian (standard normal)
distribution.

To achieve a probabalistic distribution of latent space, the loss
function of a VAE is a sum of two components. Firstly, we aim
for VAE latent spaces to have as close to multivariate Gaussian
probability distribution as possible.6 Kullback–Leibler divergence
(KLD) measures the similarity between the current latent space
distribution and a desirable, Gaussian distribution. Secondly, we
use measure the difference between the sample reconstructed by the
model and the input sample. For this, we typically use either mean
square error (MSE) or BCE loss functions, depending on whether
our data is valued continuous or discrete. Based on sum of these
two metrics (KLD + reconstruction loss), the model weights are
updated for the next forward training pass.

VAEs were first introduced a decade ago [38] and are still used
within a great variety of generative ML architectures in a variety
of creative domains due to their potential to generate meaningful
content not found in the training set. In creative domains, VAEs
enable us to generate "fantastical images and unheard sounds" [73].
Given this potential for modularity, a this model is a good starting
point for our IPS.

In sound and music computing, VAEs have been trained on
semantic music representations of musical structure [52], rhythm
[71] and harmony [9][67]. Although we do not train our model
on audio data, both EMG and sound signals are complex signals.
Given this similarity, many of the signal processing techniques
for audio are applicable to EMG. Pre-processing and audio feature
5Or quantized as is the case with VQ-VAEs.
6This is what enables us to sample from the latent space to generate new content
that the VAE was not trained on. Gaussian distribution is also essential for generating
smooth interpolations.
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extraction techniques of audio training data for VAEs have included
Constant-Q Transform in the wavelet domain [63] and multiband
decomposition of the signal [7]. Both of these VAEs address timbral
control of sound synthesis.

3 MAKING A MACHINE SOMAESTHETE
With the RtD framework in mind [77], we document our design and
analysis processes with the aim that these procedures are extensible
to other designers. In particular, our methods are relevant to soma-
designers using quantitative measures of somaesthetic experience
through data andML. Ourmethods provide one possible solution for
howwe can "shape these tools to allow for interactions harmonizing
with our somas" [32].

Our Machine Somaesthete comprises a sensing system and a
machine learning model. We use the sensing system to capture a
training dataset for our model of EMG data from the performer’s
body. OurMachine Somaesthete is one component of an intra-active
music performance system, as we described in 2.

3.1 Slowstorming with Muscles of Viola Playing
Towards future live performance, we aim for an economical (non-
cumbersome) technical set-up that can capture somaesthetically-
relevant information from the violist’s body. We sought to use a
relatively number of EMG sensors, with intentional and informed
sensor placement appropriate to our aims. This is to minimise a
cumbersome set-up in performance settings.

Our sensor electrode placement is informed by a combination
of literature on EMG studies with string players [3][42][1], string
instrument pedagogy [35], performance psychology techniques for
effective practice [20], as well as the violist’s advanced training.
With a selection of ’starting-point’ electrode placements drawn
from literature and prior experience, we tested these options with
and away from the EMG data-capture system.

In viola performance practice, we (violists) attempt to produce a
rich sound with little tension in the body. We experience ’hanging’
with rather than ’pushing’ the bow into the strings. We work with
with gravity and force in this way not only to preserve stamina
in performance and avoid injury, but also for a breadth of musi-
cal expression. We aim to be efficient with overall bodily effort
by initiating movements from the larger muscle groups, rather
than holding tension in the extremities. For this reason, we (the
researchers) were interested from the outset to focus on the back,
side and arm muscles of the right side of the body. This is the side
of the body primarily responsible for bowing movements.

