
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

6-2014

Service Evolution Patterns
Shuying Wang

Wilson Higashino
Western University, whigashi@uwo.ca

Michael Hayes
Western University, mhayes34@uwo.ca

Miriam A M Capretz
Western University, mcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons, and the Systems Architecture Commons

Citation of this paper:
S. Wang, W. Higashino, M. Hayes, M. A. M. Capretz, “Service Evolution Patterns”, Proc. of the 21st IEEE Int. Conf. on Web Services
(IEEE ICWS 2014), June 27-July 2, 1014, Alaska, USA

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages

Service Evolution Patterns

Shuying Wang*, Wilson A. Higashino*+, Michael Hayes*, Miriam A. M. Capretz*
*Department of Electrical and Computer Engineering

Western University, London, Canada,
{swang266, whigashi, mhayes34, mcapretz}@uwo.ca

+Instituto de Computação
Universidade Estadual de Campinas, Campinas, Brazil

wah@ic.unicamp.br

Abstract— Service evolution is the process of maintaining and
evolving existing Web services to cater for new requirements
and technological changes. In this paper, a service evolution
model is proposed to analyze service dependencies, identify
changes on services and estimate impact on consumers that
will use new versions of these services. Based on the proposed
service evolution model, four service evolution patterns are
described: compatibility, transition, split-map, and merge-
map. These proposed patterns provide reusable templates to
encourage well-defined service evolution while minimizing
issues that arise otherwise. They can be applied in the service
evolution scenario where a single service is used by many,
possibly unknown, consumers’ applications. In such a scenario,
providers evolve their services independently from consumers,
which might cause unexpected errors and incur unpredicted
impact on the dependent consumers' applications. Therefore,
providers can use these patterns to estimate the impact that
changes to be introduced to their services may cause on their
consumers, and to allow consumers smoothly migrate to the
newest version of the service.

Keywords- Web services; service evolution; evolution pattern;
service evolution model; service dependency

I. INTRODUCTION
Web services1 are software systems designed to provide

interoperable machine-to-machine interaction over a
network. In this context, services consumers (or requesters)
are those entities that use Web services functionalities
through their applications, and service providers are the
entities that implement and offer the services. Due to diverse
change requirements, service evolution issues arise and thus
lead to a continuous service redesign and improvement
process. Providers evolve their services independently from
consumers, which might cause unexpected errors and incur
unpredicted impact on the dependent consumers'
applications. Estimating the impact that changes may cause
and applying service evolution strategies to attempt to reduce
the impact on the consumers are crucial in this context.

In order to solve the service evolution issues, much
research has been carried out to investigate service changes
[1], perform compatibility and impact analysis [2][3], and
develop service adaptation techniques [4]. However, it is
difficult to assume that a service maintainer without much
background knowledge on these advanced techniques can
choose and implement the most appropriate ones to

1 http://www.w3.org/TR/ws-gloss/
2 http://code.google.com/apis/maps/documentation/~webservices/

efficiently solve their evolution problems. In this context,
this research presents two main contributions. First, it
develops a formal service evolution model that can be used
to analyze the key entities and relations in an evolution
scenario. Second, it identifies some proven evolution
strategies and catalogs them as four service evolution
patterns: compatibility, transition, split-map, and merge-map.
Each pattern is described using the formal evolution model
and provides a generic reusable solution for certain types of
evolution scenarios.

This paper focuses on a common evolution scenario
where a single service, provided by a single provider, is used
by many different and possibly unknown consumers, as is
the case of most current Web services, such as Google
Maps2, eBay Trading3, and Amazon E-Commerce4. In this
scenario, the services are usually faced with large and
frequent changes as a result of an increasing need to conform
to changing business and technological requirements.
Therefore, in order to minimize the risks associated with
services changes, the providers need to constantly evaluate
the impact of changes on consumers and to adopt evolution
strategies to minimize these impacts. The service evolution
patterns provide a generic systematic approach to assist in
this process.

