
1

Certifiability Analysis of Machine Learning
Systems for Low-Risk Automotive Applications

Vinod Vasudevan, Amr Abdullatif, Sohag Kabir, and Felician Campean

Abstract—Machine learning (ML) is increasingly employed for
automating complex tasks, specifically in autonomous driving.
While ML applications bring us closer to fully autonomous
systems, they simultaneously introduce security and safety risks
specific to safety-critical systems. Existing methods of software
development and systems based on ML are fundamentally differ-
ent. Moreover, the existing certification methods for automotive
systems cannot fully certify the safe operation of ML-based
components and subsystems. This is because existing safety
certification criteria were formulated before the advent of ML.
Therefore, new or adapted methods are needed to certify ML-
based systems. This article analyses the existing safety standard,
ISO26262, for automotive applications, to determine the certifia-
bility of ML approaches used in low-risk automotive applications.
This will contribute towards addressing the task of assuring the
security and safety of ML-based autonomous driving systems,
particularly for low-risk automotive applications, to gain the trust
of regulators, certification agencies, and stakeholders.

Index Terms—Artificial Intelligence, Safety Assurance, Robust-
ness, AI Safety, Certification, Machine Learning

I. INTRODUCTION

Millions of new automobiles are produced annually for
daily human use by the automotive industry. Because of
this, the manufacturers of these automotive systems have
always been increasingly concerned with ensuring their safety
[1]. Furthermore, since modern automotive systems rely on
increasingly complex software, sensors, actuators, and other
components, their implemented functionalities have become
much more complex [2].

Long-term research has been done on the use of Artificial
Intelligence (AI) approaches in safety-critical systems and the
utilisation of ML/ Deep Learning (DL) approaches in these
systems has increased significantly in recent years. ML has
proven to be an effective tool in tackling intricate problems and
enhancing system performance. Nevertheless, there exist both
obstacles and prospects in these domains that require careful
consideration. Automotive ECUs are given additional power to
make judgments and operate without driver involvement. Con-
tinuous learning from operations and dynamic reconfiguration
in response to component/subsystem failures are conceivable
with ML-based systems.

Although ML-based automotive driving applications have
made significant advancements in recent years, they pose vari-
ous challenges. Major challenges include safety and reliability,
and regulatory and ethical concerns. ML models may not

The authors are with the Faculty of Engineering and Digital
Technologies, University of Bradford, Bradford, BD7 1DP, UK (e-
mails: V.Vasudevan@bradford.ac.uk, A.R.A.Abdullatif@bradford.ac.uk,
s.kabir2@bradford.ac.uk, and f.campean@bradford.ac.uk)

always perform as intended in new or unforeseen situations
leading to potential risks. Moreover, ML-based systems are
known to have some weaknesses that can potentially com-
promise safety. Some of these weaknesses include the lack
of explainability in ML-based approaches, biases in the data,
the integrity of data, uncertainty and confidence estimation
associated with the input data, and sensitivity to adversarial
inputs. These weaknesses can lead to incorrect decision-
making in critical driving situations, which can pose safety
hazards. Consequently, the deployment of autonomous driving
technology raises various regulatory and ethical questions.
Hence, the regulatory framework may need to be updated
to address liability and safety standards. In the field of
safety-critical applications, safety certification has become an
established process over the past few decades. It serves as a
means to demonstrate conformity to regulatory requirements.
The growing trend of integrating ML components into safety-
critical applications poses challenges to traditional certification
approaches.

Analysing functional safety is a challenging task for au-
tonomous vehicles where vehicle architecture is complex and
they do not rely on human input to ensure their safety.
To guarantee that such complex automotive systems achieve
an acceptable level of safety, a functional safety standard,
named ISO 26262 [3], has been developed. The ISO 26262
standard provides guidelines for ensuring functional safety in
the development of vehicles, with part 6 specifically focusing
on software implementations [4] [5]. The ISO/PAS 21448
standard, also known as SOTIF, details the iterative process of
specification, development, verification and validation phases
of ISO 26262. SOTIF expects that the risk of unsafe scenar-
ios/inputs that fall under unknown and known categories is
reduced to an acceptable level [5]. It also notes that a training
set cannot cover all possible inputs and cannot replace a spec-
ification. ML components have unique features compared to
traditional electrical and electronic components. Hence, safety
analysis of ML components requires additional considerations
beyond functional safety and ISO 26262 process requirements
do not apply directly to AI-based software [6].