The violist made use of soma-slowstorming, acting and enacting
performance movements with their attention drawn to specific ar-
eas of their soma. These sessions served two purposes: 1) to inform
design choices relating to sensor placement; 2) to hone the vio-
list/designer’s attunement to the particular experiential qualities of
this soma-design. The violist made sure to play freely as a warm-up
exercise and during slowstorming sessions. In this way they prac-
ticed falling in and out of the familiar, and exploring somaesthetic
experiential qualities of viola playing on multiple timescales. They
also pressed against their own muscles with their hands to feel the
muscular activity beneath their skin, and watched the movements

of their back muscles using parallel mirrors and video for a second-
person perspective of their own body. This also helped to disrupt
the familiar. The violist moved back and forth between their mind,
their body, their instrument, and the data capture system in various
combinations. Through this iterative process, we tried and tested
sensor placements.

For example, we had initially thought to capture a particular
movement called ’repull’ with electrode placements on the upper
back around the scapula (shoulder blade). Repull denotes a subtle
downward action, thought to originate in the core of the body to
subtly darken the timbre of sound. Expert violists describe the action
as involving rotation of the scapula [35]. We were unable to see
any noticeable amplitude changes in EMG signals with electrode
placements near the scapula when the violist performed repull.
However, we did seem to reliably track repull with electrodes lower
than the scapula and more on the side of the body than the back. It
is possible that the violist plays with imperfect repull technique; or
that the muscles around the scapula associated with repull are too
deep in the body for surface electrodes to access.

Through this iterative process informed by practice and using
soma-based techniques, we selected the four electrode placements
for our dataset: the forearm, deltoid, upper back and side, all on the
right side of the body.

3.2 EMG Data Capture
We captured four time-aligned channels of EMG data at a sample
rate of 22050Hz using Plux BITalino EMG sensors7 with a Bela
board8 [46]. In standard electromyography practice, signals typi-
cally undergo bandpass filtering with cutoff frequencies of 20Hz
and 400-600Hz [44], making 1200Hz the maximum Nyquist rate
needed to capture detail in EMG signals. Although the signal rate
capabilities of Bela are unnecessary for capturing EMG data alone,
it is ideal for capturing time-aligned datasets of audio and EMG
data in hard real-time, as well as minimizing latency in intra-active
music performance. Bela can record audio at 44100Hz, exactly dou-
ble the sample rate of analog recording for easy multi-modal data
alignment. These benefits serve the longevity and relevance of our
dataset and model towards future work on this project.

The violist improvised freely over two recording sessions, mak-
ing use of both ’standard’ and ’extended’ playing techniques9. These
37 minutes of recorded material formed our training dataset of raw
EMG signals in viola playing. We left the dataset unedited, includ-
ing the short moments where the violist lowered their instrument
(for example, to make adjustments).

3.3 Signal Processing
We prepared the dataset for training by applying signal processing
window-by-window, with a window size of 22050 samples (1 second
of EMG data). Given the small size of our dataset, we used a window
overlap of 80%. To each channel within each window, we applied
7https://www.pluxbiosignals.com/products/electromyography-emg-sensor
8https://learn.bela.io/products/bela-boards/bela/
9’Standard’ techniques typically include plucking the strings with one finger from
the right hand and moving the bow hair across the strings. ’Extended’ techniques
might include tapping on the body of the instrument with the hands, or bouncing the
wood of the bow on the strings. We use inverted commas because these distinctions
from western classical music have become rather conservative in a free improvisation
context.
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a 50Hz Butterworth notch filter to remove power line noise as
is common practice [11][44]. We then applied a fast continuous
wavelet transform (fCWT) [4].

Wavelet transforms are effective at both denoising bioelectric
signals like electroencephalographic and EMG signals, and extract-
ing features for predictive tasks [2][75]. EMG signals detected with
surface electrodes10 comprise a sum of electrical activities within a
collection of muscle fibers that lie below the electrode. The wavelet
domain gives us rich insight into non-stationary features from this
sum of multiple signals. Likewise, the fCWT algorithm has appli-
cations in movement computing [25]. We chose specifically to use
the fCWT algorithm because it is supported in C++ and Python
languages. This allows us flexibility to perform signal processing
in C++ on Bela or in Python on a laptop in future design iterations
and performance settings. We use the absolute fCWT coefficient
values rather than complex values to discard phase information,
then resize and stack fCWT channels for each window.