First, the formal service evolution model is applied to
analyze services dependency and to identify the required
service changes. Based on the results of this analysis, the
service maintainer can choose the most appropriate evolution
pattern while estimating the impact of changes on
consumers. The use of patterns encourages well-defined
service evolution and minimizes issues that may arise
otherwise. Therefore, it also enables service maintainers to
reduce the impact of service changes even without in-depth
technical knowledge of the chosen evolution strategies.

This paper is organized into sections as follows: Section
II presents the service evolution model for service
dependency analysis, identification of changes, and change
impact analysis. Section III introduces the four service
evolution patterns. Section IV contains a literature review of
previous research. Finally, section V presents the
conclusions and the possibilities for future work.

2 http://code.google.com/apis/maps/documentation/~webservices/
3 http://developer.ebay.com/products/trading/
4 http://docs.amazonwebservices.com/AWSECommerce~ Service/2007-04-
04/DG/

S. Wang, W. Higashino, M. Hayes, M. A. M. Capretz, Service Evolution Patterns, Proc. of the 2014 IEEE International Conference on Web Services (ICWS), 2014, pp. 201-208.

http://dx.doi.org/10.1109/ICWS.2014.39

Copyright: http://www.ieee.org/documents/ieeecopyrightform.pdf

II. SERVICE EVOLUTION MODEL
In this section, an evolution model is presented in order

to understand service dependency, service changes, and the
impact on consumers. This formal model leads to a general
view of the proposed evolution scenario and serves as a basis
to describe the evolution patterns.

A. Service Evolution Model

Figure 1. Service evolution model

Definition 1: A Service Evolution Model is defined as a
quintuple model <p, U, dep, ∆, t>.

• p is the service being analyzed.
• U is the set of dependent service consumers.
• For each u ∈ U, dep(p, u)={dep(ei, ej) | ∃ei∈ p, ∃ej∈

u}. dep(ei,ej) indicates that a consumer's element ej
consumes the service provider’s element ei.

• ∆={c1,…,ck} is the set of changes applied on the
service p. p' represents the updated service p with the
changes applied.

• t(u) is the transition set for service consumer u. This
set represents the modifications required in
consumers’ applications to adapt to the evolved
service p'. For each dependent service consumer u,
the impact analysis is performed to estimate the
necessary changes. The transition set t is defined as:

t(u) =impact(∆, dep(p, u)) (1)

• u' represents the service consumer u containing the
required modifications to adapt to the evolved
service p'. Subsequently, dep' is the new service
dependency for consumer u' to service p'.

Figure 1 shows the proposed service evolution model for
a service consumer u∈ U. In order to build this model, three
main tasks must be executed. First, dependency analysis is
used to obtain the set of service elements consumed by a
service consumer. Second, required changes are identified
and classified. Finally, we estimate the transition set t(u) for
consumer u, subject to changes ∆ and service dependencies
dep(p, u). Section IV presents some existing techniques that
can be applied on these steps.

B. Dependency Analysis
Definition 2: Service Dependency dep(p,u) defines an
abstract view of the most important elements in service p
consumed by u.

• dep(p,u) = <pu.name, {opu
k}> represents a

consumed Web service using a unique service name,
and a set of k operations which u consumes.

• opu
k=<operation_nameu, {inu

l, outu
m}> defines an

operation, from service consumer u, in terms of its
name, the l message inputs, and m message outputs.

• inu
l=<input_nameu, datatypeu> defines an input

message in terms of a name and a datatype.
• outu

m=<output_nameu, datatypeu> defines an output
message in terms of a name and a datatype.

According to this definition, a service dependency
dep(p,u) may include more than one operation from service
consumer u, of the same service p.