Several projects, institutes and working groups such as
EUROCAE WG-114, SAE G-34, DEEL, RISE and SMILE
[7] were created to address the challenges of ML reliability,
trustworthiness and certification. The DEEL project conducts
a comprehensive evaluation of current techniques designed to
certify ML software used in safety-critical systems. However,
the formal standard process for the automotive industry will
take many years, whereas there is a huge demand for ML
technologies in the automotive industry.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2024.3401402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

This article presents an analysis of the certifiability of
low-risk (ASIL-A) ML-based systems based on the existing
industry standards. To do this, we described a workflow for
the development of an ML component for automotive appli-
cations, following the guidelines provided in the ISO26262
standard for software component development. The article
then examines industry standards’ goals and techniques to
see if they can be satisfied and applied to the suggested ML
component development workflow. The goal of this analysis
is to make it easier to quickly implement ML technology in
low-risk automotive applications using the current regulatory
framework, all without the need for new legislation.

II. AN OVERVIEW OF ML IN AUTOMOTIVE APPLICATIONS

AI/ML has grown exponentially in numerous areas, in-
cluding transportation, manufacturing, aerospace, medicine
and more. Among different ML approaches, Deep Neural
Network (DNN) has been widely used for object recognition
and classification tasks in automotive applications. Although
different ML algorithms were used for different purposes in
automotive applications, for brevity, in this study, we consider
DNN only. Following are some of the notable applications for
DNN in the automotive industry.

• Traffic sign recognition and Lane Keep Assist.
• Vehicle trajectory analysis.
• Remote diagnosis and prognostics, failure localisation,

etc.
Despite posing multiple challenges, ML approaches are

already used in high-assurance systems. Depending on the use
case, running ML systems in a car can affect the vehicle’s se-
curity and functionality. The designers of a safety-critical ML
system must deal with a wide variety of challenges, including
appropriate architectural choice, trust and confidence, testing,
and explainability [8].

A work from the RISE SMILE project provides a review
of V&V that aims to embed ML into automotive safety-
critical systems [9]. Even though these criteria were set before
ML’s wide usage, developers of safety-critical applications
for automobiles must adhere to them. The technical report
from the joint committee of EUROCAE and SAE, published
in 2021, discusses the limitations of the current certification
requirements in relation to ML technology and looks at alter-
native solutions to the problem. Another work [10] examines
the difficulties of certifying systems based on ML in great
depth, but without offering any answers to these problems.
Several ongoing studies focus on solving certain problems in
ML assurance (design, runtime, verification, and traceability).
However, innovative approaches are still in their early stages,
and currently, there is no comprehensive method to handle all
incompatibilities in ISO 26262 [10].

III. ISO 26262 AND ML

The use of ML algorithms in systems that interact with
people or function in shared environments with them has led
to an increase in awareness of safety concerns. Automotive
safety is defined by ISO 26262 and when it comes to functional
safety, the auto industry should follow this standard. The

main objective of ISO 26262 is to lessen the chances of
catastrophic failure of an automobile’s electrical and electronic
systems while still allowing them to perform their intended
functionalities.

Safety and the concepts of risk, hazard, damage, and uncer-
tainty are closely related. In a system, outcomes are produced
based on its state and inputs, without any specific focus on ML.
The outcome may be desirable or not, but it only becomes
harmful when its consequences exceed a certain threshold
set by society. Physical injury or damage to people’s health,
whether caused directly or indirectly, is referred to as harm.
A hazard is a potential source of harm, whereas risk is the
likelihood of harm multiplied by the severity of the potential
harm. Unexpected or unknown events and operating conditions
can have negative consequences.

Hazard Analysis and Risk Assessment (HARA) are methods
that are used to identify impermissible hazards and risks
that could result from failures in a vehicle’s vital systems.
The system’s development is then directed by these safety
standards. ISO 26262 uses a V-model method, and the high-
level phases and their corresponding component numbers are
depicted in Fig. 1 [5]. This strategy aims to ensure that
all necessary software safety measures are taken during the
development and testing phases. This model’s objective is to
guarantee that all software safety requirements included in the
design are fully verified and validated [11].

