
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

12-2003

UML Extensions for Real-Time Control Systems
Qimin Gao
Dematic, gaoqimin@hotmail.com

Lyndon Brown
Western University, lbrown@eng.uwo.ca

Luiz Fernando Capretz
Western University, lcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

Citation of this paper:
Gao, Qimin; Brown, Lyndon; and Capretz, Luiz Fernando, "UML Extensions for Real-Time Control Systems" (2003). Electrical and
Computer Engineering Publications. 80.
https://ir.lib.uwo.ca/electricalpub/80

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scholarship@Western

https://core.ac.uk/display/61665581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/80?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

UML Extensions for Real-Time Control Systems

Qimin Gao L.J.Brown L.F.Capretz

Department of Electrical and Computer Engineering
The University of Western Ontario
London, Ontario, Canada N6A 5B9

February 25, 2003

Abstract

The use of object oriented techniques and methodologies for the design of real-time control systems

appears to be necessary in order to deal with the increasing complexity of such systems. Recently many

object-oriented methods have been used for the modeling and design of real-time control systems. We

believe that an approach that integrates the advancements in both object modeling and design methods,

and real-time scheduling theory is the key to successful use of object oriented technology for real-time

software. Surprisingly several past approaches to integrate the two either restrict the object models, or do

not allow sophisticated schedulability analysis techniques. In this paper we show how schedulability

analysis can be integrated with object-oriented design. More specifically, we develop the schedulability

and feasibility analysis method for the external messages that may suffer release jitter due to being

dispatched by a tick driven scheduler in real-time control system, and we also develop the scheduliability

method for sporadic activities, where message arrive sporadically then execute periodically for some

bounded time. This method can be used to cope with timing constraints in realistic and complex real-time

control systems. Using this method, a designer can quickly evaluate the impact of various implementation

decisions on schedulability. In conjunction with automatic code-generation, we believe that this will greatly

streamline the design and development of real-time control system software.

1. Introduction

There have been many attempts to make use of object-oriented technology for real-time software.

Some of them have come from the industry real arena [3, 4, 5], while others have come from

academia [6, 7, 8, 9, 10]. Many of these claims are mostly based on assumption that real-time

scheduling theory can be used to perform schedulability analysis. But, traditional real-time

 1

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

scheduling theory results [11,12,13,14] can be directly used only when the object models are

restricted to look like the tasking models employed in real-time scheduling theory, as has been

done in [7, 8]. In other cases, either the claims are unsupported [4] or based on less sophisticated

analysis [4, 6]. Saksena and Karvels [15] provided the first attempt to apply real-time scheduling

theory to the object-oriented design by use of the state-of the art in the both fields. In their paper,

they show how to integrate traditional scheduliability analysis techniques with object-oriented

design models based on the assumptions that the entire external message arrives perfectly on

periodic or aperiodic time interval. Martins [17] provided the first attempts to commercially

implement scheduling theory for UML model design by using the technologies in [15], these

integrated tools allow issues on timeliness to be addressed much earlier on in the development

process.

However, some critical issues regarding real-time control systems are not well addressed by the

current approaches, especially because schedulability analysis for real-time control systems has

not been effectively incorporated. Although some researchers [15, 16, 17] have addressed this

problems by providing code synthesis of scheduling aspects and functionality aspects models,

they have mainly focused on the assumptions that all external events arrives perfectly on periodic

or aperiodic without release jitter and sporadic effects. In general the real–time control systems

are not the case, a message may be delayed by the polling of a tick scheduler, or perhaps awaiting

the arrival of a message, and some real-time control systems have messages that behave as so-

called sporadically periodic; a message arrival at some time, executes periodically for a bounded

number of periods, and then re-arrives periodically for a number of times, and then does not re-

arrive for a larger time. Examples of such messages are interrupt handlers for burst interrupts or

certain monitoring messages in real-time control systems. Until now there is no extended method

of the object-oriented design methodologies to deal with these timing constraints of real-time

control systems. Thus the above analysis methods need to be improved.

 2

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

In this paper, we will present an approach to incorporating schedulability analysis in a UML for

Real-Time (UML-RT) model-based development process [18]. Using this approach, satisfaction

of the end-to-end timing constraints of real-time control systems can be verified and the

schedulability analysis results will be used for aspect-oriented code generation in the model

transformation and automatic code generation. The rest of the paper is organized as follows. In

section 2, we briefly review basic concepts of UML-RT. Section 3 introduces schedulability

analysis based on RMA. Section 4 develops the feasibility and schedulability analysis methods

for real–time control systems with jitter messages and sporadically periodic messages. In section

5, we will present schedulability results for an example system based on our method. Finally we

present some concluding remarks.

2. Unified Modeling Language for Real-Time Systems

The unified modeling language (UML) [1,2] is a graphic modeling language for visualizing,

specifying, constructing and documenting the artifacts of software systems. UML is a widely

accepted language and it is becoming a standard for object-oriented modeling. UML has a strong

set of general purpose modeling language concepts, and has been designed as an open-ended

language application across different domains. UML-RT, developed by ObjectTime and Rational

Rose Corporation, use UML to express the original ROOM (Real-Time Object-Oriented

Modeling) concepts and their extensions.