Example: An example of service dependency is shown
in Figure 2. Figure 2.a contains a WSDL snippet containing
two operations (“OrderInterface” and “ItemInterface”), and
four elements used in the definition of the messages:
"OrderRequest", "OrderResult", "ItemId", and "ItemResult".
The “OrderRequest” is an element of the type
“OrderRequestType”; the schema is presented in Figure 2.b.
A service structure graph representing the WSDL snippet,
from Figure 2.a, is depicted in Figure 2.d. In this graph, a
service root node connects to each of its nested definition
parts, and the definition parts are connected to each other
based on their relations and references.

Figure 2.c shows a SOAP request snippet that invokes
the “OrderInterface” service. This type of request can be
obtained by monitoring the service interface, and was used
to estimate the dependencies of a consumer application.
Figure 2.e shows the corresponding dependency graph
inferred from this request. The graph is built based on
Definition 2, in which each element of the SOAP request is
represented by its corresponding nodes of the service
structure graph (Figure 2.d). Notice how the elements e2,
e5, e6, s2, s3, s4 and s5 were preserved, while the elements
with indirect dependencies, e1 and e4, were removed.

C. Identification of Changes
Definition 3: Each service change c∈ ∆ is defined as a pair
c = <so, ct>, where so is the service object that c operates
on, and ct is a classification of the change types. Two kinds
of service objects are identified: operation and datatype.

Table I shows the classification of change types used in
this article: the operation and datatype service objects, along
with four types of change: add, delete, refine, and modify.
Notice that it is possible to identify other types of changes,
but Table I is limited to the types relevant to the evolution
patterns discussion that follows.

D. Change Impact Analysis
Once the service dependencies and changes to the

provider service have been identified, change impact
analysis can be performed. According to Definition 1, the
change impact analysis generates a transition set, identifying
dependencies for a consumer u, which are affected as a
result of a change set ∆ on p.

Figure 2. Service Interface and Service Dependency

TABLE I. CLASSIFICATION OF CHANGE TYPES

 Change Type Description

O
pe

ra
tio

n

add_operation Add a new operation to a service.

delete_operation Delete an operation from a service.

modify_operation Modify an existing operation. Includes changing the operation name and its parameters types, names and cardinalities.

refine_operation
Change the internal implementation of an operation without modifying its interface. For example: an OrderProcess operation
might need to begin denying orders that include a specific product. Despite the fact that this change will not affect the
service WSDL, it might still affect dependent service consumers.

D
at

at
yp

e add_element Add an element to an existing datatype.

delete_element Delete an element from a datatype.

modify_element Modify an element of an existing datatype. Changing the element name, type and cardinality are examples in this category.

refine_element Change the internal implementation of a data type element without affecting its interface, but possibly impacting the service
consumers. For example, the rules for creating a customer code can be modified by the provider in a service internally.

Figure 3. Change Impact Scenario

Figure 3 illustrates scenarios of changes of a service p,
and their impact on service dependency for a consumer u. In
Figure 3.a, the element “BillingAddress” is added to the
“OrderRequestType”. This change is represented by the
addition of elements s6 and s7 in the service structure graph
in Figure 3.d, and by the addition of the corresponding
elements in the service dependency graph in Figure 3.e.

Similarly, Figure 3.b shows the deletion of the
“ShippingAddress” elements (s4 and s5), and Figure 3.c
depicts a modification of the “OrderId” element s2’, which
is now connected to a new datatype s3’. These changes are
reflected in the graphs depicted in Figures 3.d and 3.e.

III. SERVICE EVOLUTION PATTERNS
Service evolution patterns are reusable strategies to

provide solutions for certain evolution scenarios. That is,
understanding the service dependencies, dep(p,u), and the
set of service changes, Δ; certain patterns may emerge to
best facilitate the transition to a new version of the service,
p'. Based on the research on existing evolution strategies
used by some large Web services, we identify four types of
evolution patterns: compatibility pattern, transition pattern,
split-map pattern, and merge-map pattern.