Throughout its entire life cycle, the functional safety analy-
sis system considers the ASIL levels determined for its poten-
tial threats back in the idea phase. According to one’s amount
of exposure, an ASIL is assigned from levels A, B, C, and D.
The strictest rating is ‘D,’ which calls for a very low failure
rate and thorough testing, while ‘A’ is the least demanding.
For those risks that do not call for special precautions, quality
management (QM) is also an option. Technical safety criteria
are developed from functional safety requirements after the
architecture has been defined. In contrast, functional safety
criteria often outline the steps that must be taken to lessen
risk to an admissible level.

The main goal of functional safety (ISO 26262) is to
facilitate the industry’s organised response to functional safety
issues. ISO did not think about including ML in the functional
safety standard until AI/ML became crucial to the automo-
bile sector. ISO 26262 suggests traditional safety assurance
methodologies, however, these are either inadequate or inap-
propriate for ML assurance.

Regarding the security of ML models, Salay et al. [12]
published an analysis of ISO-26262 part-6 procedures. Based
on their research, they concluded that 40% of software
safety techniques cannot be applied to ML models. There-
fore, ML/DNN integration with autonomous vehicles presents
unique hurdles for the automotive industry. They also looked
at the feasibility of applying the unit-level software approaches
that are so highly recommended by ISO 26262 and discovered
that 70% of them may be used to construct ML-based compo-
nents directly [12]. The method proposed in [5] acknowledges
and controls the ML’s natural performance constraints. It opens
the door to circumstances for which no training data will be
available, but it gives the tools to deal with them safely.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2024.3401402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

To ensure ML models are secure, several researchers have
proposed various approaches. Few studies have taken into
account industry norms to evaluate the security of ML com-
ponents. For example, Radlak et al. [13] outlined a process
for modifying the functional safety life cycle as described in
ISO 26262 [3] for ML components. Certification studies have
also been fueled by the current AV boom. The difficulties of
ML certification are among those highlighted by Koopman
and Wagner [14]. Martin et al. [15] evaluate ISO 26262’s
suitability for AV, albeit they pay more attention to the
repercussions of the added complexity it causes than to the
application of ML itself. Spanfelner et al. [16] studied ISO
26262 with a focus on the impact of its high complexity on
driver-assisting devices, rather than specifically examining the
use of ML.

Uncertainty plays a role in safety when a system’s outcome
is unknown, and there is limited or no knowledge about
its probability distribution. Epistemic uncertainty specifically
stems from a lack of understanding about the physical world.
Safety, broadly defined, involves minimising both risk and
epistemic uncertainty to prevent severe undesirable outcomes
[17]. Engineering secure systems hinges on reducing the
risk factor, achieved by lowering the likelihood of harmful
events or minimising their impact. This necessitates a meticu-
lous identification of potential hazards, followed by assessing
their risks and implementing strategies to either eliminate
or mitigate these hazards [10]. Moreover, in the majority
of industries, safety case documentation is required for the
efficient implementation of safety protocols. These documents
serve as compelling evidence that the system meets safety
objectives within a specific application and environment.

Models used in ML are grounded in statistical learning the-
ory. In statistical ML, the fundamental concept is minimising
risk. This involves having a set of observations, features (x),
and labels (y), within a random example space X,Y described
by a probability density function P (X,Y) to find a mapping
function.

f : X → Y (1)

The risk of a prediction function f is defined in statistical
learning as the expected value of the loss incurred by predict-
ing the label of an observation x as f(x) instead of the y as
measured by the loss function L. This is expressed as [18]

R(f) =

∫
L(x, f(x), y)dP (x, y) (2)

In statistical learning, the main objective is to identify the
function f that minimises the risk R. However in ML, the
exact probability distribution P (X,Y) is unknown and only a
limited set of m examples (x(i), y(i)), i = 1...m are available.
To address this issue, we rely on the algorithm hypothesis (h)
and loss function (L) to determine the expected loss on the
training set, which is known as the empirical risk of h [18]:

Remp(h) = 1/m

m∑
i=1

L(x(i), h(x(i)), y(i)) (3)

Defining ML safety in a formal manner poses a significant
challenge. Various authors have endeavoured to delineate

ML safety by referencing factors like risk, epistemic un-
certainty, and the harm resulting from unforeseen outcomes.
The objective of different safety methodologies in ML is to
diminish undesirable results and lower the likelihood of harm
by incorporating these considerations into the loss function
(L), thereby enhancing the ML system’s capacity for safe
behaviour. Adhering to safety necessitates minimising the
chance of hazardous behaviour. Compliance with functional
safety standards involves demonstrating that failure probabil-
ities fall within the range of 10−7 and 10−9 per operating
hour [19]. Despite being a primary safety solution within the
ML framework, the approach proposed in [18] is deemed
insufficient when applied to real-world scenarios involving
the coexistence of humans and machines, such as autonomous
driving or industrial automation.

The challenge of distinguishing between an acceptable
outcome and a potentially harmful undesired result becomes
prominent when integrating ML-based control systems into
safety-critical environments. It is crucial to articulate a suitable
safety-focused response to identify undesired outcomes with
potential harm. Effectively addressing the safety concerns
of ML systems requires the meticulous implementation of
processes outlined in functional safety. This approach should
blend well-established safety strategies from traditional sys-
tems development with safety methodologies specifically tai-
lored for ML systems. Bridging the gap between the risk-
averse functional safety culture of conventional systems and
the ML systems presents a considerable challenge that needs
resolution.

IV. ANALYSIS OF ISO26262 AND PROPOSED WORKFLOW

Here, we examine whether or not the proposed ML devel-
opment workflow satisfies the ISO 26262 safety objectives.
We zero down on ASIL A software, where just a subset of
objectives is relevant, and demonstrate that these objectives
may be met despite significant differences between ML-based
and conventional methods of software development.

To develop the ML development workflow, we studied the
current ISO26262 guidelines for the software development
process as shown in Fig. 1. As seen in the figure, software
architecture is made up of parts that interact with one another
in a certain order. A full software system, including its ar-
chitecture, might be implemented with ML. In this article, we
have the following assumptions regarding the ML development
process and the proposed workflow is shown in Fig. 2.

• Both ML-based software and software tailored to a
particular vehicle are included in the components of a
typical ML-based system. Unit-level ML components,
rather than system-wide or overall architecture, are the
subject of this study. Conventional software components
may use ISO 26262 without any adjustments. Due to its
incompatibility, full-stack ML use is currently being ruled
out.

• In addition, we omitted ML systems that can train them-
selves while they are in operation.

• To illustrate the salient features of an ML-based system,
we use DNN as an example in this study.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2024.3401402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

SOTIF based system properties

 for the item

3-5 Item definition

HARA

Safety goals

3-6 Hazard Analysis & Risk

FS requirements

3-7 Functional safety concept

TS requirements

4-6 Technical safety concept

System architectural design

4-7 System Architecural Design

SW safety requirements specification

6 -6 Software safety requirements

SW architectural design specification

6 -7 Software Architectural Design

SW unit design and implementation

6 -8 Software unit desgin and implementation

Execution of road test

4-9 Safety validation

HW/SW testing on target vehicle

4-8 System Integration and Verification

Design Verification and testing

4-8 Integration and Testing

SW verification report

6 -11 Test of embedded software

SW verification/Embedded SW report

6 -7 Software integration and testing

Design verification report

6 -9 Software unit verifiction

Field observation

7-7 Operation ,service and decommissioning

Change management plan

8-8 Change management

SW tool criteria and qualification report

8-11 Confidence in the usage of SW tools

Documentation of SW development environment

6-5 General topics of prodcuct development

Fig. 1. V Model: ISO/PAS 21448 and ISO 26262 sub-phases [5] [13]

• To train the ML model and make it available for use, we
employ the standard ML development pipeline.