2.1 Structure Modeling

UML-RT uses the notion of capsules to describe concurrent, active objects. Capsules are objects

that communication with other capsules through interface called ports, and have each their own

thread of execution. Capsules differ from other classes in that it can call operations on classes.

Sending messages through public port is the only method that capsules can communicate with

other capsules. Figure 1 shows an example of a systems structure for Automatic Gauge Control

 3

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

Systems in the tandem cold steel mill [19], consisting of several active objects, and

interconnections between objects through ports.

 Hy rol

Operator Console

Port

C.S.D.Port

C.S.D.Port

P.G.Por
t

V.D.Port

V.D.Por
t

T.S.Port

T.G.Por
t

T.G.Por
t

O.C.Port

O.C.Port

H.P.C.Port

 H.P.C.Port

E.C. Port

E.C. Port

A.S.R. Port

T.S.Por
t

utomatic Gauge Control

A

Eccentricity Control

Pulse
Generator

P.G.Por
t

Velocity
Detector

Tension Sensor

Thickness Gauge

 Control Strategic Database

draulic Position Cont Automatic Speed
Regulator

 A.S.R.

Figure 1. Object Structure Diagram for Automatic Gauge Control Systems

2.2. Behavior Modeling

In addition to the structure modeling, the capsules have their behavior defined by UML’s

hierarchical state machines and sequence diagrams. Sequence diagrams illustrate capsule

interactions through message exchanges in a time sequence. Every capsule in the sequence

diagram has a lifeline. Time progresses from top to bottom along a lifeline. The sequence

diagrams use directed message arrows to describe messages sent from one capsule to another.

The horizontal dimension represents the different objects in the interaction.

3. Real-time Scheduling theory

Scheduling theory for real-time systems has received a great deal of attention. The first

contribution to real-time scheduling theory was made by Liu and Layland [11], they developed

optimal static and dynamic priority scheduling algorithm for hard real-time sets of independent

tasks. Since then, significant progresses have been made on generalizing and improving the

schedulability analysis. The authors developed exact schedulability analysis to determine worst-

case timing behavior for task with hard real-time constraints in the RMA model considered in the

initial work [11], as well as extended models, such as arbitrary deadlines, release jitter, sporadic

and periodic tasks [12, 13, 14, 20, 21, 22, 23].

 4

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

Most of the deterministic schedulability analysis techniques follow the same approach. First, the

notion of the critical instant of a task is defined to be an instant at which a request for that task

will have the largest response time. Then, the notion of busy period at level ‘ i ’ is defined to be a

continuous interval of time during which events of priority ‘ i ’ or higher are being processed

[11]. With these concepts, the calculation of the worst-case response time of an action involves

the computation of the response time for successive arrivals of the action, starting from a critical

instant until the end of the busy period, also the response time of a particular instant of action can

be calculated by considering the effects of the blocking factor from lower priority actions and the

interference factor from higher or equal priority actions, including the previous instance of the

same action. If the worst-case response time of the action is less than or equal to it’s deadline, the

action can be said to be schedulable and feasible. Otherwise, the action is not schedulable or

feasible.

4. Schedulability Analysis and Extended Sequence Diagram of UML-RT

4.1. Analysis Model

In our paper, we assume that real-time control systems are implemented in a uni-processor single

thread environment, and it is made up of a set of transactions, where transaction denotes a single

end-to-end computation within the system. Specifically, it refers to the entire causal set of actions

executed as a result of the arrival of an external event that originated from an external source.

External event sources are typically input devices (such as sensors) that interrupt the CPU-

running embedded software. These external events can be periodic or aperiodic, and also have

jitter and sporadically periodic characteristics. We express the real-time control system as a

collection of transactions that capture all computation in the design model. We also use the term

action to capture the processing information associated with an external or internal event. In our

model, an action captures this entire run-to-completion processing of an event. The execution of

an action may generate internal events that trigger the execution of other actions. Thus, each

 5

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

transaction can be expressed as a collection of actions and events. Each action is a composite

action, and composed from primitive sub-actions, these primitive sub-actions include send, call,

and return actions [15], which generate internal events through sending messages to other objects.

We use an extended sequence diagram from UML to describe transactions in the system models.

In the extended sequence diagram, we capture the detail of the processing associated with an

event. Figure 2 describes the transaction of automatic gauge control system in a steel mill. The

transaction is driven by a timeout message with jitter characteristics. As can be seen, the

automatic gauge control object obtains the steel plate thickness from the Thickness Gauge object

using a synchronous call action. It then does the control law calculations and generates a position

value, which is sent asynchronously to the hydraulic position control object, the hydraulic

position control object then sends a command to the hydraulic position actuators adjusting the

thickness of the steel plate. The sequence diagram for a transaction can easily be extended to

include sub-actions associated with code executed by the real-time execution framework.

