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Abstract—Due to increasing hardware capacity, computing 

grids have been handling and processing more data. This has led 
to higher amount of energy being consumed by grids; hence the 
necessity for strategies to reduce their energy consumption. 
Scheduling is a process carried out to define in which node tasks 
will be executed in the grid. This process can significantly impact 
the global system performance, including energy consumption. 
This paper focuses on a scheduling model for opportunistic grids 
that considers network traffic, distance between input files and 
execution node as well as the execution node status. The model 
was tested in a simulated environment created using 
GreenCloud. The simulation results of this model compared to a 
usual approach show a total power consumption savings of 
7.10%. 

Keywords— opportunistic grids; energy consumption; resource 
selection model. 

I. INTRODUCTION 

Grid systems were proposed as the next generation 
computing platform and global infrastructure for solving large-
scale problems [1]. Grids enable sharing of resources used by 
scientific researches  which have a high cost of ownership [2]. 
Moreover, they enable on-demand and real-time processing 
and analysis of data generated by these scientific instruments. 
This capability significantly enhances the possibilities for 
scientific and technological research and innovation, industrial 
and business management, application software service 
delivery and commercial activities. 

Currently, private and public institutions have a large 
number of computing resources, such as personal computers 
and workstations, with great capacity for data processing and 
storage. These computers are idle most of the time and, even 
when they are in use, usually only a small percentage of their 
computing capacity is effectively used as confirmed by 
Beauvisage [3]. Opportunistic Grids are computing systems 
that provide the means to use an installed base of ordinary 
computers to execute high performance computing 
applications, thus leveraging their available idle computing 
power [4]. The focus of opportunistic grid middleware is not 
on the integration of dedicated computer clusters (e.g. Beowulf 
[5]) or supercomputing resources, but on taking advantage of 
the idle computing cycles of ordinary computers and 

workstations that can be spread across a number of several 
administrative domains. 

As systems scale and energy consumption increases, these 
technologies have the potential to damage our ecosystems. In 
the past few years’ energy consumption has become one of the 
main problems that the computer industry has faced due to 
increasing investment for maintaining the computers [6] and 
the reduction in performance due to increasing temperatures 
[7]. Energy consumption is not only determined by hardware 
efficiency, but it is also dependent on the resource management 
system (RMS) deployed on the infrastructure. 

Scheduling of tasks on multiprocessors (done by the RMS) 
is usually focused on optimizing common performance criteria 
such as total completion time and turnaround time. This 
problem is generally well understood and has been studied for 
decades. Many research results exist for different variations of 
this scheduling problem; some of them provide theoretical 
insights, while others give hints for implementing real systems. 
This paper presents an approach to improve energy efficiency 
in opportunistic grids, using a resource-selection model based 
on the cost of transporting bits across the network and the cost 
of the actions required for resource selection. 

The following sections of the paper are organized as 
follows: Section II provides the required background 
knowledge and concepts of scheduling in  opportunistic grids. 
Related work is then discussed in Section III. The proposed 
model is formally presented in Section IV. The simulation 
environment and experimental results are presented in Section 
V. Finally, Section VI concludes the paper and presents future 
research directions. 

II. BACKGROUND 

A. Resource Management System (RMS) 

A grid [8] is a very large-scale, generalized distributed 
network-computing system that can scale to Internet-size 
environments with machines distributed across multiple 
organizations and administrative domains. The emergence of a 
variety of new applications demands that grids support 
efficient data and resource management mechanisms. The 
RMS is a module central for the grid operation which is 
responsible for managing the pool of resources available to the 
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grid, such as processors, network bandwidth, and disk storage. 
In order to support a variety of applications efficiently, the 
RMS must address issues such as fault-tolerance and stability 
[9]. 

In a grid, the resource pool can include resources from 
different providers, therefore requiring all resource providers to 
trust the RMS. Additionally, the RMS is responsible for 
handling the various resources while adhering to the different 
usage policies. Fig.1 shows the interaction of the RMS with the 
resource pool. 