3.4 VAE Design & Training
Our model architecture emerged over numerous iterations, starting
with a simple VAE architecture [38]. We made incremental adjust-
ments towards a model that could learn effectively from our novel
EMG dataset. For each design iteration, we plotted training and
validation losses during training runs and tested the model’s gen-
erative capabilities through reconstructions and interpolations11.
This visual feedback provided insight into latent space organisation
during training. We arrived at our current model after it could pro-
vide accurate reconstructions and smooth interpolations. In future
work, we will address disentanglement to make our latent space
as small as possible (in terms of the number of dimensions, while
maintaining its overall performance capabilities.

Our Machine Somaesthete VAE architecture (depicted in 1) in-
cludes an encoder with three convolutional layers, each followed
by pooling and batch normalization layers. The encoder further
reduces the input dimensions (400x400) to 50 latent dimensions
through fully-connected layers representing mean, log variance,
and latent space. The decoder mirrors the encoder with transpose
convolutions and upsampling layers to reconstruct the original
input (400x400) from the 50-dimensional latent space. We use two-
dimensional convolutional layers throughout the to encourage the
model to learn spatial dependencies between channels.

In training, we use a batch size of 24 and Xavier Glorot weights
initialisation [29]. We use Adam optimization [37] with a learning
rate of 1 × 10−4. We used a loss function summing KL divergence
and MSE loss. As we described in 2.4, KL divergence encourages
regularises the model to learn a Gaussian distribution of latent
space and MSE is an appropriate reconstruction loss function for
continuous-valued training data. Our data is windowed in the time
domain, but fCWT coefficients are on a continuous-valued scale.

4 MAKING SENSE OF LATENT SENSE-MAKING
Our analysis aims to understand how we can know if the latent
space is somaesthetically-meaningful (RQ.3). We seek to deepen
10In the medical field, practitioners use needle electrodes that can detect action poten-
tials (electrical impulses that make up EMG signals) from individual muscle fibers.
11We provide a video of interpolations generated with our network architecture
anonymized

(a) Key for understanding network architecture (b).

(b) Network architecture with colour-coded elements as shown in the key
(a).

Figure 1: A graphical representation of our Machine Somaes-
thete model architecture. Each block in (b) contains all the
layers depicted in its colour-corresponding block in the key
(a). Not depicted, we use ReLu activations throughout the
network, except for the connection between the last layer of
the decoder and the reconstruction.

understanding of machinic sense-making by studying meaning-
fullness of latent space sampling in relation to application-specific
somaesthetic experience. Towards the creation of an IPS, we aim for
our Machine Somaesthete to eventually generate similar outputs
for EMG inputs relating to similar somaesthetic experiences (and
different outputs relating to different experiences) within the space
of possibilities of described in 2.1. We are most curious to deepen
understanding of the model’s internal sense-making processes. For

anonymized
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Figure 2: The five phrase categories in music staff-notation,
labeled alphabetically. The violist played each of these
phrases five times at 60 quaver beats per minute, with as
little difference in expression between repetitions as possi-
ble.

this reason, we explore the model’s generative capacities in latent
space.

First, we made EMG data recordings from the violist’s body as
they played various musical phrases of our own devising 2. We
then encoded these phrases into the latent space of our trained VAE
to produce latent trajectories: concatenations of latent samples (z)
generated from input samples of our EMG recordings.

We use dynamic time warp (DTW) to, comparing each latent
trajectory to all others, including itself. We obtain a DTW a distance
measure for each pair comparison and present a distance matrix
of all of these measures through a heat-map 4. In the event that
our model has successfully, we expect to observe clusters of lower
dissimilarity measures where we compare latent trajectories from
the same phrase category. Likewise, we expect to observe higher
dissimilarity where we compare latent trajectories generated from
different phrase categories. We show hierarchical clusters in the
DTW distance matrix using a dendrogram 4.