 Release
Jitter

Sporadically Periodic Event

Aperiodic Event

Periodic Event

Synchronous Call

Asynchronous Signal

A4

A2

A3

A1

Position()

a4,1

Hydraulic Position Actuator

Set_PositionValue()

Get_Thickness()

a3,1

a2,2

a2,1

a1,3

a1,2

a1,1

Timeout()

Thickness Gauge Hydraulic Position ControlAutomatic Gauge Control

Figure 2. Extended Sequence Diagram of Automatic Gauge Control System

The extended sequence diagram can capture the timing constraints [1,2]. For the purpose of this

paper, we are concerned about (1) arrival patterns of the external events, and (2) end-to-end

deadlines of actions in the extended sequence diagram. The end-to-end deadlines can be specified

on any action in a transaction, which is relative to the arrival of the external event.

 6

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

4.2. Notation

In our paper, as defined in [15], we use event and message as synonymous. Let ε = {E 1 , E , E ,

E , … , E } represent the set of all event-streams in the system, where E 1 , E , …, E n

denote external event streams, and the remaining internal ones. All external events are assumed to

be asynchronous, periodic, aperiodic events and sporadic events with release jitter. We use J i to

represent the jitter time of external event E i . T i and t i represents the outer period and inner

period for sporadically periodic external events E i . If the external event without sporadic effects,

the inner period of such event is equal to it’s outer period. Each external event stream

E i corresponds to a transaction . We also use A i to represent an action that associated with each

event E i . An action may be decomposed into a sequence of sub-actions A i = {a i , a i , a i , …,

a i }, where each a denotes a primitive action, such as sending message, calling message, and

returning message. Within this model, each action A i represents the entire “run-to-completion”

processing associated with an event E i , and it is characterized as either asynchronously triggered

or synchronously triggered, depending on whether the triggering event is asynchronous or

synchronous. Each action A i executes within the context of an active object (capsule) Õ(A i), and

it is also characterized by a priority (π(A)), which is the same as the priority of its triggering

event Ei. Each action A i is also characterized by the computation time (C (A i)) and deadline (D

(A i)). Each sub-action a of A i is characterized by a computation time C (a) (abbreviated as

C); the computation time of an action is simply the sum of its component sub-actions, i.e.,

, also, the computation time of any sequential sub-group of sub-actions aip to aiq

where p≤ q is C . Each event and action is part of a transaction. For the rest of this

1, 2, 3,

i ij

i

ij

ij

p
qi C,

n,

ij

C(

ij

∑
≤

=

qj

j

∑
j

=iA C)

= ijp...

2 n

1+n N 2

iτ

 7

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

paper, we use superscript to denote transactions. For example, represents an action and

represents an event, both of which belong to transaction τ. Adding the superscript for external

events {E : k=1, 2, …, n} is unnecessary since there is exactly one external event associated

with each transaction, i.e., external event E belongs to transaction k and would be denoted as

. In this case, the superscript will be omitted.

τ
iA τ

iE

k

k
kE

j

k

k

j

j

k

j

j

Communication Relationships

We assumed that there are two types of communication relationships between actions,

asynchronous and synchronous. We use symbol “→” to denote asynchronous relationship. An

asynchronous relationship A i → A indicates that action A i generates an asynchronous signal

event Ej (using a send sub-action) that triggers the execution of action A . Likewise, we use

symbol “↔” to denote synchronous relationship. A synchronous relationship A i ↔ A k indicates

that action Ai generates a synchronous call event E (using a call sub-action) that triggers the

execution of action A . We assume that if the events have a synchronous relationship, the actions

have the same priority. We also use a “causes” relationship, and use the symbol ∝ for that

purpose. The relationship captures the causal relationship between actions. Both asynchronous

and synchronous relationships are also causes relationships, i.e., A i → A j => (A i ∝ A), and

A i ⇔ A j => (A i ∝ A), Moreover, the causes relationship is transitive, thus (A i ∝ A j) ∧

(A ∝ A) => A i ∝ A k . When A i ∝ A . We say that A is a successor of A i since A i must

execute (at least partially) for A to be triggered.

k j j

j

Synchronous Set

For the purpose of analysis, we define the term “synchronous set of A i ”. The synchronous set

of A i is a set of actions that can be built starting from action A i and adding all actions that are

 8

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

called synchronously from it. The process is repeated recursively until no more actions can be

added to the list. In there, we use ϒ (A i) denote the synchronous set of Ai and C (ϒ (A i)) denote

the cumulative execution time of all the actions in this synchronous set. We also call A i as the

root action of this synchronous set.

4.3. A Simple Example

We will use a simple example system shown in Table 1 through the rest of this paper to illustrate

our ideas. The extended system sequence diagram is shown in Figure 3. The example system

consists of three transactions triggered by external events E i , one is periodic event with release

jitter, one is sporadically periodic event, and the other one is aperiodic with release jitter. All the

transactions are statically assigned to a single thread. For each action, we show the sub-actions

a , their computation times as well as which internal events are generated by which sub-action.

