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FLEXIBLE PRODUCTION FUNCTION ESTIMATION BY NONPARAMETRIC KERNEL ESTIMATORS

H. D. Vinod and A. Ullah

Fordham University and University of Western Ontario

ABSTRACT

Productivity studies can benefit from reliable estimates of production/
cost functions. The assumption of homogeneity was discarded by using translog
type forms in the 1970°'s by Christensen, Jorgenson, Lau, Vinod, Sudit and
others. Barnett (1983) has suggested using flexible Laurent series to improve
the second order approximations. A serious drawback of these flexible
specifications has been their sensitivity to multicollinearity, and their need
for several parameter estimates. This pPaper considers a nonparametric
nonlinear amorphous functional specification which remains parsimonious in the
number of parameters used. Rosenblatt suggested kernel methods which were
extended by Watson and Nadaraya to conditional densities and expectations. We
propose kernel estimates of analytical partial derivatives of production and
cost functions. Asymptotic properties of the proposed estimator are
investigated. Two illustrative examples concern the production function for
the Bell System, and railroad cost function. A simulation study is also

included.
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1. INTRODUCTION AND THE MODEL

The implications of economic theory are usually amorphous, in the sense
that they are not tied to specific functional forms or statistical assumptions
about error structures. Varian (1984) and the references therein illustrate
the desire of the theorists to work with nonparametric models. This paper is
concerned with nonparametric estimation of various elasticities and/or partial
derivatives in the context of production/cost functions, and productivity
studies. The current econometric methodology for estimation depends heavily
on the parametric specification of the functional forms, and for some students
it is almost impossible to imagine that direct estimation is possible.

We will now review some theory to indicate the potential role of
nonparametric estimation. A joint production function may be stated in an
implicit form by:

f(Yl.Y »Y X _,X

20 Y By

where the outputs are Y

,Xﬁ,t) =0 (1.1)

to Yq and the inputs are X, to xn, and the time

1 1
variable is denoted by t which is sometimes used as a proxy for technological
change. In the single output case (q=1) there are numerous studies in the
literature. In the early 1970's there was a relaxation of the homogeneity
assumption associated with the Cobb Douglas and CES production functions by
Christensen, Jorgenson, and Lau (1973), Diewert (1971), Vinod (1972), Sudit
(1973), and others. The trans-log (TL), and generalized Leontief (GL) are
examples of flexible functional forms developed during this period. More
recently Gallant (1981) and Barnett (1983) have proposed a Fourier and minflex
Laurent functional form respectively, with additional parameters and
constraints. Although an empirical estimation of a joint production was first

suggested by Vinod (1968), researchers prefer to estimate joint cost rather

than joint production functions. The cost function is given by:
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C = g(Yl,Yz,....Yq,Pl,Pz.....Pg.t) (1.2)
where the input prices are denoted by Pi’ and total cost by C, which is also

written by:

2

C=3) PX (1.3)
i ii

Note that all summations in this paper start at 1 (i=1 to i=% here).
Total derivative of the natural log of C from (1.3) with respect to time is

given using Shepherd's lemma and familiar manipulations by:

2
(d 1nc/ dt) = § (S )[(4/dE)1nP, + (4/dt)1nX ] (1.4)
1 1 1

where si = Pixilc is the share of i-th input in total cost. Total derivative-

(d/dt)1ln g from (1.2) is an index of productivity. Assuming that the inputs
are paid according to their marginal product, and using (1.4), direct

manipulation yields:

R
-(d/dt) In g = zz(Eg:EYj)(d/dt)ln Y - Xisi(d/dt) in xi (1.5)
J

where Eg:EYj denotes the elasticity of total cost with respect to j-th

output. Using first differences in logs to approximate time derivatives,

Caves, et.al. (1980) rewrite the productivity index of (1.5) as:

q
~(Ing -Ing ) = [0.5(Eg:EY ) + 0.5(Eg:EY ) ).
8t t-1 Zj it & jt1

)
*{flnY -lnyY ] - [0.55 + 0.58 J{lln X - 1nx ] (1.6)
jt jt-1 i it it-1 it it-1

which can be estimated if we can estimate the elasticity of cost with respect

to i-th output.
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In much of this literature there is an interest in estimating various
elasticities of outputs, inputs, time, prices, costs, etc. with respect to
other variables, all of which involve partial derivative estimation. For
example there is an interest in estimating economies of scale as the scale
elasticity. The current econometric methods for estimating these quantities
relies heavily on parametric estimation based on specific functional forms.
Once a parametric form is specified, one may implicitly rule out certain
numerical estimates of elasticities, which may be economically meaningless. A
truly flexible form should permit all reasonable values of estimated
elasticities. According to Diewert (1971) a flexible functional form should
be able to attain arbitrary levels of first- and second-order deterivatives at
a predetermined point. This property is satisfied by the nonparametric
specification in the sense that derivatives can take any real values. We
suggest that nonparametric regression estimates discussed in the following

section may provide truly flexible forms in this context.

2. NON-PARAMETRIC REGRESSION MODEL
Although our discussion can be carried out in terms of the simultaneous
system of equations, we will discuss here the single equation regression model
for easier exposition. Consider the usual regression model:
y =XB + ¢ (2.1)
where y is an n X 1 vector of observations on the dependent variable, X is an

n X p matrix of the data on p regressors xl, xz,..

.,xp, B is a p X 1 vector
of parameters, and ¢ is an n X 1 vector of errors. If specification (2.1)
is true, it is often appropriate to interpret the j-th element of B as

partial derivatives of y with respect to xj. With this interpretation in
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nind, econometricians transform their variables with logs, Box-Cox or Fourier
transformations, or include higher powers, etc. to compute elasticity type
functions of the elements of B. Recent research has focussed on achieving
greater economic realism by using flexible functional forms such as translog,
minflex Laurent, etc. as mentioned above.

From a purely scientific viewpoint of Sir R.A. Fisher, the partial
derivative interpretation is appropriate only when the X matrix is truly a
"design" matrix based on a carefully chosen experimental structure. When a
social scientist uses (2.1) to infer about the partial derivatives, there is a
sense in which he is "abusing” regression coefficients, Box (1966). If one
wants to measure what happens to y when xj alone is changed, one should change
xj (e.g. fertilizer) alone and measure the effect on y (e.g. yield).
Unfortunately this is often impossible in econometrics.

We consider an amorphous specification:

y = R(xl, xz,...,xp) + ¢ (2.2)
where the regression function R is arbitrary, nonparametric, nonlinear and
unspecified. The density of y conditional on x1 to xp is denoted by
f(ylxl,...,xp). its expectation is denoted by E(ylxl,....xp) or R(xl.....xp).
Functions like elasticities derived from the regression function R can be
estimated directly by nonparametric methods described below. McFadden (1985)
notes that there are three types of methods for estimating (2.2). First,
there is the cell pgrtition method based on contingency tables familiar in
mathematical statistics. Secondly, there is the quasi parametric nearest
neighbor method based on the work of Stone (1977, 1984) explained by McFadden

(1985). Thirdly one can use Rosenblatt-Watson-Nadaraya Kernel estimation.
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McFadden notes that the three approaches are closely related and describes the
second approach in detail.
This paper is concerned with direct estimation of the partial derivaties
of E(y:xl,...,xp) with respect to xj for j=1,...,p. The conditional
expectation will be estimated by the Kernel method, and the estimation of the

analytic partial derivatives appears to be new. The brief description of the

Kernel method is given in the following subsection.

2.1 Brief Description of the Kernel Estimator:

Consider the univariate case with the density f(x) of a random variable
X as the derivative of its cumulative distribution function F(x):

f = £f(x) (d/dx)F(x)=1im h-l [F(x+h/2) - F(x-h/2)])

lim bt E[I(-% < (x-x)h'1 < %) (2.3)

where lim denotes the limit as h tends to zero and I(a < X < b) denotes the
indicator function which is 1 if X is in the interval (a,b) and zero
otherwise. Rosenblatt (1956) considered the estimation of the density f from
the observed data and noted that the indicator function can be replaced by a
non-negative Kernel function K(w), where w = (X-x)/h. He shows that if K is
such that the integral SK(w)dw = 1, one can obtain a consistent estimator of
the density f. Further developments were made by Parzen (1962) and Bartlett
(1963). Cacoullos (1966) generalized it to the multivariate case as follows:

Let script X be a class of all Borel measurable real valued bounded
functions K on the m dimensional Euclidian space Rm such that:

fK(w) dw = 1, JS|K(Ww)|dw < =
(2.4)

m
wll” K(w) » 0 as |lw|]| » =
where |lwll is the usual Euclidian norm of w in R". Now Cacoullos estimated

the joint density of m variates and it is given by



m -1 n
f (x ,...,x)=(nll h) I Kw ,...,w ) (2.5)
n 1 m I t 1t mt

where wjt = (xjt-xj)/hj; xjt for t=1,2,...,n are observations on the j-th
(regressor) random variable. All products in this paper similar to summations
start at 1.

As in Singh (1981) and Singh, Ullah and Carter (1985) we consider K in

(2.5) belonging to.Kr, which is a class of all real valued Borel-measurable

bounded functions K on Rm such that

1 if 1 =i = =i =0
1 2 m
i i
1 m
Ju) ,...,u) K@ ,...,u) = (2.6)
1 m 1 m
0if 0 < (i +#i ...41i ) < r
1 2 m
i i
1 m
where S|(u ) ...(u) K(u ,...,u)]| <o if i +i +...+i =r
1 m 1 m 1 2 m
and  (lull™ |K(w] » 0 as lulj » .

We note that for r=0,1, and 2, the m-variate standard normal density is
a member of.k?. and so is the function K(ul,...,um)=2-mn?1(—1 < uj <1).
In fact, functions K of the type K(ul,...,um)=nmx (uj) where Kj are bounded

i3

1
symmetric (about zero) functions on R with Il(j(uj)duj =1, IKjI < ® and
Iquj(uj)|+0 as Iujlﬁw are members of_kr for r=0,1, and 2. An example of

this is the m-fold product of the normal Kernels given by

m A 2
K(u ,...,u) =T K(u); K(u) = (2r) exp((-%)u )
1 m J J J J

which will be used in our numerical examples in section 4. The window width

is chosen such that both the bias and the variance remain under control.

Following Singh, Ullah and Carter (1985) and Ullah and Singh (1985) we choose:
hy = ojnL, L=-1/(2r+m-1) 2.7

where °j is the standard deviation of xj. For our estimation in Section 4 we

[}

.
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2 2 n - 2
replace ¢ by its consistent estimator s =3 (x - x ) /n.
it

Singh (1981) has shown that the choice of hj in (2.7) is designed to
have important desirable properties including: asymptotic normality,
convergence, good speed of convergence, and mean-squared error reduction,
provided r is appropriately large as explained in Remark 1 in Section 3.

Let y be denoted by xm with m=p+l. The joint marginal density of

x .,xp is estimated by

1"

-1 n
f (x) =f (X ,...,x)=a ) K(w) (2.8)
n n 1 P n ¢t t .

where, from now on we denote (for brevity) x=(x1,....xp) without the last term

xm=y, and

P
a=nll h, KWw)=KWwW ,...,w ) (2.9)
n I | t 1t pt

This marginal density (2.8) is obtained by integrating out the y=x_ variable.
The conditional mean E(y|x) is the regression function R in (2.2)

RGN = [X €08 400X DO /EGE 00X ) 4 (2.10)
where the numerator is the integral of y times the joint density, and
denominator is the integral of just the joint density; both integrations being
with respect to y. The integrals may be evaluated directly by the formulas in
sections 3.323 and 3.462 of Gradshteyn et. al (1965) Tables of Integrals.
Thanks to certain cancellations, Hardle (1984), the estimation of R function
is easier than that of the joint and the marginal densities. The R function

can be estimated by:

n n
R (x) = K(w )/ K(w ) (2.11)
n x zt yt t zt t
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which is the Nadaraya-Watson Kernel regression function with K(wt) from
(2.9). This completes our discussion of the Kernel estimator of the
regression function.
We turn next to the estimation of the partial derivatives of R with
respect to xj which may be done either analytically or numerically. A

simplified partial derivative of R(x) in (2.10) is denoted by

IR(x)
pd(x) = (2.12)
ax.
J
and its amorphous estimate by apd(x). We have
3R (x)
ax) = —0 —Zny(x -K ) (2.13)
P ax t 't 1t 2t '
J
where
n -1
Klt = K'(wt)(ZtK(wt))
n n -2
Ky, = K(wt)(ztl('(wt))(itl((wt)) (2.14)

] = .
K (wt) al((wt)/axj
For the normal kernel K|(wt) = hgletx(wt). Note that apd(x) represents the
j-th response coefficient of y due to a unit change in xj.
The numerical estimation of the amorphous estimator apd(x) will be

illustrated later in Section 4, after we study its statistical properties in

the following section.