To confirm that our observations are the result of training. we
run the same analysis on latent trajectories generated using an
untrained model (with the same network architecture as the trained
model). We also show the DTW distance matrix resulting from our
untrained model with a heatmap and a dendrogram.

Our choice to use time-series analysis in latent space is unusual,
given that our VAE has no sequential connections. In the simplest
technical terms, our VAE is trained to reconstruct multichannel
EMG data at the window level. We choose this approach because
our model will be used in music performance settings, where time
is an intrinsic element. Our analysis is particular to our specific
model, within a specific application, for use with a specific human
body. Through this approach, we acknowledge the individuality
and diversity of bodies and instruments. We discuss 5 observations

from this analysis from a somaesthetic perspective, informed by
viola performance practice.

4.1 Generating Latent Trajectories
We explore the latent space organisation of our trained Machine
Somaesthete through its ability to generate new samples in latent
space, based on a series of EMG data recordings (inputs)12. We
devised a collection of five musical phrases of equal lengths as
shown in 2. These phrases are our five input categories. Each phrase
is somaesthetically-distinct from the others (from the performer’s
perspective).

The violist performed each phrase five times, under the instruc-
tion that they should try to repeat each phrase as precisely as
possible, with as few expressive differences between repetitions as
possible. They played in time to ametronome andwere able to listen
back to previous repetitions. We used the same sensor placement
as with our training dataset recording, and likewise recorded four
channels of time-aligned EMG data 3.3. Each EMG data recording
begins at the start of the first metronome beat of each phrase and
ends at the end of the last beat of each phrase, to include the entire
duration of the first and last beats. With five repetitions of each
of the five phrase categories, we ultimately attained twenty-five
biodata recordings for encoding and analysis13.

We processed the raw 4-channel EMG recordings just as we did
the training data to produce stacked 1-second-long fCWT windows
with 80% overlap. These stacked windows are our input samples.We
encoded each recording sample-by-sample to attain latent embed-
ding pairs (mean and standard deviation) from each input recording.
From these latent embeddings, we use reparamatization to obtain a
sample (z) in latent space, as is standard practice in VAE generative
tasks. We then concatenated these latent samples to form (latent)
time-series. We refer to these latent time-series as latent trajectories.
For each recording, we generated 5 different latent trajectories. In
this way, we are able to incorporate both human and computational
variations of somaesthetic qualities in our analysis. Both are rele-
vant to our sympoietic system. We will refer to the entire collection
of latent trajectories as our analysis dataset.14 We categorise this
set of EMG recordings by phrase (A to E) and take/repetition of
each phrase (1 - 5) and generation (1 - 5).15 In total, we generated
125 latent trajectories for analysis.

In preparation for the DTW analysis step, we visually famil-
iarised ourselves with the analysis dataset. We used principal com-
ponent analysis (PCA) to reduce dimensions from 50 (the number
of dimensions in our model’s latent space) to 2. We can already
make some promising observations from the latent trajectory plots
made using the trained model 3. We can see that the latent trajec-
tory shapes generated from the same EMG input recording look

12While our model’s learning is unsupervised in that we do not impose gesture labels
during training, we do use semantic categories of movement (inputs) during analysis.
The model never has access to category labels; these are for use to organise and refer
to during our analysis.
13We have made these EMG recordings available for download. The link to the dataset
can be found through our GitHub repository: https://github.com/lucystrauss/machine-
somaesthete
14Not to be confused with the dataset we made to train our VAE.
15For example, we refer to the first generated trajectory from the first recording of
phrase category A as: A.1.1. Likewise, we refer to the forth generated trajectory from
the fifth recording of phrase category D as: D.5.4.

https://github.com/lucystrauss/machine-somaesthete
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(a) Latent trajectories generated from
the same EMG recording.