Fig. 1.  RMS interaction with Resource Pool 

Applications may request resources either directly or 
indirectly from the grid. Such resource requests are considered 
as tasks by the grid. In practice, a grid RMS may be required to 
handle different tasks using different policies. In general, 
requiring the RMS to support multiple policies can compel the 
scheduling mechanisms to solve a multi-criteria optimization 
problem. 

Ideally, a scheduler should ensure that tasks are executed 
making optimum use of available resources and finish in the 
shortest time possible, while respecting time constraints or 
other policies applied to the tasks. Due to the heterogeneous 
and dynamic nature of the grid, the end-user must establish the 
requirements to be met by the target resources (discovery 
process) and criteria to rank the matched resources (selection 
process). The attributes needed for resource discovery and 
selection must be collected from information services. Usually, 
resource discovery is based only on static attributes such as 
operating system and architecture, while resource selection is 
based on dynamic attributes such as disk space and processor 
load. 

B. Scheduling strategies 

Ideally, the development of scheduling algorithms should 
be focused on a specific set of applications, because if the 
details of the applications to be scheduled are unknown, the 
algorithm can negatively influence the performance. Because 
the computational grid environment has certain special features 
such large number and heterogeneity of resources and dynamic 
performance, resource allocation in this environment becomes 
challenging. Taking into account the challenges and known 
strategies in resource scheduling in computational grids, 
certain specific algorithms are more widely used in such 
environments, such as: 

Workqueue (WQ): When a resource becomes available, 
the choice of which task shall be submitted for execution is 
made at random. The goal is forto assign a greater number of 
tasks to faster machines, causing slower machines to work with 
lighter loads [10]. 

Workqueue with Replication (WQR): WQR is similar to 
WQ in that tasks are sent to run on the machines that are 
available. The moment a machine finishes executing a task, it 
receives a new execution. The difference between WQ and 
WQR occurs when a machine becomes available and there are 
no other tasks in line to be executed. At this time WQR 
initiates replication of tasks that are still running. Once the 
original task or one of its replicas completes execution, the 
others are disrupted [10]. 

Sufferage (Suff) [11]: determines how much each task 
could be impaired if it were not scheduled on the processor that 
would run it most efficiently. The sufferage value of each task 
is the difference between its best and second-best Completion 
Time (CT), considering all processors in the grid. The task 
with the highest sufferage value have execution priority.    

XSufferage (XSuff): XSufferage is a modification of 
Sufferage, the main difference being the method used to 
calculate Sufferage. XSufferage considers the transfer of input 
data in its calculation of task execution times. In other words, it 
uses CPU-related information and the estimated task execution 
time used by Sufferage plus the bandwidth available on the 
network that connects the grid resources.  

This paper proposes an algorithm derived from the WQ 
strategy. The algorithm proposed in Section 4 is focused on 
resource allocation; as soon as an execution is over, the 
algorithm allocates resources for the next execution in line. 
Unlikely WQR the proposed algorithm does not consider 
execution replicas. Also the strategy of the proposed model 
considers the cost of the transfer of input files for the execution 
node similar to the XSuff strategy. 

 

C. Metrics 

The general purpose of consumption metrics is to provide 
an overview of the energy efficiency of the infrastructure. In 
the present article, these metrics seek to prove the validity of 
the proposed algorithm.  

The calculation model used in this work is based on the 
Baliga et al. [12] model, which considers the energy per bit as 
a fundamental measure of consumption. The energy Ec needed 
to carry a bit over the network can be expressed as: 

 

where, Ples, Pes and Pg are respectively the energy consumed by 
small Ethernet switches, Ethernet switches and routers. Cles, Ces 
and Cg represent the capabilities of these pieces of equipment 
in bits per second.  

The first factor 3 in equation 1 takes into account the 
energy requirement for redundancy (with a numerical value of 
2) as well as  cooling and other overheads (assumed to have a 
value of 1.5). The second factor of 3 is related to the 
combination of the energy consumed by enterprise network 
switches and the LAN network grid. 