Note that within each transaction we have included both synchronous (call) and asynchronous

(signal) events. Furthermore, each transaction traverses multiple objects, and has multiple

priorities (due to different deadlines for different parts of the transaction).

ij

Trans

τ i

Out.P.

Ti

Inn.P.

ti

Num.

ni

Jitter

Ji

Event(Type)

E i

Action

A i

Priority

π(Ai)

Deadline

D(Ai)

Object

Õ(Ai)

Sub-action

aij

Comp.Time

cij

Events Generated

E i (a i,j)

τ 1 60 60 1 10 E 1 (External)
E 4 (Signal)
E 5 (Signal)
E 6 (Call)

A 1
A 4
A 5
A 6

10
6
10
10

300
800
300
280

1
4
3
4

{a1,1, a1,2 , a 1,3}
{a4,1}
{a5,1, a5,2 , a 5,3, a 5,4}
{a6,1, a 6,2}

{5, 1, 1}
{5}
{2,1,2,1}
{4,1}

E 4 (a 1,2), E 5 (a 1,3)
- - -
E 6 (a 5,2)
- - -

τ 2 900 300 3 E 2 (External)
E 7 (Call)
E 8 (Signal)
E 9 (Call)

A 2
A 7
A 8
A 9

9
9
7
9

460
400
720
450

2
5
4
6

{a2,1, a2,2 , a 2,3, a 2,4, a2,5}
{a7,1, a 7,2}
{a8,1}
{a9,1 a 9,2}

{1,3,1,1,4}
{9,1}
{10}
{50,1}

E 7 (a 2,1), E 8 (a 2,3) E 9 (a 2,4)

- - -

τ 3 1000 1000 1 5 E 3 (External)
E 10 (Call)
E 11 (Signal)

A 3
A 10
A 11

8
8
5

620
600
480

3
6
7

{a3,1, a3,2 , a 3,3}
{a10,1, a10,2 , a 10,3, a 10,4}
{a11,1}

{4,1,5}
{4,1,5,1}
{250}

E 10 (a 3,2)
E 11(a 10,2)

Table 1. An Example System For Schedulability And Feasibility Analysis

In our example system, events have unique priorities (termed the priority); events can arrive at

any time (i.e. want to run), but can be delayed for a variable bounded amount of time (termed the

release jitter) before being placed in a priority-ordered run-queue. Periodic and aperiodic events

 9

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

are given worst-case inter-arrival time (termed the period); and sporadically periodic events are

given the outer period and inner period, a event cannot re-arrive sooner than this time, for each

arrival a event may execute a bounded amount of computation, each event is associated with the

action, each action is given the worst-case execution time and deadline, This worst-case

execution time value is deemed to contain the overhead due to context switching. The cost of pre-

emption, within the model, is thus assumed to be zero.

A5

E1

1

E10

a11,

1

a10,

1 a10,

2 a10,

3 a10,

4

a3,3

a3,1
a3,2

a9,2

a9,1

a8,1

a7,2

a7,1

A11
A10

A3

A
8

A
9

A7

E9

E
7
E
8

a2,5

a2,4

a2,1
a2,2
a2,3

6,1 a

a6,2
A
6

E6

a5,4

a5,3

a5,1
a5,2

a4,1A4

τ1

A2

A
1

E
4
E
5

 a1,1
a1,

2 a1,3

E
3

E
2

E1 Ei = {Ti, ti, Ji, πi }

aij = {Cij }

Ai = {Ci, Di, πi }

Release
Jitter

 Aperiodic Event

 Periodic
Event

Sporadically Periodic
Event

 Synchronous
Call

 Asynchronous Signal

Object7 Object
6

Object
5

Object
4

Object3 Object2 Object1

τ2

τ3

Figure 3. Extended Sequence Diagram of The Example System

4. 4. Schedulability and Feasibility Analysis

In our real-time control system model, we assume that only the external event has release jitter

problem, and the internal event does not have jitter problem, because the internal event arrival is

only decided by the action that represents the entire “run-to-completion” processing associated

with the internal event. For the external events E which behave as ‘sporadically periodic’

executing with an inner period (t) and outer period(T). we assume that the ‘burst’ behavior

must finish before the next burst (i.e.,

τ

τ

τττ Tt

τ

n ≤), where n is the number of release of external τ

 10

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

events E in a burst, and also we assumed that the release jitter (J) of external event E is the

inner release jitter (i.e., each release of external events E can suffer this jitter). In our analysis

model, we carry out the schedulability and feasibility analysis by calculating the worst-case

response time of actions, the worst-case response time of actions A i is calculated relative to the

arrival of the external event E that triggers the transaction

τ τ τ

τ

τ

τ

τ . If the worst-case response time of

an action is less than or equal to it’s deadline, the action is schedulable, if all the worst-case times

of actions in the systems are less than or equal to their deadline; the system is schedulable or

feasible. We use the well-known critical instant/busy-period analysis [6, 11, 12, 14] developed for

fixed priority scheduling, In our uni-processor single thread implementation environments, a

priority inversion occurs if a lower priority event is processed, while a higher priority event is

pending. In the same way, a level-i busy period is a continuous interval of time during which

events of priority “i” or higher are being processed.

