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IMPROVING UPON THE NEYMAN-PEARSON
APPROACH TO TESTING HYPOTHESES
by

Noel Cressie and Peter B. Morgan
Iowa State University and University of Western Ontario

SUMMARY
In this paper we place the Neyman-Pearson testing procedure into a
decision theoretic context, where collecting observations incurs a given
cost, and making right/wrong decisions yield various given payoffs. We
show that in general the Neyman-Pearson test generally does not maximize
the expected payoff net of costs, and we give the procedure which does.

Furthermore, we connect this optimality notion with that of maximizing

power subject to bounding the size.

Some key words: cost function, decision theory, maximizing expected net
galn, payoffs, power, sequential test, size.




1. Introduction

Suppose a decision must be made about which of the two elements of
the parameter space of @ = {wo,m1], is governing the distribution func-
tion F(x;w) of data x. Let the distributions be absolutely continuous
with respect to a dominating measure and write f(g;w) as the Radon-
Nikodym derivative. For continuous data, the dominating measure is the
Lebesgue measure and f becomes the density; for discrete data, the count-
ing measure is used and é becomes the probability mass function.

The Neyman—-Pearson lemma (Neyman and Pearson, 1933) states that the
"hest" decision about the truth of the hypotheses, HO: W = Wy, versus

H1: w = W, is given by the decision function:

1, if 57—
fxiuw,)

< k

flxsug)
fxiw,)

f(x;uw

¢*(x) = < Y, ir a k (1.1)

f(x;u,)
0 >k,

L i f(xiw,)

where ¢*(x) is interpreted as the probability of rejecting Ho; rejection
of one of the hypotheses is equivalent to acceptance of the other.

"Best" here means that for any other decision function ¢, 0 s ¢ S 1,

satisfying E (&(x)) S E (o*(x)) = a, then
Wy ~ Yo -

E (¢(x)) S E (o*(x)). (1.2)
0)1 - (01 -~

The quantities in (1.2) are called the power of their respective decision

functions, and in statistical parlance ¢* is said to maximize the power



amongst all tests ¢ of size at most a. In the theory of hypothesis test-
ing (Lehmann, 1959, p. 61), the main problem is to find k and Y in (1.1)
such that the size a is fixed at say .05 or .01, etc.; the resulting test
¢* has maximum power for its size.

But this approach to hypothesis testing is incomplete in that it
offers no guidance as to how to actually do the sampling. While having
more observations typically increases the power, there are usually
practical limitations to the amount of data that can be gathered. 1In
particular, there is a cost associated with gathering data x, and this
cost is not addressed by the Neyman-Pearson lemma.

We shall show in the following sections that a more sensible approach
to testing recognizes the payoff and cost functions faced by the deci- |
sionmaker. Doing so allows computation of an optimal sampling strategy
from which the optimal size, Ewé¢*(§)), and optimal power Em$¢*(§))
are calculable directly from the payoff and cost functions and Pqs the
prior probability that w = Wy+ In this way the customary hypothesis
testing procedure 1s made more informative by adding decislon-theoretic
concepts to the traditional method. Section 2 sets up the formalities
needed for Section 3, which explains how to improve the Neyman-Pearson
approach. Section 4 explains why the size, power, and sample size of
the optimal procedure are functions of the payoffs, cost, and prior
probability; two examples are given. Section 5 discusses implications
for the Neyman-Pearson test. For example, fixing the size of the test

and the number in the sample is shown to put restrictions on P which

may exclude the noninformative prior p1 = 1/2.

[t}



2. Testing two simple hypotheses

Consider for the moment a more general problem, sequential in nature,
which allows the possibility of a decision about w at any of t = 1,2,...,T
discrete deciqion points, 1 ST S =; T is called the truncation point.

In this paper we will be concerned with the speclal case T = 2; see
Cressie and Morgan (1986) for the general case, where they show the
optimal decision rule to be a variable-sample~size-sequential prob-
ability ratio test, called the VPRT. The sequeniial probability ratio
test, or SPRT, 1s a constrained version of the VPRT, whose optimality
properties have been studied extensively since the seminal papers of
Wald and Wolfowitz (1948), and Arrow, Blackwell, and Girshick (1949).

For n 2 0, let c(n) be the cost incurred at any decision point by
asking for n observations. If n 2 1 observations (xt,1""’xt,nt) = Xy
are asked for at time t, then these are received at time t + 1. Assume
that c¢(n) is strictly increasing with n. Let ¢ = c(0) denote the "over-
head" or "fixed cost" of sampling which is incurred by waiting the
period until the next decision point, without collecting any observa-
tions.