D. Simulation  

Simulation is a practical way to analyze algorithms on 
large-scale distributed systems of heterogeneous resources. 
Unlike using the real system in real time, simulation avoids the 
overhead of coordinating real resources; therefore, it does not 
add unnecessary complexity to the analytical mechanism. 
Simulation is also effective in working with very large 
problems that would otherwise require the involvement of a 
large number of active users and resources. 

Among the available simulators, GridSim [13] and 
GreenCloud [14] were selected for this research. Some of the 
main features of GridSim include modelling heterogeneous 
computational resources, scheduling tasks based on time- or 
space-sharing policies, differentiated network service, and 
simulation of workload traces from real systems. This 
simulator facilitates integrated studies of novel on-demand data 
replication strategies and task scheduling approaches. 

GreenCloud is known for advanced energy-aware studies in 
the area of cloud computing. GreenCloud extracts, aggregates, 
and makes available information about the energy consumed 
by the computing and communication elements of data center. 
In particular, it focuses on accurate capture of the 
communication patterns of current and future data center 
architectures. In the present article GreenCloud has been 
chosen because it is designed to capture details of the energy 
consumed by data center components. 

III. RELATED WORK 

Montero et al. [15] analyzed the relevance of resource 
proximity in the resource-selection process to reduce the cost 
of file staging. They also studied opportunistic migration when 
a new resource became available on the grid. In this situation, 
the performance of the new host, the remaining execution 
times of applications, and the proximity of the new resource to 
needed data are considered critical factors in deciding whether 
task migration is feasible and worthwhile. Along with the 
opportunistic grid environment and the proximity of the new 
resource to needed data it is also relevant to consider the 
resource status because depending on these, the execution 
migration process can become unfeasible.  

Ponciano and Brasileiro [16] investigated energy-aware 
scheduling, sleeping and wake-up strategies in opportunistic 
grids. Sleeping strategies are used to reduce grid energy 
consumption during idle periods; wake-up strategies are used 
to choose a set of resources to fulfill a workload demand; and 
scheduling strategies are used to decide which tasks to 
schedule on the available machines. These strategies could also 
be taken into account in the resource selection process to 
enable a wider set of selection options. 

Nesmachnow et al. [17] introduced a new formulation of 
the scheduling problem for multicore heterogeneous 
computational grid systems. In this formulation energy-
consumption minimization, along with the makespan metric, 
was considered. The authors also adopted a two-level model, in 
which a meta-broker agent receives all user tasks and schedules 
them on the available resources belonging to different local 
providers. HTCondor [18] used a similar model in which a 

scheduler chooses resources to execute tasks and has a module 
that enables users to set machines to a low-power state 
(hibernation). However the HTCondor scheduler does not 
consider machines in hibernating state in the selection process, 
but only idle resources. 

Yu et al. [19] presented a survey of workflow scheduling 
algorithms for grid computing. They categorized existing grid 
workflow scheduling algorithms as either best-effort-based 
scheduling or QoS-constraint-based. Best-effort scheduling 
algorithms target community grids to which resource providers 
provide free access. Because the service-provisioning model of 
the community grids is based on best effort, quality of service 
and service availability cannot be guaranteed. Additionally, Yu 
also discussed several techniques for using scheduling 
algorithms in dynamic grid environments. 

Batista et al. [20] presented simulation of an opportunistic 
computational grid made up of digital receivers. The goal was 
to distribute different types of applications to run efficiently on 
the heterogeneous digital receivers that made up this 
environment. Three scheduling policies were compared: Based 
on Capacity (BC) and Best Arrangement (MA), proposed in 
[23], and WorkQueue (WQ). Simulations and analyses showed 
that an increase in the number of users and the system load 
required a more efficient scheduling policy, because it 
generated a greater overhead in the system. 