4.4.1. Worst-Case Response Time Analysis

In the worst-case response time analysis for action A i , we will compute the response time of the

action for successive arrivals of the transaction, staring from a critical instant, until the end of the

busy period. We let denote the worst-case start time for instance ‘ q’ of action A i (i.e.,

when the instance ‘q’ of the action gets the CPU for the first time), starting from the critical

instant (time 0). Likewise, denotes the worst-case finish time, starting from the critical

instant (time 0). Arrτ (q) denotes the arrival time of instance ‘q’ of external event E starting from

the critical instant (time 0). According to our system model, we not only consider the busy-period

starting at time J +qT , but also consider busy-period starting at J +q t before the release of

event E . In order to do that, we define two integers M and m , where M is the number of

τ

)(qSi
τ τ

(Fi
τ

τ

τ τ τ τ

τ τ

)q

τ τ

 11

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

outer periods previously in the window [0,], and m is the number of inner periods. M

and m are given by:

τ τ

)(qi
τ ≤

τ

],...,2,1[
max

m

τ

≥

)(qSi
τ

τ τ

τ

τM =
τn

q 1−

τ

1

τ

τ τ τ τ

)(qSi
τ)(qFi

τ

F τ

q
)(qFi

τ
τ

τ

τ

τ

Nk≤≤1
max k

τ
k

m =(q-1) - M m

Where q is an integer, and q .

The arrival time Arrτ (q) of instance ‘q’ of external event E can be given as Arrτ (q) =

M T + m t . Base on the traditional scheduling theory for real time systems

[11,12,13,14], we can iteratively compute and for q=1,2,3… until we reach

a q=m, such that Arrτ(m+1)- J τ . Then, we let R(A i) denote the worst-case

response time of action A i , and it is given by:

R(A i) = { + J - Arrτ (q)} τ

∈

4.4.2. Blocking

According the scheduling theory [11,15], blocking refers to the effect of lower priority actions on

the response time of an action. It may be from any transaction. Let B(A i) denote the maximum

blocking time of an action A i , In uni-processor single-thread implementation environments, since

scheduling is non-preemptive, priority inversion is limited to one synchronous set of actions with

a lower priority root action. This action has started executing just before the transaction

containing A i arrives. Thus the maximum blocking time of an action is given by:

B(A i) = { C(ϒ (A)) :: π (A i) ≥π(A) }

4.4.3. Interference Effects and Busy Period Analysis

 12

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

We known that the critical instant of an action A i occurs when all transaction arrive at the same

time (we denote this as time 0), and the root action of the synchronous set of actions that

contributes the maximum blocking term B(A i). Since actions are executed in a non-preemptive

manner, when A i starts executing, no other action can interrupt it other than any synchronous

calls that A i makes. Firstly, let the early interference function Early (t) denote the

interference effect of transaction k prior to , assuming that =t. Likewise, let the late

interference function Late (t) denote the interference effect of transaction k for the interval

[,), assuming that =t. Then, the value for is given by the lowest

value of W i , it satisfies the following equation.

τ

τ

τ

τ)(qA
k

τ

Si)(qSi
τ

(Si
τ (τ)(qFi

τ)(qSi
τ

(τ

(Si
τ)τ

)(qτ

)(qAτ

k

)q Fi)q

)q

)q =min W i :: W i = B(A i) + (q)(qτ τ ∑
≤≤ Nk1

Early)(qA
k

τ

)(qτ

)(qτ

)q)(qτ

(qτ

)(qτ

)(qSi
τ)(qFi

τ

τ

)q)(qFi
τ

(W i)

That is, an action (instance) will start, in the worst case, at a time W i if the sum of the

blocking and interference effects equals W i , where W i is the first time instant when this

become true. Note that the term W i occurs on both sides of the equation, this equation can be

solved by iteratively refining W i using the right side of the equation, starting from an initial

lower bound value B(A i) in this case, as explained in [11, 15, 21].

(τ

)

τ

Once is known, we can compute , this is done by considering the additional

interference effects from higher or equal priority actions that can preempt A i (q). Because in our

uni-processor single thread implementation system model, there can be no preemption effects

after an action has started executing, thus we have Late (t)=0. So, can be calculated as

follow:

(Aτ

k

 13

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

 = + C(ϒ (A i)))(qFi
τ)(qSi

τ τ

τ

τ

Where C(ϒ (A i)) is the cumulative execution time of all the actions in this synchronous

set of A i .