A. Proposed ML development process

The transition from traditional programming methods to
ML development necessitates an adjustment in the approach
to building assurance frameworks to align with the learning
process. An effective solution involves representing the ML
model workflow in a manner that corresponds to the existing
software development process, as depicted in Fig. 2. An
example of a viable solution is the incorporation of an iterative
loop during both the training and testing phases within the
ML development, a crucial component integrated into the
certification process.

Software requirements analysis, design, coding, and safety
criteria are all part of the ISO 26262 specification, which is
part of the proposed ML development process. To achieve
the goals of the ISO 26262 process, several established in-
dustrial methodologies for software development flow and

techniques such as the waterfall model, agile methods, model-
based design or combination can be applied. All levels of
requirements in the V model must be defined and developed
with bi-directional traceability. However, depending on the
selected development approach, the timing and connection
of the development activities are changeable. In contrast to
traditional software, ML models are described by a large
number of parameters that are refined throughout training
using a learning algorithm. In this way, it is extremely difficult
to link the model’s parameter settings for auto-tuning back to
the underlying functions that led to those settings. One of the
biggest obstacles to ML explanations is the lack of a clear
paper trail. The source code of conventional software can be
read by humans and traced back to the criteria it fulfils. In
contrast, a learning algorithm automatically adjusts a huge
number of parameters to optimise the functional behaviour
of an ML model during training. ML models are usually
incomprehensible to humans. It is considered that mapping
and tracing the values of these automatically modified pa-
rameters in the ML model is almost impossible. Therefore,

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2024.3401402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

SOTIF based system properties

 for the item

3-5 Item definition

HARA for ML

Safety goals for ML

3-6 Hazard Analysis & Risk

FS requirements for ML

3-7 Functional safety concept

TS requirements for ML

4-6 Technical safety concept

System architectural for ML

4-7 System Architecural Design

DATASET: dataset and levelling policy

MODEL:requirements and review

6 -6 Software safety requirements

DATASET: architectural design of dataset and levelling policy

MODEL:requirements and review

6 -7 Software Architectural Design

DATASET: dataset gathering and levelling

MODEL:implemention of host and target models

6 -8 Software unit desgin and implementation

Execution of road test

4-9 Safety validation

HW/SW testing on target vehicle

4-8 System Integration and Verification

Design Verification and testing

4-8 Integration and Testing

DATASET: dataset completeness

MODEL: E2E testing of entire software

6 -11 Test of embedded software

DATASET:verification of consistency between subsets

MODEL:Integration of ML into bigger one

6 -7 Software integration and testing

DATASET: dataset labelling specification verification and report

MODEL:training and V&V specification

6 -9 Software unit verification

Continuous monitoring of anomalies in ML system

7-7 Operation ,service and decommissioning

Change management of continous delivery

8-8 Change management

Evaluation of ML tools

8-11 Confidence in the usage of SW tools

Change management of continous delivery

6-5 General topics of prodcuct development

Network

Requirements

Data gathering & pre

processing

Training & Testing

NN deployment

Verification &

Validation

Network Test

Report

Network

Integration

Network

Training

Summary

Data Analysis

Variation of ANN

Topologies

Selection of different

ANN input

Network

Performance

Specification

Network Test

Plan

Fig. 2. ISO 26262 sub-phases and proposed aspects of ML that need to be addressed during development of ML-based components

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2024.3401402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

TABLE I
ISO26262 RECOMMENDATIONS FOR VERIFICATION AND TESTING OF SOFTWARE ARCHITECTURE WITH DIFFERENT ASIL LEVELS [3]