3. PROPERTIES OF AMORPHOUS PARTIAL DERIVATIVE ESTIMATOR
In this section we discuss the consistency, bias, mean squared error,
asymptotic normality, confidence intervals and related properties of the

amorphous estimator apd(x) defined in (2.13). It is assumed that the

»
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econometrician is directly interested in the first r partial derivatives of
the conditional expectation of y given x1 to xp without explicitly specifying
the form of the relationship. We use the normal big oh, small oh notation so
that z = O(nx) if |n~xznl is eventually bounded, and z = o(nk) if
|n_xzn|40, and the subscript p on o or 0 denotes "in probability". For some
results we need the assumption Ar defined by:

Ar: For some integer r the r-th order partial derivatives of R(x) are
continuous and bounded in some neighborhood of x.

Before obtaining the results for apd(x) we summarize the known
asymptotic results for the kernel regression function Rn(x) in a following
Theorem (all the following convergence and rate results are with respect to

niw)

THEOREM 1. At every continuity point x

Bias Rn(x) = ERn(x) - R(x) = o(1) (3.1)

and with a =n ﬂph 3w as nidw
n ii
Rn(x)—R(x) = op(l) (3.2)
% *
(a ) (R (x) - ER (x))=N(0, A(x)) (3.3)
n n n

where
* 2 -1 2 2 2
A(X) = o (x)(£(x)) JK (u)du, o (x) = V(e|x) = E(e |x) (3.4)

Further, if for some r > 1, Ar holds and with this r, K in (2.11) belongs to

J(r, then
Bias R (x) = ER (x) - R(x) = o(h") (3.5)
R (x) - R(x) = 0 (a % 4+ 1F) (3.6)
n P n

and if hi's are chosen in such a way so that
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a: ) (3.7)
we have

% %

a (R (x) - R(x))>N(0, A(x)); (3.8)

n n

ht = max(hf,...,hg).

*

PROOF: For the case when {yt, xlt""’xpt}’ t=1l,...,n are i.i.d., the proof
of the Theorem 1 is given in Singh, Ullah and Carter (1985), Theorem (3.2).
Also for the special case p=1 see Schuster (1972) and Prakasa Rao (1983, p.
283). For the time series case, under the strict stationarity of the {yt,
xlt""’xbt} and certain conditions on ¢-mixing coefficient, see Bierens
(1985).

We also note another useful result for Rn(x) from échuster (1972) and

Prakasa Rao (1983, p. 283) for p=1, and for p > 1 Bierens (1985). If £ and

n are two distinct points of x then, as n + =,

"

2 -1 §-n
a cov(R (§), R (n)) » o (X)(f(n)) JSk(uk(u + —=) = o(l).
n n n h

From this result it follows that, for two points §

X + hj/2 and
n=x- hj/2 which are not distinct in the limit,
an cov(Rn(x+hj/2, Rn(x—thZ)) > az(x)(f(x))_llk(u)K(u+1)du. (3.9)

J

Now we present the results for our proposed estimator apd(x) of pd(x).

where x + hj/2 = xl,..., x, + hj/Z,.... xp and K(u+l) = K(ul,...,uj+1,....up).

THEOREM 2. At every continuity point x.