4.4.4. Early Interference Function.

The early interference function depends on whether we are considering interference from other

different transaction , or from the same transaction. i.e., Κ . τ≠Κ τ=

Early Interference effects from Other Different Transactions. In this case , for any

arrival of the transaction k in the interval [0, W i]. We have to consider the computation

times of all higher or equal priority actions making up transaction k, again, any synchronous

call made recursively from these actions must also be considered, we can see that they

have been already included in the calculation because of our earlier assumption that the

priority of a synchronously triggered action is the same as that of the caller action. Also,

interference is considered for all events arrived in the window [0, W i]. Note that we

have to take the closed interval, because if a higher action becomes enabled at time

W i , then A i (q) cannot begin executing. Now consider the computation occurring in the

window [0, W i] from higher priority sporadically periodic event E with release jitter

J , if the window is larger than a number of ‘bursts’ of E then the computation time

from each burst amount is n C(A). For the partial ‘burst’ starting in the window, we

can treat E as a simple periodic event executing with period t over the remaining part

of the window. We let F represents the whole number of event E ‘bursts’ starting and

finishing in the window, and it is given as follow:

k

k

k

τ≠Κ

)(qτ

)(qτ

)(qτ τ

)(qτ
k

k

k

k

K k

 14

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

F = k k

ik
T

qWJ)(τ+

kkiK TFqWJ −+)(τ

k

The remaining part of the window [0, W i] is the length , hence a

bound on the number of event E in this remaining time is F , and it is given by:

)(qτ

kr

F =kr 1)(+−+

K

KKIK
t

TFqWJ τ

k

k k

min

minkr k

τ

Another bound on the number of event E k in this remaining time is n , since a burst can

consist of at most n invocations of event E . Therefore the least upper bound number

F can be given by: kr

F =min(n , F kr)

So the total interference of action A i from different other transaction k is given as:

Early (W i)= (F +F n))(qA
k

τ

τ≠)(qτ
minkr K k •))()(:: τππ i

k
l AA ≥)((

l

k
lAc∑

Early Interference effects from The Same Transactions. In this case , it is important to

distinguish between previous instance, i.e., 1,2, …, q-1 of the transaction, and all other instances

after that. Accordingly, we can write;

τ=Κ

Early (W i) = Early (W i) + Early (W i))q(Aτ

τ (τ (Aτ

τ − (τ)(qAτ

τ +)(qτ

)(qAτ

τ −)(qτ

)(q)(qτ

)(qSi
τ

τ

)(qAτ

τ −)(qτ

)q)q)q

Where the Early (W i) is the interference effects from the past instances (1,2,…, q-1)

and Early (W i) is the interference effects of all other instances q, q+1,… that may have

arrived in [0,].

Aτ

τ +

The past instances of the transaction have similar effects as other transactions, since any higher or

equal priority actions of the transaction must execute prior to A i (q). Thus the

Early (W i can be given as:

 15

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

Early (W i) = ()(qAτ

τ − (qτ))τmττ nM + •)((∑
l

lAτC τ ≥ τ

τ

τ τ

τ)(qAτ

τ +)(qτ

τ τ

)(qτ

τ

:: π(A l) π(A i))

The interference effect of instance q onwards must not count the effect of any action A l , if

A i ∝ A l , since if A i (q) has not executed, any action that is caused by it could not have

executed either. Furthermore, we assume that multiple instances of the same action

execute in order and thus, this is true for instance q+1 onward as well.

τ

If the action A i is asynchronously triggered, the Early (W i) is given by the

following equations:

First, let F represent the whole number of event E ‘bursts’ starting and finishing in the

window [0, W i] and is given by:

F =
τ

τ

T
qWi)(

ττ
τ TFqi −)(The remaining part of the window [0, W i] is the length W , hence a bound

on the number of event E in this remaining time is F , and it is given by:

)(qτ

rττ

 1)(+= −

τ

ττ
τ

τ t
TFqW

r
iF

τ τ

τ τ

minrτ τ rτ

)(qAτ

τ +)(qτ

Another bound on the number of event E in this remaining time is n , since a burst can

consist of at most n invocations of event E . Therefore the least upper bound number

F can be given by: minrτ

F = min(n , F)

So, the Early (W i) is given by:

 16

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

Early (W i) ={ (F + F n) –

(}

)(qAτ

τ +)q

M

(τ
minrτ τ τ

)()(ττ ππ il AA ≥∧

τ

)(qSi
τ

)(qSi
τ)(qτ

)τττ mn + •)(::)(((τττ
l

l
il AAAC ∝¬∑

According to the above analysis, for the asynchronously triggered action A i , we can find

start times as follows:

=min W i ::

W i = B(A i) +)(qτ τ ∑
≤≤ Nk1

Early)(qA
k

i
τ

)(qτ

τ

kk nF)(Ac k ≥ τ

)τm)(C τ ≥ τ

(W i)

= B(A i)