In the remainder of this section we describe the meaning of the
term "decision rule." A formal and detailed development is given in
Cressie and Morgan (1986); here we summarize that development. A deci-
sion rule has three components: a terminal decision rule, a sample-size
rule, and a stopping rule. Each of these 1s described in turn.

A terminal decision rule § is a sequence {Gt; t=1,...,T}. The

element Gt is a function of all available data thus far, viz.



Yo = (XqoeeenX, ), and

0

1, |if w, is chosen; t=2,...,T. (2.1)

0, if w, is chosen
8, (y,)

At any decision point t, a choice is made between continuing to

take more observations, and stopping to make a terminal decision. The

"payoffs" or "rewards" for these terminal decisions, are defined by the

payoff function:

r = =
Uso? if Gt 0 and w W
Un, if 8_=0and w = w ’
Uw,8,) < o1 t ! (2.2)
u10’ if 6t =1 and w = @y
\911, - if Gt = 1 and w = wy .

The units are the same as those for the cost function: pounds, dollars,
francs or whatever numeraire is meaningful to the decisionmaker. We
have decided to take the more optimistic viewpoint of looking at payoffs
rather than losses; those familiar with loss functions should have no
trouble thinking in terms of payoff functions. Typically, Uso > Ui

and u11 > uo1 since it is usual to reward correct decisions more than

incorrect ones.

A sample-size rule v is a sequence {vt; t =1,...,T}. This component
of a sequential decision procedure is usually not mentioned in the
sequential analysis literature, since therein one-at-a-time sampling is
most often imposed. The element vt 2 0 is a function of all available

data thus far, viz. y, = (X;,...,%,_4), and tells the decisionmaker how

many observations should be asked for at time t, to be received at time

%



t+1, if sampling is to continue. It is this generality which allows us
to ask for and find an optimal v, and hence to develop procedures which
dominate the more classical ones.

A stopping rule S is a sequence {St; t=1,...,T}. Each element S,

is a function of all the data available at t, viz. xt, with

o, if sampling continues at t
S (y) = (2.3)

1, if sampling stops at t ,

for t = 2,...,T-1; and ST(-) = 1.
The special cases of 61, vy Sl’ which are not based on data, are
determined from the prior probability Py = pr(w = mo). If Ve >0,

this prior is updated to give a posterior pt at time t:

f({t_1 ;mo)pt_1

p, = - - — P t=2,0..,T; (2.4)

10 v g =00 Py = Py

Finally, a decision rule d is defined to be the ordered triple
(S, v, 8). Our goal is to find an "optimal" decision rule d*. Here
optimal means maximizing the expected payoff minus cost, or what we call

the expected net gain. When the problem is formulated in terms of losses

rather than payoffs, d* is simply the Bayes procedure minimizing the

Bayes risk.
In the next section we present the various expected net gains for

continuing versus those for stopping, for the special case T = 2. The
general case is more complicated, and details can be found in Cressie

and Morgan (1986); the optimal strategy is the intuitively obvious one



of choosing from among the three actions: stop and select Yy continue
collecting observations, stop and select Wi that action which gives the
highest expected net gain. This strategy for T = 2 leads to an improve-
ment on the Neyman-Pearson approach to testing hypotheses. Not only
does the approach answer the design question of how many observations

to take, but as well provides insight into the true nature of the size

and power of a test procedure.

+

3. Maximizing expected net gain

At the initial decision point t = 1, a choice must be made between

selecting Wy selecting Wy and collecting observations. The expected

net gain from selecting Wy is

UgoPq * u01(1—p1). (3.1)
The expected net gain from selecting w, is

UgPq * u1l(1—p1). (3.2)
Hence a terminal decision that maximizes the expected net gain from not

collecting observations, is

(3.3)

6% =

{:0' 1f upoPy * Uy (17py) 2 upopy *+ u,, (1-py)
h

1, otherwise .

The action of collecting observations X, and subsequently making an

inference about w at t = 2 = T, has a maximal expected net gain

-c(n* - ] - *
c(n¥) + EEEmax{uoop2+uo1(1 Pp)s UygPotuy (1-p) 1 [py,n¥l,  (3.4)

where n? is

.



argmax[-c(n,) + Ezfmax(uoop2+uo1(1-p2). u10p2+u11(1~p2))|p1,n1}; n, 2 0],
(3.5)

P, is the posterior probability of wy given by (2.4), and Ex denotes
=1

the expectation with respect to the distribution function
F,(x) = p,F(Xiwg) + (1-p)F(x5w,) . (3.6)

In words, n? 1s chosen to maximize the expected net gain of collecting

observations. Define this optimal sample size rule, -

* = *
vI(Dl) = n}.