The service evolution patterns illustrated in this section
can be used in the context where multiple consumers
prescribe to a single service, maintained by a single
provider. In this situation, the provider may need to
transition their service to a new version. Prior to

implementing the changes, the provider can follow one or
more service evolution patterns, such that the transition
impact on the consumers is limited. To analyze the various
scenarios and consequences of each pattern, the service
evolution model described in Section II, is used. For each
pattern, concrete descriptions of the evolution context, the
problem it addresses, the pattern solution, and its
consequences are presented. Furthermore, all patterns are
illustrated using examples based on the services initially
presented in Figure 2.

A. Compatibility Pattern
Name: Compatibility Pattern
Context: Compatibility is a commonly used strategy

that does not involve changes on the consumers’
applications. This strategy allows for upgrades and
improvements of a service that supports previously released
versions. For example, backward compatibility guarantees
that a new version of a service does not affect the consumer
while forward compatibility supports new features without
impacting the original service.

Problem: How to determine if changes implemented on
a service are compatible with the related service consumers?

Solution: Using the proposed evolution model, the
compatibility pattern can be defined as follows: given dep(p,
u) and Δ, the transition set is t(u) = impact (Δ, dep(p, u)).
The updated service p' is compatible for consumer u if t(u) =
impact (Δ, dep(p, u)) = ∅, Δ ≠ ∅.

Figure 4. Compatibility Scenarios

Example: Figure 4 shows examples of compatibility
scenarios. Figure 4.a shows the addition of an element to the
“OrderRequestType” datatype. Notice that this new element
is optional, and the service dependency graph in Figure 4.e
is not affected by the addition of this new element.
Similarly, Figure 4.b depicts the deletion of the operation
“ItemInterface”, which is not being used by the consumer.
Finally, Figure 4.c shows a new operation being added to
the service. For all these changes in the service p, the
evolved service p' is compatible with consumer u, and does
not affect the service dependency graph in Figure 4.e.

There are two possible compatibility scenarios: i) a
service change is compatible for all service consumers; ii) a
service change is only compatible for certain consumers.
For example, the addition of an element to a datatype in
Figure 4.a is an example of a change that is compatible with
all service consumers, while the change in Figure 4.b,
deletion of an operation, is only compatible with consumers
that do not use the removed operation.

Consequence: The main benefit of the compatibility
pattern is that there is no direct impact on certain dependent
service consumers. However, there are limitations for the
compatibility pattern, because there are very limited

changes that are compatible with all service consumers [2].
For all other changes, compatibility must be examined for
each consumer, which may not be possible due to unknown
consumers using the service. It is then the decision of the
provider to assess the repercussions associated with
allowing for incompatible consumers.

B. Transition Pattern
Name: Transition Pattern
Context: Performing a change directly on a service can

be dangerous. If a consumer is not aware of the service
changes, his/her application may receive improper results.
Thus, a strategy is needed to enable a smooth transition of a
consumer application. One of such strategies can be the
transition pattern, which the service provider should apply in
two steps. First, the datatype or operation being updated is
deprecated, and a new datatype or operation is added to
replace the previous one. Second, the old datatype or
operation is removed. The second step occurs after a grace
period following step one to gradually allow consumers to
transition their applications to the new (version of the)
service.

Problem: How to minimize, by a service provider, the
impact of changes on the related service consumers?

Figure 5. An Example of Transition Pattern

Solution: The transition pattern can be represented as
follows: given dep(p, u) and Δ defined as the set of changes
on service p that are split into two types: changes Δadd to add
operations or elements of datatypes in the first step, and
changes Δdelete to remove operations or elements of datatypes
in the second step. The transition set is defined as:

 t(u) = impact (Δadd, dep(p, u)) ∪
 impact (Δdelete, dep(p', u)), Δ ≠ ∅ (2)

Example: Figure 5 provides an example of the transition
pattern, where the service provider is replacing its order
request datatype ‘"order" with ‘"partOrder". First, support to
the new datatype "partOrder" is added to the service p’ and
the old datatype "order" is deprecated. During the n versions
between p’ and p’’, the service is compatible with both
datatypes. In the end of these n versions period, the support
to the ‘order’ datatype is removed.