IV. PROPOSED NETWORK AND ENERGY-AWARE RESOURCE 

SELECTION MODEL AND ALGORITHM 

A. Energy Efficiency Model (EEM) 

The energy consumption of a submission refers to an 
estimate of energy that will be expended by the environment 
to initiate the task execution in a grid node. Besides the energy 
necessary to transport the bits of the input files over the 
network, the execution machines can be in different states, at 
different levels in the network, and at different distances from 
the node with the input files. All these factors must be 
considered to calculate the energy consumption of a 
submission. The total consumption C of a submission is 
measured in watts and can be calculated as: 

 
C = (Ec * A) + (Ec * E) + P + T + W  (2) 

 
where Ec is the cost of transporting a bit over the network [12],; 
A is the size of the input file in bits; E is the size of the 
executable in bits; P is the consumption of the computer where 
the task is executed; T is the cost to turn on the machine if it is 
off; and W is the cost to awaken the machine if it is 
hibernating. Note that Ec is directly proportional to the distance 
(in levels) from the execution node to the input-file node. In 
other words, as this distance grows, so does the transportation 
cost. 

The total consumption C must be calculated for each 
execution node, but not all values are different; in certain cases, 
it is possible that two or more nodes have the same total energy 
consumption for a submission. In such cases, network latency 
is used as a decisive factor to choose the best available 



resource by assuming weights for energy consumption and 
network latency:  

Ε = (Pc * C) + (Pl * L) (3) 

where E is the choice factor, the closer to zero the better, 
which means less energy consumption added to network 
latency (considering weights); Pc is the weight associated with 
energy consumption; C is the energy consumption associated 
with the change of status and data transfer over the network 
presented in Equation (2); Pl is the weight assigned to network 
latency; and L is the average latency between the execution 
node and the node containing the input files. 

B. Algorithm 

To select the most economically viable resource, an 
algorithm is proposed here. The proposed algorithm is based 
on the WQ strategy [10], but unlike this strategy, the algorithm 
uses information about the environment such as energy 
consumption of resources and node status. Fig. 2 shows the 
algorithm, which continues to run until there are no more tasks 
in the execution queue. First, it assembles a list of resources 
that meet the requirements of the submission, taking into 
account resources in idle state, turned off and hibernating. 

 
Fig. 2.  Resource selection algorithm 

If resources that satisfy the execution requirements are 
found, then the selected nodes are input to the proposed model 
to determine the least costly resource, considering the cost of 
data transfer to the execution node and its state. If the node is 
off the cost of turning  the node on must be considered; 
similarly, if the node is hibernating, the cost to awaken the 
node must be considered. The algorithm then sends an order to 
the node according to its state, and finally the resource is 
allocated for execution. If no resources that satisfy the 
requirements of the execution are available in the pool, the 
execution is kept in the scheduler queue. 

V. ENVIRONMENT AND EXPERIMENTAL RESULTS 

A. Simulation environment 

This research used HTCondor [18] in its default configuration 
as a scheduler for its environment.The network topology is 
depicted in Fig. 3. It represents an environment where 
resources from other sub-networks are available to the grid. 

In this research, 30 personal computers scattered through three 
sub-networks were used, where PC 1 was the master node and 
PC 9 was used to store the input files; hence, these were not 
considered execution nodes. Fig. 3 also shows the network 
topology by level and the corresponding switches. The  
environment has eight access switches and one aggregation 
switch. Table I shows the computers divided by levels where 
the first digit refers to the Aggregation switch, and the other 
digits refer to the Access switches; for example, PC 1 is on 
level 1.1, which means Aggregation switch 1, sub-network 1, 
and so on. 

Table II gives the specifications of the equipment shown in 
Fig. 3 as well as the power consumption and capacity of the 
switches. The computers are assumed homogeneous to show 
the efficiency of the proposed algorithm. The information 
presented in Table II was taken from equipment specifications 
and the models chosen were popular models of switches for 
corporate networks. 