If t = 2 = T 1s reached, a choice between selecting Wy and selecting

w, must be made. A terminal decision rule which maximizes expected net

1
gain at t = 2, is

{0' 1 ugoPy*ugy (17p5) 2 uyp,tuy (1-py)

1, otherwlse

£lxyiwg)  (1=py)(uy =ug,)

0, if - -
£x,5u,) Py (Uugg=uyq)
- (3.1
fxy3u0)  (1=p)(uy,-uq,)
T e TR u )
=1 1°700 "10

which is exactly of the form of the Neyman—-Pearson test function ¢* given
by (1.1) with ¥ = 0. It is obvious that the expected net gain remains

unchanged when using a 62 that randomizes over selection of wy or w, when

f(gl;mo) 1-p,(ull-uo1)

£x,5u,) Py (ugp=uyg)



Hence the randomized version (1.1) also maximizes expected net gain at

t =2,

The expected net gain of the entire two period decision procedure is
maX{(301)p (302)' (3-")}-

So a stopping rule that gives this expected net gain is

S¥ =

{:O (i.e. observations are collected), if (3.4) > max{(3.1),(3.2)}
1

1 (i.e. select wy or w1) , 1f (3.4) S max{(3.1),(3.2)}

(3.8)

Theorem 3.1 of Cressie and Morgan (1986) shows that there exist

calculable values P, and pU, 0s P s Py S 1, such that the optimal deci-

sion rule can be written in the simple form:

% o * o
S1 1 and 61 1, if P, € [O,pL]

* o * = n*
Sl 0 and v} = n¥, if P, € (pL,pU) (3.9)

% * =
S1 1 and 61 o, if P, € {pu.ll .

The size and power of the optimal test procedure (3.9) and (3.7) are

1 PP, € [O,pL]
f(x,3w,)  (1-p.)(u, -u..)
=1'% 179117701
a* = ( pr - — =w) ;i p, € (p,p,) (3.10)
f(§1.m1) pl(uOO u10) 0 1 L**U
0 i Py e [pyetl,
1 i py e [0,p ]

\ £x,5w9)  (1-p ) (uy =ug0)
L T P, (u_-u. )
1" 1*700 10

Iw = m1) H p1 € (pLypu) (3-11)

™

‘s



Since P.» Py are functions of Ugo’ Yo1* Y00 Y117 c(+), and Py it follows

from (3.10) and (3.11) that the size and power of the optimal test proce-
dure are also functions of these quantities.

Also observe that the optimal sample size n?'is similarly a function
of the payoffs, the cost and the prior; that is, any choice of n1 which
does not respect this functional relationship will result in a testing
procedure of lower expected net gain, and a different size and power.

For example, the Neyman-Pearson testing procedure which uses a fixed
sample gize does not in general maximize the expected ‘payoff net of cost.
In the next section we connect the optimality notion of maximizing

expected net gain, to the more familiar one of maximizing power subject

to a bound on the size.

4. The computation of size, power, and optimal sample size

From (3.5), it is clear that the optimal sample size n?(uoo, Ugy s
Uigr Ugqs c(-), pl), is a function of payoffs, cost, and prior. Similarly
from (3.10) and (3.11), size and power can be written as a*(uoo, Ugyr Yqgo
Uy c(-), p1) and n*(uoo, Ugys Yygr Yqq0 c(-), pl)' since the boundaries
pL and pU of the sampling region (pL,pU) are themselves functions of
payoffs and cost; see (3.8) and (3.9). Moreover, the question of how
size and power are related, can now be answered explicitly through their
common dependence on u's, ¢, and Py-

To illustrate these consequences, we construct the size and power

functions of the expected-net-gain-maximizing procedure for deciding

between

HO: W = Wy, and H1: w =Wy wy > Wy
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where w is the mean of a normal variate with unit variance. For ease of
exposition, suppose Ugg = Ugq = W and Uy ® Uy = 0. From (3.10) and

(3.11),

log(p,/(1-p,))  vVn¥(w ~u,)
1 1 1'% %0’
a*(u,c(+),p,) =( 1 - o + i P, € (p;sPy)
1 { /E?(m1—mo) 2 ' ! L0
\o i Py € [pu.1]
(4.1)
(1 H p1 € [ovpL]
log(p,/(1-p,)) Vn¥(w, -uw.)
m*(u,e(+),p,) J 1 - o 1 e I Py € (ppsPy)
/;f(w1*wo) 2
(4.2)

where ¢ is the cumulative distribution function of a standard normal

——— -t 2
variate: &(x) = ffw(1//2ﬂ)e t /Zdt, and from (3.5),

* o - - o
nj argmax[ c(nl) + uEggmax(pz,l pz)lp1,n1}. n, 2 1].