Consequence: Transition pattern reduces failure risks for
the related consumers. However, deprecated changes need to
be maintained at the provider side.

C. Split-Map Pattern
Name: Split-Map Pattern
Context: Split-map pattern is mostly concerned with

some operations of a service that may be split and evolved as
a new service to support more functionalities and/or better
performance. This is especially true when a large amount of
intensive changes are concentrated in certain operations.
However, the new service, derived from the same service
model, may provide overlapped operations with the previous
existing service. Therefore, in order to utilize the new
service, service consumers have to find the corresponding
elements for these overlapping operations.

Problem: How to reduce impact on service consumers
when there are intensive changes on certain service
operations?

Solution: The Split-Map pattern can be represented as
follows: let dep(p, u) be the original set of dependencies, and
dep'(p', u) be the updated set of dependencies for the
consumer u; the impact function is defined as a mapping
function that finds the correspondence for the two sets dep(p,
u) and dep'(p', u). The transition set t(u) is then defined as:

 t(u) =map(dep'(p', u), dep(p, u)), t ≠ ∅ (3)

Example: Figure 6 contains an example of the Split-Map
pattern. Figure 6.a shows the XML snippets that define the
operation “OrderInterface”. This Figure is a subset of the
service definition showed in Figures 2.a and 2.b. For the sake
of this example, suppose the “OrderInterface” operation is
constantly changing, while the operation “ItemInterface”,
which also belongs to the service, is rarely modified. Notice
how this situation may be troublesome for consumers’
applications that use only the “ItemInterface”. First, they
need to check for compatibility on each service release even
if the “ItemInterface” is not being changed. Additionally,
changes such as modifications of shared datatypes or of the
location of the service endpoint can indirectly affect these
consumers, requiring them to be adapted.

In this situation, the Split-Map pattern can be used in
order to extract the problematic operation to a new service.
As an example, Figure 6.b illustrates a new service p’ and
schema s’ created from the extraction of the operation
“OrderInterface” from the original service p. Notice that the
new service p’ uses different names for some of the WSDL
elements, but the service semantics are not changed. After
the “OrderInterface” operation migrates to a new service, the
“ItemInterface” operation is independent and its consumers
will not worry about the compatibility issues caused by
“OrderInterface” changes. Nevertheless, the consumers of
“OrderInterface” need to migrate to the new service.

Consequence: Splitting an unstable part from the stable
part can allow for better service maintenance at the provider
side and less future impact on consumers that only use the
stable part. However, manual mapping and service transition
are required to be done at consumers of the split operations.

D. Merge-Map Pattern
Name: Merge-Map Pattern
Context: The Merge-map pattern is concerned with the

scenario where providers have two or more services with
overlapped operations that may be merged and evolved as a
new service. This occurs often when the two services are
derived from the same data models, and provide similar
operations. In this case, there are duplicated maintenance
tasks for the service provider so as to support these
operations. In order to reduce their maintenance cost,
providers may extract the overlapped operations and
integrate them into a new service. Accordingly service
consumers of these operations have to migrate their
applications to the new service.

Problem: How to reduce service maintenance when two
services have overlapped operations?

Solution: The Merge-Map pattern can be represented as
follows: let dep(p, u) and dep(q, u) be the original set of
dependencies for a service consumer u on services p and q,
dep'(r, u) be the updated set of dependencies for the
consumer u on the new merged service r. A mapping
function is used to find the correspondence from the set of
dependencies dep(p, u) to dep'(r, u), as well as from dep(q,
u) to dep'(r, u). The transition set t(u) is then defined as:

 t(u) = map(dep(p, u), dep'(r, u)) ∪
 map(dep(q, u), dep'(r, u)), t ≠ ∅ (4)

Figure 6. An Example of the Split-Map Pattern

Figure 7. An Example of Merge-Map Pattern

Example: Figure 7 shows an example of the Merge-Map
pattern. In this example, there are two operations with
overlapped semantics: the "ItemSearchInterface", shown in
Figure 7.a, and the "FindItemInterface", depicted in Figure
7.b. Despite the differences in their name, both operations

aim at searching for items according to the filters specified in
their parameter list. The application of the Merge-Map
pattern results in the creation of a third service that integrates
the semantics of both services. An example of such a merge
can be seen in Figure 7.c, which shows a new service for
finding items that has as parameters the union of the
parameters of the two merged services. As a consequence of
this pattern, p and q services consumers need to map their
applications to call the new service r.