(b) Latent trajectories generated from
different EMG recordings of the violist
playing the same phrase.

(c) Latent trajectories generated from
EMG recordings of the violist playing
different phrases.

Figure 3: Latent trajectories (concatenations of latent samples over time) in a 2D plot after PCA dimensionality reduction. We
show three sets of comparisons with latent trajectory C.1.43, the forty-third latent trajectory that we generated by inputting
the first EMG recording of phrase category C into our trained VAE. We can observe that the pairs of latent trajectories look
most similar to each other in (a) and most different to each other in (c).

the most similar to each other, and less similar when generated
from different EMG input recordings from the same phrase cate-
gory. Latent trajectory shapes look most different from each other
when they are generated from different phrase categories. Drawing
our attention to latent trajectory plots made using an untrained
model, we do not make any meaningful observations about latent
trajectory shape comparisons.

4.2 Time-series Analysis of Latent Trajectories
We use the fast dynamic time warp (FastDTW) algorithm [57] to
compare each latent trajectory to all the others.16 A popular choice
in movement computing, DTW allows for temporal misalignment
between latent trajectories. Specifically, the optimization technique
of FastDTWmakes efficient calculations with our multidimensional
time-series of latent samples. For each latent sample, there are
50 dimensions. Within DTW framework, we use the correlation
distance metric17 to place more emphasis on temporal patterns
and less on magnitude differences between sequences compared
to alternative metrics (eg. Euclidean). FastDTW calculates distance
measures for each dimension at a time, then aggregates these into
one final distance measure for each comparison. With 125 latent
trajectories, we produce a total of 7750 final distance measures for
each distance matrix. As we stated in 4, we run the same analysis
twice, once using our trained model and once using an untrained
model.

5 DISCUSSION OF OBSERVATIONS
The heat-maps and dendrograms 4 result from the DTW analysis
of latent trajectories. We include all 125 latent trajectories in the
16We used the Python implementation of FastDTW: https://pypi.org/project/fastdtw/
17We used the correlation distance implementation from the SciPy library:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html

DTW calculations for the heat-maps. For the dendrograms, our
DTW distance matrix is made using one sample from each phrase
category recording so that we can see all the labels in the figure
clearly.

For 4 (c) & (d), the latent trajectories were generated using an
untrained model. We observe no meaningful groupings in these
visualisations, aside from the black squares in 4 (c). These simply
show where a latent trajectory is compared to itself, resulting in a
distance measure of 0. Given this lack of meaningful groupings in an
untrained model, we are confident that the patterns and clusters we
see in 4 (a) & (b) are a result of successful model training. Given that
we can see patterns and groupings in 4 (a) & (b), we are confident
that the latent space organisation of our trained network is more
meaningful than the latent space of our untrained network (RQ.2).

We discuss the visualisations produced with our trained model 4
(a) & (b) henceforth. From a somaesthetic perspective and informed
by viola performance practice, we share our observations of these
graphical representations and discuss how they can reveal elements
of the model’s sense-making process. Through our discussion, we
make sense of machinic sense-making - in sympoiesis with the
Machine Somaesthete, we make sense.

5.1 Ambiguity Between Phrases A & E
Most strikingly, we notice a relatively-low DTW distance between
categories A and E. We can see this in both the heat-map 4(a) and
the dendrogram 4(b). In the heat-map, this is particularly apparent
between latent trajectories A5 and E5. In the dendrogram, E5 is
grouped more closely with other examples from phrase category A
than with the other E samples.

If we were to evaluate our model’s performance without a so-
maesthetic perspective, we might say that it has generated incor-
rect latent trajectories for inputs A5 and E5. Yet our model is not



MOCO ’24, May 30–June 02, 2024, Utrecht, Netherlands Strauss and Yee-King

(a) Heat-map from trained model. (b) Dendrogram from trained
model.