This reduces to:

n? - argmax[-c(nI) + u{p1WO(n1;p1) + (1—p1)?1(n1;p1}= n, 2 1], (4.3)

where for k = 0,1,

(@



1

© expl/(1—p1)
¥ (nip) = S " g (x)dx
~log(p,/(1-p,)) e’p /(1-p,) + 1

. }log(p‘/(1—p‘)) - ! g (x)ax  (4.4)
- e p1/(1—p1) + 1

’

and gk(x) is the density of a normal variate with mean and variance

respectively,
- - - 2_..2
Vi (ny) (wy=wgInyw, * 1, (wy-wg)/2
2 = - 2
T (n1) n1(m1 wo) .

Finally PL1Py in (4.1), (4.2) are themselves functions of u, c(-), and

p1 through

—c(n¥) + u{pLVO(n?;pL) + (1-pL)?1(n§:pL)} = u(1-pL)
(4.5)
~c(nf) + u{pu?o(n?;pu) + (1-pU)W1(n¥;pU)} = upy .

Calculation of o*, ¥, n?, P and Py is usually not so straight-
forward. Nevertheless for given payoffs, cost, and prior, and for finite
discrete-valued data, the combinatorial problem can be solved on the

computer. For example, suppose we wish to decide between

H:w=uw

0 , and H1: W= W,

0

where w is the success probability of a binomial variate based on 4

trials; i.e. data are a random sample from a distribution with probability

mass function,

f(x;w) = (:]mx(1-w)q-x.



12

Tables 1 and 2 present values for a¥*, u¥, n?, P and Py for various

values of w's, u's, ¢'s and p1's. More specifically, for both tables we

have chosen wy = 0.5; w, = 0.47, 0.44, 0.41; Ugy = Uyg = 0; c(n) = c.n.

-

Without loss of generality, we measure expected net gain in units of ¢,
and put ¢ = 1. The prior P is allowed to vary over the unit interval
in increments of 0.01; checks reveal that this leads to errors in a¥, =¥,
in only the fourth decimal place. In Table 1, we have chosen uOO - u11 -

u = 100, and in Table 2, Ugp = UYyq = U = 75.

- s o s o s 2t e

The most obvious feature of the tables is that a¥*, 7%, and n? vary
with u and P;- Let us look more closely at the optimal decision proce-
dure as a function of w, . The tables show that as W, diverges from w,,
the sampling interval (pL,pU) widens, which can be explained as follows,
As Iml-“O‘ increases, a first datum offers more discriminatory power
between Wy and Wy thereby increasing the probability of a correct choice
with an attendant increase in expected payoff. Whenever this increase
exceeds the cost of a datum ¢ = 1, sampling will occur. The tables also
show that initially, n¥* tends to increase as |m1-mol increases, and the .

1
explanation follows similarly. If a second datum's incremental payoff

(£}

is bigger than its cost ¢ = 1, it too is collected, with a higher tendency

for this to happen as w, initially moves further from Wy Eventually,

1
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as W, nears zero or one, n? tends to fall back towards one. This is
because a first datum's discriminatory power between Wy and w, is then
so large that the further improvement provided by a second datum is
small, and valued at less than its cost ¢ = 1. It is important in all
these interpretations to keep in mind this trade-off between payoff and
cost.

As one would expect, a* and n* decrease as p1 increases. The reason

is that p2 increases with Py thereby increasing the probability of

choosing.wo at t = 2 =T,

5. Discussion

The Neyman-Pearson approach to choosing between a simple null
hypothesis HO: w =y, and a simple alternative hypothesis H1: W=,
maximizes the probability of: choosing w, given W, is true, for fixed
probability a of: choosing g given Wy is true; that is it maximizes
power for fixed size a. Neyman and Pearson (1933) show the optimal test
to be based on the likelihood ratio. No mention is made of how to choose
the sample size, although the postscript is often added that sufficient
observations n1 are taken so that the optimal size o test achieves a
prespecified power w. We call the above type of optimality, NP-optimality.