Consequence: Merging overlapped functions from two
services as a new one can reduce service maintenance at the
provider side, but manual mapping and service transition are
required to be done at the consumer side. Nevertheless, the
impact on consumers may be reduced in the long term, as
future changes will be concentrated on a single service.

E. Discussion
Service providers are usually faced with large and

frequent changes as a result of dynamic business
requirements. This is especially true for the scenario
described in this paper, where a single service, provided by
a single provider, has many different consumers.

When choosing a pattern, a variety of aspects need to
be considered. Table II summarizes the advantages and
disadvantages for each pattern in this paper. Note that it is
common to implement more than one evolution pattern to
achieve the required goals. For example, a provider may
first apply the compatibility pattern to learn that only some
of the consumers remain compatible. Then, the provider
may also apply the transition pattern to facilitate transition
of those consumers with incompatible applications.

IV. RELATED WORK
Service evolution is an important research topic that

brings many new challenges to existing software evolution
techniques [1][5]. Some researchers, such as Li et al. [6] and
Romano and Pinzger [7], presented important empirical
studies about the most common types of service changes.
Fokaefs et al. [8] also published empirical results of
evolution scenarios, and presented the VTracker tool, which

can be used to automatically identify changes between
different versions of a service.

TABLE II. SUMMARY OF SERVICE EVOLUTION PATTERNS

Pattern Advantages Disadvantages

Compatibility No impact on consumers. Limited changes are
compatible.

Transition
Reduce failure risks on
consumers during service
transition.

Requires support of
legacy operations or
datatypes at the provider
side during service
transition.

Split-Map Reduce impact on
consumers.

Incurs service transition
at the consumer side.

Merge-Map

Reduce maintenance tasks
on duplicated operations at
the provider side. Less
impact on consumers in the
long term.

Incurs service transition
at the consumer side.

Similarly, Romano and Pinzger [7] presented the

WSDLDiff tool. These works integrate well with the service
model presented in this article, as they can be used to derive
the set of changes ∆ applied to a service.

Another important service evolution research topic is
the analysis of service dependencies. Basu et al. [9]
introduced a tool that can extract dependencies from log
files. Their technique could be adapted in order to infer the
set U of dependent service consumers (Section II). Once the
dependencies are understood, it is also important to infer the
impact of service changes on the dependent applications.
Wang and Capretz [3] proposed a dependency impact
analysis model for analyzing causes and effects of changes.
Further, in order to evaluate the change impact on SOA
systems, an entropy-based approach was developed by
Wang and Capretz [10].

Pattern-based design and development has also been
extensively explored in the literature. Design patterns have
been widely used for software development for
understanding a given development problem or structuring
its solution [11]. Similarly, change patterns or evolution
patterns provide a reusable source of knowledge concerning
the co-evolution of two related artifacts [12-14].

Finally, it is worth mentioning the existing work on
service compatibility, which aims to assist services
consumers in seamlessly transferring their programs to
newer versions [2][4]. Becker et al. [2] proposed an
approach to automatically determine compatibility that
could be applied with the compatibility pattern. In case the
change is not compatible, the work of Kaminski et al. [4]
proposed an adapter-based approach that can be used to
simultaneously maintain multiple version of a service (and
to help in the application of the transition pattern).

V. CONCLUSION
This paper introduced service evolution patterns based on

a novel formal service evolution model. This model has been
created to analyze the entities and relations in a service
evolution scenario and has served as a basis to describe four

service evolution patterns: compatibility, transition, split-
map, and merge-map. These patterns provide generic and
reusable strategies for service evolution.