Bias (x) = E(apd(x)) - pd(x)) = o(1l) (3.10)
2 P
and withb=h_ a =h nll h- o as nw
n j n | i i
apd(x) - pd(x) = op(l) (3.11) *

b: [apd(x) - Eapd(x)]+N(0, 2A(x)) (3.12)
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where A(x) = o2(x)(£(x)) L1(/K?(u)du-K(u)K(u+1)du). Further, if for some r

>1, Ar holds and with this r, K in (3.4) belongs toJ?t, then

Bias(x) = E(apd(x)) - pd(x)) = O(hgl n5) (3.13)
apd(x) — pd(x) = 0 (b_% + 7t n¥) (3.14)
P n 3 ’
and if h,'s are chosen according to (3.7)
we have
bilapd(x) - pd(X)1SN(0, 2A(x)); (3.15)
r r T
h = ma)((hl...hp).
PROOF: From (2.2)
yt = R(xlt""’xpt) + N (3.16)

Substituting this in (2.11) and writing r(wt)=K(wt)/2:K(wt) we have

n n
Rn(x) = ZtR(xt)r("t) + ztct r(wt), (3.17)

n
Z:R(wth + x)r(wt) + ztct r(wt)

R(X) + Z:et rw,) + o (1),

where the third equality follows because R(wth + X) = R(withl + xl""’wﬁt"b

+ xp) = R(x) + o(1l) by using Taylor series expansion and the fact that
h*0 as now,
The partial derivative with respect to xj on both sides of (3.17) is

or(w )

+ 0 (1) (3.18)
ax P
J

apd(x) = pd(x) + Enc
tt

Thus the result in (3.10), showing asymptotic unbiasedness, follows by taking

expectations on both sides of (3.18), and noting that E(etlxt) =0 from (2.2).

Next consider the consistency result (3.11). This follows by noting
n n -1

that Ef e r(w ) =0 and V(Y ¢ r(w )) = V(R (x)) = 0(a ) from (3.3). Thus
tt ¢t tt ¢t n n

n % n .
by Tchebychev's inequality Xtetr(wt) = Op(an ), and hence Ztetar(wt)/axj in
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ar(w )
-1 n t -1 -% %
(3.18) is -h Y ¢ =0(th a )=0( ) =o0 (1).
j tt aw_t P Jj n P n P
J

Now we consider the normality result in (3.12). For this, first we
write from (2.13)
hj(apd(x) -~ Eapd(x)) = [(Rn(x+hj/2) - ERn(x+hj/2)]—[(Rn(x-h /2)

J
- ERn(x—thZ))]
or multiplying both sides by a:
% % %
bn(apd(x) ~ Eapd(x)) = an[(Rn(x+hj/2) - ERn(x+hj/2)]—an[(Rn(x-thZ)
- ERn(x-h /72))

J

Thus following the proof of (3.3) in Schuster (1972) and using (3.9) the
normality result in (3.12) follows.

For the results (3.13), (3.14) and (3.15) we note that under the
assumption Ar, and K belonging toJ(r (3.17) becomes (also see (3.6))

R () = R(X) + Lle r(w) + op(hr),
where, as indicated before, Z:etr(wt) = Op(a;%). Thus

apd(x) = pd(x) - hgl X:ctar(wt)/awat + op(hg1 nh).
Using this, and following the arguments used to prove (3.10) and (3.11) the
results in (3.13) and (3.14) follow immediately. For the result (3.15) we

note that

br'f(apd(x) — pd(x))

b:'f<apd(x) - Eapd(x)) +

+

b: (Eapd(x) - pd(x))

b(apd(x) - pd(x)) + Op(a:hr)
by using (3.13). Thus if (3.7) holds then the result (3.15) follows.
Now we include some comments regarding Theorem 2.
REMARK 1. The result in‘(3.10) shows the asymptotic unbiasedness of apd(x),
whereas (3.13) gives the speed of convergence for the asymptotic

unbiasedness. This speed gets faster as r gets large. However, note that the

-

.
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construction of the kernel K belonging to.Kr in (2.6) (and hence the
estimator apd(x)) becomes difficult as r gets large. For example if r=10 we
would need a kernel whose first nine order moments are zero.