Fig. 3.  Network topology 

 To simulate the study environment, a modified version of 
GreenCloud [14] was used. This modified version was able to 
monitor the energy consumption of the proposed model. 
Besides GreenCloud, GridSim was used to simulate network 
traffic [13]. These tests did not consider the time for actions 
such as booting or awakening machines. This simulation 
focused on finding the best cost/efficiency trade-off 
considering data traffic in the network, node status, and 
network latency. 

TABLE II.   EQUIPMENT SPECIFICATION 

 

B. Experimental results 

 These tests used an environment with random status for the 
pool machines. The only restriction on status was to have at 
least one node in hibernating status for each test. Table III 
shows the default pool. The master node, nodes that store the 
input files, and the nodes that are in busy state are not 
considered by the scheduler in the scheduling process.  



TABLE I.  NETWORK TOPOLOGY BY LEVELS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Level 1.1 1.1 1.2.2 1.2.1 1.3.1.1 1.3.1.2 1.1 1.2.2 1.1 1.3.1.1 1.2.1 1.3.1.1 1.2.1 1.2.2 1.3.1.1 1.3.1.1 1.2.2 1.3.1.2 1.3.1.2 1.1 1.2.1 1.3.1.2 1.3.1.2 1.2.1 1.3.1.2 1.2.2 1.3.1.1 1.3.1.1 1.2.2 1.3.1.2

Aggregation Switches 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access Switches 1 1 2 2 3 3 1 2 1 3 2 3 2 2 3 3 2 3 3 1 2 3 3 2 3 2 3 3 2 3

PCNetwork Topology

 

TABLE III.  DEFAULT POOL 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Test 1
Test 2
Test 3

Master
Entry Files

Idle

PC
Initial State

Busy Hibernating

 

 To analyze the effectiveness of the proposed model, two 
sets of tests were performed. Each test was executed ten times 
to analyze the allocation strategy of both sets. In the first set, 
the standard version of HTCondor was used. Three tests with 
different input-file sizes were carried out, the first with 10 MB, 
the second with 100 MB and third with 1 GB. As for the 
weights, the assumption used was 60% for power consumption 
and 40% for network latency. Table IV shows the resource 
allocation after the tests in selection order, and Table V shows 
the energy consumption in watts for each submission. 

TABLE IV.  SET 1 ALLOCATED RESOURCES 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Test 1 1 2 3 4 5 6 7 8 9 10
Test 2 1 2 3 4 5 6 7 8 9 10
Test 3 1 2 3 4 5 6 7 8 9 10

Busy Hibernating Idle
Master

Entry Files

Set 1
PC

 

TABLE V.  SET 1 ALLOCATED RESOURCE CONSUMPTION 

1 2 3 4 5 6 7 8 9 10
1 64.9135 64.9135 65.1736 64.9135 65.1736 64.9135 64.9135 65.1736 65.1736 65.1736 650.4355
2 66.601 73.135 75.736 73.135 75.736 73.135 73.135 75.736 75.736 66.601 728.686
3 155.35 181.36 181.36 155.35 155.35 181.36 155.35 181.36 155.35 181.36 1683.55

Total Consumption (Watts)
Consumption (Watts)

Test

 

 As is well known, HTCondor uses a simple matching 
algorithm, and therefore the first available resource is always 
selected. Nodes with a status other than idle are not considered 
for resource allocation; in this case, even when a less costly 
resource is available, it will not be selected unless it is in idle 
state.  

 In the second set of tests, the model proposed in this article 
was used. Table VI shows the allocation of resources in 
selection order, and Table VII shows the energy consumption 
for each submission in the pool for Set 2. 