(c) Heat-map from untrained model. (d) Dendrogram from untrained
model

Figure 4: Heat-maps showing DTW distance matrix between 125 latent trajectories produced with our tra.ined model (a) and an
untrained model (c). Labeled are 5 latent trajectories (concatenations of z) from each of the 5 recordings (played by the violist)
of each of the 5 phrase categories (A to E). We see black squares (difference measure of zero) a latent trajectory is compared to
itself. Medium-sized dark purple squares occur at comparisons of different latent trajectories generated from the same input.
Larger, lighter purple squares have occurred where we compare latent trajectories generated using different EMG inputs to the
model from the same phrase category.

intended as a gesture classifier. Its ambiguous understanding of
categories A and E tells us something about how the VAE makes
sense of experiential qualities of viola playing.

Phrase categories A and E sound and look very different in staff
notation. In 2 we can see that phrase A is multiple repetitions of
the same note with repetitive rhythm values, all with the detaché18
bow stroke. Phrase E contains much smaller note values and each
quaver (eighth note) beat contains multiple pitches under a single
bow stroke19.

However, the violist’s bodily experience of playing these two
phrases is similar. Even though the two phrases require different
bowing techniques, the bow directions of A and E are the same for
each quaver beat. The player does not experience changes in bow
stroke direction as up, down, up, down. As we wrote in 2.1, we expe-
rience even seemingly angular movements as rounded and circular
in the body. To change bow directions smoothly (without a break
in sound-production), the violist extends the circular experience
throughout their soma, even nodding their head as they reach the
ends of the bow between strokes.

With the similarity of bow direction in mind, it is also important
to note that the model has mostly generated the ’correctly’-grouped
latent trajectories for A and E recordings. We have described in
a fair amount of detail how similar A and E feel to play, but it is
worth reminding that the model usually does not ’confuse’ these
two phrase categories. There is a distinction to be made between
A and E. At least on the right side of the body, the distinction
is the magnitude of the circular experiences of bow-change. The
space of possibilities of movement is continuous and sometimes,

18Playing on the string in the upper-mid half section of the bow without lifting the
bow between bow strokes.
19This is the bariolage bowing technique.

somaesthetic qualities overlap as experiential circles spin into other
places of the soma.

Our DTW analysis has revealed to us something about how our
model makes sense of the somaesthetic space of possibilities of
viola performance. The model is sensitive to the circular move-
ment patterns of bow changes, even when they occur in different
magnitudes or on different strings. The violist was aware of the
similar shades of experiential qualities between these two phrases.
We intentionally devised these two phrases because they are in
some ways very similar and in other ways rather different. Yet we
were unaware of the extent of the similarities before, or that the
similarities are expressed so strongly in the particular parts of the
body that the Machine Somaesthete can sense. These are machinic
insights that the violist will feed back into their viola practice.

5.2 Similarity Between A & B
There is a closeness between phrase categories A and B. After the
connection between A & E phrase groupings on the dendrogram 4
(b), B is the very next group to be linked. The relatively similarity
between A and B is most apparent among the latent trajectories
generated using the last few recordings of each category (A3, A4,
A5 & B3, B4, B5) in the heat-map 4 (a).

From a sound standpoint, we might say that phrases A and B
are most similar to each other. They both entail playing only one
note - the same note on the same string - for their entire durations,
albeit with different rhythms 2. Biomechanically, this requires the
violist to hold their right arm at the same height to reach the second-
lowest string of the viola without touching adjacent strings with
the bow. In terms of muscular sensation, the violist needs to feel
a similar balance of tensions in their body to be able to hold their
arm at the same level for the two phrases.
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Yet the difference in rhythm and bow direction moves these
phrases further apart in the space of somaesthetic possibilities.
Given the similarity between phrase categories A and E 5.1, we
now know that the Machine Somaesthete is sensitive to the circular
qualities of bow direction changes. With insights drawn from 4 (b)
about the hierarchy of distance amongst A, B and E, we can see
that the model is usually slightly more sensitive to which string the
player plays on than to bow changes. This heirarchy is only inverted
for E5. These observations provide insights about the bodily aspects
that our Machine Somaesthete is sensitive to (RQ.4)