REMARK 2. While (3.10) suggests that we can reduce the bias of the estimator
apd(x) to any desired order by choosing our hj converging to zero sufficiently
fast, (3.12) suggests that we pay a price. That is, we may inflate the

variance of (apd(x)) = b;l A(x) = O(bgl). However, if we control

hj « n-l/(2r+p) defined in (2.7), then both bias and variance (and hence the
MSE) can be controlled simultaneously. 1In this case the speed of covergence

n—2r/(2r+p)

of the MSE = 0( ), and the convergence speed in (3.14) becomes

'r\ et Gl

¢ A K ¥
a T/ (204P)y ppys suggests that the speed of convergence

apd(x) - pd(x) = Op(
is inversely related to the number of regressors.
REMARK 3. From the result in (3.12), 100(1-a)% confidence interval for the
true partial derivative, pd(x), is given by
% %
+
apd(x) quz(bn) [2A(x)]

where z, is such that, if Z is the univariate standard normal random

/2
variable, then the probability P(-zm/2 <Z< zalz) = 1-a. In practice, a
consistent estimator of A(x) = oz(x)(f(x))-lfxz(u)du can be used in (3.12)

as An(x) = cﬁ(x)(fn(x))—l(fxz(u)du -IK(u)K(u+l)du) where fn(x) is given by

~ ~

2 n 2
(2.8), 0 (x) =Y er(w); ¢ =y -R (x), and JK(u)K(u+l)du = (exp(-1/4))
n 1t t t t n t

2 P
IK (u)du = (exp(-1/4)) (1/2 vn) for the normal kernel. Thus we have all the

necessary properties needed for practical applications of apd(x).
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4. NUMERICAL EXAMPLES

In this section we illustrate the methodology of the previous sections
with examples. The first example regarding Bell System single output o

production function is chosen for simplicity. The second example based on

multiple output railroad cost function is discussed in subsection 4.1. We are
interested in the direct estimates of the regression function R of (2.10),
which is the expectation of the dependent variable, conditional on the values
of the regressors. From a scatter diagram of the dependent variable against
its conditional expectation we note that the fit is good in the middle part of
the range and somewhat distorted near the end points of the range. This is
typical in most nonparametric estimation by Kernel methods as in Ullah and
Singh (1985), Ullah (1985), among others.

A parametric approach to estimating the linear regression model is to

£}

specify:

(e

E(ytlxlt""’xst) = bo +b b b (4.1)

3%3¢

The following is the familiar translog "flexible" production function

1*1¢ * P%ae t
for all Bell System telephone companies for 1947-1977, well before the recent
divestiture:

2 2
lny = b°+b11nK+b21nL+b 1nK1nL+b4(1nK) +b5(1nL) +b61nx6 (4.2)

3
where In is natural log, y is the "valued added" output, K is the capital
input based on the deflated value of the plant corrected for depreciation and
age distribution, I is the labor input measured by employee hours adjusted for
seniority, and X, is an index of technology based on Poisson weighted index of
Rescarch and Development expenditures. We have used an updated version of the
data set used by Vinod [1976b, Sec. 5].

The Cobb Douglas production function is a special case of (4.2) when .

b =b =Db_ = 0. The scale elasticity (SCE) of a Cobb Douglas production
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function is given by simply bl + bz, which measures the economies of scale, or
the percentage change in output when both inputs are changed by one percent.
The SCE for (4.2) is:

SCE = b1 + b2 + b3 (InK + 1nL) + 2b41nK + 2b51nL (4.3)

If SCE is significantly larger than unity it indicates that there are
scalé economies, and lends support to the argument that the divestiture of the
Bell System may not have been in the best interest of the telephone customer.
This is because the divestiture has reduced the scale of operations and the
economies of scale may have been lost. There are several papers attempting to
estimate Bell System's SCE referenced in Vinod and Ullah [1981, p. 203},
Docket 20003 of the Federal Communications Commission-(FCC).

Table 1 reports the estimates based on ordinary least squares (OLS) for
linear regression based on a Cobb Douglas specification, as well as, our
flexible amorphous estimates of the partial derivatives, apd(x), evaluated at
the mean values of the regressors. The absolute values of the t ratios are
also reported. In nonparametric estimation it is well known that the fit is
poor near the end points of the data, because of a lack of information in
their neighborhoods. Hence a fair comparison of residual sum of squares
between OLS and amorphous models should exclude the end points. Table 1
reports the residual sum of squares after omitting two observations at each
end, being roughly five percent trimming at each end.