In this article, we have put the testing problem in a decision
theoretic context, and asked that the decision procedure maximize expected
net gain. Obviously this is equivalent to minimizing Bayes risk, when
the problem is formulated in terms of losses. We have shown that this
type of optimality, which we call ENG-optimality, also leads to a procedure
based on the likelihood ratio, but one which 1s sequential in nature and

depends on the payoffs, sampling cost, and in particular the prior prob-
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ability that v = wye The size, power, and optimal sample size of this
expected-net-gain-maximizing procedure can be calculated; two examples,
one continuous ané one discrete, are given in Section 4. We shall use
the examples to illustrate the link between the two types of optimality.

From the ENG-optimality point of view, fixing the size ‘@ and choosing
the number of observations in the likelihood ratio test to achieve a
prespecified power m, restricts the decisionmaker to payoffs, cost
structures and priors that satisfy (4.1) and (4.2). For example, from
Table 1,.a test of HO: wy = 0.5, versus H1: w = 0.41, with size a = 17.3%
and power 7 = 50.8%, leads to a region for the prior P which in particular
does not contain the noninformative prior p1 = 1/2. Therefore restricting
size and power to prespecified values severely restricts the prior Py
when payoffs and costs are held fixed.

A decision procedure which is NP-optimal can clearly be ENG-optimal,
provided there is a combination of payoffs, cost structure, and prior
which can generate the prespecified a and m. Once such a combination
is found, a table like those given would yield the number of observations
needed to achieve power w; from (4.1) and (4.2) it would simply be n?.

In explaining the notion of size and power to statistical laymen,
there are always difficulties encountered when justifying the particular
size, say 5%, that is chosen to perform the test. Imagine the corporate
statisticlan explaining to his or her manager that an investment of millions
of dollars, or pounds, etc. should be made based on a test of size 5%.

Why not 1%? The manager would more directly comprehend payoffs and costs
than probabilities of various types of errors. Our approach of ENG-

optimality would pro@ide exactly the type of justification needed to

(]
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invest or not, and compute rather than arbitrarily specify the prob-

abilities of the various types of errors,
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Table 1

Entries show sampling intervals (pL.pU). size a¥*, power T* and sample

sizes n* of the optimal decision procedure for choosing between
= 0.47, 0.44, 0.41, for priors Py € (pL.pU). payoffs

1
= 0.5, and w,

= 100, u

(1]
0
Upg = U ~ U " 0, and cost function c(n) = n.

1 01

w, = 0.47: 0.47 < P < 0.48, 0.51 < Py < 0.52

Py
0.48 0.49 0.50 0.51
a* 0.688 0.688 0.688 0.313
¥ 0.731 0.731 0.731 0.359
n? 1 1 2 1
w, = 0.44: 0.42 < PL < 0.43, 0.57 < Py < 0.58
El.
0.43 0.45 0.47 0.49 0.51 0.53 0.55 0.57
a* 0.588 0.588 0.412 0.412 0.412 0.252 0.252 0.252
n* 0.779 0.779 0.626 0.626 0.626 0.1450 0.450 0.450
n? j h 6 5 5 6 5 3
w, = 0.41: 0.35 < p, < 0.36, 0.64 < Py < 0.65
i
0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64
a¥* 0.575 0.425 0.425 0.425 0.286 0.286 0.173 0.173
8 A 0.876 0.782 0.782 0.782 0.656 0.656 0.508 0.508
n¥ 6 8 8 9 8 10 8 6
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Table 2

a)

Entries are as for Table 1, except that Ugg = Ygq = 75.

w, = 0.47: 0.48 < PL < 0.49, 0.51 < Py < 0.52

1

)
0.49  0.50 __0.51

a¥ 0.688 0.688 0.313
T* 0.731  0.731 0.359

n* 1 1 1

w, = 0.44: 0.U44 < P, < 0.45, 0.55 < Py < 0.56

1

t
Pq

0.45 0.47 0.49 0.51 0.53 0.55

a* 0.613 0.613 0.387 0.387 0.387 0.194
¥ 0.762 0.762 0.555 0.555 0.555 0.330
n* 2 2 3 3 2 2

w, = 0.41: 0.38 < P < 0.39, 0.61 < P < 0.62

0.39 0.42 0.4 0.48 0.51 0.54 0.57 0.59 0.61

a* 0.598 0.598 0.402 0.402 0.402 0.227 0.227 0.227 0.227
w 0.838 0.838 0.687 0.687 0.687 0.494 0,494 0.494 0.u494
n* 4 6 6 5 7 6 5 4 3

[C3
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