 + ∑ :: π(A l) π(A i)))(min

Nk

krF +

≤≤
≠τ

1
k

(∑
l

K
l

 + (• :: π(A l) π(A i)) ττ nM + (∑
l

lAτ

+{ (F + F n) – (minrτ τ τ)τττ mnM + }•)()(ττ ππ il AA ≥∧)(::)(((τττ
l

l
il AAAC ∝¬∑

If the action A i is synchronously triggered, the above worst staring time for the

asynchronously triggered action A i need to be improved. Now, let’s consider a

synchronously triggered action A i , let A be the asynchronously triggered action, such

that A i belongs to ϒ(), i.e., the synchronous-set of . Then we have a chain of

actions, starting from A to A i that only execute partially in this interval, and are

blocked waiting for A i to execute. Note that there must be exactly one such action ,

so there is no ambiguity. This changes the interference for instances q, q+1, … of

transaction τ. For instance q, only a part of the synchronous set ϒ() has executed, and

τ)(qSi
τ

τ

τ τ
g

τ
g

τ
g

τ

τ
gA

τ A

τ

τ
gA

τ
gA

 17

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

this should be reflected in the equation. Rather than extend the notation to explicitly

define this subset. We denote this sub-action as a producing the action A i , and the

computation time associated with this sub-action as . For instances q+1

onwards, none of the actions in the synchronous set ϒ() can cause interference, since

their previous instance (q) is blocked. The blocking term, interference from other

transaction, and interference from previous instances (0,1,2, …,q-1) of the same

transaction remain the same, because we assumed that π(A) =π(A i). Based the above

analysis, the worst staring time for the synchronously triggered action A i is given as

follows

τ
hg ,

τ

)))((...1,
τ

hgasubC

τ
gA

τ

τ

)(qSi
τ

Early (A
k

i
τ

τ
g

)(Ac

)(C

)) ττ
glA ≥

(γ

τ
g

(A

)q

)(qτ

k ≥ τ
g

τ ≥ τ
g

()(ττ πlg AA ∧∝

(Si
τ

)q

::¬

)(qτ

τ
g

1

kk nF+

)τm

)))...1,
τ

hga

τ τ

π

• ::)(((τ

l
lAC τ

lA¬∑

)

(τ

(q

S

=min W i ::

 W i = B(A) + (W i))(qτ ∑
≤≤ Nk

= B(A)

+ :: π(A l) π(A)))(min

Nk

krF∑
≤≤

≠τ
1
k

(∑
l

K
l

 + (• :: π(A l) π(A)) ττnM + (∑
l

lAτ

+)(((((τγ
l

lACsubC +∑

+{ (F + F n) – (-1}minrτ)τττ mnM +)(τ

iA ∝)()(ττ ππ gl AA ≥∧

4.4.5. Schedulability Analysis.

From the above equations, we can calculate the value of . Once the value of is

obtained from the above equations, we can iteratively compute and for q=1,2,3 …,)q

Si
τ)(qSi

τ

i)(qFi
τ

 18

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

until we reach a q=m, such that)Fi
τ (q ≤ Arrτ(m+1)- J . Then, the worst-case response time of

action A i is given by:

τ

τ

q
(q

τ

τ

τ

],...,2
max

m
)Fi

τ
τ

τ τ

τ τ

R(A i) = { + J - Arrτ (q)}
,1[∈

If the worst-case response time R(A i) is less than or equal to it’s deadline D(A i), then the

action A i implementation is feasible. If the worst-case response time R(A i) is larger than the

deadline D(A i), then the action A i implementation is not feasible. If all the action worst-case

response times in the real-time control system are less than or equal to their deadlines, we can say

that the systems implementation is feasible.

5. Scheduliability Analysis for the Example System.

Now, let us revisit our example system and apply the above scheduling analysis method to

analyze the system schedulability. Table 2 shows the worst-case response time of each action

Transaction Action Priority Deadline Worst Case Response Time
 10 300 267

 6 800 763

 10 300 271

6A 10 280 265

 9 460 447

 9 400 386

 7 720 710

9A 9 450 427

 8 620 598

 8 600 588

11A 5 480 449

1A

4A

5A
1τ

2A

7A

8A
2τ

3A

10A3τ

Table 2. The Worst Case Response Time for The example systems

which found by this analysis method. From the table, we can see that all the worst-case response

time of actions in the system is less than their deadline constraint. So the system is schedulable

and feasible. From the table we can also see that the worst case response time of all actions are

 19

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

large due to action A 11 which has large execution time. Since in our system model, the

implementation is in uni-processor single thread environments, it causes blocking for all the

actions. Based on the table, we can see that the effect of the lower priorities of action A and

A is also reflected in their larger worst case response time because of the greater interference.

For non-preemptive scheduling in our uni-processor single thread environments, the worst case

response time of the lowest priority action A11 is relatively lower, once the action starts

executing, it executes as if its priority is raised to the highest priority in the system.

4

8

6. Conclusion

Software design has become more and more important within the real-time control system design

process since functionality implementation gradually migrated from hardware to software.

Consequently, several commercial tools have become available that provide an integrated

development environment for real-time control systems with object-oriented techniques to

facilitate the design phase. However, these tools lack the ‘real-time” support required by many of

these systems. Especially those with stringent timing constraints.