Note that economic decision makers are specifically interested in the
estimates of the partial derivatives, not in the regression coefficients of a
linear or nonlinear model, per se. The linearity is an artifact of our
specification, and the flexible forms attempt to mitigate the consequences of
assuming log linearity, to achieve greater realism. Our amorphous method

estimates the partial derivatives directly by actually keeping the variation
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Table 1: OLS Cobb Douglas and Flexible Amorphous Regression Results, Bell

System Data

Coeff. of: Intercept Capital Labor Technology R2
OoLSs -3.303 0.52 0.70 0.49 0.997
Absolute t value 4.51 9.20 4.82 11.33
Amorphous (r=1) 0.44 0.98 0.59
(coeff/SE) ratio 3.16 1.90 4.56
Amorphous (r=2) 0.43 0.96 0.54
(coeff/SE) ratio 3.62 2.20 4.98

Note: r is the largest order of derivative of interest used in defining the
window hj of (2.7). Trimmed Residual Sum of Squares for OLS is 0.0302, and
for the amorphous model it is 0.0649 and 0.0915 for r=1 and r=2,
respectively. We have excluded the first and last two observations, since it

is well known that nonparametric methods do not yield good fits near the end

points.

(o

[£]
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in other regressors at zero. We find that a one percent increase in inputs
leads to a larger than one percent increase in the output, suggesting that
SCE > 1, or economies of scale. In Vinod (1976b) ridge regression is used to
alleviate the multicollinearity of the translog model, and has yielded
meaningful estimates of partial elasticities. The choice r=2 is the highest
permissible for the normal kernel by Remark 1 above. The choice r=1 yields a
lower residual sum of squares (better fit), but lower ratio of the coefficient
to its standard error. An appealing feature of our nonparametric estimates of

elasticities is that they are based on a most "flexible" specification.

4.1 Railroad Productivity Index Based on a Cost Function

The multiple output production function of (1.1) can be estimated by our

nonparametric methods, without assuming separability of outputs and inputs,
which was necessary for Vinod (1968, 1976a) and similar attempts in the
literature. The cost function of (1.2) is often estimated by fitting a system
of share equations. The substantive economic interest is usually in
estimating output elasticities, cost elasticities, etc. which are partial
derivatives, and for which our methods are applicable..

The productivity index (1.5), or its discrete version (1.6) are based on
time derivatives. Its estimation involves elasticites of total cost with
respect to the j-th output, (Eg:EYj). In Caves et.al. (1980) these
elasticities were estimated from cross sectional study for 1955, 1963 and
1974, interpolated and extrapolated for the remaining years, and combined with
the time series data reported there for 1951 to 1974. Our nonparametric
methods may be used to avoid having to mix cross section results with time
series, by directly estimating the elasticities (Eg:EYj) evaluated at the mean

of the data.
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There are four outputs: freight ton miles, freight length of haul,
passenger (trip) miles, and the length of trip; and five inputs: Labor, Way
and structures, equipment, fuel, and materials. Generalized translog
multi-product cost function of outputs and input prices is used to estimate
elasticities of total cost with respect to the outputs after imposing
Shepherd's Lemma and related conditions. Caves et al (1980, p. 175) find that
the Hessian matrix is not negative semidefinite, althought the violation is
not regarded as significant.

Our results for this example reported in Table 2 are claimed to be
reasonable. For the ton-miles output Caves et. al's elasticity is 0.772
compared to our estimates of 0.361 (for r=2), and 0.367 (for r=1). For the
passenger miles output Caves et. al's elasticity based on a cross sectional
study is 0.201, which says that the railroads having one percent larger
passenger mile output tend to have 0.20 percent higher costs. From Table 4 of
Caves et al freight revenue as a share of total operating revenue increased
from 0.906 in 1951 to 0.967 in 1974. Since passenger business is unimportant,
the magnitude of their passenger elasticity (0.201) relative to freight
elasticity (0.772) seems to be large. By contrast, our amorphous estimates of
the passenger elasticities based on time series data are statistically
significant, and negative: -0.039 (for r=2) and -0.038 (for r=1) meaning that
if the passenger miles increased by one percent over time, the total cost will
decrease slightly, by less than 0.04 percent. As passengers abandoned the
railroads, the quality of passenger service deteriorated during this period,
encouraging further decline in use of railroads by the travelling public. It
is conceivable that the negative elasticity reflects the observable fact in
the time series data that the passenger miles declined sharply, by more than