5.3 Distinctness of Phrase D
Category D looks the most distinct from other categories, as shown
through the darkest purple shading of category comparisons on the
heat-map 4 (a) and the right-most tree connection on the dendro-
gram (b). Even from a semantic point of view, this is unsurprising.
As we notate in 2, D is the only phrase category for which there is
not a cyclical repetition of rhythm. Musically, it is the most tem-
pestuous out of all the phrases, with flurries of tension and release
both rhythmically and harmonically. These flurries are reflected in
the violist’s soma as they play.

5.4 Organisation and Poiesis
Given the compatibility between the observed groupings (from
the DTW analysis of latent trajectories) and bodily experiential
qualities of viola playing, we can understand the latent space of the
trained model as somaesthetically-meaningful (RQ.1).

In 4 we can see the impact of training on the model by compar-
ing (a) with (c). All we can see is noise in the heat-map of latent
trajectories generated by an untrained model 4 (c). In making these
trajectories, the untrained model still makes what sense it can from
inputs, retrieving mean and standard deviation from input sam-
ples, reparameterizing them with a standard normal noise source to
produce new latent samples. The organisational machinic poietic
process has begun, even though latent sampling is meaningless to
us at this stage. Through training on our dataset, we and the model
begin to make sense together.

Towards a sympoietic view of ML, we consider the historical tra-
jectory of the dynamic organising process before our data reaches
the VAE. Our data is situated in viola performance practice and peda-
gogy. These practices emerge over hundreds of years, as knowledge
is passed down and transformed from generation to generation.
Over decades of training and practice, our particular violist learns
the coordinated movement of viola performance. They hold this em-
bodied knowledge of pattern and coordination in their body. These
patterns inherently exist in the dataset before the model begins to
’auto’-encode. Our sympoietic system is organisationally ajar and
structurally coupled [12] to the EMG signals of viola playing from
a specific body. With this view, the dynamic organising process of
sympoiesis comprises at least two streams of sense-making con-
nected through electromyography: 1) performance training of the
violist, and 2) the unsupervised training of the VAE.

6 CONCLUSION
We have shown that a simple VAE model with convolutional layers
can encode a somaesthetically-meaningful latent space in terms

of viola performance. In line with our practice-oriented goals, this
model is trained on a dataset small enough to capture from one
musician in under an hour, using only four EMG sensors. We have
also demonstrated that we can encode this meaningful latent space
with data from the larger muscle groups further from the body’s
extremities. To complement these contributions, the code for our
VAE model is available on GitHub20. Although our training dataset
itself is not shared, we do provide our analysis dataset and its
raw recordings on Zenodo. In our next design iteration, we will
investigate disentanglement of our latent space and approaches to
multimodality of movement and sound. These technical focuses
will build towards generative performer component of our IPS.

As a foundation for our technical contributions, we introduced a
concept of particular relevance to movement computing, sound and
music computing, soma-design and HCI communities: The Machine
Somaesthete. This RtD serves as an exemplar, showing how the use
of this concept can deepen knowledge and understanding across
multiple areas through the RtD process. In addition to inspiring
our design process, the somaesthetic lens has lead to our unusual
approach to latent space analysis. We have used latent listening
trajectories to peer into the sense-making process of a Machine
Somaesthete. In future work, our methods could be used to analyse
the musical performance of a human musical agent who plays
within the system, by analysing how they explore the latent space.

Our research questions do not articulate problems to solve, but
rather open points of entry to creative work with Machine Somaes-
thetes. Although we addressed each question in the paper, they
still hold potential to deepen our understanding of future design
iterations. Interweaving between all of this work is the notion of
sympoiesis, with the idea that we are both one with and separate
to our creations. This ambiguity enriches our design process as we
create and emerge together with our intra-active systems.
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