As a result, we proposed a methodology for the integration of schedilability analysis techniques

within UML-RT techniques to support the timing requirements in real-time control system design

process. The main contribution of our paper is in the development of the worst case response time

analysis for object-oriented design models in which the external events suffer release jitter and

have sporadically periodic characteristics, we also extent UML sequence diagram to visually

describe the timing properties in real-time control systems. This results developed are also

generally applicable to any modeling language using active objects, and explicit communication

between objects through message passing. This method can be used to cope with timing

constraints in realistic and complex real time control systems. Using this method, a designer can

quickly evaluate the impact of various implementation decisions on schedulability. In conjunction

 20

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

with automatic code-generation, we believe that this will greatly streamline the design and

development of real-time control system software.

References

 [1]. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Addison-

Wesley, 1999.

 [2]. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.

Addison-Wesley, 1999.

 [3]. B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling. John Wiley and Sons,

1994.

 [4]. M. Awad, J. kuusela, and J. Ziegler. Object-Oriented Technology for Real-Time Systems: A

Practical Ap-proach using OMT and Fusion. Prentice Hall, 1996.

 [5]. B. P. Douglass. Doing Hard Time: Developing Real-Time Systems with Objects, frameworks, and

Patterns. Addison-Wesley, 1999.

 [6] H. Gomaa. Software Design Methods for Concurrent and Real-Time Systems. Addison-Wesley

Publishing Company, 1993.

 [7]. A. Burns and A. J. Wellings. HRT-HOOD: A Design Method for Hard Real-Time. Real-Time

Systems, 6(1):73–114, 1994.

 [8]. L. Kabous and W. Nebel. Modeling hard real-time systems with uml the ooharts approach. In

Proceedings, International Conference on Unified Modeling Language (UML’99), 1999.

[9]. K. H. Kim. Object structures for real-time systems and simulators. IEEE Computer, pages 62–70,

August 1997.

 [10]. Yau, S.S.; Xiaoyong Zhou; Schedulability in model-based software development for distributed

real-time systems . Object-Oriented Real-Time Dependable Systems, 2002. (WORDS 2002).

Proceedings of the Seventh International Workshop on , 2002 page(s):45-52

 [11]. C. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard real-time environment.

Journal of the ACM, 20(1):46–61, January 1973.

 21

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

 [12]. J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact characterization

and aver-age case behavior. In Proceedings of IEEE Real-Time Systems Symposium, pages 166–171.

IEEE Computer Society Press, December 1989.

 [13]. M. Harbour, M. Klein, and J. Lehoczky. Fixed Priority Scheduling of Periodic Tasks with Varying

Execution Priority. In Proceedings, IEEE Real-Time Systems Symposium, pages 116–128, December

1991.

 [14]. K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing fixed priority hard real-

time tasks. The Journal of Real-Time Systems, 6(2):133–152, March 1994.

 [15]. M. Saksena, P. Karvelas. Designing for schedulability: integrating schedulability analysis with

object-oriented design. In Real-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro

Conference on , 2000 Page(s): 101 -108

[16]. M. Saksena, P. Karvelas, and Y. Wang. Automatic synthesis of multi-tasking implementations from

real-time object-oriented models. In Proceedings, IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing, March 2000.

[17]. Paulo Martins, Integrating Real-Time UML Models with Schedulability Analysis. White Papers in

Tri-Pacific Software Products 2003 http://www.tripac.com/html/whitepapers/umlsched.pdf

 [18]. B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-Time Systems. White Paper,

Published by ObjecTime, and available from www.objectime.com, March 1998.

 [19]. Tezuka, T.; Yamashita, T.; Sato, T.; Abiko, Y.; Kanai, T.; Sawada, M. Application of a new automatic

gauge control system for the tandem cold mill Industry Applications, IEEE Transactions on ,

Volume: 38 Issue: 2 , March-April 2002 Page(s): 553 –558.

 [20]. J.Y.T.Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic, real-

times tasks. Performance Evaluation (Netherlands), 2:237-250, 1982

 [21]. M.Joseph and P. Pandya. Finding response times in a real-time systems. Computer Journal (British

Computer Society), 29(5):390-395, 1986

[22]. L. Sha, R. Rajkumar, and J. Lehocaky. Priority inheritance protocols: An approach to real-time

synchronization. IEEE Transactions on Computers, 39:1175-1185, September 1990.

 22

42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 5932-5938, December 2003

 23

 [23]. J.P.Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proceedings

of IEEE Real-Time Systems Symposium, pages 201-209. IEEE Computer Society Press, December

1990.

 [24]. A. Bertossi and A. Fusiello. Rate-monotonic scheduling for hard-real-time systems. European

Journal of Operational Research, pages 429-443,, June 1996

 [25]. C. J. Fidge. Real-time schedulability tests for preemptive multitasking. The Journal of Real-Time

Systems, Pages 61-93, 1998.

	Western University
	Scholarship@Western
	12-2003

	UML Extensions for Real-Time Control Systems
	Qimin Gao
	Lyndon Brown
	Luiz Fernando Capretz
	Citation of this paper:

	Department of Electrical and Computer Engineering
	Abstract
	Communication Relationships
	
	
	References