 

 

 

TABLE VI.  SET 2 ALLOCATED RESOURCES 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Test 1 3 2 1 8 5 4 9 6 10 7
Test 2 1 5 4 8 6 10 2 9 3 7
Test 3 1 3 9 4 7 10 5 2 8 6

Busy Hibernating Idle
Master

Entry Files

Set 2
PC

 

TABLE VII.  SET 2 ALLOCATED RESOURCE CONSUMPTION 

1 2 3 4 5 6 7 8 9 10
1 64.2601 64.9135 64.9135 64.9135 64.9135 65.1736 65.1736 65.1736 65.1736 65.1736 649.7821
2 66.601 66.601 73.135 73.135 73.135 73.135 73.135 73.135 73.135 75.736 720.883
3 111.01 111.01 155.35 155.35 155.35 155.35 155.35 155.35 176.35 176.35 1506.82

Test
Consumption (Watts)

Total Consumption (Watts)

 

 As shown in Table VII, the proposed model chose the most 
energy-efficient resource available in the pool. It is also 
apparent that , during test 3 the model chose to wake up nodes 
four times (nodes 2, 8, 14, and 20) instead of sending the 
submission to more distant nodes. That happened because 
waking up the nodes was less costly than sending the 
submission to another sub-network considering that the input 
file was 1 GB in size. According to the results of Tests 1, 2, 
and 3, the proposed model obtained respectively 0.10%, 
1.10%, and 10.50% energy savings over HTCondor. The total 
energy-consumption values are shown in Fig. 4. 

 Fig. 4 shows that in tests 1 and 2, the proposed model 
achieved a slightly superior performance than the standard 
HTCondor. By analyzing the values of both tests, it was clear 
that in the worst-case scenario, the algorithm obtained the same 
power-consumption performance. 

 As input files size grows, the performance of the proposed 
model remains superior to the standard HTCondor. The biggest 
advantages of the proposed model can be observed during test 
3, where HTCondor disregards the machines next to node 9 
(input-file storage node) due to their status, although they are 
less costly to use than machines farther from node 9. In this 
test, the proposed model obtained a better result because it 
considered machines in different states, such as node 2, which 
was hibernating before selection and had to be awakened. 

 Another relevant conclusion from the results is the 
influence of network data traffic on resource selection. The 
greater the distance to be traveled, from the input-file node to 
the execution node, the higher will be the energy consumption 
in the grid before the start of execution. This underlines the fact 
that the scheduler must consider not only the first match from 
the list of available resources as the HTCondor scheduler does, 
but should also be concerned about resources in different states 
and data traffic over the network. In this case, latency can 
influence resource selection, especially as data size grows. 



 

Fig. 4.  Total consumption HTCondor vs. Proposed model 

 The proposed model makes it possible to give weights to 
power consumption and to network traffic. In the present case, 
the proposed model was applied assuming 60% of energy 
consumption and 40% network latency as resource-selection 
criteria. These values can be changed, which possible implies a 
change in the resources selected. Comparing the total energy 
expended in both scenarios, the proposed model attained a total 
savings of 7.10% compared to the standard HTCondor 
matching algorithm. 

VI. CONCLUSION AND FUTURE WORK 

This paper proposed a network and energy-aware resource 
selection model for an opportunistic grid. To validate the 
model, an algorithm has been proposed that selects a resource 
based on the cost associated with transfer of bits over the 
network, resource status, and network traffic. The main goal of 
the proposed approach was to reduce the total energy 
consumption of the grid. The proposed model aims to do so by 
reducing the cost associated with the process prior to the 
execution of tasks in the grid, by choosing the least costly 
resource in the pool. This usually implies choosing the closest 
execution node to the input-file server considering network 
traffic and node status. 

 The proposed model was evaluated through the 
GreenCloud simulator. The results showed that the model is 
capable of choosing the best available resource and in the 
worst case has the same performance than  the original 
HTCondor approach. The model reached successfully a level 
of saving around 7.10% when compared with the HTCondor 
scheduling. Due to the influence of network latency in cloud 
environments, the authors are planning to port the model and 
algorithm to such environments and to adapt the proposed 
model to implement migration of executing tasks. Moreover, 
tests in a real scenario will also be considered in future work. 
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