Nevertheless, due to the diverse evolution context, there
is no single solution that can be devised to the problem of
service evolution. More patterns are needed to cater for a
variety of evolution scenarios that were not considered in
this paper. Hence, as our future work, we aim to focus on
the development of patterns for other scenarios such as
consumer application updates, business process, service co-
evolution, and service change synchronization. Additionally,
automated tools need to be developed to enable the move
towards automatic evolution.

REFERENCES
[1] V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou, "On The

Evolution of Services" IEEE Transaction on Software Engineering,
Vol.38, Iss.3, pp. 609 - 628, 2012.

[2] K. Becker, A. Lopes, D. Milojicic, J. Pruyne, S. Singhal,
“Automatically Determining Compatibility of Evolving Services”,
Proc. of the 2008 IEEE International Conference on Web services,
pp.161-168, 2008.

[3] S. Wang, and M. A. M. Capretz, “A Dependency Impact Analysis
Model for Web Services Evolution”, Proc. of the IEEE 7th
International Conference on Web Services (ICWS 2009), pp. 359-
365, 2009.

[4] P. Kaminski, H. Müller, M. Litoiu, "A Design for Adaptive Web
Service Evolution", Proc. of the 2006 International Workshop on
Self-adaptation and Self-managing Systems (SEAMS’06), pp.86-92.

[5] S. H. Ryu, R. Casati, H. Skogsrud, B. Benatallah, R. Saint-Paul,
“Supporting the Dynamic Evolution of Web Service Protocols in
Service-Oriented Architectures”, ACM Transactions on the Web,
Vol. 2, Issue 2, No. 13, 2008.

[6] J. Li, Y. Xiong, X. Liu, L. Zhang, "How Does Web Service API
Evolution Affect Clients?" in Proc. of the IEEE 20th International
Conference on Web Services (ICWS 2013), pp. 300 - 307, 2013.

[7] D. Romano and M. Pinzger, "Analyzing the Evolution of Web
Services using Fine-Grained Changes" in Proc. of the IEEE 19th
International Conference on Web Services (ICWS 2012), pp. 392-
399, 2012.

[8] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An
Empirical Study on Web Service Evolution,” Proc. of the IEEE
International Conference on Web Services (ICWS 2011), pp. 49–56,
Jul. 2011.

[9] S. Basu, F. Casati, and F. Daniel, “Toward Web Service Dependency
Discovery for SOA Management,” Proc. of the IEEE International
Conference on Web Services (ICWS 2008), pp. 422–429, Jul. 2008.

[10] Wang, S., and Capretz, M.A.M, “Dependency and Entropy Based
Impact Analysis for Service Oriented System Evolution”, in Proc. of
the 2011 IEEE/WIC/ACM International Conference on Web
Intelligence, pp. 412-417, 2011.

[11] R. Daigeneau, Service Design Patterns: Fundamental Design
Solutions for SOAP WSDL and RESTful Web Services, Addison-
Wesley, 2012.

[12] K. Yskout, R. Scandariato, and W. Joosen, “Change Patterns: Co-
evolving Requirements and Architecture”, Journal of Software and
Systems Modeling, DOI 10.1007/s10270-012-0276-6, 2012.

[13] I. Côté, M. Heisel, I. Wentzlaff, "Pattern-Based Evolution of
Software Architectures", Lecture Notes in Computer Science, Vol.
4758, pp. 29-43, 2007.

[14] I. Robinson, “Consumer-Driven Contracts: A Service Evolution
Pattern”, http://martinfowler.com/articles/consumerDrivenContracts.
html, 2006.

	Western University
	Scholarship@Western
	6-2014

	Service Evolution Patterns
	Shuying Wang
	Wilson Higashino
	Michael Hayes
	Miriam A M Capretz
	Citation of this paper:

	Service Evolution Patterns