Verification QM ASIL A ASIL B ASIL C ASIL D

Methods
Highly
Recommended

Recommended
Highly
Recommended

Recommended
Highly
Recommended

Recommended
Highly
Recommended

Recommended

1 Walk-Through ✓ ✓

2 Inspection ✓ ✓ ✓ ✓

3
Semiformal
verification

✓ ✓ ✓ ✓

4
Formal
Verification

✓ ✓

5
Control flow
analysis

✓ ✓ ✓ ✓

6
Data flow
analysis

✓ ✓ ✓ ✓

7
Static Code
analysis

✓ ✓ ✓ ✓

8
Semantic code
analysis

✓ ✓ ✓ ✓

Testing QM ASIL A ASIL B ASIL C ASIL D

Methods
Highly

Recommended
Recommended

Highly
Recommended

Recommended
Highly

Recommended
Recommended

Highly
Recommended

Recommended

1 Requirements based test ✓ ✓ ✓ ✓

2 Interface test ✓ ✓ ✓ ✓

3 Fault injection test ✓ ✓ ✓ ✓

4 Resource usage test ✓ ✓ ✓ ✓

5 Back to back comparison test ✓ ✓ ✓ ✓

the goals of traceability for an ML model are unachievable.
One potential solution involves incorporating an iterative loop
into the training and testing phases of ML software develop-
ment, which is necessary for the certification process. This
solution is applicable with the provided dataset, where model
performance is assessed during the design phase and specific
performance assurances are made for the operational phase
(see Fig. 2). Since ASIL A is the lowest safety level that we
are considering, traceability has no effect on ASIL A software.

In addition to outlining the development process, ISO spec-
ifies supporting processes such as Part 7 (covering production,
operation, service, and decommissioning) and Part 8 (support-
ing processes). Furthermore, it is recommended to incorporate
other parts of ISO 26262 when integrating ML-based com-
ponents. Continuous monitoring of product post-production
(Part 7) is advised, particularly for detecting outdated ML
models. The objective of this process remains technology-
independent and can be applied to ML-based systems at
any assurance level. Specifically, the field monitoring process
should be carefully planned to determine the what, when, by
whom, and how often data should be processed and updated.
Field monitoring and change management should be closely
integrated.

ML-based systems are expected to require continuous up-
dates throughout their product lifespan. Thus, the planning
of change management should encompass all potential trigger
events necessitating modifications. These events may include
scheduled continuous updates, adjustments prompted by iden-
tified anomalies, or adaptations due to evolving demands.
This analysis and planning phase should occur early in the
development process. Establishing robust change management
planning is crucial for automating tasks by integrating the
backend tool chain.

V. CERTIFIABILITY ANALYSIS

This section analyses the certifiability of ASIL A-level ML
approaches in the context of the ISO26262 standard. Table
I shows the recommendations provided by ISO 26262 for
verification and testing requirements of software architectures
at different ASIL levels. As can be seen, different verification
and testing methods were either recommended or highly rec-
ommended for different ASIL levels. Due to the limited scope,
our focus will be on the recommendations provided for ASIL
A-level software architectures. For ASIL A-level software
architectures, six verification approaches were recommended,
one was highly recommended, and formal verification was not
needed, whereas two testing approaches were highly recom-
mended and three approaches were recommended. ISO26262
also provides numerical recommendations for error-handling
mechanisms such as 0 (N/A), 1 (recommended), and 2 (highly
recommended) for different ASIL levels. The following list
shows these recommendations for different error-handling
methods [3].

1) Static recovery mechanism: A (1), B(1), C(1), D(1)
2) Graceful degradation: A (1), B(1), C(2), D(2)
3) Independent parallel redundancy: A (0), B(0), C(1), D(2)
4) Correcting codes for data: A (1), B(1), C(1), D(1)

As the ML model is positioned to solely address low-
level software requirements within the suggested workflow, the
matter of traceability does not impact the ASIL A software.
This is due to the fact that the objectives related to low-
level requirements are not applicable to ASIL A software.
Two significant challenges are the absence of specification
and non-interpretability. Non-interpretability poses a barrier to
safety assurance by hindering the application of manual white
box verification methods like inspection and walk-through.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2024.3401402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

TABLE II
OUTCOMES OF THE CERTIFIABILITY ANALYSIS

ASIL level Category
ASIL A ASIL B ASIL C ASIL D Technique OK Adapt N/A Analysis

Unit design Notations

2 2 2 2 Natural language 1
Can use natural language to describe hyper parameters,
training set strategy etc.

2 2 1 1 Informal notations 1
Can use informal notations to describe hyper parameters,
training set strategy etc.