five percent per year between 1951 and 1974, which may have permitted the

K]
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railroads to curtail the schedules, thereby slightly reducing the total cost.
On the other hand, it is possible that our time series estimate is no match
for'a detailed cross sectional study of Caves and others. Since Caves et. al.
do not report the standard errors associated with their estimates in their
Table 4, or goodness of fit etc., a comparison is inconvenient. We have also

estimated the rate of change in railroad productivity with E(g: of (1.6)

Yj)t
above replaced by the amorphous elasticities for each observation. Our
average is 0.6% compared to Caves et al's 1.5% (Table 6). Further details
about numerical results may be obtained from the authors upon request. In any
case, we provide a simpler alternative which may be of interest in
applications where the distinction between the interpretations of

cross-sectional and time-series elasticities mentioned

above is important.

4.2 A Simulations of Elasticity Estimation

We generate 100 observations on quantity produced by uniform random
numbers between 0 and 1 multiplied by 100. The 100 observations on the costs
are obtained by the square root of outputs. The average output is 55.4 units
ranged between 0.5 to 98.1 units, with a sample standard deviation of
29.3528. The conditional expectation of costs at the mean output is 7.4782.
Since costs are square roots of the outputs, we know the partial derivative of
costs with respect to output is the reciprocal of twice the square root of
output at the mean output. The correct value of the partial derivative should
be 0.0672, whereas the amorphous estimate is 0.0666. This suggests that
amorphous methods can yield reasonable estimates of elasticities, without

assuming any knowledge about functional forms.
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The estimates may not be as good for arbitrary forms having a fixed,
cost of 50 and random errors. To illustrate this we use:

cost = 50 + output% + error (4.4)
where error represents 0.00001 times unit normal random numbers. 1In this
example, the partial derivative of cost with respect to output should be
0.0683, and the amorphous estimate is 0.0954. To consider the small sample
case we use the first 30 observations based on (4.4) and find that sample
mean output is 62.3002, the amorphous estimate (r=2) of partial derivative is
0.0581, whereas the correct value is 0.0633. The results for our method
applied to White's (1980) simulation of CES production function are also
encouraging. From simulations and other experience we conclude that amorphous
estimates of partial derivatives from typical sample sizes in econometrics are
in general agreement with our asymptotic results. More research is needed to

develop further experience with larger models.

5. FINAL REMARKS

The production/cost function estimation research in recent years has
increased our ability to obtain realistic estimates of elasticities and
partial derivatives by using "flexible" functional forms which do not impose
arbitrary restrictions on their values. However the flexibility was purchased
at the cost of increased number of parameters leading to multicollinearity and
other statistical difficulties. Since the nonparametric estimation can avoid
some of the difficulties associated with multicollinearity, as well as linear
parametric specifications, applied econometricians may find amorphous
specification attractive in a variety of problems. One novelty here is that
we have directly and analytically estimated the partial derivatives of

conditional expectations, whereas other applications of nonparametric

i
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regression merely give conditional expectations or forecasts of the dependent
variables. A theorem proved in Section 3 gives the asymptotic properties of
the amorphous estimator.

The ability to estimate nonparametric partial derivatives is
particularly useful in econometrics. Further study of nonparametric

estimators seems to be worthwhile.
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TABLE 2

Elasticities of Total Cost by Caves et al and by amorphous estimation

(e

Output Variable Residual sum
Ton Average Passenger Average of squares
Miles Length Miles Length of

of Haul Trip
Caves et al 0.772 -0.082 0.201 -0.031
amorphous r=1 0.367 0.267 -0.038 -0.058 0.006772
coeff/SE ratio 6.718 3.604 2.304 2.090
amorphous r=2 0.361 0.269 -0.039 -0.059 0.007413
coeff/SE ratio 6.974 3.828 2.500 2.242

[

\e

Notes: Caves et al's (1980) results are for 1951-74 average, from the bottom
line of Table 4 in their paper. The residual sum of squares do not involve

trimming because a comparable number is not reported by Caves et al.

¢
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