2 2 2 2 one entry exist point in subprograms 1 Applicable at the ML component interface level
2 2 2 2 Initialization of variables 1 Only meaningful for programming

Unit design and implementation verification
2 1 0 0 Walk- through 1 Adaptation: walkthrough structure of transparent ML models

Unit Testing
Requirements-based test 1 Black-box technique2 2 2 2

Interface test 1 Black-box technique2 2 2 2

Unit Deriving Test Cases
2 2 2 2 Analysis of requirements 1 Black-box technique
2 2 1 1 Statement coverage 1 Only meaningful for programming

Moreover, it extends its relevance to other activities such as
formal verification or static analysis, where comprehension of
the implementation is crucial for interpreting the results.

Part 6 of ISO 26262 outlines 75 software development
techniques applied across different phases of the V model.
Out of these, 34 techniques are specifically relevant at the unit
level, while the remaining ones are intended for the architec-
tural level [12]. The assumption is that ML was exclusively
utilised at the unit level, focusing the analysis on techniques
applicable to this level. Nevertheless, the challenges posed by
the absence of specification and non-interpretability directly
affect the capability to perform verification and testing. The
behaviour of ML is dependent on certain parameters that
are automatically updated during model training. As a result,
traceability objectives are not feasible for an ML model.
However, traceability has no impact on applications with low
criticality.

The following methods can be achieved in traditional soft-
ware. Software testing may largely be performed in a hosted
or simulated environment. Such testing cannot guarantee that
software requirements have been met. ISO 26262 established
additional test environments for performing tests to increase
the confidence that the software is operating correctly. The val-
idation objectives according to ML technology relate mainly
to the verification and coverage assessment of the ML model.

ISO26262 requires assessments of 1) Requirements cover-
age by tests and 2)Interface tests. At the preliminary stage,
we evaluate how effectively our tests mimic the expected
behaviour described in the program specifications. To do this,
it is necessary to conduct a review of tests and related require-
ments. As we have seen, however, because it is not human-
comprehensible, ML models are not usually linked to their
respective requirements or tests (explainability challenge).
Performing additional activities, such as detecting unexpected
functionality in the source code, is necessary to achieve a
greater level of trust in the correctness and completeness of
requirements-based tests. When validating ML models, the
verification and coverage assessment of the ML model are
the main objectives related to the verification of requirement-

based tests. In order to accomplish these objectives, extra
activities are required to detect any unintended functionality
in the source code.

ISO mandates specific techniques for various stages of
software development and our analysis shows the majority of
them are applicable to ML components and others could be
easily adapted for low-criticality applications(ASIL-A). Table
II shows the results of assessment techniques which are highly
recommended for ASIL A from the 34 techniques which apply
to the unit level. Each technique can be classified into three
categories based on the level of applicability of ML.

Category OK is directly applicable without modification.
Adapt means if the technique is modified in some manner and
can be utilised in the ML component. N/A indicates that the
technique is applicable to code-oriented programming and not
applicable to an ML component. Analysis performed in [12]
considered the ML at the system level and examined the appli-
cability of all 34 available techniques. On the other hand, we
considered ML at the component/unit level and examined only
the relevant techniques applicable at a particular unit level.
Although the scope and coverage of the analysis performed in
[12] and our work were different, the results of our analysis
are aligned with the results produced by [12].

Our analysis and the analysis performed in [12] both iden-
tified that 60% of the existing techniques can be used as they
are in the current form without any special modifications for
ML approaches for low-criticality applications and 10% of
existing approaches would need to be adapted before they can
be used.

VI. CONCLUSION AND FUTURE WORK

This paper examines the prevailing industrial standards in
the development of automotive software for low-criticality ML
systems. The analysis reveals inconsistencies between these
standards and certain features of ML technology that may
potentially impede the fulfilment of standard objectives, such
as coverage, traceability, and model verification. To address
these challenges, the paper proposes assumptions for an ML
development workflow, specifically focusing on non-adaptive,

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2024.3401402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

supervised learning systems. The planned future work involves
expanding the analysis to encompass higher criticality levels
and delving deeper into the challenges associated with explain-
ability and coverage.

REFERENCES

[1] M. Gharib, P. Lollini, A. Ceccarelli, and A. Bondavalli, “Engineer-
ing functional safety requirements for automotive systems: A cyber-
physical-social approach,” in 2019 IEEE 19th International Symposium
on High Assurance Systems Engineering (HASE). IEEE, 2019, pp.
74–81.

[2] S. Wagner, B. Schätz, S. Puchner, and P. Kock, “A case study on safety
cases in the automotive domain: Modules, patterns, and models,” in 2010
IEEE 21st International Symposium on Software Reliability Engineering.
IEEE, 2010, pp. 269–278.

[3] I. ISO, “26262-1: 2018,” Road vehicles—Functional safety—Part, vol. 1,
2018.

[4] R. Salay and K. Czarnecki, “Using machine learning safely in au-
tomotive software: An assessment and adaption of software process
requirements in iso 26262,” arXiv preprint arXiv:1808.01614, 2018.

[5] S. Mohseni, M. Pitale, V. Singh, and Z. Wang, “Practical solutions
for machine learning safety in autonomous vehicles,” arXiv preprint
arXiv:1912.09630, 2019.

[6] C. B. S. T. Molina, J. R. De Almeida, L. F. Vismari, R. I. R.
Gonzalez, J. K. Naufal, and J. Camargo, “Assuring fully autonomous
vehicles safety by design: The autonomous vehicle control (avc) module
strategy,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE, 2017,
pp. 16–21.

[7] L. Alecu, H. Bonnin, T. Fel, L. Gardes, S. Gerchinovitz, L. Ponsolle,
F. Mamalet, É. Jenn, V. Mussot, C. Cappi et al., “Can we reconcile
safety objectives with machine learning performances?” in ERTS 2022,
2022.

[8] K. Aslansefat, S. Kabir, A. Abdullatif, V. Vasudevan, and Y. Papadopou-
los, “Toward improving confidence in autonomous vehicle software: A
study on traffic sign recognition systems,” Computer, vol. 54, no. 8, pp.
66–76, 2021.

[9] M. Borg, C. Englund, K. Wnuk, B. Duran, C. Levandowski, S. Gao,
Y. Tan, H. Kaijser, H. Lönn, and J. Törnqvist, “Safely entering the
deep: A review of verification and validation for machine learning and
a challenge elicitation in the automotive industry,” 2018.

[10] H. Delseny, C. Gabreau, A. Gauffriau, B. Beaudouin, L. Ponsolle,
L. Alecu, H. Bonnin, B. Beltran, D. Duchel, J.-B. Ginestet et al.,
“White paper machine learning in certified systems,” arXiv preprint
arXiv:2103.10529, 2021.

[11] V. Vasudevan, A. Abdullatif, S. Kabir, and F. Campean, “A framework to
handle uncertainties of machine learning models in compliance with iso
26262,” in Advances in Computational Intelligence Systems, T. Jansen,
R. Jensen, N. Mac Parthaláin, and C.-M. Lin, Eds. Cham: Springer
International Publishing, 2022, pp. 508–518.

[12] R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of ISO 26262:
Using machine learning safely in automotive software,” arXiv preprint
arXiv:1709.02435, pp. 1–6, 2017.

[13] K. Radlak, M. Szczepankiewicz, T. Jones, and P. Serwa, “Organization
of machine learning based product development as per ISO 26262
and ISO/PAS 21448,” in 2020 IEEE 25th Pacific Rim International
Symposium on Dependable Computing (PRDC). IEEE, 2020, pp. 110–
119.

[14] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[15] H. Martin, K. Tschabuschnig, O. Bridal, and D. Watzenig, “Functional
safety of automated driving systems: Does iso 26262 meet the chal-
lenges?” in Automated Driving. Springer, 2017, pp. 387–416.

[16] B. Spanfelner, D. Richter, S. Ebel, U. Wilhelm, W. Branz, and C. Patz,
“Challenges in applying the iso 26262 for driver assistance systems,”
Tagung Fahrerassistenz, München, vol. 15, no. 16, p. 2012, 2012.

[17] N. Möller, “The concepts of risk and safety,” Handbook of risk theory:
epistemology, decision theory, ethics, and social implications of risk,
vol. 1, pp. 55–85, 2012.

[18] A. Pereira and C. Thomas, “Challenges of machine learning applied to
safety-critical cyber-physical systems,” Machine Learning and Knowl-
edge Extraction, vol. 2, no. 4, pp. 579–602, 2020.

[19] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2024.3401402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

